UTokyo Repository 東京大学
 

UTokyo Repository >
121 数理科学研究科 >
Journal of Mathematical Sciences, the University of Tokyo >

このページ(論文)をリンクする場合は次のURLを使用してください: http://hdl.handle.net/2261/20681

タイトル: Taut foliations of torus knot complements
著者: Nakae, Yasuharu
発行日: 2007年3月20日
出版者: Graduate School of Mathematical Sciences, The University of Tokyo
掲載誌情報: Journal of Mathematical Sciences, The University of Tokyo. Vol. 14 (2007), No. 1, Page 31-67
抄録: We show that for any torus knot $K(r,s)$, $|r|>s>0$, there is a family of taut foliations of the complement of $K(r,s)$, which realizes all boundary slopes in $(-\infty, 1)$ when $r>0$, or $(-1,\infty)$ when $r<0$. This theorem is proved by a construction of branched surfaces and laminations which are used in the Roberts paper~\cite{RR01a}. Applying this construction to a fibered knot ${K}'$, we also show that there exists a family of taut foliations of the complement of the cable knot $K$ of ${K}'$ which realizes all boundary slopes in $(-\infty,1)$ or $(-1,\infty)$. Further, we partially extend the theorem of Roberts to a link case.
URI: http://hdl.handle.net/2261/20681
ISSN: 13405705
出現カテゴリ:Journal of Mathematical Sciences, the University of Tokyo
Journal of Mathematical Sciences, the University of Tokyo

この論文のファイル:

ファイル 記述 サイズフォーマット
jms140102.pdf259.66 kBAdobe PDF見る/開く

本リポジトリに保管されているアイテムはすべて著作権により保護されています。

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - ご意見をお寄せください