UTokyo Repository 東京大学

UTokyo Repository >
121 数理科学研究科 >
Journal of Mathematical Sciences, the University of Tokyo >

このページ(論文)をリンクする場合は次のURLを使用してください: http://hdl.handle.net/2261/7540

タイトル: Studies on the Painlev\'e Equations, V, \\ Third Painlev\'e Equations \\ of Special Type $P_{\rm III}(D_7)$ and $P_{\rm III}(D_8)$
著者: Ohyama, Yousuke
Kwamuko, Hiroyuki
Sakai, Hidetaka
Okamoto, Kazuo
キーワード: Painlev\'e equations
Isomonodromic deformation
B\"acklund transformation
Differential Galois theory
Space of initial conditions
発行日: 2006年10月17日
出版者: Graduate School of Mathematical Sciences, The University of Tokyo
掲載誌情報: Journal of Mathematical Sciences, The University of Tokyo. Vol. 13 (2006), No. 2, Page 145-204
抄録: By means of geometrical classification (\cite{S}) of space of initial conditions, it is natural to consider the three types, $P_{\rm III}(D_6)$, $P_{\rm III}(D_7)$ and $P_{\rm III}(D_8)$, for the third Painlev\'e equation. The fourth article of the series of papers \cite{O2} on the Painlev\'e equations is concerned with $P_{\rm III}(D_6)$, generic type of the equation. The other two types, $P_{\rm III}(D_7)$ and $P_{\rm III}(D_8)$ are obtained as degeneration from $P_{\rm III}(D_6)$; the present paper is devoted to investigating them in detail. Each of $P_{\rm III}(D_7)$ and $P_{\rm III}(D_8)$ is characterized through holonomic deformation of a linear differential equation and written as a Hamiltonian system. $P_{\rm III}(D_7)$ contains a parameter and admits birational canonical transformations as symmetry, isomorphic to the affine Weyl group of type $A_1^{(1)}$. Sequence of $\tau$-functions are defined for $P_{\rm III}(D_7)$ by means of successive application of the translation of the symmetry of the equation; they satisfy the Toda equation. The $\tau$-functions related to algebraic solutions of $P_{\rm III}(D_7)$ are determined explicitly. The irreducibility of $P_{\rm III}(D_7)$, as well as that of $P_{\rm III}(D_8)$, is established, and there is no transcendental classical solution of these equations. A space of initial conditions is constructed for each of $P_{\rm III}(D_7)$ and $P_{\rm III}(D_8)$ by the use of successive blowing-up's of the projective plane ${\mathbb P}^2$.
URI: http://hdl.handle.net/2261/7540
ISSN: 13405705
出現カテゴリ:Journal of Mathematical Sciences, the University of Tokyo
Journal of Mathematical Sciences, the University of Tokyo


ファイル 記述 サイズフォーマット
jms130204.pdf340.42 kBAdobe PDF見る/開く



Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - ご意見をお寄せください