UTokyo Repository 東京大学
 

UTokyo Repository >
121 数理科学研究科 >
Journal of Mathematical Sciences, the University of Tokyo >

このページ(論文)をリンクする場合は次のURLを使用してください: http://hdl.handle.net/2261/1348

タイトル: Averages of Green Functions of Classical Groups
著者: Shoji, Toshiaki
発行日: 1998年
出版者: Graduate School of Mathematical Sciences, The University of Tokyo
掲載誌情報: Journal of Mathematical Sciences, The University of Tokyo. Vol. 5 (1998), No. 1, Page 165-220
抄録: In this paper, we compare the Green functions of $Sp(2n,q)$ and $SO(2n+1,q)$ with those of $GL(n,q^2)$ and find an interesting connection between them. Let $G = Sp_{2n}(\FFq)$ or $SO_{2n+1}(\FFq)$ and $\bar G = GL_n(\FFq)$ with Frobenuius map $F$. The Weyl group $W$ of $G$ is written as $W = DS_n$, where $D$ is an elementary abelian 2-group and $S_n$ is the symmetric group of degree $n$, which is identified with the Weyl group of $\bar G$. Let $Q_{T_w}^G$ be a Green function of $G^F$ where $T_w$ is an $F$-stable maximal torus of $G$ corresponding to $w \in W$. For $w \in S_n$, we define an average of Green functions $Q_{w, D}^G$ on $G^F$ by $Q_{w,D}^G = |D|\iv\sum_{x \in D}Q_{T_{wx}}^G.$ Then there exists a natural injection $u_0 \mapsto u$ from the set of unipotent classes of $\bar G$ to the set of unipotent classes of $G$ such that the function $Q_{w,D}^G(u)$ on $G^F$ coincides with the Green function $Q_{\bar T_w}^{\bar G}(u_0)$ on $\bar G^{F^2}$.
URI: http://hdl.handle.net/2261/1348
ISSN: 13405705
出現カテゴリ:Journal of Mathematical Sciences, the University of Tokyo
Journal of Mathematical Sciences, the University of Tokyo

この論文のファイル:

ファイル 記述 サイズフォーマット
jms050108.pdf437.31 kBAdobe PDF見る/開く

本リポジトリに保管されているアイテムはすべて著作権により保護されています。

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - ご意見をお寄せください