UTokyo Repository 東京大学
 

UTokyo Repository >
131 地震研究所 >
東京大学地震研究所彙報 >

このページ(論文)をリンクする場合は次のURLを使用してください: http://hdl.handle.net/2261/12758

タイトル: Asymptotic Frequency Equations for Spheroidal Oscillations of a Spherical Earth with a Uniform Mantle and Care : Modes of Finite Phase Velocity
その他のタイトル: 均質なマントルと核より成る弾性球の伸び縮み振動に対する特性方程式の漸近形 : 有限な位相速度のモード
著者: Odaka, Toshikazu
著者(別言語): 小高, 俊一
発行日: 1980年11月15日
出版者: 東京大学地震研究所
掲載誌情報: 東京大学地震研究所彙報. 第55冊第2号, 1980.11.15, pp. 307-329
抄録: An attempt is made of deriving asymptotic frequency equations valid for the modes of very high frequency and finite phase velocity. The method is based on expanding an exact frequency equation into its asymptotic form by the use of the asymptotic formulas for the spherical Bessel functions and spherical Neumann functions which appear in it. An Earth is assumed to consist of a uniform solid mantle and a uniform liquid core. The equations are expressed in different forms corresponding to the different ray geometries in the Earth and are denoted in terms of reflection and transmission coeffi- cients and intercept times of relevant P and 5 rays.
弾性球の伸び縮み振動の特性方程式は,高振動数,高位相速度の仮定のもとでは大変簡単になる。これは,波線理論的には球内のP波とS波が分離するからである。しかし位相速度を有限に保つ場合には,P波とS波がcouplingをしている状態にあるので,その漸近式(高振動数近似)も複雑になる。ここでは単純なモデル(均質な固体マントルと均質な流体核より成る)で満足することにして,後者の場合に対する式の導出を試みた。方法は,正規モード理論による特性方程式(球Bessel関数,球Neumann関数とそれらの一次微分関数で表現される)を,そこに現れる関数の漸近式を用いて展開するというものである。方程式は,最終的には,実体波の反射係数,透過係数,intercept timeというような波線理論的な量て表現されており,それは球内の異なった波線伝播様式に対してそれぞれ異なっている。
URI: http://hdl.handle.net/2261/12758
ISSN: 00408972
出現カテゴリ:東京大学地震研究所彙報
東京大学地震研究所彙報

この論文のファイル:

ファイル 記述 サイズフォーマット
ji0552001.pdf1.08 MBAdobe PDF見る/開く

本リポジトリに保管されているアイテムはすべて著作権により保護されています。

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - ご意見をお寄せください