UTokyo Repository 東京大学

UTokyo Repository >
131 地震研究所 >
東京大学地震研究所彙報 >

このページ(論文)をリンクする場合は次のURLを使用してください: http://hdl.handle.net/2261/12745

タイトル: Asymptotic Behavior of Spheroidal Eigenfrequencies of a Multi-Layered Spherical Earth : Modes of Very High Phase Velocity
その他のタイトル: 多層構造弾性球の伸び縮み振動における高次モードの固有振動数の挙動
著者: Odaka, Toshikazu
著者(別言語): 小高, 俊一
発行日: 1980年8月25日
出版者: 東京大学地震研究所
掲載誌情報: 東京大学地震研究所彙報. 第55冊第1号, 1980.8.25, pp. 1-26
抄録: Derivation of a frequency equation is made in terms of the matrix formulation for spheroidal oscillations of a multi-layered spherical Earth. Then, it is shown that the equation splits at very high frequency into three independent equations corresponding to three body-wave types, PKIKP, (ScS)v and J respectively. The result is used to obtain asymptotic frequency equations in explicit forms for simple Earth models consisting of a homogeneous liquid core and a one-to three-layered mantle. Comparison of those formulas leads to the conclusion that the equation for PKP-type and that for (ScS)v-type are similar in form to each other when the number of internal discontinuities effective to respective body waves are the same. The fundamental difference in their forms is that the former equation depends on the evenness and oddness of the Legendre order while the latter one does not. It is proved through numerical computations that the solutions of the above equations to the first order approximation are useful for explaining asymptotic patterns of distribution of eigenfrequencies. Further computations are made for two Earth models with re- alistic mantle structure, one with two distinct discontinuities in the upper mantle and the other with a continuously varying structure. Then, it is proved that in general there exists a remarkable difference between the two patterns of distribution of their eigenfrequencies. However the difference falls off at low frequencies because the whole upper-mantles, where elastic parameters change sharpl with depth, act as the same scale of discontinuities on long-period free oscillations. Their patterns of oscillatory features are explainable in terms of an additive effect of the individual "solotone effect" associated with each discontinuity in the Earth.
地殻・マントル・外核(流体)・内核(固体)を有する弾性球の,伸び縮み振動の特性方程式を,matrix法(Thomson-Haskell法)で求めた.その結果を用い,方程式の漸近形(余緯度方向の次数を固定しておいて短周期近似を行う)の考察を行った.それによると,特性方程式は三種類の実体波,PKIKP,(ScS)v,Jに対応し,三つの独立な方程式に分離する.これは波線理論的には,P波,S波が半径方向(表面に垂直)に伝播し,P■Sの波の転換が生じず,PKIKP,(ScS)v,J(内核内のS波)がそれぞれ独立に振舞うことに対応している.次に,単純なモデル(均質な流体核と1~3層から成るマントルを有する球)に対し,漸近的特性方程式の具体的な形を得た.この場合,PKPと(ScS)vに対応する独立な二つの方程式が得られる.更にその第零次,第一次近似解を得た.その表現式より,媒質内の不連続の大きさ,深さが固有振動数の分布のパターンに与える影響を知ることが出来る.近似解の有効性を調べるために,単純なモデルに対し数値計算を行った.現実的なマントル構造を有する二つのモデル(核は均質な流体とする)に対して,不連続面の影響を数値実験的に調べた.一方のモデルは上部マントルにいわゆる400kmと600kmの不連続面を有し,他方は連続的に変化する構造を有する.前者に対する固有振動数の分布のパターンは振動的で,いゆわるsolotone effectが見られ,後者に対するパターンは比較的滑らかで,両者の違いは顕著である.他に,モホ不連続面,マントル-核の境界の影響によるsolotone effectが付加される.ここで注目すべきことは,上部マントルの構造が連続的に変化する場合でも,長周期の振動に対してはsolotone effectに類似したパターンが現われることである.これは,構造が深さと共に急激に変化しているため,実際の不連続面と同等の効果を及ぼすことによると考えられる.
URI: http://hdl.handle.net/2261/12745
ISSN: 00408972


ファイル 記述 サイズフォーマット
ji0551001.pdf1.49 MBAdobe PDF見る/開く



Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - ご意見をお寄せください