UTokyo Repository 東京大学

UTokyo Repository >
131 地震研究所 >
10 地球流動破壊部門 >
1311010 学術雑誌論文 >

このページ(論文)をリンクする場合は次のURLを使用してください: http://hdl.handle.net/2261/21023

タイトル: Noble gas and oxygen isotope studies of aubrites: A clue to origin and histories
著者: Miura, Yayoi N.
Hidaka, Hiroshi
Nishiizumi, Kunihiko
Kusakabe, Minoru
発行日: 2007年1月1日
出版者: Elsevier
掲載誌情報: Geochimica et Cosmochimica Acta. 71(1), 2007-01-01, pp. 251-270
関連URI: http://www.elsevier.com/wps/find/journaldescription.cws_home/212/description#description
抄録: Noble gas measurements were performed for nine aubrites: Bishopville, Cumberland Falls, Mayo Belwa, Mount Egerton, Norton County, Peña Blanca Spring, Shallowater, ALHA 78113 and LAP 02233. These data clarify the origins and histories, particularly cosmic-ray exposure and regolith histories, of the aubrites and their parent body(ies). Accurate cosmic-ray exposure ages were obtained using the 81Kr–Kr method for three meteorites: 52 ± 3, 49 ± 10 and 117 ± 14 Ma for Bishopville, Cumberland Falls and Mayo Belwa, respectively. Mayo Belwa shows the longest cosmic-ray exposure age determined by the 81Kr–Kr method so far, close to the age of 121 Ma for Norton County. These are the longest ages among stony meteorites. Distribution of cosmic-ray exposure ages of aubrites implies 4–9 break-up events (except anomalous aubrites) on the parent body. Six aubrites show “exposure at the surface” on their parent body(ies): (i) neutron capture 36Ar, 80Kr, 82Kr and/or 128Xe probably produced on the respective parent body (Bishopville, Cumberland Falls, Mayo Belwa, Peña Blanca Spring, Shallowater and ALHA 78113); and/or (ii) chondritic trapped noble gases, which were likely released from chondritic inclusions preserved in the aubrite hosts (Cumberland Falls, Peña Blanca Spring and ALHA 78113). The concentrations of 128Xe from neutron capture on 127I vary among four measured specimens of Cumberland Falls (0.5–76 × 10−14 cm3STP/g), but are correlated with those of radiogenic 129Xe, implying that the concentrations of (128Xe)n and (129Xe)rad reflect variable abundances of iodine among specimens. The ratios of (128Xe)n/(129Xe)rad obtained in this work are different for Mayo Belwa (0.045), Cumberland Falls (0.015) and Shallowater (0.001), meaning that neutron fluences, radiogenic 129Xe retention ages, or both, are different among these aubrites. Shallowater contains abundant trapped Ar, Kr and Xe (2.2 × 10−7, 9.4 × 10−10 and 2.8 × 10−10 cm3STP/g, respectively) as reported previously (Busemann and Eugster, 2002). Isotopic compositions of Kr and Xe in Shallowater are consistent with those of Q (a primordial noble gas component trapped in chondrites). The Ar/Kr/Xe compositions are somewhat fractionated from Q, favoring lighter elements. Because of the unbrecciated nature of Shallowater, Q-like noble gases are considered to be primordial in origin. Fission Xe is found in Cumberland Falls, Mayo Belwa, Peña Blanca Spring, ALHA 78113 and LAP 02233. The majority of fission Xe is most likely 244Pu-derived, and about 10–20% seems to be 238U-derived at 136Xe. The observed (136Xe)Pu corresponds to 0.019–0.16 ppb of 244Pu, from which the 244Pu/U ratios are calculated as 0.002–0.009. These ratios resemble those of chondrites and other achondrites like eucrites, suggesting that no thermal resetting of the Pu–Xe system occurred after 4.5 Ga ago. We also determined oxygen isotopic compositions for four aubrites with chondritic noble gases and a new aubrite LAP 02233. In spite of their chondritic noble gas signatures, oxygen with chondritic isotopic compositions was found only in a specimen of Cumberland Falls (Δ17O of 0.3‰). The other four aubrites and the other two measured specimens of Cumberland Falls are concurrent with the typical range for aubrites.
URI: http://hdl.handle.net/2261/21023
ISSN: 00167037
出現カテゴリ:1311010 学術雑誌論文
014 自然科学


ファイル 記述 サイズフォーマット
GCA07_71_251_corr.pdf487.8 kBAdobe PDF見る/開く



Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - ご意見をお寄せください