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Summary

New beam and plte bending finite elements are pro-
posed in this paper. A new beam elements consists of
rigid bars connected by a rotational spring, while a plate
element consists of rigid plates with a rotational spring.
Size of stiffness matrices of these bending elements are
1/2of a well-known beam bending element, and 1/3
of a triangular plate bending element respectively and
therefore to obtain solutions of the same accuracy at least
matrix condensation to 2/ 3of the original matrices of
three dimensional structures can be made so that con-
siderble reduction of computing time can be expected in
finite element analysis of structures with minor penality
in hcrease of mesh division. The auther believes that
the use of these new elements will especially make the
nonlinear analysis of complex structures much more prac-
tical

1. Derivation of new bending finite eiements

ft is well known that the bending stiffness of a
framed structure is much smaller than the direct stiff-
ness of the same structure, and m case of plate and
shell structures the membrane stiffness of a given strue-
ture is much larger than the bending stiffness. And
therefore bending analysis of these structire can be made
under the assumption of nfinitely large direct stiffness
so long as the deformation is considered small.

Basing on such consideration two rigid bars connected
by one rotational spring two rigid triangular plates car
nected with one rotational spring are proposed for new
beam and plate bending elements.

(@) a new beam bending element
Deformation of two rigid bars connected by ore spring
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is considered (Fig. 1).
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Fig. 1. A new beam bending element
Denoting the displacements of the point A,B and C
by ui-13 Wi Ui+1;kspring constant, the foilowing strain
energy expression can be derived easily
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It is not difficult to derive the following stiffness matrix
of a given system by applying Castigliano's Theorem; .
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() a new plate bending element

Fig. 2. A new plate bending element
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Consider assemblage of rigid plate elements shown
in Fig. 2. Triangular platess 4@ @ @ and 4@ @
®, are connected by a spring whose constant is
kas. Before lading, these plates were on tte x,y plane
and under a given loading they are displaced to the
position whose equation is given by the following equa-
tion;

[ax + may + naz = pa (4
Lateral displacement of the point @ (x0>y,) » @ (X1r
y1) . @ (X2 y2) are denonted by wo» w1, and w,
respectively. Consequently the following three equation
can be obtained:

laxo+ mayo + nawo = pa

laxy + mayy + nawy = pa

laxzs + mays + naws = pgu
From these equation (4, m 4, n4) and Pa can be
expressed as follows:

All
l = :t _—
* VA + A+ A

AIZ
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nA: Alo ......... (6)
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%041y + yodiz + wodro

pa= =%
Vi + 4% + 4%
where
Xa Yo _ Wo Y
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A12 = — T T e eee e (7)
X112 Wiz
Xij = Xi — Xj» Yij = ¥i — ¥j» and

Wij = Wi — Wj
The similar expressions for 4@ @ @ can drived. In
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the deformed state 4@ ® @ and 4©® @ @ are inclin-
ed each other through the rotation angle @ as and the.
follbwing relation can be easily obtained:

cos Oag = lalg + mamp + nang e (8)
When @48 & small such that
_ s
Cos 0AB - 1—2— ...(9)

then eq. (8) can be simplified with the aid of egs.(6) and
(9) as folows:
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Consequently the strain energy stored in the connection
spring will be given as follows:

1
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where W’ = |wo,w,wpws,, 77 @

Applying Castingliano's theorm, the following reaction
force vecter R can be derived

R—aV Kw

+—+ where K is the stiffness matrix to be obtamed. The

final from of the stiffness matrix is shown in the fak
lowing Tablke. 1
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Table 1.

Stiffness matrix of a new plate bending element
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() method of determination of the spring corstarts

The spring constants # in these matrices can be
computed theoretically by useing the second order poly-
nomial approximation.

In case of a beam element (Fig. 1), for example
the curvature # can be expressed by

2

ey

‘From the moment-curvature relation the tollowing

7 (0:— 0i-1)

equation & derived:
M=% (6; — 0i-)=EIr Y
Substituting eq.G3 into eq. (4 the following relation is

easily obtained
__2Er
k= i+ lia @

It is not difficult to derive the folowing formula for
the spring constant of a given plate element as shown
in Fig. 3

Fig. 3. Determination of the spring constant in the plate
bending element
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(8 Conwergency test of beam and plate bending
solutions

Fig. 4 shows the result of limit analaysis of a beam

clamped at both ends under a single concentrated load.
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Fig. 4. Collapse load analysis of a clamped beam under a
concentrated load
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Fig. 5 shows the result of convergency test of a rec-

tangular plate bending solutions under a concentrated
as well as uniformly distributed load.
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Fig. 5. Result of convergency tests

2. Some numerical examples on the collapse

load analysis of rectangular plates

To show validity of a newly proposed plate bending
element, a series of collapse load analysis of rectangular
plates was made under the assumption of a conceritrated
as well as uniformly distributed load with unusual
boundary condition. Two typical examples of analyss are
shown in Fig. 6 and Fig. 7. Agreement between
the present calculation and experiment made by other

investigators (1) was founed to be extremely good.
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Fig. 6. Collapse load analysis of a rectangular plate under
a uniformly distributed load
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H ® of dynamic colapse load analysis of plate :structures
gl %32 including stability is now under way. The authors
der would like to express their thanks to Messrs. Y. Fuji
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Fig. 7. Collapse load analysis of a rectangular plate under
centrally concentrated load

(Manuscript recieved, July, 28.71976 )
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