このページ(論文)をリンクする場合は次のURLを使用してください: http://hdl.handle.net/2261/6379

 タイトル: Microlocal analysis of partial differential operators with irregular singularities 著者: Uchikoshi, Keisuke 発行日: 1983年12月10日 出版者: Faculty of Science, The University of Tokyo 掲載誌情報: Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, Vol.30(1983), No.2, Page299-332 抄録: We denote the variables in $R^{n + 1}$ by $x=(x_0 ,x^')$, where $x_0 \in R$ and $x^' \in R^n$. We consider partial differential operators of the form $P(x,\partial /\partial x) = \sum\limits_{\left｜ \alpha \right｜ \leqslant m} {a_\alpha } (x)x_0^{\kappa (\left｜ \alpha \right｜)} (\partial /\partial x)^\alpha$, where $\kappa (j)$ is some integer $\geqslant 0$, $a_\alpha (x)$ is real analytic in a neighborhood of $x=0$, and $a_{(m,0, \ldots ,0)}=1$. We define the irregularity $\iota \in \left[ {1,\infty )} \right.$ and the characteristic exponents $\lambda _1 , \ldots ,\lambda _{\kappa (m)} \in C$ of the operator P at the point $\mathop x\limits^ \circ ^* = (0;\sqrt { - 1} ,0, \ldots ,0) \in \sqrt { - 1} T*R^{n + 1}$. It will be proved that if $\iota >1$ and all the characteristic exponents of P are distinct, then P is equivalent microlocally to the operator $x_0^{k(m)} :C_{R^{n + 1} } \to C_{R^{n + 1} }$ $u \to x_0^{k(m)} u$ in a neighborhood of $\mathop x\limits^ \circ ^*$. URI: http://hdl.handle.net/2261/6379 ISSN: 00408980 出現カテゴリ: Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, MathematicsJournal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics

この論文のファイル:

ファイル 記述 サイズフォーマット