UTokyo Repository 東京大学
 

UTokyo Repository >
121 数理科学研究科 >
Scientific Papers of the College of Arts and Sciences, The University of Tokyo  >

このページ(論文)をリンクする場合は次のURLを使用してください: http://hdl.handle.net/2261/21192

タイトル: Continuous Dependence Problem in an Inverse Spectral Problem for Systems of Ordinary Differential Equations of First Order
著者: Yamamoto, Masahiro
発行日: 1988年
出版者: The University of Tokyo
掲載誌情報: Scientific Papers of the College of Arts and Sciences, The University of Tokyo. Vol.38(1988), Page69-130
抄録: We consider an eigenvalue problem (1)-(2) : (1) $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} du(x)/dx +P(x)u(x)=\lambda u(x)$ $(0\leqq x\leqq 1 ; u=\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$. (2) $u_2()+hu_1(0)=0, u_2(1)+Hu_1(1)=0. $ Here $P=\begin{pmatrix} a & b \\ (p_1) & (p_2) \end{pmatrix} \in {C^1[1,1]}^4 : $ : real-valued and h, H are real constants, and λ corresponds to an eigenvalue. We denote the set of eigenvalues of (1)-(2) by ${\lambda _n)P,h,H)}_(n\in Z)$ under an appropriate numbering. For $Q=\begin{pmatrix} a & b \\ (q_1) & (q_2) \end{pmatrix} \in {C^1[0,1]}^4$ and $h, H, H^*, J, J^* \in R\setminus {-1,1} (H\neq H^*, J\neq J^*)$, we obtain the following result on continuous dependence of coefficients and boundary conditions upon eigenvalues : If $\delta _0\equiv \sum _n^\infty =_(-\infty )(\mid \lambda _n(Q,h,J)-\lambda _n(P,h,H)\mid + (\mid \lambda _n(Q,h,J^*)-\lambda _n(P,h,H^*)\mid $ is sufficientrly small, then $\parallel Q-P\parallel _{[c^1[0,1]]^4}\leqq +\mid J-H\mid +\mid J^*-H^*\mid \leqq M\delta _0$ for some constant M>0. Moreover we get $\parallel Q-P\parallel _{[c^1[0,1]]^4}\leqq M$ . We show also that for given $\mu _n, \mu _n ^* \in C (n\in Z)$, there exists a unique $(Q,h,J^*)\in {C^1[0,1]}^4 \times (R\setminus {-1,1})^2$ satisfying $\lambda _n(Q, h, J)=\mu _n$ and $\mu _n(Q,h,j^*)=\mu _n^*$ under appropriate assumptions on $\mu _n, \mu _n^*(n\in Z)$ $(e.g. \sum _n^\infty =_(-\infty )(\mid \mu _n - \lambda _n(P,h,H^*)\mid)$ is sufficiently small.). We prove these results by the principle of contraction mappings and, in order to apply the principle, we establish a priori estimates of solutions to some hyperbolic systems and results on perturbation of Riesz bases.
URI: http://hdl.handle.net/2261/21192
ISSN: 02897520
出現カテゴリ:Scientific Papers of the College of Arts and Sciences, The University of Tokyo
Scientific Papers of the College of Arts and Sciences, The University of Tokyo

この論文のファイル:

ファイル 記述 サイズフォーマット
scp038005.pdf2.95 MBAdobe PDF見る/開く

本リポジトリに保管されているアイテムはすべて著作権により保護されています。

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - ご意見をお寄せください