ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 121 数理科学研究科
  2. 12120 博士論文(数理科学専攻)
  1. 0 資料タイプ別
  2. 20 学位論文
  3. 021 博士論文

Rigidity theorems for universal and symplectic universal lattices

https://doi.org/10.15083/00004046
https://doi.org/10.15083/00004046
f3f35550-49ee-4eba-bea9-1ae944ac90fe
名前 / ファイル ライセンス アクション
MimuraM_23_3_PhD_a.pdf MimuraM_23_3_PhD_a.pdf (984.9 kB)
MimuraM_23_3_PhD_b.pdf MimuraM_23_3_PhD_b.pdf (74.2 kB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2012-10-23
タイトル
タイトル Rigidity theorems for universal and symplectic universal lattices
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_46ec
タイプ thesis
ID登録
ID登録 10.15083/00004046
ID登録タイプ JaLC
その他のタイトル
その他のタイトル 普遍格子と斜交普遍格子の剛性定理
著者 Mimura, Masato

× Mimura, Masato

WEKO 9354

Mimura, Masato

Search repository
著者別名
識別子Scheme WEKO
識別子 9355
姓名 見村, 万佐人
著者所属
著者所属 東京大学大学院数理科学研究科
著者所属
著者所属 Graduate School of Mathematical Sciences, The University of Tokyo
Abstract
内容記述タイプ Abstract
内容記述 Cohomological rigidity theorems (with Banach coefficients) for some matrix groupsG over general rings are obtained. Main examples of these groups are (finite indexsubgroups of) universal lattices SLm(Z[x1, . . . , xk]) for m at least 3 and symplecticuniversal lattices Sp2m(Z[x1, . . . , xk]) for m at least 2 (where k is finite). The resultsincludes the following for certain large m:(1) The first group cohomology vanishing with any isometric Lp or p-Schatten coefficients,where p is any real on (1,∞). This is strictly stronger than havingKazhdan’s property (T).(2) The injectivity of the comparison map in degree 2 from bounded to ordinarycohomology, with coefficients as in item (1) not containing trivial one.As a corollary, homomorphim rigidity (, namely, the statement that every homomorphismfrom G has finite image) is established with the following targets: circlediffeomorhisms with low regularity; mapping class groups of surfaces; and outerautomorhisms of free groups. These results can be regarded as a generalization ofsome previously known rigidity theorems for higher rank lattices (Bader–Furman–Gelander–Monod; Burger–Monod; Farb–Kaimanovich–Masur; Bridson–Wade) tothe case of certain general matrix group cases, which are not realizable as lattices inalgebraic groups. Note that G above does not usually satisfy the Margulis finitenessproperty.Finally, quasi-homomorphims are studied on special linear groups over euclideandomains. This concept has relation to item (2) above for trivial coefficient case,and to the conception of the stable commutator length. In particular, a question ofM. Ab´ert and N. Monod, which was for instance stated at ICM 2006, is answeredfor large degree case, and a new example of groups with the following intriguingfeatures is provided: having infinite commutator width; but the stable commutatorlength vanishing.
書誌情報 発行日 2011-03-24
日本十進分類法
主題Scheme NDC
主題 410
学位名
学位名 博士(数理科学)
学位
値 doctoral
学位分野
Mathematical Sciences (数理科学)
学位授与機関
学位授与機関名 University of Tokyo (東京大学)
研究科・専攻
Graduate School of Mathematical Sciences (数理科学研究科)
学位授与年月日
学位授与年月日 2011-03-24
学位授与番号
学位授与番号 甲第27195号
学位記番号
博数理第376号
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 19:48:44.242711
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3