このページ(論文)をリンクする場合は次のURLを使用してください: http://hdl.handle.net/2261/1546

 タイトル: Perturbation of the Navier-Stokes flow in an annular domain with the non-vanishing outflow condition 著者: Morimoto, Hiroko 発行日: 1996年 出版者: Graduate School of Mathematical Sciences, The University of Tokyo 掲載誌情報: Journal of Mathematical Sciences, The University of Tokyo. Vol. 3 (1996), No. 1, Page 73-82 抄録: The boundary value problem of the Navier-Stokes equations has been studied so far only under the vanishing outflow condition due to Leray. We consider this problem in an annular domain $D = \{ {\Vec x} \in {\bf R}^2 ; R_1 < |{\Vec x}| < R_2 \},$ under the boundary condition with non-vanishing outflow. In a previous paper of the first author, an exact solution is obtained for a simple boundary condition of non-vanishing outflow type: ${\Vec u} = \displaystyle{μ \over R_i} {\Vec e}_r + b_i{\Vec e}_θ \ \mbox{ on } Γ_i, \ i=1, 2,$ where $μ,b_1,b_2$ are arbitrary constants. In this paper, we show the existence of solutions satisfying the boundary condition: ${\Vec u} = \{ \displaystyle{μ \over {R_i}}+ \varphi_i(θ)\}{\Vec e}_r + \{b_i + ψ_i(θ)\} {\Vec e}_{θ} \ \mbox{ on } \ Γ_i,\ i=1, 2,$ where $\varphi_i(θ),ψ_i(θ)$ are $2 π$-periodic smooth function of $θ$, under some additional condition. URI: http://hdl.handle.net/2261/1546 ISSN: 13405705 出現カテゴリ: Journal of Mathematical Sciences, the University of TokyoJournal of Mathematical Sciences, the University of Tokyo

この論文のファイル:

ファイル 記述 サイズフォーマット