ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 191 学際融合研究施設
  2. 01 未来ビジョン研究センター
  3. 政策提言
  1. 0 資料タイプ別
  2. 60 レポート類
  3. 062 テクニカルレポート

RCModel, a Risk Chain Model for Risk Reduction in AI Services

http://hdl.handle.net/2261/00079367
http://hdl.handle.net/2261/00079367
d268ea7d-2166-4506-9d2d-2443b159afd8
名前 / ファイル ライセンス アクション
policy_recommendation_tg_20200706.pdf policy_recommendation_tg_20200706.pdf (666.4 kB)
license.icon
Item type テクニカルレポート / Technical Report(1)
公開日 2020-07-06
タイトル
タイトル RCModel, a Risk Chain Model for Risk Reduction in AI Services
言語 en
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_18gh
タイプ technical report
その他のタイトル
その他のタイトル AIサービスのリスク低減を検討するリスクチェーンモデルの提案
著者 Technology, Governance Policy Research Unit Institute for Future Initiatives The University of Tokyo

× Technology, Governance Policy Research Unit Institute for Future Initiatives The University of Tokyo

WEKO 160902

Technology, Governance Policy Research Unit Institute for Future Initiatives The University of Tokyo

Search repository
著者別名
識別子Scheme WEKO
識別子 160903
姓名 東京大学未来ビジョン研究センター技術ガバナンス研究ユニット
抄録
内容記述タイプ Abstract
内容記述 With the increasing use of artificial intelligence (AI) services and products in recent years, issues related to their trustworthiness have emerged and AI service providers need to be prepared for various risks. In this policy recommendation, we propose a risk chain model (RCModel) that supports AI service providers in proper risk assessment and control. We hope that RCModel will contribute to the realization of trustworthy AI services.

Overview of RCModel
1)Organization and structure of risk components
There are a number of potential risk factors involved in provision of AI services. In RCModel, these factors are segregated into (1) technical components of the AI system, (2) components related to the code of conduct (including communication with users) of the service provider, and (3) components related to the user’s understanding, behavior, and usage environment.

2)Identification of risk scenarios and risk-contributing factors
RCModel helps identify risk scenarios related to AI services, such as unfair decisions and uncontrollable accidents. It then identifies risk factors for priority risk scenarios.

3)Visualization of risk chains and planning risk control
Because it is difficult to reduce risk sufficiently on a factor basis, AI service providers can consider stepwise risk reduction by visualizing the relationships (risk chain) among the risk factors related to risk scenarios. This allows consideration of where a risk exists and its effective and efficient control.

Policy Recommendations for Future Development and Implementation of AI Services Using RCModel
Policy Recommendation 1: Enhance understanding of risk scenarios and factors
Service providers need to properly understand the risk factors associated with their AI services. They should also pay attention to social incidents involving the use of AI technologies and recognize important risk scenarios.

Policy Recommendation 2:Promotion of appropriate risk controls using RCModel
AI service providers should formulate their risk control measures by analyzing RCModel’s risk chain. It is neither necessary nor always possible to reduce all the risks identified; therefore, appropriate controls should be established within an enterprise based on factors such as magnitude of risks posed, technical difficulty, cost-effectiveness, and continuity.

Policy Recommendation 3:Promoting and updating dialogue among stakeholders
RCModel should be used to facilitate dialogue among AI service providers, AI developers, and users. In addition, a system should be established to clarify risk tolerance, create risk scenarios, structure risk factors, examine risk control models, and create a common understanding on the scope of each stakeholder’s responsibility.
書誌情報
発行日 2020-07-06
権利
権利情報 CC BY 4.0
著者版フラグ
値 publisher
出版者
出版者 Institute for Future Initiatives, The University of Tokyo
関係URI
識別子タイプ URI
関連識別子 https://ifi.u-tokyo.ac.jp/en/news/4815/
関連名称 https://ifi.u-tokyo.ac.jp/en/news/4815/
関係URI
識別子タイプ URI
関連識別子 https://confit.atlas.jp/guide/event/jsai2020/subject/4N2-OS-26a-02/tables?cryptoId=
関連名称 https://confit.atlas.jp/guide/event/jsai2020/subject/4N2-OS-26a-02/tables?cryptoId=
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 10:51:40.954635
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3