UTokyo Repository 東京大学
 

UTokyo Repository >
131 地震研究所 >
東京大学地震研究所彙報 >

このページ(論文)をリンクする場合は次のURLを使用してください: http://hdl.handle.net/2261/12870

タイトル: 5. 差分法による波動伝播の計算について
その他のタイトル: 5. On the Numerical Calculation of Wave Propagation by the Finite Difference Method
著者: 佐藤, 泰夫
石原, 和彦
著者(別言語): Sato, Yasuo
Ishihara, Kazuhiko
発行日: 1983年7月28日
出版者: 東京大学地震研究所
掲載誌情報: 東京大学地震研究所彙報. 第58冊第1号, 1983.7.28, pp. 163-173
抄録: 波動伝播の様子を明らかにするため,差分法を用いてシミュレートする方法は有力な手段であり,従来解き得なかった問題を明らかにすることができるようになった。しかし,一方に於いて解析的方法にはなかった新しい問題が生じている.すなわち1.格子および時間間隔の選び方が適切でないと,媒質が一様であっても,計算された波は波形がくずれ分散を示す.2.ωc=2C0/h(C0:伝播速度,h:格子間隔)で定まる遮断振動数が存在し,ωcより高い振動数の波は伝播しない.3.波は,遮断振動数ωcに近づくほど強い分散を示す.本文には1次元,2次元の波動および2次元弾性体について,適切なパラメータを用いた場合と,そうでない場合についての計算の例が分散曲線とともに示されている.差分法を用いた波動伝播の計算で,満足いく結果を得るためには,安定条件の他に,格子および時間間隔の撰択,遮断振動数,分散の影響などに十分な配慮が必要であり,ことにS波速度のおそい弾性体においては,上の注意は重要である.
For solving the wave propagation problem the finite difference method is a very powerful weapon assisted by modern high speed computers. Sometimes, however, unexpected difficulties arise which do not exist in the analytical method. For example, i) if the choise of grid and time intervals is not appropriate, the calculated waves are dispersive even if the medium itself is uniform. ii) The cut-off frequency, which is defined by ωc=2C0/h (C0=propagation velocity, h=grid interval), exists and wave components with frequencies higher than we cannot be propagated. iii) Waves with a frequency near we are dispersive, and the choice of grid and time intervals is very important. Examples of calculation based on appropriate and inappropriate parameter values are shown together with the dispersion curves which explain the distortion of waves in the course of propagation.
URI: http://hdl.handle.net/2261/12870
ISSN: 00408972
出現カテゴリ:東京大学地震研究所彙報
東京大学地震研究所彙報

この論文のファイル:

ファイル 記述 サイズフォーマット
ji0581005.pdf524.39 kBAdobe PDF見る/開く

本リポジトリに保管されているアイテムはすべて著作権により保護されています。

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - ご意見をお寄せください