UTokyo Repository 東京大学
 

UTokyo Repository >
121 数理科学研究科 >
Journal of Mathematical Sciences, the University of Tokyo >

このページ(論文)をリンクする場合は次のURLを使用してください: http://hdl.handle.net/2261/1229

タイトル: Markov Property of Kusuoka-Zhou's Dirichlet Forms on Self-Similar Sets
著者: Kigami, Jun
発行日: 2000年
出版者: Graduate School of Mathematical Sciences, The University of Tokyo
掲載誌情報: Journal of Mathematical Sciences, The University of Tokyo. Vol. 7 (2000), No. 1, Page 27-33
抄録: The main purpose of this note is to fill a gap in Kusuoka-Zhou's construction of self-similar Dirichlet forms on self- similar sets. Unfortunately, it is not quite clear whether or not the self-similar closed form $\E$ obtained in the proof of Theorem 6.9 of [KZ] satisfies the Markov property. We will use a kind of fixed point theorem of order preserving additive maps on a cone to prove existence of a self-similar closed form with the Markov property. The fixed point theorem will be introduced in \S 1. It is also applicable to other problems, for example, the existence problem of a harmonic structure on a p.c.f. self-similar set. In \S 2, we will apply the fixed point theorem to show existence of self-similar Dirichlet forms on self-similar sets.
URI: http://hdl.handle.net/2261/1229
ISSN: 13405705
出現カテゴリ:Journal of Mathematical Sciences, the University of Tokyo
Journal of Mathematical Sciences, the University of Tokyo

この論文のファイル:

ファイル 記述 サイズフォーマット
jms070103.pdf91.1 kBAdobe PDF見る/開く

本リポジトリに保管されているアイテムはすべて著作権により保護されています。

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - ご意見をお寄せください