ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 121 数理科学研究科
  2. Scientific Papers of the College of Arts and Sciences, The University of Tokyo
  3. 39
  1. 0 資料タイプ別
  2. 30 紀要・部局刊行物
  3. Scientific Papers of the College of Arts and Sciences, The University of Tokyo
  4. 39

Admissible Controllability for Linear Time-delay Systems in Banach Spaces : A problem in game theory

https://doi.org/10.15083/00040991
https://doi.org/10.15083/00040991
157b2605-5c8c-4e4e-9933-02fda5dac14e
名前 / ファイル ライセンス アクション
scp039002.pdf scp039002.pdf (732.7 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2008-11-19
タイトル
タイトル Admissible Controllability for Linear Time-delay Systems in Banach Spaces : A problem in game theory
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
ID登録
ID登録 10.15083/00040991
ID登録タイプ JaLC
著者 Park, Jong Yeoul

× Park, Jong Yeoul

WEKO 139874

Park, Jong Yeoul

Search repository
Nakagiri, Shin-Ichi

× Nakagiri, Shin-Ichi

WEKO 139875

Nakagiri, Shin-Ichi

Search repository
Yamamoto, Masahiro

× Yamamoto, Masahiro

WEKO 139876

Yamamoto, Masahiro

Search repository
著者所属
著者所属 Department of Mathematics, Pusan National University|Department of Applied Mathematics, Faculty of Engineering, Kobe University|Department of Mathematics, College of Arts and Sciences, University of Tokyo
抄録
内容記述タイプ Abstract
内容記述 We consider a linear control system with time-delays in a reflexive Banach space X : $dx(t)/dt=A_0x(t)+\int_(-n)^0 d\eta (s)x(t+s)+B(t)u(t) a.e. t>0.$ $x(0)=g^0, x(s)=g^1(s) a.e. s\in [-h,0],$ where $where (g^0,g^1)\in X\times L_p([-h,0] ; X), u\in L_q^(loc) (R^+ ; U),$ U is a reflexive Banach space, $p,q\in (1,\infty ),B(t)$ is a family of bounded linear operators on U to X and A$F_0$ generates a C$F_0$-semigroup, η is a Stieltjes measure. Moreover g$F^1$ and u are assumed to be restricted in ${g^1 ; \parallel g^1\parallel L_(p([-h,0]); X)) \leqq \rho $ and ${u ; \parallel u\parallel_ L_(p([0,T]);U)) \leqq \delta } (\rho \delta >0 ).$ For given $x^0,g^0\in X $ and a given time T>0, we discuss admissible controllability problems : (1) to determine independently g$F^1$ (・) and u (・) such that x(0)=g$F^0$ and $x(T)=x^0 or \parallel x(T)-x^0\parallel \leqq \epsilon $ (\epsilon : a given error). (the cooperative type) (2) to determine u (・) for a given g$F^1$ (・) such that x(0)=g$F^0$ and $\parallel x(T)-x^0\parallel \leqq \epsilon $(the noncooperative type) In this paper, for the both types, we establish necessary and sufficient conditions involving ρ and δ, in order that we can find such g$F^1$ and u. These conditions are expressed in terms of the fundamental solution of the homogeneous system with time-delays.
書誌情報 Scientific papers of the College of Arts and Sciences, the University of Tokyo

巻 39, p. 45-55, 発行日 1989
ISSN
収録物識別子タイプ ISSN
収録物識別子 02897520
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA10538733
フォーマット
内容記述タイプ Other
内容記述 application/pdf
日本十進分類法
主題Scheme NDC
主題 410
出版者
出版者 The University of Tokyo
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 11:59:28.318702
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3