このページ(論文)をリンクする場合は次のURLを使用してください: `http://hdl.handle.net/2261/12846`

 タイトル: Numerical Analysis of Layered Convection : Marginal Stability and Finite Amplitude Analyses その他のタイトル: 層をなす対流の数値解析 : 無限小および有限振幅の解析 著者: Honda, Satoru 著者(別言語): 本多, 了 発行日: 1982年9月30日 出版者: 東京大学地震研究所 掲載誌情報: 東京大学地震研究所彙報. 第57冊第2号, 1982.9.30, pp. 273-302 抄録: A study of infinitesimal and finite amplitude convections in two layered immiscible fluids heated from below is presented. In the marginal stability analysis, changing the parameters, e.g. geometrical constraints and viscosity, we find that there are two modes of coupling between the upper and lower convecting fluids as was previously pointed out by Ukaji and SAWADA (1970 a, b, 1971). The first is the'mechanical coupling'in which the horizontal component of the velocity near the interface between two fluids runs in the same direction. The second is the 'thermal coupling'in which the horizontal component of the velocity near the interface runs in the opposite direction. If one of the two fluids becomes more unstable, it drags the other. This is clearly a modified 'mechanical coupling'mode which we tentatively call the 'dragging mode'. The thermal coupling may be a more excited state than the 'mechanical coupling'. Several stability curves obtained by the analysis can be roughly explained in terms of the instability in each layer. In the study of the finite amplitude convection with the infinite Prandtl number, we calculate the Nusseldt number, temperature, stream function and vorticity for various Rayleigh numbers for three kinds of models. The calculated Nusseldt number-Rayleigh number relations are explained by a simple parameterized analysis in spite of the non-linear nature of the problem. This parameterization is possible because the interface between the two immiscible fluids is a plane of almost zero shear stress and the temperature at the interface is nearly constant. Thus, the efficiency of the heat transport can be estimated as follows; 1) calculate 'local'Rayleigh numbers defined for each layer. 2) assume that the Nusseldt number-'local'Rayleigh number relation for each layer is the same as that of 'one'layer. 3) formulate the equation of continuity of the heat flux at the interface. As a result of procedure (3), we can obtain the temperature at the interface and also the total heat flux flowing through the convection system. Well developed thermal boundary layers are formed at the top and bottom surfaces and the interface, when appropriately defined Rayleigh number many times exceeds the critical Rayleigh number. All the flow fields obtained in the study of the finite amplitude convection are of the 'mechanical coupling'mode. This mode may exist in the mantle, if the mantle consists of several independently convecting layers.最近,地球内部において,対流が半径方向に層をなしている可能性が指摘されている.本研究では,対流が層をなすことにより,どのような物理的結果が得られるかという点について,無限小振幅および有限振幅の数値解析をおこなった.無限小振幅の解析においては,層をなす対流に二種類のモードかあることがわかった.一つは,流れが二種類の流体の境界面に対して反対称的なモードであり,もう一つは,境界面に対して対称的なモードである.これらのモードについては,すでに宇加治と沢田によって簡単な場合について報告されている.彼らの命名に従がえば,前者はthermal couplingであり,後者はmechanical couplingである.しかし,thermal couplingは,ごく特殊な場合においてのみ生ずるようである.また,mechanical couplingに比較して,より高次のモードと思われる.得られたstability curveの一部は,それぞれの層でのstabilityを独立に考えることによって得られるそれと大体一致する.有限振幅の計算においては,二次元の非圧縮でPrandtl数が無限である流体を仮定し,Boussinesq近似を用いて差分法により流れの場を求めた.Rayleigh数が大となるにつれて,熱境界層が,流体の上面,下面および,二種類の流体の境界面に形成される.熱効率は,各層で定義される局所的なRayleigh数およびNusseldt数の関係が,二層の場合のそれと同じであると考えることによって説明される.得られた解は全てmechanical couplingであった. URI: http://hdl.handle.net/2261/12846 ISSN: 00408972 出現カテゴリ: 東京大学地震研究所彙報東京大学地震研究所彙報

この論文のファイル:

ファイル 記述 サイズフォーマット