UTokyo Repository 東京大学
 

UTokyo Repository >
121 数理科学研究科 >
Journal of Mathematical Sciences, the University of Tokyo >

このページ(論文)をリンクする場合は次のURLを使用してください: http://hdl.handle.net/2261/1560

タイトル: The $W^{k,p}$-continuity of wave operators for Schrödinger operators III, even dimensional cases $m\geq4$
著者: Yajima, Kenji
発行日: 1995年
出版者: Graduate School of Mathematical Sciences, The University of Tokyo
掲載誌情報: Journal of Mathematical Sciences, The University of Tokyo. Vol. 2 (1995), No. 2, Page 311-346
抄録: Let $H=-Δ+V(x)$ be the Schrodinger operator on ${\bf R}^m$, $m\ge 3$. We show that the wave operators $W_\pm=\lim_{t\to\pm\infty}e^{itH}\cdot e^{-itH_0}$, $H_0=-Δ$, are bounded in Sobolev spaces $W^{k, p}({\bf R}^m)$, $1\le p\le\infty$, $k=0, 1, \ldots, \ell$, if $V$ satisfies $\|D^α V(y)\|_{L^{p_0}(|x-y|\le 1)}\le C(1+|x|)^{-δ}$ for $δ>(3m/2)+1$, $p_0>m/2$ and $|α|\le\ell+\ell_0$, where $\ell_0=0$ if $m=3$ and $\ell_0=[(m-1)/2]$ if $m\ge 4$, $[σ]$ is the integral part of $σ$. This result generalizes the author's previous result which appears in J. Math.\ Soc.\ Japan 47, where the theorem is proved for the odd dimensional cases $m\ge 3$ and several applications such as $L^p$-decay of solutions of the Cauchy problems for time-dependent Schrodinger equations and wave equations with potentials, and the $L^p$-boundedness of Fourier multiplier in generalized eigenfunction expansions are given.
URI: http://hdl.handle.net/2261/1560
ISSN: 13405705
出現カテゴリ:Journal of Mathematical Sciences, the University of Tokyo
Journal of Mathematical Sciences, the University of Tokyo

この論文のファイル:

ファイル 記述 サイズフォーマット
jms020204.pdf284.06 kBAdobe PDF見る/開く

本リポジトリに保管されているアイテムはすべて著作権により保護されています。

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - ご意見をお寄せください