Assume that $X$ is a normal projective variety over ${\Bbb C}$, of dimension $\leqq 3$, and that $(X, Δ)$ is a log variety that is weakly Kawamata log terminal. Let $L$ be a nef Cartier divisor such that $aL-(K_X+Δ)$ is nef and log big on $(X, Δ)$ for some $a\in{\Bbb N}$. Then Bs$|mL|=\emptyset$ for every $m\gg 0$.
雑誌名
Journal of mathematical sciences, the University of Tokyo
巻
4
号
3
ページ
621 - 625
発行年
1997
ISSN
13405705
書誌レコードID
AA11021653
フォーマット
application/pdf
日本十進分類法
415
Mathematical Reviews Number
MR1484604
Mathmatical Subject Classification
14C20(MSC1991)
14J10(MSC1991)
出版者
Graduate School of Mathematical Sciences, The University of Tokyo