ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 121 数理科学研究科
  2. Journal of Mathematical Sciences, the University of Tokyo
  3. 24
  4. 1
  1. 0 資料タイプ別
  2. 30 紀要・部局刊行物
  3. Journal of Mathematical Sciences, the University of Tokyo
  4. 24
  5. 1

The zero-temperature limit of the free energy density in many-electron systems at half-filling

http://hdl.handle.net/2261/00074373
http://hdl.handle.net/2261/00074373
8075894b-c7ad-41b5-b99a-ed25f233cd9e
名前 / ファイル ライセンス アクション
jms240101.pdf jms240101.pdf (962.0 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2018-04-04
タイトル
タイトル The zero-temperature limit of the free energy density in many-electron systems at half-filling
言語
言語 eng
キーワード
主題Scheme Other
主題 many-electron system
キーワード
主題Scheme Other
主題 renormalization group
キーワード
主題Scheme Other
主題 zero-temperature limit
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
著者 Kashima, Yohei

× Kashima, Yohei

WEKO 146127

Kashima, Yohei

Search repository
著者所属
著者所属 Graduate School of Mathematical Sciences, The University of Tokyo
抄録
内容記述タイプ Abstract
内容記述 We prove by means of a renormalization group method that in weakly interacting many-electron systems at half-filling on a periodic hyper-cubic lattice, the free energy density uniformly converges to an analytic function of the coupling constants in the infinite-volume, zero-temperature limit if the external magnetic field has a chessboard-like flux configuration. The spatial dimension is allowed to be any number larger than 1. The system covers the Hubbard model with a nearest-neighbor hopping term, on-site interactions, exponentially decaying density-density interactions and exponentially decaying spin-spin interactions. The magnetic field must be included in the kinetic term by the Peierls substitution. The flux configuration and the sign of the nearest-neighbor density-density/spin-spin interactions can be adjusted so that the free energy density is minimum among all the flux configurations. Consequently, the minimum free energy density is proved to converge to an analytic function of the coupling constants in the infinite-volume, zero-temperature limit. These are extension of the results on a square lattice in the preceding work ([Kashima, Y., ``The special issue for the 20th anniversary'', J. Math. Sci. Univ. Tokyo. 23 (2016), 1-288]). We refer to lemmas proved in the reference in order to complete the proof of the main results of this paper. So this work is a continuation of the preceding work.
書誌情報 Journal of Mathematical Sciences, The University of Tokyo

巻 24, 号 1, p. 1-158, 発行日 2017-02-17
ISSN
収録物識別子タイプ ISSN
収録物識別子 13405705
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11021653
著者版フラグ
値 publisher
Mathmatical Subject Classification
81T17(MSC2010)
Mathmatical Subject Classification
81T28(MSC2010)
出版者
出版者 Graduate School of Mathematical Sciences, The University of Tokyo
原稿受領日
2015-09-01
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 20:16:51.070468
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3