Congruences between modular forms and functions
and applications to the conjecture of Atkin

By Masao KOIKE

(Communicated by Y. Ihara)

We shall prove some congruence relations mod p^α between the Fourier coefficients of cusp forms of weight $p^\alpha - p^{\alpha-1}$ with respect to $I' = \text{SL}(2, \mathbb{Z})$ and those of some modular functions with respect to $I_0(p)$ (Main Theorem, §6). This generalizes Newman [11] where $p=13$, and $\alpha=1$, and enables us to reduce the conjecture of Atkin [2] on the Fourier coefficients of $J(\tau)$ to the “p-separability” in weight $p-1$, and some “p-vanishing” property in weight $p^\alpha - p^{\alpha-1}$ ($\alpha > 1$) of the eigenvalues of the Hecke operator $T(p)$ in the space of cusp forms with respect to I' (Theorem 3, §8). As a corollary, we can prove some new cases of this conjecture for $\alpha=1$. In §§7, 8, we shall discuss the “p-adic eigenfunctions” of the “p-adic Hecke operators”.

Our results are based on the following two facts: (i) there exists an algebraic equivalent of $q^{-1}dq$ ($q = e^{2\pi i \tau}$) in the p-adic completion of some unramified algebraic extension of the modular function field, and there is an algebraic formula for $(p^{-1}dq)^{p-1}$ (mod. p) (Ihara [8], [9]), (ii) the p-adic rigidity of the function $J(\tau) \to J(p\tau)$, conjectured by Tate and proved by Deligne. Tate predicted that this rigidity might be essential in proving Atkin's conjecture.

Recently, it is reported that Dwork solves the conjecture of Atkin, however, the detail is not known and the relation to this paper is not clear.

The author wishes to express his hearty thanks to Prof. Y. Ihara for suggesting this problem as well as for his encouragement during the preparation of the present paper.

Notations.

\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}: the rational integers, the rational numbers, the real numbers and the complex numbers.

\mathbb{Q}_p, \mathbb{Q}_p^α, \mathfrak{o}_p, \mathfrak{p}: the p-adic numbers, the completion of the maximum unramified extension of \mathbb{Q}_p, the valuation ring of \mathbb{Q}_p, the maximal ideal of \mathfrak{o}_p.

F_p, \overline{F}_p: the finite field with p elements, the algebraic closure of F_p.

PART I. CONGRUENCES BETWEEN MODULAR FORMS AND FUNCTIONS

1. Statement of Main Theorem

We shall fix a prime number \(p \) once and for all. Let \(\mathcal{H} = \{ \tau \in \mathbb{C} | \text{Im} \tau > 0 \} \). Denote by \(\mathcal{M} \) the space of all meromorphic functions on \(\mathcal{H} \) that are invariant under the translation \(\tau \mapsto \tau + 1 \). Define the operators \(U(p) \) and \(T_k(p^n) \) on \(\mathcal{M} \) for each \(k, n = 0, 1, \ldots, \), by

\[
F(\tau) | U(p) := p^{-\frac{k-1}{2}} \sum_{d \mid n} F\left(\frac{d \tau + b}{d} \right) d^{-\frac{k}{2}} d \quad \text{for} \quad F(\tau) \in \mathcal{M}.
\]

\[
F(\tau) | T_k(p^n) := p^{\frac{k-1}{2}} \sum_{d \mid n \text{ odd}} F\left(\frac{d \tau + b}{d} \right) d^{-\frac{k}{2}} d \quad \text{for} \quad F(\tau) \in \mathcal{M}.
\]

It follows immediately from the definitions that

\[
F(\tau) | U(p)^n = F(\tau) | T_k(p^n) - p^{k-1}(F(\tau) | T_k(p^{n-1}))_{\tau \mapsto p \tau}
\]

holds for any \(F(\tau) \in \mathcal{M} \).

Let \(I' = SL(2, \mathbb{Z}) \) be the modular group acting on \(\mathcal{H} \) by

\[
\tau \mapsto g \cdot \tau = \frac{a \tau + b}{c \tau + d}, \quad \text{for} \quad g = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in I'.
\]

Let \(J(\tau) \) be Klein's modular function. It has a Fourier expansion

\[
J(\tau) = \sum_{a = -1}^\infty c(a) \cdot q^a \quad \text{with} \quad c(-1) = 1, \ c(a) \in \mathbb{Z}, \ \text{and} \quad q = e^{2 \pi i \tau}.
\]

The modular function field \(\mathcal{M} \) with respect to \(I' \) is the rational function field
generated by $J(\tau) : \mathfrak{M} = C(J(\tau))$. Put $\Gamma_0(p) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \mid c \equiv 0 \pmod{p} \right\}$. Then the modular function field with respect to $\Gamma_0(p)$ is given by $C(J(\tau), J(p\tau))$.

Lemma 1. For each $f \in \mathfrak{M}$, $f(U(p)^n)$ is a modular function with respect to $\Gamma_0(p)$.

Proof. Since $\mathfrak{M} = C(J(\tau))$, we may put $f = H(J(\tau))$ with $H(X) \in C(X)$. As is well-known, $T_0(p^n)$ operates on \mathfrak{M}; hence $f(T_0(p^n)) = H_n(J(\tau))$ with some $H_n(X) \in C(X)$. From (3), $f(U(p)^n) = H_n(J(\tau)) - p^{-1} H_{n-1}(J(p\tau))$. q.e.d.

We consider the Z-module M generated by $(f(U(p)^n) ; f \in Z[J(\tau)], n \geq 0)$. By Lemma 1, M is a submodule of the modular function field with respect to $\Gamma_0(p)$. Denote by \mathfrak{Z}_k the space of cusp forms of weight k with respect to Γ, and by $\mathfrak{Z}_{k,Z}$ the submodule of \mathfrak{Z}_k consisting of all elements of \mathfrak{Z}_k whose Fourier coefficients are rational integers. We define the notion of congruences mod p^n between cusp forms and functions as follows. Let $Q[Q]$ be the power series field with coefficients in Q, and let $Q[q]_X$ be the set of all elements in $Q[q]$ whose coefficients are rational integers. Then two elements $f = \sum_{n \geq k} a_n q^n$ and $f' = \sum_{n \geq k} a'_n q^n$ of $Q[q]_X$ will be called congruent modulo p^n if and only if $a_n \equiv a'_n \pmod{p^n}$ hold for all n. By Fourier expansions with respect to q, M and $\mathfrak{Z}_{k,Z}$ will be canonically imbedded in $Q[q]_X$.

Now our Main Theorem reads as follows:

Main Theorem. Let α be a positive integer. Then, for each $g \in M$, there exist $h \in Z[J(\tau)]$ and $F(\tau) \in \mathfrak{Z}_{p^\alpha-p^{\alpha-1}, Z}$ such that $g \equiv h \equiv F(\tau) \pmod{p^n}$. These h and $F(\tau)$ are unique up to modulo p^n.

In particular, if we put $p = 13$, $\alpha = 1$, $g = J(\tau) |U(13) = \sum_{n \geq 0} c(13n) \cdot q^n$ in this theorem, we obtain an alternative proof for the classical result of Newman [11]. In fact,

$$g \equiv c(0) \equiv c(13) J(\tau) \pmod{13}.$$

Therefore $c(13n) \equiv -1 \pmod{13}$ for $J(\tau) = \sum_{n \geq 1} \tau(n) \cdot q^n$, since $c(13) \equiv -1 \pmod{13}$.

2. Preliminaries on valued differential fields and associated differentials

Here we explain the general theory of the valued differential fields and the associated differentials with respect to p^α-th Frobenius maps according to Ihara's note [8].

Let K be a field and let $D(K)$ be a one dimensional vector space over K. Let
d be a differentiation from K to $D(K)$ which, by definition, satisfies
\[d(x + y) = dx + dy, \quad d(xy) = ydx + xdy, \quad \text{for } x, y \in K. \]

The kernel of d is a subfield of K and it will be denoted by k. Suppose that these objects have the following properties; v is a discrete, additive and normalized valuation of k, and V is a discrete valuation of K extending v, assumed to have the same value group as v. Let \tilde{K} denote the residue field of K with respect to V. Also suppose that K and \tilde{K} have the unequal characteristics and that d is continuous with respect to the V-adic topology of K and of $D(K)$. We call such a collection of objects $(K, D(K), d, V)$ a valued differential field. Examples of valued differential fields will be given in §§3, 4. Let $(K_i, D(K_i), d_i, V_i)$ $(i=1, 2)$ be valued differential fields. We call $(K_i, D(K_i), d_i, V_i)$ is an extension of $(K_2, D(K_2), d_2, V_2)$ if the followings are satisfied; K_2 is a subfield of K_1, $D(K_2)$ is a vector subspace of $D(K_1)$, and the restriction of d_i (resp. V_i) to K_2 coincides with d_2 (resp. V_2).

For each positive integer h, let $D^h(K)$ denote the tensor product of h copies of $D(K)$ over K. Put $D^0(K) := K$. We define a reduction of $D^h(K)$ as follows; \mathfrak{O} will denote the valuation ring of K with respect to V and \mathfrak{P} will denote the maximal ideal of \mathfrak{O}. The continuity of d implies that the \mathfrak{O}-submodule of $D(K)$ generated by the set $\{dx | x \in \mathfrak{O}\}$ is a free \mathfrak{O}-module of rank 1. Denote this module by $D(\mathfrak{O})$. Now we extend the valuation V to a $Z \cup \{\infty\}$ valued function on $\bigcup_{h>0} D^h(K)$ satisfying the following conditions:
\[V(\xi \otimes \gamma) := V(\xi) + V(\gamma), \quad \text{for any } \xi, \gamma \in \bigcup_{h>0} D^h(K), \]
\[V(dx) := 0, \quad \text{for any } dx \text{ such that } D(\mathfrak{O}) := \mathfrak{O}dx. \]

With the above condition, V is uniquely determined. Put $D^h(\mathfrak{O}) := \{\xi \in D^h(K) | V(\xi) \geq 0\}$, and $D^h(\mathfrak{P}) := \mathfrak{P}D^h(\mathfrak{O})$. Then $D^h(\mathfrak{O})/D^h(\mathfrak{P})$ is a one dimensional vector space over \tilde{K}. Denote it $D^h(\tilde{K})$ and put $D(\tilde{K}) := D^1(\tilde{K})$. Then $D^h(\tilde{K}) = \tilde{K}$ and $D^h(\tilde{K})$ $(h \geq 1)$ can be identified naturally with the tensor product of h copies of $D(\tilde{K})$ over \tilde{K}. For each $\tilde{\xi} \in D^h(\mathfrak{O})$, $\tilde{\xi}$ denotes the residue class modulo $D^h(\mathfrak{P})$.

The V-adic completion of $(K, D(K), d, V)$ will be defined as follows. Let K_v be the completion of K, and consider K as a subfield of K_v naturally. Put $D(K_v) := D(K) \otimes K_v$ (over K), and identify $\tilde{\xi} \in D(K)$ with $\tilde{\xi} \otimes 1 \in D(K_v)$. By the continuity of d, we can extend d to the unique differentiation $d_v : K_v \rightarrow D(K_v)$. Then $(K_v, D(K_v), d_v, V_v)$ is a valued differential field. Let k_v denote the kernel of d_v (in general, k_v does not coincide with the completion of k with respect to v).

Suppose we are given a valued differential field $(K, D(K), d, V)$. Let $\text{ch}(\tilde{K})$
\(=p>0\), and let \(p^l\) be fixed positive power of \(p\). We shall always consider \(K\) as a subfield of \(K_v\), identifying in particular the residue field of \(K_v\) with that of \(K\). Now we define a \(p^l\)-th Frobenius map \(\sigma\) by an injective isomorphism from \(K\) to \(K_v\) such that the following two conditions are satisfied:

(a-1) \(\sigma\) is \(V\)-preserving and induces the \(p^l\)-th power map of the residue field.

(a-2) \(\sigma\) commutes with the differentiation, namely, \(k^\sigma \subset k_v\), \((K-k)^\sigma \subset K_v-k_v\), and

\[
\left(\frac{d\alpha}{d\gamma} \right)^\sigma = \left(\frac{d\alpha^\sigma}{d\gamma^\sigma} \right), \quad \text{for any } x, y \in K-k.
\]

Examples of \(p^l\)-th Frobenius map will be given in \(\S\S\) 3, 4. For each \(h \geq 0\), \(D^h(K)\) is canonically imbedded into \(D^h(K_v)\) and \(\sigma\) induces a map from \(D(K)\) to \(D^h(K_v)\) by \((y(dx))^\sigma = y^\sigma (dx)^\sigma\). This is well defined by (a-2).

Let \(\sigma : K \rightarrow K_v\) be a \(p^l\)-th Frobenius map. A differential \(\omega \in D(K)\) is called an associated differential (with respect to \(\sigma\)) if \(\omega^\sigma/\omega \in k^\sigma\).

About the existence and the uniqueness of \(\omega\), the following result is known.

Theorem A (Ihara). Let \((K, D(K), d, V)\) be a valued differential field. Let \(k\) be a kernel of \(d\), and \(v\) be a valuation of \(k\) induced by \(V\). Let \(\sigma : K \rightarrow K_v\) be a \(p^l\)-th Frobenius map. Then we have the following:

(i) The associated differential with respect to \(\sigma\) is at most unique up to \(k^\sigma\)-multiples.

(ii) Assume that \(K\) is complete and \(\bar{K}\) is separably closed. Then for any \(c \in k\) with \(v(c) = \nu\), there exists an associated differential \(\omega\) such that \(\omega^\sigma/\omega = c\).

Here \(\nu\) is a positive integer uniquely determined by \(\sigma\) by the equality \(V(\xi^\nu) = V(\xi) + \nu \xi (\xi \in D(\bar{K}))\).

Now we define a certain special element of \(D^{p^l-1}(\bar{K})\) under the same situation. Fix \(c \in k\) with \(v(c) = \nu\). Take \(\xi \in D(\bar{K})\) with \(V(\xi) = 0\) and put \(\omega = \zeta^\nu/\xi^\nu\). Then \(\bar{\omega} \in D^{p^l-1} (\bar{K})\) is proved to be independent of \(\xi\), since, for \(x^\nu\) with \(V(x) = 0\),

\[
\zeta(x^\nu)/(x^\nu) = \zeta^\nu/\xi^\nu \cdot \zeta^\nu/\xi^\nu = \zeta^\nu/\xi^\nu.
\]

Furthermore the following result is known.

Theorem B (Ihara). Let \(\sigma\) be a \(p^l\)-th Frobenius map of \(K\). If there exists an associated differential with \(\sigma\) which is normalized by the condition \(\omega^\sigma/\omega = c\) and \(V(\omega) = 0\), then we have

\[
\bar{\omega} = \bar{\omega}^{p^l-1}.
\]

Finally, the most important point about the associated differential \(\bar{\omega}\) is that \(\bar{\omega}\) is characterized by some other conditions and, in some particular cases, \(\bar{\omega}\) can be calculated explicitly using these conditions. For details and proofs, we refer to Ihara [7], [8], [9].
3. Valued differential field and associated differential
in elliptic modular case

3-1. The Gauss valuation V of $Q(J(\tau))$ with respect to $J(\tau)$ is defined by

$$V\left(p^n \frac{f(J(\tau))}{g(J(\tau))}\right) = n,$$

for $f(X), g(X) \in \mathbb{Z}[X], \in p\mathbb{Z}[X]$.

The valuation V is characterized by the following conditions: (i) the restriction on Q is the normalized, additive p-adic valuation ord_p, (ii) $V(J(\tau))=0$, and $J(\tau) \mod V$ is transcendental over F_p. We give another definition of the valuation V as follows.

Let \mathfrak{S}_0 be a set of all elements of $Q(J(\tau))$ whose Fourier coefficients with respect to $q^{-e^{2\pi i \tau}}$ are bounded from the below in the p-adic sense, namely, $f = \sum_{n=0}^{\infty} a_n q^n \in Q(J(\tau))$ with $a_n \in \mathbb{Q}$ belongs to \mathfrak{S}_0 if and only if $\text{Min} (\text{ord}_p a_n) > -\infty$ exists. Then \mathfrak{S}_0 is a subring of $Q(J(\tau))$ and its quotient field is $Q(J(\tau))$ itself. We define a $\mathbb{Z}(\{\infty\})$ valued function V' on \mathfrak{S}_0 by

$$V'(f) = \text{Min} (\text{ord}_p a_n) \quad \text{for} \quad f = \sum_{n=0}^{\infty} a_n q^n \in \mathfrak{S}_0.$$

It is easily seen that

$$V'(fg) = V'(f) + V'(g), \quad V'(f+g) \geq \text{Min} \{V'(f), V'(g)\} \quad \text{for} \quad f, g \in \mathfrak{S}_0.$$

Hence V' can be uniquely extended to a valuation of $Q(J(\tau))$. We show this V' coincides with V; the characterized condition (i) and $V'(J(\tau))=0$ are obviously satisfied. Since

$$V'(J(\tau)^{p^n} - J(\tau)) = V'(q^{-p^n} + \cdots - q^{-1} - \cdots) = 0,$$

$J(\tau) \mod V'$ is transcendental over F_p. Thus we have another definition of V.

Next we discuss the valuations of $Q(J(\tau), J(p\tau))$ extending V. We can define a valuation V_1 of $Q(J(\tau), J(p\tau))$ using Fourier expansions with respect to q in the same way as above. Then V_1 is an extension of V from the way of definition. We define another valuation V_2 of $Q(J(\tau), J(p\tau))$, which is also proved to be an extension of V. For this purpose, we use some properties of the invariant transformation equation $\Phi_p(X, Y) = 0$ of degree p in characteristic 0. As is well-known, $\Phi_p(X, Y) = \Phi_p(Y, X)$, and $\Phi_p(X, Y)$ is irreducible as a polynomial with coefficients in $Q(Y)$, and $\Phi_p(J(\tau), J(p\tau)) = 0$. Since $\Phi_p(X, Y) = \Phi_p(Y, X)$, we can define an isomorphism ρ of $Q(J(\tau), J(p\tau))$ by

$$\left(\frac{F(J(\tau), J(p\tau))}{G(J(\tau), J(p\tau))} \right)^\rho = \frac{F(J(p\tau), J(\tau))}{G(J(p\tau), J(\tau))} \quad \text{for} \quad F(X, Y), G(X, Y) \in \mathbb{Z}[X, Y].$$

We define the valuation V_2 of $Q(J(\tau), J(p\tau))$ by $V_2(r) = V_1(r^p)$ for any $r \in Q(J(\tau), J(p\tau))$. Then the residue field of $Q(J(\tau), J(p\tau))$ with respect to V_2 can be identified
with that of \(Q(J(\tau)), J(p\tau) \) with respect to \(V_1 \). We show that the restriction of \(V_2 \) on \(Q(J(\tau)) \) coincides with the Gauss valuation \(V \); since \(p \) is trivial on \(Q \), the characterized condition (i) is obviously satisfied. Also it is obvious that \(V_2(J(\tau))=0 \), since \(V_2(J(\tau))=V_1(J(p\tau))=0 \). We have \(J(p\tau)=J(\tau)^p=\sum_{n=1}^{\infty} c(n)\cdot q^n-(\sum_{n=1}^{\infty} c'(n)\cdot q^n)^p=\sum_{n=1}^{\infty} c'(n)\cdot q^n \), with some \(c'(n) \in Z \). Hence we have \(J(p\tau) \mod V_1=J(\tau) \mod V_1 \) from the definition of \(V_1 \). It follows that \(J(\tau) \mod V_2=J(p\tau) \mod V_1 \), which is transcendental over \(F_p \). Thus \(V_2 \) is a valuation of \(Q(J(\tau), J(p\tau)) \) extending \(V \). Then it is known and is easily proved that \(V_1 \) and \(V_2 \) are all the valuations of \(Q(J(\tau), J(p\tau)) \) extending \(V \), and that the ramification degree and the modular degree of \(V_2 \) (resp. \(V_2 \)) over \(V \) is equal to 1 and 1 (resp. 1 and \(p \)). It follows that \(Q(J(\tau))_V \) can be identified with \(Q(J(\tau), J(p\tau))_V \). Hence we can regard that \(Q(J(\tau), J(p\tau)) \) is contained in \(Q(J(\tau))_V \). Then the restriction of \(V \) to \(Q(J(\tau), J(p\tau)) \) coincides with \(V_1 \).

3.2. We shall apply the general theory in §2 to the elliptic modular case. First, we construct a valued differential field related to the modular function field \(Q(J(\tau)) \). Let \(D_0 \) be the space of differentials of \(Q(J(\tau)) \) over \(Q \), and let \(d : Q(J(\tau)) \to D_0 \) be the usual differentiation. As a discrete valuation of \(Q(J(\tau)) \), we take the Gauss valuation \(V \) defined in §3.1. Then it is easy to see that \(\{Q(J(\tau)), D_0, d, V \} \) is a valued differential field. We also construct a valued differential field related to \(Q(J(\tau), J(p\tau)) \). Let \(D_1 \) be the space of differentials of \(Q(J(\tau), J(p\tau)) \) over \(Q \), and let \(d_1 : Q(J(\tau), J(p\tau)) \to D_1 \) be the usual differentiation. As a discrete valuation of \(Q(J(\tau), J(p\tau)) \), we take the valuation \(V_1 \) defined in §3.1. Then we can also prove that \(\{Q(J(\tau), J(p\tau)), D_1, d_1, V_1 \} \) is a valued differential field. \(Q(J(\tau)) \) is a subfield of \(Q(J(\tau), J(p\tau)) \), and \(D_0 \) is canonically imbedded into \(D_1 \). Then it is easy to see that \(\{Q(J(\tau), J(p\tau)), D_1, d_1, V_1 \} \) is an extension of \(\{Q(J(\tau)), D_0, d, V \} \). Moreover, from the discussion about the valuation \(V_1 \) in §3.1, the \(V \)-adic completion of \(\{Q(J(\tau), D_0, d, V) \) can be considered as an extension of \(\{Q(J(\tau), J(p\tau)), D_1, d_1, V_1 \} \).

Next, we define a \(p \)-th Frobenius map \(\sigma \) with \(\{Q(J(\tau), J(p\tau)), D_0, d, V \} \) by
\[
f(J(\tau))^p=f(J(p\tau)) \quad \text{with} \quad f(X) \in Q(X).
\]
From the discussion in §3.1, \(\sigma \) is in fact an injective isomorphism from \(Q(J(\tau)) \) to \(Q(J(\tau), J(p\tau)) \subset Q(J(\tau))_V \). We shall show that \(\sigma \) satisfies (\(\sigma \)-1) and (\(\sigma \)-2). Since \(r^p=\sum a_n q^n \) for any \(r=\sum a_n q^n \in Q(J(\tau)) \) with \(a_n \in Q \), we have \(V(r^p)=V(r) \). Hence \(\sigma \) is \(V \)-preserving. From the fact that \(J(p\tau)=J(\tau)^p \), \(\sigma \) induces a \(p \)-th power map of the residue field of \(Q(J(\tau)) \). It is obvious \(\sigma \) satisfies (\(\sigma \)-2). Thus we conclude that \(\sigma \) is a \(p \)-th Frobenius map.

The important point is that, in this case, the reduction \(\bar{\omega} \) of the associated
differential ω with respect to σ is explicitly calculated by Ihara [7]. The result is the following.

Theorem C (Ihara). Put $r=1$ for $p=2$ and $r=\frac{1}{2}(p-1)$ for $p\geq 3$. Then

$$\sigma' = \begin{cases} \frac{\overline{J}(\tau)^{-1}d(\overline{J}(\tau))}{|\overline{J}(\tau)^{-a}(\overline{J}(\tau)-12\alpha)^{b}P(\overline{J}(\tau))d(\overline{J}(\tau))|} & \text{for } p=2, 3; \\ \frac{a\overline{J}(\tau)^{a-1}d(\overline{J}(\tau))}{|\overline{J}(\tau)^{a}(\overline{J}(\tau)-12\alpha)^{b}P(\overline{J}(\tau))d(\overline{J}(\tau))|} & \text{for } p\geq 5; \end{cases}$$

where $a=\frac{1}{3}(p\mp 1)$ for $p\equiv \pm 1 \pmod{3}$, $b=\frac{1}{4}(p\mp 1)$ for $p\equiv \pm 1 \pmod{4}$, and S is the set of all supersingular invariants in characteristic p, and $P(X) = \prod_{\tau \in S}(X-\theta) \in F_p[X]$.

Now using this theorem, we prove the following.

Proposition 1. Put $J(p\tau) = J(\tau)^p + pR_1(J(\tau)) \pmod{V^2}$ with $R_1(J(\tau))$ in the valuation ring of $\mathbb{Q}(J(\tau))$ with respect to V. Then

$$\overline{R}_1(J(\tau)) = H(\overline{J}(\tau)) + \sum_{\theta \in S^*} \frac{\overline{\beta}_\theta}{J(\tau)-\theta},$$

where S^* is the subset of S excluding 0 and 12α, and for $\theta \in S^*$, $\overline{\beta}_\theta$ is a non-zero constant in F_p^2, and $H(X) \in F_p[X]$.

Proof. Since $\frac{d(\overline{J}(p\tau))}{d(\overline{J}(\tau))} = (\sum_{n=1}^\infty c(n) \cdot np \cdot q^{n-1})(\sum_{n=1}^\infty c(n) \cdot n \cdot q^{n-1})^{-1}$, we have $V(\frac{d(\overline{J}(p\tau))}{d(\overline{J}(\tau))})=1$. Hence the constant ν stated in Theorem A is equal to 1, and we can take p as c in Theorem B. Taking $d(\overline{J}(\tau))$ as ξ and calculating the reduction of ω_ξ, we have

$$\overline{\omega}_\xi = (J(\tau)^{p-1}+\overline{R}_1(J(\tau)))^{-1}d(\overline{J}(\tau))^{p-1},$$

where $R'_1(X)$ is a derivative of $R_1(X)$ as a rational function of X. Theorem B implies that $\overline{\omega}_\xi = \overline{\omega}^{p-1}$ and $\overline{\omega}$ is determined by above Theorem C. Hence the proof is obtained as follows; the proof for $p\geq 5$ and that for $p=2, 3$ being exactly same, we only prove for $p\geq 5$. By Theorems B, C, we have

$$\overline{J}(\tau)+\overline{R}_1(J(\tau)) = J(\tau)^{p-1}(J(\tau)-12\alpha)^{b}P(\overline{J}(\tau))^{-2}. \quad (5)$$

On the other hand, we have $\Phi_p(J(\tau), J(p\tau))=0$ and $\Phi_p(X, Y) = (X^p-Y)(X-Y^p) + p\phi(X, Y)$ with $\phi(X, Y) \in \mathbb{Z}[X, Y]$ by the Kronecker congruence relation. Substituting $J(p\tau) = J(\tau)^p + pR_1(J(\tau)) \pmod{V^2}$ in this equation, we have

$$-R_1(J(\tau)) \cdot (J(\tau)-J(\tau)^p) + \phi(J(\tau), J(\tau)^p) \equiv 0 \pmod{V}. \quad (6)$$

Hence we have

$$R_1(J(\tau)) \equiv -\frac{\phi(J(\tau), J(\tau)^p)}{J(\tau)^{p^2} - J(\tau)} \pmod{V}. \quad (6)$$
Expanding the right side of (5) into partial fractions and comparing with (6), we obtain Proposition 1.

q.e.d.

4. Reduction mod p^α of cusp forms

4-1. We consider another valued differential field. Put $Q^\alpha_p(J(\tau)) = Q(J(\tau)) \otimes Q_p^\alpha$ (over Q) and $D^\alpha = D_\alpha \otimes Q_p^\alpha(J(\tau))$ (over $Q(J(\tau))$). $Q(J(\tau))$ and D_α are canonically imbedded into $Q^\alpha_p(J(\tau))$ and D^α respectively. Let d^α be the unique differentiation extending d with the Q^α_p-linearity. Let $Q^p_p(q)$ be the power series field with coefficients in Q_p^α. For each $r \in Q^\alpha_p(J(\tau))$, we can correspond an element of $Q^p_p(q)$ naturally using the Fourier expansions with respect to q of elements in $Q(J(\tau))$. Call this element also a Fourier expansion of r (with respect to q). This correspondence induces obviously an injective isomorphism from $Q^\alpha_p(J(\tau))$ into $Q^p_p(q)$. By this Fourier expansions, we can define an additive, discrete and normalized valuation V^α of $Q^\alpha_p(J(\tau))$ in the same way as in the case V in § 3-1. It is also proved by the same argument as in § 3-2 that $(Q^\alpha_p(J(\tau)), D^\alpha, d^\alpha, V^\alpha)$ is a valued differential field.

Next we construct another one. Let R be the subring of $Q^p_p(q)$ consisting of all elements $\sum a_n q^n$ in $Q^p_p(q)$ such that the coefficients a_n are bounded from the below in the p-adic sense, and let \mathfrak{R} be the quotient field of R in $Q^p_p(q)$. We can define an additive, discrete and normalized valuation V_α in the same way as above. Denote by \mathfrak{O} the valuation ring of V_α and by \mathfrak{m} the maximal ideal of \mathfrak{O}. Let $D(\mathfrak{R}) := R \cdot d_\alpha q$ be a one dimensional vector space generated by $d_\alpha q$ over R. We define a differentiation $d_\alpha : \mathfrak{R} \to D(\mathfrak{R})$ by

$$d_\alpha \left(\sum_{n \geq N} a_n q^n \right) = \left(\sum_{n \geq N} a_n n \cdot q^{n-1} \right) d_\alpha q.$$

It is clear that d_α is a well defined differentiation and that the kernel of d_α is Q^α_p.

We can prove $D(\mathfrak{O}) := \mathfrak{O} \cdot d_\alpha q$ as follows; take $r = \sum a_n q^n \in \mathfrak{R}$, with $a_n \in Q^\alpha_p$. Then $d_\alpha r = \left(\sum a_n n \cdot q^{n-1} \right) d_\alpha q$. Hence we have $V_\alpha \left(\frac{d_\alpha r}{d_\alpha q} \right) \geq V_\alpha(r)$ for any $r \in \mathfrak{R}$. It follows that $V_\alpha \left(\frac{d_\alpha r}{d_\alpha q} \right) \geq V_\alpha(r)$ for any $r \in \mathfrak{R}$. Therefore $D(\mathfrak{O}) \supseteq \mathfrak{O} \cdot d_\alpha q$. On the other hand, it is obvious $D(\mathfrak{O}) \supset D(\mathfrak{R}) \cdot d_\alpha q$. From this, it follows that d_α is continuous with respect to the V_α-adic topology of \mathfrak{R} and of $D(\mathfrak{R})$. Hence it is easy to see that $(\mathfrak{R}, D(\mathfrak{R}), d_\alpha, V_\alpha)$ is a valued differential field.

Now we define a p-th Frobenius map $\tilde{\alpha}$ with $(\mathfrak{R}, D(\mathfrak{R}), d_\alpha, V_\alpha)$ by

$$\left(\sum_{n \in \mathbb{N}} a_n q^n \right)^{\tilde{\alpha}} = \sum_{n \in \mathbb{N}} a_n q^{np}.$$

$\tilde{\alpha}$ is an injective isomorphism from \mathfrak{R} to \mathfrak{R} itself, and it is easily proved that $\tilde{\alpha}$
satisfies the conditions (σ-1), (σ-2).

We note the relationship between these valued differential fields. The fields $Q(J(\tau))$, $Q_{\tau}(J(\tau))$ are imbedded into \mathfrak{K} by the Fourier expansions, and D_θ, D^τ are imbedded into $D(\mathfrak{K})$ by the identification,

$$d(J(\tau)) = \left(\sum_{n=-1} c(n) \cdot n \cdot q^{n-1} \right) d_\theta q.$$

Under these situations, the restrictions of d_θ and V_ω to $Q(J(\tau))$ (resp. $Q_{\tau}(J(\tau))$) coincide with d and V (resp. d^τ and V^τ), and θ induces σ on $Q(J(\tau))$ defined in §3.2.

Now we consider associated differentials of \mathfrak{K}. We have the following.

Proposition 2. The set of all associated differentials with respect to \mathfrak{K} is $\{a \cdot q^{-1} d_\theta q | a \neq 0, \in Q_{\tau}\}$.

Proof. Since $(q^{-1} d_\theta q)^\tau = q^{-p} d_\theta q^p = p \cdot q^{-1} d_\theta q$, $q^{-1} d_\theta q$ is an associated differential.

By Theorem A about the uniqueness of the associated differentials, we obtain Proposition 2. q.e.d.

On the other hand, taking $d(J(\tau))$ as ξ and calculating ξ^τ defined in §2, we attain at the following important identity by Proposition 2, and Theorem B;

$$\left(q^{-1} d_\theta q \right)^{p-1} = (J(\tau)^{p-1} + R_{\tau}(J(\tau)))^{-1} d(J(\tau))^{p-1}.$$

With this identity and Theorem C, we arrive at the following.

Proposition 3. Put $d(J(\tau)) = (q \cdot \Lambda)^{-1} d_\theta q$, with $\Lambda \in \mathfrak{K}$. Then Λ belongs to \mathfrak{K} and satisfies the following congruences for any rational integer $\alpha \geq 1$;

$$A^{\tau^\alpha-1} = (-1) \cdot W^{\tau^\alpha-1} (\text{mod } \mathfrak{K}^\alpha), \quad (7)$$

where

$$W := \begin{cases}
J(\tau)^{p-1} & \text{for } p = 2, 3; \\
J(\tau)^{\alpha}(J(\tau) - 12^{\alpha})^{1/2} & \prod_{\theta \in S} (J(\tau) - j_{\theta}) & \text{for } p \geq 5.
\end{cases}$$

Here the notations are as follows; S, S^*, τ, a and b are the same as defined in Theorem C and Proposition 1. For $\theta \in S^*$, j_{θ} is the unique element in O_τ such that $f_{\theta}^\tau = j_{\theta}$, and j_{θ} (mod v) = θ, and for $\theta = 0$, 12^3 in S, j_{θ} is 0, 12^3 respectively.

Proof. Since $A = q^{-1} \left(\sum_{n=-1} c(n) \cdot n \cdot q^{n-1} \right)^{-1}$ and $c(-1) = 1$, we have $V_\omega(A) = 0$ by definition; hence A belongs to \mathfrak{K}. As is remarked above, we have

$$\left(q^{-1} d_\theta q \right)^{p-1} = (J(\tau)^{p-1} + R_{\tau}(J(\tau)))^{-1} d(J(\tau))^{p-1}. \quad (8)$$

The right side of (8) is calculated in a more explicit form by Proposition 1. Hence, substituting $A \cdot d(J(\tau)) = q^{-1} d_\theta q$ in (8), we obtain
\[A' \equiv cW \pmod{\tilde{\mathfrak{c}}} , \]
with a constant \(c \in \mathfrak{o}_{\mathbb{A}}^* \). Considering the Fourier expansions of both sides of (9), we have \(c = (-1)^r \). Therefore we have
\[A' = (-1)^r W + p\phi \]
with \(\phi \in \tilde{\mathfrak{c}} \). Raising to the \(p^{r-1} \)-th power of both sides of (10), we have
\[A'^{p^{r-1}} = (-1)^r W^{p^{r-1}} + \sum_{i=1}^{p^{r-1}} \left(\begin{array}{c} p^{r-1} \\ i \end{array} \right) p^{i\phi} ((-1)^r W)^{p^{r-1}-i} . \]
Then we shall show
\[\text{ord}_p \left(\left(\begin{array}{c} p^{r-1} \\ i \end{array} \right) p^i \right) \geq a , \quad \text{for any } 1 \leq i \leq p^{r-1} . \]
To begin with, we prove that
\[p^n - (n+1) \geq 0 \quad \text{for any } n \geq 0 . \]
In the case \(n = 0 \), this is valid since \(p^0 - (0+1) = 0 \). Using induction on \(n \), we have
\[p^{n+1} - (n+2) \geq p(n+1) - (n+2) \geq n(p-1) + (p-2) \geq 0 . \]
Hence (13) is proved to be valid. From (13), we have
\[i - \text{ord}_p i - 1 \geq 0 \quad \text{for any } i \geq 1 . \]
Therefore we have
\[\text{ord}_p \left(\left(\begin{array}{c} p^{r-1} \\ i \end{array} \right) p^i \right) - \alpha \geq i + \text{Max} \{ 0, a - 1 - \text{ord}_p i - 1 \} - \alpha , \]
\[= \text{Max} \{ i - \alpha, i - \text{ord}_p i - 1 \} \geq 0 . \]
Considering (11) in modulo \(\tilde{\mathfrak{c}}_p \) with this result, we obtain (7). q.e.d.

Remark. As for the known facts about supersingular invariants in characteristic \(p \), we refer to Deuring [4]. Here, we briefly recall some facts which are needed later; the cardinal number of \(S^* \) is equal to \(\left\lceil \frac{p}{12} \right\rceil \). For \(p \geq 5 \), 0 belongs to \(S \) if and only if \(p \equiv 5, 11 \pmod{12} \), and \(12 \) belongs to \(S \) if and only if \(p \equiv 7, 11 \pmod{12} \). Hence \(W \) is rewritten as follows;
\[W = J(\tau) - n_s (J(\tau) - 12^s) - m_2 \sum_{e \in S^*} (J(\tau) - j_e) , \]
with \(m_1 = \left\lfloor \frac{1}{3} (p-1) \right\rfloor \), \(m_2 = \left\lfloor \frac{1}{4} (p-1) \right\rfloor \).

4-2. Reduction mod \(p^n \)** of cusp forms of weight** \(k(p^n - p^{n-1}) \). Let \(\mathcal{Q} \subset \mathcal{C} \) be
the algebraic closure of Q. Fix a divisor p of Q extending p of Q, and denote by Q_f the inertia field of p. Then p determines an unramified valuation of Q_f. Hence Q_f can be embedded in Q'. Henceforth we fix one imbedding. Thus, as far as the elements of Q_f are concerned, they can be regarded as ν-adic numbers. Denote by ν_f the subring of Q_f consisting of all elements of Q_f which belong to ν_p as ν-adic numbers.

Let $k \geq 1$, and $\alpha \geq 1$ be rational integers. If $p=2$ and $\alpha=1$, we assume k is even. We denote by $S_{k, p^\alpha-p^{-1}}$, the space of cusp forms of weight $k(p^\alpha-p^{-1})$ with respect to $L' := SL(2, \mathbb{Z})$. As is well-known, we can take the following elements as a basis of $S_{k, p^\alpha-p^{-1}}$; let

$$J = q \sum_{n=1}^{\infty} (1-q^n)^{24},$$

$$G_4 = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) \cdot q^n,$$

$$G_6 = 1 - 504 \sum_{n=1}^{\infty} \sigma_3(n) \cdot q^n,$$

with $\sigma_3(n) = \sum_{d \mid n} d^3$. Put $G_0 = 1$, $G_6 = G_6$, $G_{12} = G_4 G_8$, $G_{12} = G_4$, and $G_8 = G_4 G_6$. Put

$$s = \left[\frac{1}{12} k(p^\alpha-p^{-1}) \right],$$

$$t = k(p^\alpha-p^{-1}) - 12s.$$ If $s > 0$ except $s = 1$ and $t = 2$, a basis of $S_{k, p^\alpha-p^{-1}}$ is given by the following $\{F_i(\tau)\}$ such that,

Case 1. If $t \neq 2$,

$$F_i(\tau) = J^i G_{12}^i G_i \quad \text{for} \quad 1 \leq i \leq s,$$

Case 2. If $t = 2$,

$$F_i(\tau) = J^i G_{12-i}^i G_i \quad \text{for} \quad 1 \leq i \leq s - 1.$$

Call this basis a canonical basis of $S_{k, p^\alpha-p^{-1}}$. The canonical basis $\{F_i(\tau)\}$ satisfies the following two properties;

(i) The Fourier coefficients of $F_i(\tau)$ with respect to q are rational integers, and the first coefficient which is not zero is equal to 1.

(ii) Let $F(\tau) := \sum_{a \in N} A_a q^a \neq 0$, with $A_a \in C$, be any modular form with respect to L'. Denote by $\text{ord}_q(F)$ the first n such that $A_n \neq 0$. Then we have $\text{ord}_q(F_i) = i$.

Now we define the reduction mod p^α of cusp forms of weight $k(p^\alpha-p^{-1})$. Let $S_{k, p^\alpha-p^{-1}} \rightarrow \nu_f$ denote the submodule of $S_{k, p^\alpha-p^{-1}}$ consisting of all elements in $S_{k, p^\alpha-p^{-1}}$, whose Fourier coefficients all belong to ν_f. Then $S_{k, p^\alpha-p^{-1}} \rightarrow \nu_f$ is a free ν_f-module with the canonical basis as its free basis by the properties (i), (ii). From definition, $S_{k, p^\alpha-p^{-1}} \rightarrow \nu_f$ is canonically imbedded in ν_f by the Fourier ex-
pansions. Hence, for \(F \in \mathcal{S}_{k; p^{-\alpha-1}, \tau} \), \(F \pmod{\mathfrak{F}^a} \) is well defined. Call \(F \pmod{\mathfrak{F}^a} \) the reduction mod \(p^a \) of cusp form \(F \).

Proposition 4. Let \(p \geq 5 \). Let \(\alpha \geq 1 \) and \(k \geq 1 \) be rational integers. Then, for each \(F \in \mathcal{S}_{k; p^{-\alpha-1}, \tau} \), we have the following congruence;

\[
F \equiv \frac{H(J(\tau))}{J(\tau)^{M_1 - M_2 (J(\tau) - 12)^{M_2 - M_1}}(\prod_{\delta \in S^*} J(\tau) - j_\delta)^{k_p a - 1}} \pmod{\mathfrak{F}^a},
\]
with \(H(X) \in \mathcal{O}_X \), where \(M_1 = \left[\frac{1}{3} k(p^a - p^{a-1}) \right], \quad M_2 = \left[\frac{1}{4} k(p^a - p^{a-1}) \right], \quad m_1 = \left[\frac{1}{3} (p-1) \right], m_2 = \left[\frac{1}{4} (p-1) \right] \), and \(S^* \) and \(j_\delta \) are the same as in Proposition 3, §4-1. Moreover, the polynomial degree of \(H(X) \) is smaller than \(\dim \mathcal{S}_{k; p^{-\alpha-1}} \), and while \(F \) varies in \(\mathcal{S}_{k; p^{-\alpha-1}, \tau} \), all polynomials in \(\mathcal{O}_X[J(\tau)] \) satisfying above condition about the polynomial degree can appear as \(H(J(\tau)) \) in (14), and, for each \(F \), \(H(J(\tau)) \) is unique up to modulo \(\mathfrak{F}^a \).

For \(p = 2, 3 \), we have the following;

Proposition 5. Let \(p = 2, 3 \). Let \(\alpha \geq 1 \) and \(k \geq 1 \) be rational integers. Put \(d = \dim \mathcal{S}_{k; p^{-\alpha-1}} \). Then, if \(d \neq 0 \), for each \(F \in \mathcal{S}_{k; p^{-\alpha-1}, \tau} \), the following congruence is valid;

\[
F \equiv \frac{H(J(\tau))}{J(\tau)^d} \pmod{\mathfrak{F}^a},
\]
with \(H(X) \in \mathcal{O}_X \) whose polynomial degree is smaller than \(d \). Moreover, while \(F \) varies in \(\mathcal{S}_{k; p^{-\alpha-1}, \tau} \), all polynomials in \(\mathcal{O}_X[J(\tau)] \) satisfying the above condition about the polynomial degree can appear as \(H(J(\tau)) \) in (15), and, for each \(F \), \(H(J(\tau)) \) is unique up to modulo \(\mathfrak{F}^a \).

Remark 1. By definition of \(\mathfrak{F}^a \), (14) and (15) mean that the Fourier coefficients of both sides are congruent modulo \(p^a \). Hence this definition of the reduction mod \(p^a \) coincides with that defined in §1 for the elements in \(\mathcal{S}_{k; p^{-\alpha-1}, \tau} \).

Remark 2. The same argument of the proof of this proposition enables us to consider the reduction mod \(p^a \) of the entire forms of weight \(k(p^a - p^{a-1}) \), where the entire forms mean the modular forms which are holomorphic on \(\mathfrak{F} \). The result is as follows. Let \(F(\tau) \) be an entire form of weight \(k(p^a - p^{a-1}) \) with respect to \(\ell' \) whose Fourier coefficients all belong to \(\mathcal{O}_X \). Then there exists \(H(X) \in \mathcal{O}_X \) such that

\[
F(\tau) \equiv \frac{H(J(\tau))}{J(\tau)^{M_1 - M_2 (J(\tau) - 12)^{M_2 - M_1}}(\prod_{\delta \in S^*} J(\tau) - j_\delta)^{k_p a - 1}} \pmod{\mathfrak{F}^a}.
\]
Here \(H(X) \) is unique up to modulo \(p^a \cdot \mathcal{O}_X \) and its polynomial degree satisfies
the following relation,

$$\deg H = \dim_c \mathbb{E}_{k_{p^a-p^{-1}}} - \text{ord}_a(F).$$

This fact is used in §7, but we do not give its proof, the argument being entirely similar.

Remark 3. We have the following table:

<table>
<thead>
<tr>
<th>p: prime</th>
<th>$M_1 - m_1kp^{s-1}$</th>
<th>$M_2 - m_2kp^{s-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \equiv 1 \pmod{12}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$p \equiv 5 \pmod{12}$</td>
<td>$\left\lfloor \frac{1}{3} kp^{s-1} \right\rfloor$</td>
<td>0</td>
</tr>
<tr>
<td>$p \equiv 7 \pmod{12}$</td>
<td>0</td>
<td>$\left\lfloor \frac{1}{2} kp^{s-1} \right\rfloor$</td>
</tr>
<tr>
<td>$p \equiv 11 \pmod{12}$</td>
<td>$\left\lfloor \frac{1}{3} kp^{s-1} \right\rfloor$</td>
<td>$\left\lfloor \frac{1}{2} kp^{s-1} \right\rfloor$</td>
</tr>
</tbody>
</table>

The proofs being similar, we only prove for $p \equiv 11 \pmod{12}$. Put $p = 12t + 11$. Then we have $m_1 = \left\lfloor 4t + \frac{10}{3} \right\rfloor = 4t + 3$, and $m_2 = \left\lfloor 3t + \frac{5}{2} \right\rfloor = 3t + 2$. On the other hand, we have $M_1 = \left\lfloor kp^{s-1}(4t + \frac{10}{3}) \right\rfloor = kp^{s-1}(4t + 3) + \left\lfloor \frac{1}{3} kp^{s-1} \right\rfloor$, and $M_2 = \left\lfloor kp^{s-1}(3t + \frac{5}{2}) \right\rfloor = kp^{s-1}(3t + 2) + \left\lfloor \frac{1}{2} kp^{s-1} \right\rfloor$.

Hence from Remark of Proposition 3, if 0 (resp. 12) is not contained in S, $M_1 - m_1 kp^{s-1}$ (resp. $M_2 - m_2 kp^{s-1}$) is always zero.

Proof of Propositions 4, 5. The proofs of both propositions being similar, we prove only Proposition 4.

As is mentioned in §1, I' acts on \mathcal{H}. Put $\mathcal{H}^* = \mathcal{H} \cup \{\infty\} \cup Q$. We extend the action of I' on \mathcal{H} to that on \mathcal{H}^* by,

$$g \cdot x = \begin{cases} (cx+d)^{-1}(ax+b) & \text{if } cx+d \neq 0, \\ \infty & \text{if } cx+d = 0, \end{cases}$$

$$g \cdot \infty = \begin{cases} c^{-1}a & \text{if } c \neq 0, \\ \infty & \text{if } c = 0, \end{cases}$$

for $x \in Q$, $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in I'$. As is well-known, $\Gamma \backslash \mathcal{H}$ and $\Gamma \backslash \mathcal{H}^*$ can be considered as a complex manifold of dimension 1 and a compact Riemann surface of genus zero respectively. $\Gamma \backslash \mathcal{H}$ is canonically imbedded into $\Gamma \backslash \mathcal{H}^*$, and this imbedding is holomorphic with the above structures. As a set, we have $\Gamma \backslash \mathcal{H}^* = \Gamma \backslash \mathcal{H} \cup \{\text{one point}\}$. Let $\pi : \mathcal{H} \to \Gamma \backslash \mathcal{H}$ be a natural projection. Then π is holomorphic and is ramified.
at \(\pi(i) \) and \(\pi(e^{\frac{2\pi i}{3}}) \) with the ramification order 2 and 3 respectively. \(J(\tau) \) is considered as a meromorphic function on \(\Gamma \backslash \mathcal{H}^* \) and, then, generates the function field of \(\Gamma \backslash \mathcal{H}^* \) over \(\mathbb{C} \). Hence, we take \(J(\tau) \) as a local coordinates of \(\Gamma \backslash \mathcal{H}^* \), and also as a coordinate of \(\Gamma \backslash \mathcal{H} \). Then \(\pi \) is ramified at the point of \(J(\tau) = 0 \) and \(J(\tau) = 12^a \) with the ramification order 3 and 2 respectively.

Let \(k \) be a rational positive integer. Let \(F(\tau) \) be a modular form of weight \(2k \) with respect to \(\Gamma \). Then \(F(\tau) \left(\frac{dJ(\tau)}{d\tau} \right)^{-k} \) is a modular function with respect to \(\Gamma \) by definition of modular forms. Put \(F(\tau) \left(\frac{dJ(\tau)}{d\tau} \right)^{-k} = T(J(\tau)), \) with \(T(X) \in \mathcal{C}(X) \).

This implies that the differential \(T(J(\tau)) \cdot d(J(\tau))^k \) on \(\Gamma \backslash \mathcal{H} \) of degree \(k \) induces a differential \(F(\tau) \cdot (d\tau)^k \) on \(\mathcal{H} \) by the covering map \(\pi \). In general, let \(\omega \) be a differential on \(\Gamma \backslash \mathcal{H} \) of degree \(k \) and let \(\omega' \) be a differential on \(\mathcal{H} \) induced by \(\omega \) by the covering map \(\pi : \mathcal{H} \to \Gamma \backslash \mathcal{H} \). Denote by \((\omega) \) and \((\omega') \) the divisor of \(\omega \) on \(\Gamma \backslash \mathcal{H} \) and that of \(\omega' \) on \(\mathcal{H} \) respectively. Take any point \(P' \in \mathcal{H} \), and put \(\pi(P') = P \), and denote by \(e \) the ramification order of \(\pi \) at \(P'/P \). Then we have the well-known formula;

\[
(16) \quad \text{ord}_P (\omega') + k = e (\text{ord}_P (\omega) + k) \ .
\]

Apply this formula to \(\omega' = F(\tau) \cdot (d\tau)^k \) and \(\omega = T(J(\tau)) \cdot d(J(\tau))^k \). If we assume that \(F(\tau) \) is a cusp form, we have \(\text{ord}_P (\omega') \geq 0 \) for any \(P' \in \mathcal{H} \). Hence, by (16), we have the following;

\[
\text{ord}_P (\omega) \begin{cases}
0 & \text{if } P \text{ is not equal to the point of } J(\tau) = 0 \text{ or } J(\tau) = 12^a, \\
-\left[\frac{2}{3} k \right] & \text{if } P \text{ is the point of } J(\tau) = 0, \\
-\left[\frac{1}{2} k \right] & \text{if } P \text{ is the point of } J(\tau) = 12^a.
\end{cases}
\]

It follows that \(T(X) = X^{-\left[\frac{2}{3} k \right]}(X-12^a)^{-\left[\frac{1}{2} k \right]} \cdot S(X) \), with some \(S(X) \in \mathcal{C}[X] \).

Therefore if we take \(F(\tau) \in \mathcal{O}_{k, p^a - p^a - 1} \), we have

\[
F(\tau) \left(\frac{dJ(\tau)}{d\tau} \right)^{-\frac{1}{2} k(p^a - p^a + 1)} = \frac{S(J(\tau))}{J(\tau)^{\frac{1}{3} k(p^a - p^a + 1)}
\]

with \(S(X) \in \mathcal{C}[X] \). Since \(\frac{dq}{d\tau} = 2\pi i q \), we have

\[
(17) \quad F(\tau) \left(\frac{qdJ(\tau)}{dq} \right)^{-\frac{1}{2} k(p^a - p^a + 1)} = \frac{H(J(\tau))}{J(\tau)^{\frac{1}{3} k(p^a - p^a + 1)}
\]

with \(H(X) = (2\pi i)^\frac{1}{2} k(p^a - p^a + 1) \cdot S(X) \in \mathcal{C}[X] \). Moreover, if we assume \(F(\tau) \in \mathcal{O}_{k, p^a - p^a - 1, \tau} \), we conclude that \(H(X) \in \mathcal{C}[X] \); because all the Fourier coefficients
of \(F(\tau) J(\tau)^{M_1}(J(\tau)-12)^{M_2} \left(\frac{q d J(\tau)}{d q} \right)^{-\frac{1}{2} k(p^\alpha - p^{\alpha-1})} \) belong to \(\mathfrak{g}_\tau \). Hence, for each \(F(\tau) \in \mathfrak{g}_{k(p^\alpha - p^{\alpha-1}), \mathfrak{c}} \), we can regard that (17) holds in \(\mathfrak{g}_\tau \) with the identification \(\frac{q d J(\tau)}{d q} \) (mod \(\mathfrak{h}^* \)). Therefore, with Proposition 3 where we calculated \(\left(\frac{q d J(\tau)}{d q} \right)^{-\frac{1}{2} k(p^\alpha - p^{\alpha-1})} \) explicitly, we conclude that,

\[
F(\tau) \equiv (-1)^{\frac{k-1}{2}} \frac{H(J(\tau))}{J(\tau)^{M_1}(J(\tau)-12)^{M_2}} \left(\frac{1}{2} k(p^\alpha - p^{\alpha-1}) \right) W^{-k p^\alpha - 1} \pmod{\mathfrak{h}^*}.
\]

And, from Remark of the same proposition, we have

(18) \[
F(\tau) \equiv (-1)^{\frac{k-1}{2}} \frac{H(J(\tau))}{J(\tau)^{M_1}(J(\tau)-12)^{M_2}} \left(\frac{1}{2} k(p^\alpha - p^{\alpha-1}) \right) W^{-k p^\alpha - 1} \pmod{\mathfrak{h}^*}.
\]

Now we discuss on the polynomial degree of the polynomial \(H(X) \). In the equality (17), considering the Fourier expansions of both sides, we obtain the following equality;

(19) \[
\operatorname{ord}_\alpha (F) + \frac{1}{2} k(p^\alpha - p^{\alpha-1}) = M_1 + M_2 - \deg H,
\]

where \(\deg H \) is the polynomial degree of \(H(X) \in \mathfrak{g}_\tau [X] \). From the well-known dimension formula of \(\mathfrak{g}_{k(p^\alpha - p^{\alpha-1})} \), we have, if \(k(p^\alpha - p^{\alpha-1}) > 2

(20) \[
\dim_c \mathfrak{g}_{k(p^\alpha - p^{\alpha-1})} = -(k(p^\alpha - p^{\alpha-1})-1) + \left\{ \frac{1}{2} k(p^\alpha - p^{\alpha-1}) - 1 \right\} + \left[\frac{1}{3} k(p^\alpha - p^{\alpha-1}) \right] + \left[-\frac{1}{4} k(p^\alpha - p^{\alpha-1}) \right],
\]

\[
= M_1 + M_2 - \frac{1}{2} k(p^\alpha - p^{\alpha-1}).
\]

In particular, if we put \(k=1, \alpha=1 \) in (20), we have \(\dim_c \mathfrak{g}_{p-1} = m_1 + m_2 = \left\lfloor \frac{p}{12} \right\rfloor \) for any prime \(p \geq 3 \). On the other hand, it is well-known that \(\dim_c \mathfrak{g}_{p-1} = \left\lfloor \frac{p}{12} \right\rfloor \) for any prime \(p \geq 3 \). Hence we have

(21) \[
m_1 + m_2 = \frac{1}{2} (p-1) = \left\lfloor \frac{p}{12} \right\rfloor.
\]

From (20), (21), we have \(\dim_c \mathfrak{g}_{k(p^\alpha - p^{\alpha-1})} = (M_1 - m_1 kp^\alpha - 1) + (M_2 - m_2 kp^\alpha - 1) + \left\lfloor \frac{p}{12} \right\rfloor \). Therefore, we conclude that the denominator of the right side of (18) is the polynomial of \(J(\tau) \) whose polynomial degree is equal to \(\dim_c \mathfrak{g}_{k(p^\alpha - p^{\alpha-1})} \), and that \(\deg H \) is smaller than \(\dim_c \mathfrak{g}_{k(p^\alpha - p^{\alpha-1})} \), since \(\operatorname{ord}_\alpha (F) > 0 \) for any \(F(\tau) \in \mathfrak{g}_{k(p^\alpha - p^{\alpha-1})} \).
Finally, we prove that if $F(\tau)$ varies in $\mathcal{E}_{k,p^a-p^{a-1}, \tau}$, all $H(J(\tau)) \in \mathcal{O}_r[J(\tau)]$ whose polynomial degree is smaller than $\dim_r \mathcal{E}_{k,p^a-p^{a-1}}$ can appear in the right side of (14) for some $F(\tau)$. Put $d=\dim_r \mathcal{E}_{k,p^a-p^{a-1}}$. Take the canonical basis \{$F_i(\tau)$\}_{i=1}^l of $\mathcal{E}_{k,p^a-p^{a-1}}$. For $F_i(\tau)$, let $H_i(X) \in \mathcal{O}_r[X]$ be such that

$$F_i(\tau) \left(q, \frac{dJ(\tau)}{dq} \right) = (-1)^{\frac{1}{2}k(p-1)} H_i(J(\tau)) J(\tau)^{M_1(J(\tau)-12k)^{M_2}}. $$

holds. Since $\text{ord}_q(F_i) = i$, we have $\deg H_i = d-i$. Considering the Fourier expansions, we see that $H_i(X)$ is a monic polynomial because of the property (i). Hence all $H_i(X) \in \mathcal{O}_r[X]$ whose polynomial degree is smaller than d is a linear sum of $H_i(X)$, $1 \leq i \leq d$ with coefficients in \mathcal{O}_r. q.e.d.

5. Reduction mod p^n of some modular functions

Here we prove a certain proposition, which is needed to connect the Fourier coefficients of some modular functions with respect to $\Gamma_0(p)$ with those of cusp forms with respect to Γ.

5-1. We need the following lemma.

Lemma 2. Let $l \geq 0$, $n \geq 1$ be rational integers. Let m be a rational integer such that $m \neq 0 \pmod{p}$. Let $T_0(p^n)$ be the same as defined in §1. Then we have

$$p^n \cdot e^{\pi \sqrt{-1} m p^{l-4}} | T_0(p^n) = \sum_{l=0}^{\text{Min} (n, l)} p^n \cdot e^{\pi \sqrt{-1} m p^{l-4}}. $$

Proof. The left side equals to $\sum_{d \divides m, d > 0} e^{2\pi \sqrt{-1} m p^{l-4}} - \sum_{b \mod d} e^{2\pi \sqrt{-1} m p^{l-4}}$, and the second sum takes the value 0 (if $d \divides mp'$, d (if $d \divides mp'$). q.e.d.

Since $(n+l-2i)-(n-i)=l-i \geq 0$ for $0 \leq i \leq \text{Min} (n, l)$, we notice the following fact from this lemma; if we put $e^{\pi \sqrt{-1} m p^{l-4}} | T_0(p^n) = \sum_{j \in \mathbb{N}} a_j e^{2\pi \sqrt{-1} j p^{l-4}}$, with $a_j \in \mathbb{Q}$, then $j \cdot a_j$ are all rational integers.

5-2. We also need some elementary congruence properties of the combination number $\binom{n}{r}$. Let $t \geq 1$ be a rational integer and take $t+1$ positive rational integers r_0, r_1, \ldots, r_t with $r_0 > r_1 > \cdots > r_t$. Put $\{r_0, \ldots, r_t\} = \Pi_{i=0}^{t-1} \binom{r_i}{r_{i+1}}$. Then we have;

Lemma 3. Put $\text{ord}_p r_i = l_i$ and $L = \text{Min} (l_i)$. Then (i) (r_0, \ldots, r_t) is divisible
by \(p^{l_0-l_1} \). (ii) If \(L \geq 1 \), then

\[
(22) \quad p^{-l_0-l_1}(r_0, \ldots, r_i) \equiv p^{-l_0-l_1}(p^{-1}r_0, \ldots, p^{-1}r_i) \pmod{p^L}.
\]

PROOF. Since \(\binom{r_i}{r_{i+1}} = \frac{r_i!}{r_{i+1}!} \cdot \binom{r_{i+1}-1}{r_{i+1}+1} \), we have \(\text{ord}_p \left(\binom{r_i}{r_{i+1}} \right) \geq \max \{ 0, l_i - l_{i+1} \} \).

Hence \(\text{ord}_p (r_0, \ldots, r_i) \geq \sum_{i=0}^{i-1} \max \{ 0, l_i - l_{i+1} \} \geq l_0 - L \). (ii) By definition, \(\binom{r_i}{r_{i+1}} = \frac{r_i!}{r_{i+1}!}
\]

\[
\prod_{s=0}^{r_i-1} \frac{r_i-s}{r_{i+1}-s} \pmod{p^L}.
\]

If \((s, p) = 1\), \(\frac{r_i-s}{r_{i+1}-s} \equiv 1 \pmod{p^L} \), and if \((s, p) = p\), \(\frac{r_i-s}{r_{i+1}-s} = \frac{p^{-1}r_i}{p^{-1}r_{i+1}} \). Hence we have \(p^L \cdot \text{ord}_p (r_0, \ldots, r_i) \equiv p^{-1}e^{-L}(r_0, \ldots, r_i) \equiv p^{-1}e^{-L}(p^{-1}r_0, \ldots, p^{-1}r_i) \pmod{p^L} \).

By definition, \(\text{ord}_p (r_0, \ldots, r_i) \equiv \max \{ 0, l_0 - l_{i+1}, \ldots, l_i - l_{i+1} \} \).

\[
(22) \quad p^{-l_0-l_1}(r_0, \ldots, r_i) \equiv p^{-l_0-l_1}(p^{-1}r_0, \ldots, p^{-1}r_i) \pmod{p^L}.
\]

q.e.d.

5-3. Let \(Q[[q]] \) be the formal power series ring with coefficients in \(Q \). Let \(Q[q] \) be its quotient field. By the Fourier expansion with respect to \(q \), each element of \(Q(J(\tau)) \) corresponds to an element of \(Q[q] \). Then it is easily proved that the restriction to \(Q[J(\tau)] \) of this correspondence gives an isomorphism of \(Q[J(\tau)] \) as \(Q \)-module onto the residue class \(Q \)-module of \(Q[q] \) modulo \(q \cdot Q[[q]] \). Denote this isomorphism by \(\iota \). The set \(\{ \sum_{i=0}^{\infty} a_i q^{-i} | a_i \in Q, m \geq 0 \} \) gives a full set of representatives of the residue class of \(Q[q] \) modulo \(q \cdot Q[[q]] \).

Let \(d \geq 1 \) be a rational integer such that \(d \equiv 0 \pmod{p} \), and let \(n \geq 0 \) be a rational integer. Put \(c^{-1}(p^{-n}, q^{-d}p^n) = H_{p, d, n}(J(\tau)) \). We prove:

PROPOSITION 6. Let \(n \geq 1 \). Then,

\[
(23) \quad H_{p, d, n}(J(\tau)) \equiv p^{-1}H_{p, d, n-1}(J(\tau))^p \pmod{Z[J(\tau)]}.
\]

PROOF. We note that \(c^{-1}(\sum a_i q^{-i}) \) belongs to \(Z[J(\tau)] \) if and only if all \(a_i \) belong to \(Z \). Put

\[
(24) \quad c(H_{p, d, n}(J(\tau))=p^{-n}J(\tau)^{d n}) = \sum_{m, p, n \geq 0} (-a^{d \cdot n}_{m p}) q^{-m p} - a^{d \cdot n}_{p}
\]

with \(a^{d \cdot n}_{i} \in Q, 0 \leq i < dp^n \). Let the Fourier expansion of \(J(\tau) \) be \(J(\tau) = \sum_{n=-1}^{\infty} c(n) \cdot q^n \), with \(c(n) \in Z \). Then, we have

\[
(25) \quad a^{d \cdot n}_{m p} = \sum_{d p^n m, p, n \geq 0} p^{-n} \cdot c(n) q^{-m p} \cdot (r_0, \ldots, r_i) (r_0 - r_1) (r_1 - r_2) \ldots (r_{i-1} - r_i)
\]

By using Lemma 3, we see that if at least one \(r_i \) is prime to \(p \) the corresponding
term in (25) is a rational integer. Therefore, when we consider $H_{p,d\cdot n}(J(\tau))$ modulo $Z[J(\tau)]$, we can omit that term. For $l \geq 1$, put

$$a'_{m,p}^{(i,d,n)} := \sum_{n_0 > \cdots > n_{l-1} > n_l \geq 0} p^{-n_0} c(n_0)^{r_0} \cdots c(n_{l-1})^{r_{l-1}} \cdot (r_0 p^i, \ldots, r_l p).$$

Then, from the above we have

$$H_{p,d\cdot n}(J(\tau)) \equiv p^{-n} J(\tau)^{d^m} \equiv \cdots \equiv \sum_{m \geq 0} (a_{m,p}^{(i,d,n)} q^m) - a_0^{(i,d,n)} \quad \text{(mod } Z[J(\tau)] \text{)}.$$

It is well-known that, for any rational integer a,

$$a^{m^p} \equiv a^{m^p-1} \quad \text{(mod } p^i)$$

holds. We apply this to $a'_{m,p}^{(i,d,n)}$; put $L := \min \{ \text{ord}_p (r_i, p) \}$. Then from (28), we have

$$c(n_i)^{r_i-1} \equiv c(n_i)^{r_i-1} \quad \text{(mod } p^L \text{)}.$$

From (22) in Lemma 3, we have

$$p^{-n+L} (d p^n, r_1 p, \ldots, r_l p) \equiv p^{-n+L} (d p^{n-1}, r_1, \ldots, r_l) \quad \text{(mod } p^L \text{)}.$$

Hence, we have from (29), (30),

$$p^{-n} c(n_0)^{r_0} \cdots c(n_l)^{r_l} \cdot (d p^n, \ldots, r_l) p \equiv p^{-n} c(n_0)^{r_0} \cdots c(n_l)^{r_l} \cdot (d p^{n-1}, \ldots, r_l) \quad \text{(mod } 1 \text{)}.$$

It follows that

$$a'_{m,p}^{(i,d,n)} \equiv p^{-1} a_{m,p}^{(i,d,n-1)} \quad \text{(mod } 1 \text{)}.$$

And, also we have

$$a'_{m,p}^{(i,d,n)} \cdot p^i \in Z;$$

since, $-mp^i = \sum_i (pr_i - pr_{i+1}) n_i$ and $l \geq L$, the p^i-multiple of the corresponding term in $a'_{m,p}^{(i,d,n)}$ belongs to Z.

With these preparations, the proof proceeds as follows by using induction on $N=d \cdot p^n$; it is easily seen that $H_{p,1,0}(J(\tau)) \equiv c^{-1}(q^{-1}) \equiv J(\tau) - 744$, and, $H_{p,1,1}(J(\tau)) \equiv c^{-1}(p^{-1}, q^{-1}) \equiv p^{-1} J(\tau)^{p} - p^{-1} \cdot 744 \quad \text{(mod } Z[J(\tau)] \text{)}$. Hence, in case $dp^n \equiv 1 \cdot p$, the proposition is valid. From (27), it follows that,
\[H_{p, d, n}(J(\tau)) - p^{-n}J(\tau)^{d\cdot p^n} \equiv \sum_{(n, p) = 1} \sum_{m, p - d, n} (-a_{m, p, l}^{d, p^n} \cdot q^{-m \cdot p^n} - a_0^{d, n}) \pmod{Z[J(\tau)]} \\
\equiv \sum_{(n, p) = 1} \sum_{m, p - d, n} -a_{m, p, l}^{d, p^n} \cdot p^l \cdot H_{p, m, l}(J(\tau)) - a_0^{d, n} \pmod{Z[J(\tau)]} .
\]

From (31), (32) and the induction assumption, we have
\[H_{p, d, n}(J(\tau)) - p^{-n}J(\tau)^{d\cdot p^n} \equiv \sum_{(n, p) = 1} \sum_{m, p - d, n} -a_{m, p, l}^{d, p^n - 1} \cdot p^l \cdot H_{p, m, l-1}(J(\tau) - p^{-1}a_0^{d, n}) \pmod{Z[J(\tau)]} .
\]

\[\equiv p^{-1}H_{p, d, n-1}(J(\tau)), \quad p^{-1} \cdot J(pc)^{d\cdot p^n - 1, p} \pmod{Z[J(\tau)]} . \quad \text{q.e.d.}
\]

Corollary. Let \(H_{p, d, n}(J(\tau)) \) \(\equiv \sum_{m, p - d, n} b_{m, p, l}^{d, n} \cdot J(\tau)^{m\cdot p^n} + b_0^{d, n} \), with \(b_{m, p, l}^{d, n} \in \mathbb{Q} \), \(0 \leq l \leq dp^n \). Then \(p^l \cdot b_{m, p, l}^{d, n} \) belongs to \(Z \).

Proof. We shall use induction on \(n \) with \(N = d \cdot p^n \). By the above proposition, we have for any \(n \geq 1 \),
\[(33) \quad H_{p, d, n}(X) \equiv p^{-1} \cdot H_{p, d, n-1}(X^p) \pmod{Z[X]} .
\]
Hence, if \(l \geq 1 \), we have \(b_{m, p, l}^{d, n} \equiv p^{-1} \cdot b_{m, p, l-1}^{d, n-1} (\text{mod } Z) \). It follows that, \(l = 0 \), from (33), \(b_{m, p, 0}^{d, n} \) belongs to \(Z \). Since it is obvious that \(H_{p, d, 0}(J(\tau)) \equiv -1(q^{-d} \in Z[J(\tau)]) \), the induction assumption for \(N = d \cdot p^0 \) holds. \quad \text{q.e.d.}

5. 4. From these facts, we shall prove the following.

Proposition 7. Let \(m \geq 1 \) and \(n \geq 1 \) be rational integers. Then the following congruence is valid:
\[J(\tau)^d | U(p)^n \equiv \sum_{m, p - d, n} a_{m, l, d, n} \cdot p^l (J(\tau)^{m\cdot p^n} - J(pc)^{m\cdot p^n - 1}) \pmod{Z[J(\tau)]} .
\]

Proof. It is well-known that \(J(\tau)^d | T_0(p^n) \) belongs to \(\mathbb{Q}[J(\tau)] \). Let \(J(\tau)^d \equiv \sum_{m, p - d, n} c_{m, p, l} \cdot q^{-m\cdot p^n} + c_0 \pmod{q \cdot \mathbb{Q}[q]} \), with \(c_{m, p, l} \in \mathbb{Z} \). Then, we have
\[J(\tau)^d | T_0(p^n) \equiv \sum_{m, p - d, n} c_{m, p, l} \cdot q^{-m\cdot p^n} | T_0(p^n) + c_0 | T_0(p^n) .
\]
From (3) in §1, we have

\[J(\tau)^d \mid U(p)^n = \sum_{0 < m < p \mid d} c_{mp} \left(\varepsilon^{-1}(q^{-mp}| T_0(p^n)) - p^{-1} \varepsilon^{-1}(q^{-mp}| T_0(p^{n-1})) \right) \]

\[+ c_0 T_0(p^n) - p^{-1} c_0 T_0(p^{n-1}) . \]

Using Lemma 2, \(q^{-mp}| T_0(p^n) = \sum_{x=0}^{\min \{ n, 1 \}} p^{x+i} q^{-mp^{-1}n+i} = \sum_{x=0}^{\min \{ n, 1 \}} p^{x+i} q^{-(1+n-2i)} . \)

Hence, we have

\[J(\tau)^d \mid U(p)^n = \sum_{0 < m < p \mid d} c_{mp} \left(\sum_{x=0}^{\min \{ n, 1 \}} p^{x+i} \cdot H_{p, m, l+n-2i}(J(\tau)) \right) \]

\[- p^{-1} \sum_{x=0}^{\min \{ n-1, 1 \}} p^{x+i} \cdot H_{p, m, l+n-1-2i}(J(p\tau)) + c_0 . \]

By Proposition 6,

\[J(\tau)^d \mid U(p)^n = \sum_{0 < m \leq p < d} c_{mp} \left(\sum_{x=0}^{\min \{ n, 1 \}} p^{x+i} \cdot (H_{p, m, l+n-1-2i}(J(\tau)^p)) \right) \]

\[- H_{p, m, l+n-2i}(J(\tau))) + \sum_{0 < m \leq p < d} c_{mp} \cdot p^{x+i} \cdot H_{p, m, l+n}(J(\tau)) \]

\[\left(\bmod Z[J(\tau)] \right) . \]

Since \(p^{x-n} \cdot H_{p, m, l+n}(J(\tau)) = \varepsilon^{-1}(q^{-mp|p^{-n}}), \) the last sum of (34) belongs to \(Z[J(\tau)] . \)

So by using Corollary of Proposition 6, we obtain Proposition 7. q.e.d.

6. Proof of Main Theorem.

Here we shall prove Theorem 1 which is a slightly extended form of the Main Theorem stated in §1.

THEOREM 1. Denote by \(M^\infty \) the \(\infty \)-module in \(Q_\infty(J(\tau)), \) generated by \(\{ f \mid U(p)^n \}; \)

\(f \in Z[J(\tau)], n \geq 0 \). Let \(\alpha \geq 1 \) be a rational integer. Then for each \(g \in M^\infty, \) there exist \(h \in Z[J(\tau)] \) and \(F(\tau) \in \mathbb{Z}_{p^{-\alpha-n-1, \infty}} \) such that

\[g - h \equiv F(\tau) \left(\bmod \mathbb{Z}^n \right) . \]

These \(h \) and \(F(\tau) \) are unique up to modulo \(\mathbb{Z}^n \).

To begin with, we show that Theorem 1 implies the Main Theorem; put \(d = \dim \mathbb{Z}_{p^{-\alpha-n-1, \infty}}, \) and let \(\{ F_i(\tau) \}_{i=1}^d \) be the canonical basis of \(\mathbb{Z}_{p^{-\alpha-n-1}}. \)

Take \(g \in M. \) Then, we have the following congruence by Theorem 1;

\[g - h \equiv F(\tau) \left(\bmod \mathbb{Z}^n \right) , \]
with \(h \in \mathcal{O}_\tau[J(\tau)] \) and \(F(\tau) \in \Xi_{\mathfrak{p}^{n-1-\mathfrak{p}}} \). As the Fourier coefficients of \(g \) are all rational integers, we can take \(h \) from \(Z[J(\tau)] \) by the fact \(J(\tau) = \sum_{n \in \mathbb{Z}} c(n)q^n \), with \(c(-1) = 1 \) and \(c(n) \in \mathbb{Z} \). It follows that the Fourier coefficients of \((g - h) \) are rational integers. Hence, by the properties of the canonical basis stated in \(\S \ 4-2 \), we can take \(F(\tau) \) from \(\Xi_{(\mathfrak{p}^{n})^{\mathfrak{p}^{n-1-\mathfrak{p}}}} \).

We prove this theorem using Propositions 4, 5 and 7, and the theorem of Deligne about the \(p \)-adic rigidity of the map \(J(\tau) \rightarrow J(p\tau) \). Deligne's theorem reads as follows; we showed that \(J(p\tau) \) belongs to \(Q(J(\tau))_{\nu} \), therefore, to \(Q\nu_{\nu}(J(\tau))_{\nu} \). Hence \(J(p\tau) \) has a \(V^o \)-adic expansion. Deligne's theorem gives this \(V^o \)-adic expansion of \(J(p\tau) \) explicitly in the following form,

\[
J(p\tau) = J(\tau)^p + p \cdot H + \sum_{\nu \in S} \sum_{n = 1}^{\infty} A^{(\theta)}_n(J(\tau) - j_{\theta})^{-n},
\]

with \(H \in Z[J(\tau)] \) such that \(J(\tau) | T_\nu(p) = p^{-1}J(\tau)^p + H \), and \(A^{(\theta)}_n \in \mathfrak{u}^\circ \), \(S \) and \(j_{\theta} \) being the same as in Proposition 3. Furthermore, Deligne's theorem gives the evaluation of \(\text{ord}, A^{(\theta)}_n \) as follows; for \(p \geq 5 \), and \(n \geq 1 \), we have

\[
\text{ord}, A^{(\theta)}_n \geq \begin{cases}
\frac{1}{p+1} + \frac{np}{p+1} & \text{if } \theta \in S^*, \\
\frac{1}{p+1} + \frac{3np}{p+1} & \text{if } \theta = 0 \in S, \\
\frac{1}{p+1} + \frac{2np}{p+1} & \text{if } \theta = 12a \in S.
\end{cases}
\]

For \(p = 2, 3 \), and \(n \geq 1 \), we have

\[
\text{ord}, A_n \geq \begin{cases}
\frac{11}{2} + \frac{13}{2}n & \text{for } p = 2, \\
\frac{5}{2} + \frac{7}{2}n & \text{for } p = 3.
\end{cases}
\]

As for Deligne's theorem, we refer to Dwork [5] (p. 80).

PROOF OF THEOREM 1. First, we briefly sketch the proof; for any \(F(\tau) \in \Xi_{\mathfrak{p}^{n-1-\mathfrak{p}}} \), in Propositions 4, 5, we calculated \(F(\tau) \) (mod \(\mathfrak{g}^p \)) to be a rational function of \(J(\tau) \) (mod \(\mathfrak{g}^p \)) in a definite form. On the other hand, by Proposition 7 and Deligne's theorem, we shall show that, for each \(g \in M^o \), \(g \) (mod \(\mathfrak{g}^p \)) can be calculated to be a sum of some \(h \in \mathcal{O}[J(\tau)] \) and of some rational function of \(J(\tau) \) in the same definite type as above modulo \(\mathfrak{g}^p \). Hence we obtain Theorem 1 by the 'surjectivity' of the reduction mod \(p^n \) of cusp forms in Propositions 4, 5.
To begin with, we need the following elementary lemma.

Lemma 4. Let K be a field with an additive, discrete valuation V. Let \mathfrak{O} be the valuation ring of V and let π be a prime element of V. Let $r \in K(X)$ be such an element that

$$r = \frac{b \cdot F(X)}{\prod_{i=1}^{m} (X-a_i)^{e_i}},$$

with $m \geq 1, e_i \geq 1$ $(i = 1, \ldots, m)$, and $b, a_i \in \mathfrak{O}$ $(i = 1, \ldots, m)$, and $F(X) \in \mathfrak{O}[X]$. Assume that $V(a_i-a_j) = 0$ for any $1 \leq i < j \leq m$. Then we have the following, unique partial fractional expansion of r;

$$r = \sum_{i=1}^{m} \sum_{j=1}^{e_i} b_{ij} (X-a_j)^{e_i} + G(X)$$

with $b_{ij} \in \mathfrak{O}$ $(i = 1, \ldots, m, j = 1, \ldots, e_i)$, and $G(X) \in \mathfrak{O}[X]$ such that $V(b_{ij}) \geq V(b)$ and $G(X) \in \pi^{\nu(b)} \mathfrak{O}[X]$.

Proof. Since the uniqueness of the partial fractional expansions is well-known, we only prove that the evaluation of the coefficients b_{ij} and of $G(X)$ with respect to V are given by the above. In case $m=1$, the assertion is obviously valid since, for each $F(X) \in \mathfrak{O}[X]$, we have $F(X) = \sum_{i=1}^{N} c_i (X-a_i)^i$ with some N and $c_i \in \mathfrak{O}$ $(i = 1, \ldots, N)$. In general case, we use induction on m and e_m; we may assume $V(a_i) \neq 0$ for $i = 1, \ldots, m$. Let $m_0 > 1$ be a rational integer. Assume that the assertion is valid for any $1 \leq m < m_0$. From (39), we have $r \cdot (X-a_{m_0})^{e_{m_0}}|_{X=a_{m_0}} = b_{m_0, m_0}$. On the other hand, $r \cdot (X-a_{m_0})^{e_{m_0}}|_{X=a_{m_0}} = \frac{b \cdot F(a_{m_0})}{\prod_{i=1}^{m_0-1} (a_{m_0}-a_i)^{e_i}}$. Since $V(a_{m_0}-a_i) = 0$ for $1 \leq i < m_0$, $\prod_{i=1}^{m_0-1} (a_{m_0}-a_i)^{e_i}$ is a V-adic unit; it followwhat $V(b_{m_0, m_0}) \geq V(b)$. Hence we have

$$r = \frac{b_{m_0, m_0}}{(X-a_{m_0})^{e_{m_0}}} = \frac{b \cdot F(X)}{(\prod_{i=1}^{m_0-1} (X-a_i)^{e_i})(X-a_{m_0})^{e_{m_0}-1}},$$

with $F(X) \in \mathfrak{O}[X]$. Therefore, using induction on e_{m_0}, we conclude the assertion is valid in $m = m_0$. q.e.d.

Hereafter, since the proof for $p \geq 5$ and that for $p = 2, 3$ are entirely similar, we prove only for $p \geq 5$ and we write only the results for $p = 2, 3$. Now the first step of the proof is to give the following; let $m \geq 1$ be a rational integer. Then we have

$$J(pz)^{m} = J(z)^{m} + ph_1 + \sum_{s \in S} \sum_{n=1}^{m} B^{(s)}(J(z)-j_\theta)^{-n},$$
with \(h_i \in \mathbb{Z}^r[J(\tau)] \) and \(B_{\theta}^{(\theta)} \in \mathcal{O}_{\theta}^\circ \). Moreover, the evaluation of \(\text{ord}_{\theta} B_{\theta}^{(\theta)} \) is given by the same equation as \(\text{ord}_{\theta} A^{(\theta)}_{\theta} \) in (37); namely, for \(p \geq 5, \ n \geq 1 \) we have

\[
\text{ord}_{\theta} B_{\theta}^{(\theta)} \geq \begin{cases}
\frac{1}{p+1} + \frac{n p}{p+1} & \text{if } \theta \in S^*, \\
\frac{1}{p+1} + \frac{3 n p}{p+1} & \text{if } \theta = 0 \in S, \\
\frac{1}{p+1} + \frac{2 n p}{p+1} & \text{if } \theta = 12^3 \in S,
\end{cases}
\]

(40)

and for \(p = 2, 3 \) so on. Put \(J(p \tau) = J(\tau)^p + p R \) with \(R \in \mathbb{Q}(J(\tau))_v \). Then, \(R \) is the sum of infinite terms which consist of \((p^{-1} A_{\theta}^{(\theta)} \cdot (J(\tau) - j_{\theta}))^{-n} \) with \(\theta \in S, \ n \geq 1 \), and of a polynomial \(H \in \mathbb{Z}[J(\tau)] \). Hence, we have

\[
J(p \tau)^n = J(\tau)^{np} + \sum_{s=1}^{m} p^s \cdot \binom{m}{s} \cdot R^s \cdot J(\tau)^{p(m-n)}.
\]

Then \(R^s \) is the sum of infinite terms which consist of \(\prod_{i=1}^{m} A_{\theta_i}^{(\theta_i)} \cdot (J(\tau) - j_{\theta_i})^{-n_i} \cdot H^{s-s'} \) with \(1 \leq s' \leq s \), and of \(H^s \). By the above lemma, the evaluation with respect to \(\text{ord}_{\theta} \) of the coefficients of the partial fractional expansion of \(p^s \cdot \binom{m}{s} \cdot H^{s-s'} \cdot J(\tau)^{p(m-n)} \) is given by the following; if \(B_{\theta}^{(\theta)} \) is the coefficient of \((J(\tau) - j_{\theta})^{-n} \) in this partial fractional expansion, we have \(\text{ord}_{\theta} B_{\theta}^{(\theta)} \geq s + \sum_{i=1}^{m} (\text{ord}_{\theta} A_{\theta_i}^{(\theta_i)} - 1) \) and \(n \leq \sum_{i=1}^{m} n_i \). Moreover, the \(\text{ord}_{\theta} \) of the coefficients of the polynomial part is not smaller than \(s + \sum_{i=1}^{m} (\text{ord}_{\theta} A_{\theta_i}^{(\theta_i)} - 1) \), and its polynomial degree is bounded by \(pm \). Hence, we have for \(\theta \in S^* \),

\[
\text{ord}_{\theta} B_{\theta}^{(\theta)} \geq s + \sum_{i=1}^{m} (\text{ord}_{\theta} A_{\theta_i}^{(\theta_i)} - 1) \geq (s-s') + \frac{s'}{p+1} + \frac{p}{p+1} \sum_{i=1}^{m} n_i \geq \frac{1}{p+1} + \frac{n p}{p+1}.
\]

Similarly, if \(0 \) (resp. \(12^3 \)) is contained in \(S \), we have \(\text{ord}_{\theta} B_{\theta}^{(\theta)} \geq \frac{1}{p+1} + \frac{3 n p}{p+1} \) (resp. \(\text{ord}_{\theta} B_{\theta}^{(12^3)} \geq \frac{1}{p+1} + \frac{2 n p}{p+1} \)). Since \(B_{\theta}^{(\theta)} \) is the sum of these \(B_{\theta}^{(\theta)} \), we obtain the equation (40). Concerning to the polynomial part \(h_i, h_i \) is the sum of the polynomial part of each partial fractional expansions of \(\prod_{i=1}^{m} A_{\theta_i}^{(\theta_i)} \cdot (J(\tau) - j_{\theta_i})^{-n_i} \cdot H^{s-s'} \cdot J(\tau)^{p(m-n)} \) with \(1 \leq s \leq m \), and \(1 \leq s' \leq s \), and of \(H^s \) with \(1 \leq s \leq m \). Since the polynomial degree of each polynomial part is bounded and the \(\text{ord}_{\theta} \) of its coefficients is not smaller than \(s + \sum_{i=1}^{m} (\text{ord}_{\theta} A_{\theta_i}^{(\theta_i)} - 1) \), \(h_i \) becomes an element of
Next step is to show the following; Let \(m \geq 1 \) be rational integer such that \((m, p) = 1 \) and let \(l \geq 1 \) be a rational integer. Then we have

\[
p^{-1}(J(\tau)^{mp^l} - J(p\tau)^{mp^{l-1}}) = h_2 + \sum_{s \in S} \sum_{n=1}^{m} C_{n}^{s}(J(\tau)^{1-s} - j_{d})^{-n},
\]

with \(h_2 \in \mathcal{O}^{\omega}_p[J(\tau)] \) and \(C_{n}^{s} \in \mathcal{O}_p^\omega \). Moreover the evaluation of the coefficients \(C_{n}^{\omega} \) with respect to ord, is given by, for \(p \geq 5 \),

\[
\text{ord } C_{n}^{\omega} \geq \begin{cases}
\frac{np}{p+1} - \frac{1}{p+1} - 1 & \text{if } \omega \in S^*, \\
3np - \frac{1}{p+1} - 1 & \text{if } \omega = 0 \in S, \\
2np - \frac{1}{p+1} - 1 & \text{if } \omega = 12 \in S,
\end{cases}
\]

and for \(p = 2, 3 \),

\[
\text{ord } C_{n} \geq \begin{cases}
\frac{13}{2}n + \frac{11}{2} - 1 & \text{for } p = 2, \\
\frac{5}{2}n + \frac{5}{2} - 1 & \text{for } p = 3.
\end{cases}
\]

We make the similar argument to the first step. Put \(J(p\tau)^m = J(\tau)^{mp} + pR_i \) with \(R_i \in \mathcal{O}_p(J(\tau))_{\nu=\infty} \). Then we have

\[
J(\tau)^{mp^{l-1}} = J(\tau)^{mp^l} + \sum_{s=1}^{l-1} p^{s-1} \cdot (p^{l-1} \cdot R_i \cdot J(\tau)^{mp^{l-1-s}}).
\]

\(R_i \) is the sum of infinite terms which consist of \(\{ p^{-1} \cdot B_{n}^{s} \cdot (J(\tau)^{-j_{d}})^{-n} \} \) with \(\theta \in S, n \geq 1 \), and of \(h_{i} \in \mathcal{O}_{p}^{\omega}[J(\tau)] \). Hence \(R_i \), for \(1 \leq s \leq p^{-1} \), is also the sum of infinite terms which consist of \(\{ \prod_{i=1}^{s'} p^{-1} \cdot B_{n}^{s} \cdot (J(\tau)^{-j_{d}})^{-n} \cdot h_{1}^{-1} \} \) with \(1 \leq s' \leq s \), and of \(h_{1} \). By Lemma 4, the evaluation with respect to ord, of the coefficients in the partial fractional expansions of \(p^{s} \cdot (p^{l-1} \cdot \prod_{i=1}^{s'} p^{-1} \cdot B_{n}^{s} \cdot (J(\tau)^{-j_{d}})^{-n} \cdot h_{1}^{-1} \) is given by the following; if \(C_{n}^{s} \) is the coefficient of \((J(\tau)^{-j_{d}})^{-n} \) in this partial fractional expansion, we have \(\text{ord}_{s} C_{n}^{s} = s + \text{ord}_{s} \left(p^{l-1} \cdot \prod_{i=1}^{s'} \frac{B_{n}^{s}}{s} \right) \). Moreover \(\text{ord}_{s} C_{n}^{s} \) of the coefficient of the polynomial part is not smaller than \(s + \text{ord}_{s} \left(p^{l-1} \cdot \prod_{i=1}^{s'} \frac{B_{n}^{s}}{s} \right) \). Moreover the polynomial degree is bounded by \(p^{l-1} \cdot m \). Hence, by Lemma 3, we have

\[
\text{ord}_{s} C_{n}^{\omega} \geq s + l - 1 - \text{ord}_{p} s + \sum_{i=1}^{l} \text{ord}_{s} B_{n}^{s} - 1
\]
\[\geq (s-s') + l - 1 - \text{ord}_p s + \frac{s'}{p+1} + \frac{np}{p+1} \]
\[\geq \frac{np}{p+1} + \frac{s}{p+1} + l - 1 - \text{ord}_p s . \]

Therefore, for (42), it is sufficient to prove

\[(44) \quad \frac{s}{p+1} + \text{ord}_p s - 1 \geq -\frac{1}{p+1} - 1, \quad \text{for } s \geq 1. \]

This is equivalent to show that,

\[p^t + 1 - (p+1)t \geq 0, \quad \text{for } t \geq 0. \]

If \(t = 0 \), we have \(p^0 + 1 - (p+1) \cdot 0 = 2 \), and if \(t = 1 \), we have \(p^1 + 1 - (p+1) = 0 \). For \(t \geq 2 \) we use induction on \(t \); if \(t = 2 \), we have \(p^2 + 1 - 2(p+1) = (p-1)^2 - 2 > 0 \) since \(p \geq 5 \). We have \(p^{t+1} + 1 - (p+1)(t+1) \geq p((p+1)t - 1) + 1 - (p+1)(t+1) = p^{t+1} - 2p - t = t(p^t - 1) - 2p \geq p^2 - 2p \geq (p-1)^2 > 0 \). From (44) we have \(s + \text{ord}_p \left(\frac{p^{t+1}}{s} \right) + \sum_{i=1}^{t} (\text{ord}_p B_{i}^{(s)}) - 1 - \frac{n_{p}}{p+1} - \frac{2}{p+1} + 1 = -\frac{1}{p+1} + 1 = 0 \). Hence the polynomial part of each partial fractional expansions in (41) belongs to \(\mathcal{O}_p(J(\tau)) \). Therefore we obtain the second step.

Put \(n_{\alpha} = [p^{-1}|\alpha(p+1)+1|] \), \(n'_{\alpha} = [(3p)^{-1}|\alpha(p+1)+1|] \) and \(n''_{\alpha} = [(2p)^{-1}|\alpha(p+1)+1|] \).

We prove that,

\[n_{\alpha} \leq p^{\alpha-1}, \quad n'_{\alpha} \leq \left[\frac{1}{3} \cdot p^{\alpha-1} \right] \quad \text{and} \quad n''_{\alpha} \leq \left[\frac{1}{2} \cdot p^{\alpha-1} \right]. \]

If \(\alpha = 1 \), we have \(n_{1} = [p^{-1}(p+2)] = 1 \), and \(n'_{1} = n''_{1} = 0 \); hence (45) is valid for \(\alpha = 1 \). For \(\alpha \geq 2 \), we shall prove that \(p^{\alpha} - \alpha(p+1) + 1 \geq 0 \); from this, (45) is obviously valid. If \(\alpha = 2 \), we have \(p^2 - 2(p+1) - 1 = (p-1)^2 - 4 > 0 \) since \(p \geq 5 \). For \(\alpha \geq 3 \), we use induction on \(\alpha \); \(p^{\alpha+1} - (\alpha+1)(p+1) + 1 \geq p(\alpha(p+1) + 1) - ((\alpha+1)(p+1) + 1) \geq 0 \) since \(p \geq 5 \).

Finally we prove Theorem 1. For this, it is sufficient to prove (14) only for \(g = J(\tau)^{\delta} U(p)^{\gamma} \). By Proposition 7 and (41), we have

\[g = h + \sum_{\delta \in S} \sum_{n=1}^{n_{\delta}} a_{n}(J(\tau) - j_{\delta})^{-n} \quad (\text{mod } \mathcal{O}_p), \]

with \(h \in \mathcal{O}_p(J(\tau)) \), and \(a_{n}(J(\tau)) \in \mathcal{O}_p \). Here for \(\delta \in S^{*} \), \(n_{\delta}^{(\theta)} \) is the maximum integer such that \(\frac{n_{\delta}^{(\theta)}}{p+1} - \frac{1}{p+1} - 1 \leq \alpha - 1 \), and \(n_{\delta}^{(1)} \), \(n_{\delta}^{(15)} \) are the maximum integer such that \(\frac{3n_{\delta}^{(1)}}{p+1} - \frac{1}{p+1} - 1 \leq \alpha - 1 \), \(\frac{2n_{\delta}^{(15)}}{p+1} - \frac{1}{p+1} - 1 \leq \alpha - 1 \) respectively. Hence we have \(n_{\delta}^{(\theta)} = n_{\alpha} \) for \(\delta \in S^{*} \), \(n_{\delta}^{(1)} = n'_{\alpha} \) and \(n_{\delta}^{(15)} = n''_{\alpha} \). Therefore from (45) and Proposition 4, we
obtain (14). q.e.d.

PART II. APPLICATIONS TO THE CONJECTURE OF ATKIN

7. p-adic Hecke operators

Now in the following sections we deal with the applications of the facts we proved so far, mainly Propositions 4, 5 and Theorem 1, to the conjecture of Atkin. It is performed as follows: Atkin asserts in [1] the following:

Conjecture. Let $p \leq 23$ be a prime number and l be a prime other than p. Put $t_a(n) = c(p^n n)/c(p^n)$ with the Fourier coefficients $c(n)$ of $J(z)$ in (4). Then it holds that,

$$t_a(nl) - t_a(n)t_a(l) + l^{-1}t_a\left(\frac{n}{l}\right) \equiv 0 \pmod{p^n},$$

$$t_a(np) - t_a(n)t_a(p) \equiv 0 \pmod{p^n},$$

where $t_a\left(\frac{n}{l}\right)$ is defined to be zero if n is not divisible by l. Moreover, examining the case for large primes by the aid of a computer, he asserts a conjecture of similar type for general primes. Atkin says in [1] that he proved this conjecture for $p = 2, 3, 5, 7, 13$, but it seems that they are not published yet.

First we define certain p-adic Banach spaces and p-adic Hecke operators acting on them. The conjecture of Atkin is closely connected with the existence and the construction of simultaneous eigenfunctions of p-adic Hecke operators on the space $\mathcal{S}^{(0)}$. Secondly, we shall prove the conjecture of Atkin for $p = 13$ completely, studying eigenfunctions of a p-adic Hecke operator $\bar{U}_6(13)$ on $\mathcal{S}^{(0)}$ by the result of Atkin and O'Brien on modular functions with respect to $\Gamma_0(13)$ ([3]). At last, we shall show that, if we assume certain assertions, the same procedure of the proof in the case $p = 13$ is applicable to the general case. However, new assumptions themselves have not been proved yet.

7-1. Let $p \geq 5$ be a prime number, and let λ be an even rational integer. For any positive integer a, put $V^{(2)}_a := L_{\mathbb{Z}[x]}^{-p^a x + p^{-1}}$ and put $d_n^{(2)} := \dim_{\mathbb{Q}} L_{\mathbb{Z}[x]}^{-p^a x + p^{-1}}$.

Proposition 8. Let $\alpha' > \alpha$ be two positive rational integers. Then for each $F \in V^{(2)}_a$, there exists $F' \in V^{(2)}_{\alpha'}$ such that,

$$F' \equiv F \pmod{\mathbb{Z}^{p^a}},$$

and F' is unique up to modulo \mathbb{Z}^{p^a}.

Proof. From Remark 2 of Proposition 4, it follows that there exists a regular form G of weight $(p^{\alpha' - \alpha} - 1)(p^a - p^{-1})$ with respect to Γ whose Fourier
coefficients are all rational integers, satisfying $G=1 \pmod{\hat{\mathbb{Q}}^e}$. Put $F'=F \cdot G$. Then F' belongs to V_{a^2} and it holds that $F' \equiv F \pmod{\hat{\mathbb{Q}}^e}$. q.e.d.

From this proposition, it follows that there exists a system of free basis \(\{F'_{n, i}^{(2)}, d_{n, i}^{(2)}\} \) of V_{a^2} over \mathfrak{c}_T such that $F'_{n, i}^{(2)} \equiv j_{\mathfrak{c}_T}^{(2)} \pmod{\hat{\mathbb{Q}}^e}$ for any $\alpha' > \alpha$. Hence the sequence \(\{F_{n, i}^{(2)}\}_{n, i} \) has a $\hat{\mathbb{Q}}$-adic limit in $q \cdot \mathbb{Q}_p[[q]]$, and it will be denoted by $\tilde{F}_{i}^{(2)}$. We call this system a free basis of V_{a^2} the compatible system of free basis of V_{a^2}. Let \mathcal{S} be a p-adic Banach space admitting the orthonormal basis $\{F_{i}^{(2)}\}_{i}^{(2)}$ over \mathbb{Q}_p. For the definition of a p-adic Banach space with an orthonormal basis, we refer to Serre [12]. Namely, by definition, $\mathcal{S}^{(2)}$ consists of all the elements $\sum_{i=1}^{\infty} a_i F_{i}^{(2)}$ with $a_i \in \mathbb{Q}_p$, such that there are only finitely many a_i with ord $a_i < t$ for any positive number t. Therefore $\mathcal{S}^{(2)}$ is contained in $q \cdot \mathbb{Q}_p[[q]]$.

Proposition 9. (1) $\mathcal{S}^{(2)}$ does not depend on the choice of the compatible system of free basis of V_{a^2}. (2) $\mathcal{S} \cap \mathfrak{c}_T$ is contained in $\mathcal{S}^{(2)}$. (3) For each $F \in \mathcal{S}^{(2)}$, $F' \in \mathcal{S}^{(2)}$, $F \cdot F'$ belongs to $\mathcal{S}^{(2+1+1)}$. Especially $\mathcal{S}^{(2)}$ is a ring. (4) $\{j_{\mathfrak{c}_T} \pmod{\hat{\mathbb{Q}}^e} \}_{i \in \mathcal{S}}$ forms an orthonormal basis of $\mathcal{S}^{(2)}$.

Proof. (1) Let $\{F_{n, i}^{(2)}\}$ be another compatible system of free basis of V_{a^2} over \mathfrak{c}_T. Put $\tilde{F}_{i}^{(2)} = \lim_{n \to \infty} F_{n, i}^{(2)}$. Then for any α, there exist $\alpha_i \in \mathfrak{c}_T$, $1 \leq j \leq d_{n, i}^{(2)}$, such that $F_{n, i}^{(2)} = \sum_{j=1}^{d_{n, i}^{(2)}} a_{ij} F_{i}^{(2)}$. Hence we have $\tilde{F}_{i}^{(2)} = \sum_{j=1}^{d_{n, i}^{(2)}} a_{ij} F_{i}^{(2)} \pmod{\hat{\mathbb{Q}}^e}$, so $\tilde{F}_{i}^{(2)}$ belongs to $\mathcal{S}^{(2)}$.

(2) By the same reason of the proof of Proposition 8, it is proved that there exists a certain regular form μ_a of weight $p^2 - p^2 - 1$ with respect to Γ' whose Fourier coefficients are rational integers satisfying $\mu_a = 1 \pmod{\hat{\mathbb{Q}}^e}$. Therefore, for any $F \in \mathcal{S}^{(2)}$, $F \cdot \mu_a$ belongs to V_{a^2} and it holds that $\lim_{n \to \infty} F \cdot \mu_a = F$.

(3) Let $\{F_{n, i}^{(2)}\}, \{F_{n, i}^{(2)}\}, \{F_{n, i}^{(2)}\}$ be each compatible systems of free basis. For each $F_{n, i}^{(2)} \in V_{a^2}$, $F_{n, i}^{(2)} \in V_{a^2}$, $F_{n, i}^{(2)} \cdot F_{n, i}^{(2)}$ belongs to $\mathcal{S}^{(2+1+1)}$. By Proposition 4, there exist $a_i \in \mathfrak{c}_T$, for $1 \leq i \leq d_{n, i}^{(2+1+1)}$, such that $F_{n, i}^{(2)} \cdot F_{n, i}^{(2)} = \sum_{i=1}^{d_{n, i}^{(2+1+1)}} a_i F_{n, i}^{(2)} \pmod{\hat{\mathbb{Q}}^e}$, so that we have $\tilde{F}_{i}^{(2)} \cdot \tilde{F}_{i}^{(2)} = \sum_{i=1}^{d_{n, i}^{(2+1+1)}} a_i \tilde{F}_{i}^{(2+1+1)} \pmod{\hat{\mathbb{Q}}^e}$. Hence $\tilde{F}_{i}^{(2)} \cdot \tilde{F}_{i}^{(2)}$ belongs to $\mathcal{S}^{(2+1+1)}$.

(4) By Proposition 4, we can choose a compatible system of free basis $\{F_{n, i}^{(2)}\}$ of V_{a^2} such that $F_{n, i}^{(2)} = (J(\tau) - \tau)^{-k} \pmod{\hat{\mathbb{Q}}^e}$ with some k, $\theta \in \mathbb{S}$, and by its Remark 3, for any $(J(\tau) - \tau)^{-k}$, there exist some α and i such that $F_{n, i}^{(2)} = (J(\tau) - \tau)^{-k} \pmod{\hat{\mathbb{Q}}^e}$. Hence we have $\lim_{n \to \infty} F_{n, i}^{(2)} = (J(\tau) - \tau)^{-k}$. q.e.d.

An element $\sum_{i=1}^{n} a_i F_{i}$ in $\mathcal{S}^{(2)}$ such that all a_i belong to \mathfrak{c}_T will be called an integral element. This does not depend on the choice of the compatible system of free basis of V_{a^2}.

7-2. We shall define the \(p \)-adic Hecke operators on \(\mathcal{F}^{(2)} \), which are seemed to be the counterpart of the classical Hecke operators in this case. Before this, we recall briefly the classical Hecke operator theory. Let \(k \geq 12 \) be an even rational integer and let \(l \) be any prime number. Denote by \(\Xi_k \) the space of cusp forms of weight \(k \) with respect to \(\Gamma \). The Hecke operators \(T_l(l) \) on \(\Xi_k \) are defined by

\[
F(\tau)|T_l(l) = \sum_{n=1}^{\infty} \left\{ a(nl) + l^{k-1}a\left(\frac{n}{l} \right) \right\} \cdot q^n,
\]

for \(F(\tau) = \sum_{n=1}^{\infty} a(n) \cdot q^n \in \Xi_k \), with \(a(n) \in C \). Here \(a\left(\frac{n}{l} \right) \) is defined to be zero if \(n \) is not divisible by \(l \). \(T_l(l) \) are mutually commutative.

Proposition 10. Let \(l \) be any prime other than \(p \). Then for any \(\widetilde{F} = \sum_{n=1}^{\infty} A(n) \cdot q^n \in \mathcal{F}^{(2)} \) with \(A(n) \in Q_p \), both \(\sum_{n \equiv 1} A(np) \cdot q^n \) and \(\sum_{n \equiv 1} \left\{ A(nl) + l^{i-1}A\left(\frac{n}{l} \right) \right\} q^n \) belong to \(\mathcal{F}^{(2)} \).

Proof. Let \(\{ F_{i,1}^{(2)} \} \) be the compatible system of free basis of \(V^{(2)}_n \). We may assume that \(\widetilde{F} \) is integral, namely \(\widetilde{F} = \sum_{i=1}^{\infty} a_i \widetilde{F}_i \) with \(a_i \in Q_p \). Then \(\widetilde{F} \) is congruent modulo \(\widetilde{\mathfrak{A}}^n \) to a finite sum of these \(a_i \widetilde{F}_i \). It follows that, by Proposition 4, there exist some rational integer \(k_a \) and \(F_a(\tau) \in \Xi_k \) such that \(\widetilde{F} \equiv F_a(\tau) \pmod{\widetilde{\mathfrak{A}}^n} \). Put \(F_a(\tau) = \sum_{n=1}^{\infty} A_a(n) \cdot q^n \). By definitions of Hecke operators, \(T_{l+k_a(p^{\alpha} - p^{\alpha-1})} \) and \(T_{l+k_a(p^{\alpha} - p^{\alpha-1})} \) act on \(\Xi_{l+k_a(p^{\alpha} - p^{\alpha-1})} \). Since \(l^{l+k_a(l^{p-1})} = l^l \pmod{p^\alpha} \) for any prime \(l \) other than \(p \), we have

\[
F_a(\tau)|T_{l+k_a(p^{\alpha} - p^{\alpha-1})}(l) = \sum_{n=1}^{\infty} \left\{ A_a(nl) + l^{k_a(p^{\alpha} - p^{\alpha-1})} A_a\left(\frac{n}{l} \right) \right\} \cdot q^n
\]

\[
\equiv \sum_{n=1}^{\infty} \left\{ A_a(nl) + l^{i-1} \cdot A_a\left(\frac{n}{l} \right) \right\} \cdot q^n \pmod{\widetilde{\mathfrak{A}}^n}.
\]

Putting \(\widetilde{F}_i = \sum_{n=1}^{\infty} \left\{ A(nl) + l^{i-1} \cdot A\left(\frac{n}{l} \right) \right\} \cdot q^n \), we have

\[
\widetilde{F}_i \equiv F_a(\tau)|T_{l+k_a(p^{\alpha} - p^{\alpha-1})}(l) \pmod{\widetilde{\mathfrak{A}}^n}.
\]

Therefore \(\widetilde{F}_i \) belongs to \(\mathcal{F}^{(2)} \). Put \(\widetilde{F}_p = \sum_{n=1}^{\infty} A(np)q^n \). As for \(\widetilde{F}_p \), we can take sufficiently large \(k_a \) satisfying \(k_a(p^{\alpha} - p^{\alpha-1}) - 1 - \alpha \geq 0 \). Then we have

\[
F_a(\tau)|T_{l+k_a(p^{\alpha} - p^{\alpha-1})}(p) = \sum_{n=1}^{\infty} \left\{ A_a(np) + p^{l+k_a(p^{\alpha} - p^{\alpha-1})} A_a\left(\frac{n}{p} \right) \right\} \cdot q^n
\]

\[
\equiv \sum_{n=1}^{\infty} A_a(np) \cdot q^n \pmod{\widetilde{\mathfrak{A}}^n},
\]
so \(\tilde{F}_p \) belongs to \(\mathcal{S}^{(1)} \).

By this, we can define the \(p \)-adic Hecke operators as follows.

Definition. Let \(l \) be any prime other than \(p \). We define the \(p \)-adic Hecke operators \(\tilde{U}_l(p) \) and \(\tilde{T}_l(l) \) on \(\mathcal{S}^{(1)} \) by

\[
\tilde{F}_l^T \tilde{U}_l(p) = \sum_{n=1}^{\infty} A(np) \cdot q^n,
\]

\[
\tilde{F}_l^T \tilde{T}_l(l) = \sum_{n=1}^{\infty} \left\{ A(nl) + \frac{n}{l} A \left(\frac{n}{l} \right) \right\} \cdot q^n,
\]

for \(\tilde{F} := \sum_{n=1}^{\infty} A(n) \cdot q^n \in \mathcal{S}^{(1)} \). Here \(A \left(\frac{n}{l} \right) \) is defined to be zero if \(n \) is not divisible by \(l \). It is clear that \(\tilde{U}_l(p) \), \(\tilde{T}_l(l) \) are mutually commutative.

7. The conjecture of Atkin

8-1. In this section we discuss the case \(p = 13 \) using the results of Atkin and O'Brien [3]. Put \(f(\tau) = \prod_{n=1}^{\infty} (1-q^n) \), and \(g(\tau) := q(f(13\tau)/f(\tau))^2 \). Then it is well-known that the modular function field with respect to \(\Gamma_0(13) \) is generated by \(g(\tau) \) over \(C \).

Proposition 11. \(\{g(\tau)^{j_i}\}_{i=1}^{\infty} \) forms an orthonormal basis of \(\mathcal{S}^{(0)} \) as a \(p \)-adic Banach space over \(Q_p \).

Proof. Put \(J^0(\tau) = J(\tau) - 744 \). By Lemma 5 in [3], it holds that

\[
J^0(\tau) \mid U(13) = -g(\tau) + 13^2g(\tau) \mid U(13)^2.
\]

From the above equality, it is easily seen that \(g(\tau) \) is \(p \)-adically approximated by the sequence \(\{- \sum_{t=0}^{n} 13^t \mid J^0(\tau) \mid U(13)^{2t+1}\}_{t=0}^{\infty} \). On the other hand, it follows from Theorem 1 and Proposition 9 that \(J^0(\tau) \mid U(13)^n \), for \(n \geq 1 \), belong to \(\mathcal{S}^{(0)} \). Moreover, using the fact that there exists only one supersingular invariant in characteristic \(p = 13 \) and that it is 5, we have by Theorem 1,

\[
J^0(\tau) \mid U(13)^{2k} = -(J^0(\tau) - j_5)^{-1} \pmod{\Psi},
\]

with \(j_5 \in \mathbb{N}^* \) such that \(j_5 = 1 \), \(j_5 \pmod{5} = 5 \). Therefore \(g(\tau) \) belongs to \(\mathcal{S}^{(0)} \) and it holds that,

\[
g(\tau)^{j_5} \equiv (J(\tau) - j_3)^{-k} \pmod{\Psi}.
\]

With this and the fact that \(\{(J(\tau) - j_3)^{-k}\}_{k=1}^{\infty} \) forms an orthonormal basis, the proposition is completely proved.

q.e.d.

Denote by \(\mathcal{S}_k(p-1) \) the residue class module of \(\mathcal{S}_k(p-1, T) \) modulo \(\Psi \). Then \(\mathcal{S}_k(p-1) \) is the vector space over \(\tilde{F}_p \). Denote by \(\tilde{T}_k(p-1) \) the induced operator
on $\mathfrak{E}_{k(p^{-1})}$ from $T_{k'}(p^{-1})$ on $\mathfrak{E}_{k(p^{-1})}$, By definition, for any $F \in \mathfrak{E}_{k(p^{-1})}$, we have

\begin{equation}
F \mid T_{k'}(p^{-1})(p)(\mod \mathfrak{F}) = F(\mod \mathfrak{F}) \mid T_{k'}(p^{-1})(p).
\end{equation}

By Proposition 4, it can be considered that $\mathfrak{E}_{k(p^{-1})}$ is contained in $\mathfrak{E}_{k'(p^{-1})}$ with $k' > k$, and that $T_{k'}(p^{-1})(p)$ induces $T_{k(p^{-1})}(p)$ on $\mathfrak{E}_{k(p^{-1})}$. For each integral element f of \mathcal{S}, there exists some k such that $f(\mod \mathfrak{F}) \in \mathfrak{E}_{k(p^{-1})}$, and then we have

\begin{equation}
f \mid \mathfrak{U}(p)(\mod \mathfrak{F}) = f(\mod \mathfrak{F}) \mid T_{k}(p^{-1})(p).
\end{equation}

In the case $p = 13$, Atkin and O'Brien determined the action of $U(13)$ on each element of $(g(\tau))_{j=1}^{13}$ in [3]. By definition, it is clear that $g(\tau)^k \mid \mathfrak{U}(13) = g(\tau)^k \mid U(13)$, so that their result gives a certain explicit representation of $\mathfrak{U}(13)$ with respect to the orthonormal basis $(g(\tau)^k)_{j=1}^{13}$ of \mathcal{S}. This fact is crucial to the proof of Atkin's conjecture.

\textbf{Proposition 12.} There exists only one non-zero eigenvalue of $\mathfrak{T}_{12k}(13)$ and its eigenspace is of dimension one.

\textbf{Proof.} It is well known $J(\tau) \mid T_{12k}(13) = \tau(13) \cdot J(\tau)$, and the fact $\tau(13) = \tau(13) = 577738 \equiv 0 \mod 13$ is easily checked. From Proposition 4, it follows that \mathfrak{E}_{12k} is the vector space with a basis $(J(\tau) - j^2)^{-1}_{j=1} \overline{\mathcal{F}}(p)$. Put $g = g(\tau) (\mod \mathfrak{F})$. Since $g = (J(\tau) - j^2)^{-1}$, we have $\mathfrak{E}_{12k} = \sum_{j=1}^{13} \overline{\mathcal{F}}(p) \cdot gj$. By Lemma 4 in [3], we have for $k \geq 1$,

\begin{equation}
(g(\tau))^k \mid \mathfrak{U}(13) = \sum_{r=1}^{13} c_{k,r} g(\tau)^r,
\end{equation}

where $c_{k,r}$ are integers satisfying $ord_{p} c_{k,r} \geq [13r - k - 1/14]$. Hence the representation matrix of $\mathfrak{T}_{12k}(13)$ with respect to $(gj)^{-1}_{j=1}$ is given by $[c_{k,j}(\mod 13)]_{j=1}^{13} \in \mathbb{Z}$. For any positive integer k, let denote by r_k the maximal integer such that $[13r_k - k - 1/14] < 1$. Then it is easily proved that r_k is smaller than k except $k = 1$. Therefore $[c_{k,j}(\mod 13)]_{j=1}^{13}$ is a lower triangular matrix whose diagonal elements are all zero but one.

Denote by \mathcal{S} the submodule of \mathcal{S} consisting of all elements $\sum_{r=1}^{13} a_r g(\tau)^r$ with $a_r \in \mathfrak{E}_{12k}$ satisfying $ord_{p} a_r \geq [13r - 2/14]$. Lemma 6 in [3] says that $J(\tau) \mid U(13)^n$ all belong to \mathcal{S} for $n \geq 1$. We extend this lemma as follows:

\textbf{Proposition 13.} For each $f \in M_{\infty}$, there exist a unique $h \in \mathfrak{E}_{12k}[J(\tau)]$ and $\mathfrak{T} \in \mathfrak{S}$ such that $f = h + \mathfrak{T}$.

\textbf{Proof.} By Theorem 1, we have the following unique decomposition of f: $f = h + \mathfrak{T}$ with $h \in \mathfrak{E}_{12k}[J(\tau)]$, and $\mathfrak{T} \in \mathcal{S}$. We shall show that \mathfrak{T} belongs to \mathcal{S}. By the same argument of the proof of Lemma 6 in [11], it is easily proved that $\mathfrak{U}(13)$
operates on \mathcal{S}. Hence it is sufficient to prove that the proposition is valid for $J(\tau)^m | U(13)$ with $m \geq 1$. We use induction on m; for $m=1$, Lemma 6 is our proposition itself. We assume that our proposition is valid for $J(\tau)^i | U(13)$ with $1 \leq i < m$. It is easily seen that

$$
13^m \left(g \left(-\frac{1}{13^m} \right) \right)^m + 13g(\tau)^m | \tilde{U}_0(13) = g(\tau)^m + 13^{m+1} g(\tau)^m | \tilde{U}_0(13)
$$

is an entire modular function with respect to I', so that we have

$$
g(\tau)^{-m} + 13^{m+1} g(\tau)^m | \tilde{U}_0(13) = \left(\sum_{i=0}^{m-1} b_i J(\tau)^i \right) g(\tau)^{-1},
$$

with $b_i \in \mathbb{Z}$. Here we use the fact that $13g \left(-\frac{1}{13^m} \right) = g(\tau)^{-1}$. Also we have

$$
g(\tau)^{-m} + 13g(\tau)^{-m} | \tilde{U}_0(13) = 13^m g(\tau)^m + 13 \cdot g(\tau)^{-m} | \tilde{U}_0(13),
$$

$$
= 13 \sum_{i=1}^{m} c_i J(\tau)^i,
$$

with $c_i \in \mathbb{Z}$. From (52), (53), it follows that,

$$
\left\{ J(\tau)^m + \sum_{i=1}^{m-1} b_i J(\tau)^i \right\} U(13) = \sum_{i=1}^{m} c_i J(\tau)^i
$$

$$
- 13^{m-1} (g(\tau)^m - 13^m g(\tau)^m | \tilde{U}_0(13)^2).
$$

Using Lemma 4 in [3], it is easily seen that $13^{m+1} g(\tau)^m | \tilde{U}_0(13)^2$ belongs to \mathcal{S}. Therefore the proposition is proved to be valid for $J(\tau)^m | U(13)$. q.e.d.

Now we discuss the eigenfunctions of $\tilde{U}_0(13)$.

Proposition 14. The eigenfunction of $\tilde{U}_0(13)$ in $\mathcal{S}^{(10)}$ whose eigenvalue is not zero modulo \mathfrak{p} exists and is unique up to \mathfrak{o}_p^{∞}-multiples.

Proof. We may assume that an eigenfunction F is integral and is not zero modulo \mathfrak{p}. We shall show this F exists and is unique up to \mathfrak{o}_p^{∞}-multiples. For the purpose, it is enough to find a sequence $\{F_n\}_{n=1}^{\infty}$ of integral elements in $\mathcal{S}^{(10)}$ such that $F_{n+1} \equiv F_n \pmod{\mathfrak{p}^{\infty}}$, and that $F_n | \tilde{U}_0(13) \equiv k_n F_a \pmod{\mathfrak{p}^{\infty}}$ with $k_n \in \mathfrak{o}_p^{\infty}$, and to show these F_n are unique up to \mathfrak{o}_p^{∞}-multiples. By Proposition 12, this is valid for $\alpha=1$. Suppose that $\{F_i\}_{i=1}^{n}$, $\{k_i\}_{i=1}^{\alpha}$ are already found and that their uniqueness is already proved. Let us denote by n_α the maximal integer such that $[13n_\alpha - n_\alpha - 1/14] \leq \alpha - 1$. Then we may put $F_\alpha \equiv g + \sum_{i=2}^{n_\alpha} c_i g^i$ with $c_i \in \mathfrak{o}_p$, where we denote simply g' for $g'(\tau)$. Since $F_\alpha \equiv g \pmod{\mathfrak{p}}$, we have $c_\alpha \equiv 0 \pmod{\mathfrak{p}}$ for $2 \leq i \leq n_\alpha$. We may also put
\[F_n \mid \tilde{U}_\varphi(13) \equiv k_n F_n - p^{n+1} \sum_{i=1}^n b_i g_i \pmod{\mathfrak{P}^{n+1}}, \]

with \(b_i \in \mathfrak{p}_n^* \). Put \(F_{n+1} = F_n + p^{n+1} \sum_{i=1}^n d_i g_i \) and \(k_{n+1} = k_n + p^n t \), with \(d_i, t \in \mathfrak{p}_n \). Then, in order that \(F_{n+1} \mid \tilde{U}_\varphi(13) \equiv k_{n+1} F_{n+1} \pmod{\mathfrak{P}^{n+1}} \), it is necessary and sufficient that
\[
[b_1, \ldots, b_{n+1}, t, 0, \ldots, d_{n+1}][c_{ij} - k_{n+1} \delta_{ij}] \equiv [t + b_1, b_2, \ldots, b_{n+1}] \pmod{\mathfrak{p}}.
\]

Hence we have
\[
[0, d_2, \ldots, d_{n+1}][c_{ij} - k_{n+1} \delta_{ij}] \equiv [t + b_1, b_2, \ldots, b_{n+1}] \pmod{\mathfrak{p}},
\]

where \(\delta_{ii} = 1 \), and \(\delta_{ij} = 0 \) if \(i \neq j \). Since \(k_n \equiv 0 \pmod{\mathfrak{p}} \), the rank of the matrix \([c_{ij} - k_{n+1} \delta_{ij}]_{i, j \leq n+1} \) is \(n_{n+1} - 1 \) by Proposition 12. Hence in order that the congruence equation (56) has solutions \([0, d_2, \ldots, d_{n+1}] \) and \(t \), it is necessary and sufficient that the rank of the matrix \([c_{ij} - k_{n+1} \delta_{ij}]_{i, j \leq n+1} \) is \(n_{n+1} - 1 \). By Proposition 12, the solution \(t \) is uniquely determined up to modulo \(\mathfrak{p} \) and the \(d_i, 2 \leq i \leq n_{n+1} \), also are uniquely determined up to modulo \(\mathfrak{p} \) q.e.d.

Moreover, Atkin and O'Brien proved the following fact in [3] (Theorem 1). Put \(J_1(\tau) = J_0(\tau) = J_0(\tau) \mid U(13) \) and \(J_0(\tau) = J_0(\tau) \mid \tilde{U}(13)^{q-1} \). Then there exists \(k_n \in \mathbb{Z} \) not divisible by 13 such that \(J_{n+1}(\tau) \equiv k_n J_n(\tau) \pmod{\mathfrak{p}^{q}} \). By the same argument of this proof and with Proposition 13, we obtain the following;

Proposition 15. For each \(f \in M^\infty \) such that \(f = \sum_{n=1}^{\infty} a(n) \cdot q^n \) with \(a(1) \not\equiv 0 \pmod{\mathfrak{p}} \), put \(f_n = f \mid \tilde{U}(13)^{q-1} \) for \(q \geq 1 \). Then there exists a constant \(k_n \in \mathfrak{p}^\infty \) with \(k_n \equiv 0 \pmod{\mathfrak{p}} \) such that,
\[
f_{n+1} \equiv k_n f_n \pmod{\mathfrak{p}^{q}}.
\]

The proof is exactly the same as that in [3], so we omit this.

Now we prove the conjecture of Atkin in the case \(p = 13 \). The author does not know the proof of Atkin, but perhaps the following proof is the same as that of Atkin.

Proposition 16. Let \(l \) be a prime other than 13. For each \(f \in M^\infty \) such that \(f = \sum_{n=1}^{\infty} a(n) \cdot q^n \) with \(a(1) \not\equiv 0 \pmod{\mathfrak{p}} \), put \(t_n(n) = a(13^{q-1} \cdot n) / a(13^{q-1}) \). Then we have, for any \(n \geq 1 \),
\[
t_n(nl) - t_n(n)t_n(l) + t_n^{-1}t_n\left(\frac{n}{l} \right) \equiv 0 \pmod{\mathfrak{p}^{q}}.
\]

Proof. By Proposition 15, we have \(f_n = \sum_{n=1}^{\infty} a(13^{q-1} \cdot n) \cdot q^n \equiv k_{n-1} \cdots k_1 f \pmod{\mathfrak{p}^{q}} \).
Since \(k_i \neq 0 \) (mod \(v \)), we have \(a(13^{n-1}) \neq 0 \) (mod \(v \)). Hence \(t_n(n) \) are well defined and belongs to \(\mathfrak{o}_p^\alpha \), and we have \(f_\alpha = a(13^{n-1}) \sum_{i=1}^{\infty} t_n(n) \cdot q^n \). The congruence relations (57) are equivalent to the following congruence,

\[
(58) \quad f_\alpha(l) \equiv t_n(l) \cdot f_\alpha \quad (\text{mod } \mathfrak{m}_v).
\]

Put \(f'_n = \sum_{n=1}^{\infty} t_n(n) \cdot q^n \). Then we have \(f'_n = f'_n \) (mod \(\mathfrak{m}_v \)) by Proposition 15, so that \(\{f'_n\}_{n=1}^{\infty} \) has a \(\mathfrak{m}_v \)-adic limit \(f' \) in \(\mathcal{O}_{\nu} \). It is clear that \(f' \mid \tilde{U}_v(13) = \tilde{k} \cdot f' \) with \(\tilde{k} \in \mathfrak{o}_p^\alpha \).

Since \(\tilde{U}_v(13) \) and \(\tilde{U}_v(l) \) are mutually commutative, we have

\[
(f' \mid \tilde{U}_v(l)) \mid \tilde{U}_v(13) = (f' \mid \tilde{U}_v(13)) \mid \tilde{U}_v(l),
\]

\[
= \tilde{k} \cdot f' \mid \tilde{U}_v(l).
\]

By Proposition 14, we have \(f' \mid \tilde{U}_v(l) = \tilde{t}(l) \cdot f' \) with \(\tilde{t}(l) \in \mathfrak{o}_p^\alpha \). Since \(f' = f_\alpha \) (mod \(\mathfrak{m}_v \)), we have \(\tilde{t}(l) = t_n(l) \) (mod \(v \)), so that we obtain (58).

Especially applying Propositions 15 and 16 to \(f = J_\alpha(c) \), we obtain the following;

Theorem 2. The conjecture of Atkin is valid for all \(\alpha \) in the case \(p = 13 \).

8-2. Let \(p \geq 13 \) be a prime number. We shall prove that, assuming the following assertions (H-1), (H-2), the conjecture of Atkin is proved to be valid.

The process to the proof is similar to that in the case \(p = 13 \), namely, corresponding propositions to Propositions 12, 13, 14, 15, and 16, which are slightly modified, will be proved. However we do not know whether Proposition 11 has any correspondent in the general case or not.

(H-1) The eigenvalues of \(\tilde{T}_{p-1}(p) \) are not zero and are not equal to each other.

(H-2) For each positive rational integer \(n \), we put \(n_\theta = n \) for \(\theta \in S^* \), \(n_0 = 3n \), and \(n_{12} = 2n \). Then we have

\[
(J(\tau) - j_\theta)^{-1} \mid \tilde{U}_v(p) = \sum_{\theta \in S^*} \sum_{\tau=1}^{\infty} c_{\tau, \theta}(J(\tau) - j_\theta)^{-\tau},
\]

where \(c_{\tau, \theta} \in \mathfrak{o}_p^\alpha \) satisfying,

\[
(59) \quad \text{ord}_v c_{\tau, \theta} \geq [pr_{\theta} - 1/p - 1].
\]

From (H-1), it follows that there exist \(G_{\theta} = \sum_{\tau \in S^*} a_{\theta, \tau}(J(\tau) - j_\theta)^{-1} \) with \(\theta \in S^* \) and \(a_{\theta, \tau} \in \mathfrak{o}_p^\alpha \) such that \(G_{\theta} \mid \tilde{U}_v(p) = k_\theta G_{\theta} \) (mod \(\mathfrak{m}_v \)) with \(k_\theta \neq 0 \) (mod \(v \)), and that \([a_{\theta, \tau}]_{\theta \in S^*, \tau \in S^*} \) is not zero mod \(v \). Put \(G_{\theta} = G_{\theta} \), and \(G_{n_\theta} = (J(\tau) - j_\theta)^{-n} \) for \(n \geq 2 \), \(\theta \in S^* \) and for \(n \geq 1 \), \(\theta \in S - S^* \). Then \(\{G_{\tau, \theta}\}_{\tau \in S^*} \) forms an orthonormal basis of \(\mathcal{O}_{\nu} \). If we represent the operator \(\tilde{U}_v(p) \) with respect to \(\{G_{\tau, \theta}\} \), we have by (H-2),
$$G_{1,0} \bar{U}_0(p) := \sum_{\theta \in \mathcal{S}} \sum_{r=1}^{\infty} c_{1r,\theta} G_{r, \theta'},$$

where $c_{1r,\theta} \in \mathcal{O}_p$ satisfying,

$$\text{ord}_p c_{1r,\theta} = [pr_\theta - 1/p - 1/2].$$

Moreover, we have $\text{ord}_p c_{1,0} = 0$ and $\text{ord}_p c_{1,\theta} \geq 1$ for $\theta \neq \theta'$.

Proposition 17. Assume $p \geq 13$. If we suppose (H-1) and (H-2), there exist only $\left[\frac{p}{12} \right]$ non-zero eigenvalues of $\bar{T}_{k, p-1}(p)$ and each eigenspace is of dimension one.

Proof. We saw in 4.2 that $\dim_{\mathbb{F}_p} \mathcal{S}_{p-1} = \left[\frac{p}{12} \right]$. From the assumption (H-1), the eigenvalues of $\bar{T}_{p-1}(p)$ are not zero. By Proposition 4, we have

$$\begin{align*}
\mathcal{S}_{k, 0}^{p-1} := \sum_{\theta \in \mathcal{S}} \sum_{r=1}^{\infty} \bar{F}_r(J(\tau) - j_\theta)^{-i} & \quad \text{with} \quad k(\theta) = k, \quad k(0) = \left[\frac{k}{3} \right], \quad k(2) = \left[\frac{k}{2} \right].
\end{align*}$$

Since we have $(J(\tau) - j_\theta)^{-i} | \bar{U}_0(p) \mod \mathfrak{m} = (J(\tau) - j_\theta)^{-i} | \bar{T}_{k, p-1}(p)$, the representation matrix of $\bar{T}_{k, p-1}(p)$ with respect to the basis $((J(\tau) - j_\theta)^{-i})_{\theta \in \mathcal{S}, 1 \leq i \leq k(0)}$ is given by $[c_{1r,\theta} \mod v], \theta \in \mathcal{S}, 1 \leq i \leq k(0), 1 \leq r \leq k(2)$. Using (59), it is easily proved that $\mathcal{S}_{k, 0}^{p-1} | \bar{T}_{k, p-1}(p) \subset \mathcal{S}_{k-1}^{p-1}(p-1)$. Hence the eigenvalues of $\bar{T}_{k, p-1}(p)$ which do not come from those of $\bar{T}_{k-1, p-1}(p-1)$ are all zero.

Denote by \mathcal{S}' the submodule of \mathcal{S} consisting of all elements $a_{r, \theta}(J(\tau) - j_\theta)^{-r}$ with $a_{r, \theta} \in \mathcal{O}_p$ satisfying $\text{ord}_p a_{r, \theta} \geq \lfloor pr_\theta - 2/p + 1\rfloor$. Then we have the following:

Proposition 18. Assume $p \geq 5$. For each $f \in \mathcal{M}^\infty$, there exist $h \in \mathcal{O}_p^\infty[J(\tau)]$ and $\bar{F} \in \mathcal{S}'$ uniquely such that $f = h + \bar{F}$.

Remark. Here, we obtain another proof of Proposition 13. The method of that proof is not applicable to the general case, because we do not have enough facts on modular functions with respect to $I_\theta(p)$.

Proof. This follows essentially from Theorem 1. We proved there in (42) that we have

$$p^{-i}((J(\tau)^{p-1} - J(\tau))^{p-1}) = h_2 \sum_{\theta \in \mathcal{S}} \sum_{n=1}^{\infty} C_n^{(\theta)}(J(\tau) - j_\theta)^{-n},$$

with some $h_2 \in \mathcal{O}_p^\infty[J(\tau)]$ and $C_n^{(\theta)} \in \mathcal{O}_p^\infty$ satisfying,

$$\text{ord}_p C_n^{(\theta)} \geq \lfloor np_\theta - 1 - p - 1/2/p + 1\rfloor.$$
in $\mathcal{F}^{(0)}$, such that $\tilde{F} | \tilde{U}_p(p) = \tilde{F}$ with $\tilde{F} \in \mathcal{F}_p$ satisfying $\tilde{F}(\mod \nu) = \tilde{c}_1$. For each ν, this \tilde{F} is unique up to $Q_p \ast \mathbb{Q}$-multiples. Moreover any eigenfunction of $\tilde{U}_p(p)$ in $\mathcal{F}^{(0)}$ whose eigenvalue is not congruent to zero mod ν, coincides with one of the above eigenfunctions.

The proof, being entirely similar to that of Proposition 14, is omitted.

Put $N'' = M'' \cap q \cdot \mathcal{V}_p[[q]]$. N'' and $\mathcal{Z}_{p-1, \nu}$ have not any intersection in $q \cdot \mathcal{V}_p[[q]]$, but, if we consider the reduction modulo $\tilde{\mathfrak{p}}$, the residue class module of $N'' \mod \tilde{\mathfrak{p}}$ can be considered to be contained in that of $\mathcal{Z}_{p-1, \nu} \mod \tilde{\mathfrak{p}}$. Moreover we have the following;

Proposition 20. Let $p \geq 13$, and let M'' be the same as is defined in § 6-1. Put $N'' = M'' \cap q \cdot \mathcal{V}_p[[q]]$. Then the residue class module of $N'' \mod \tilde{\mathfrak{p}}$ coincides with that of $\mathcal{Z}_{p-1, \nu} \mod \tilde{\mathfrak{p}}$.

Proof. From Proposition 4, it follows that the residue class module of $\mathcal{Z}_{p-1, \nu} \mod \tilde{\mathfrak{p}}$ is the vector space over \tilde{F}_p with the basis $\{(J(\tau) - j_\theta)^{-1} \mid \theta \in \mathcal{S}^*\}$. Hence, it is enough to show that for any $\theta \in \mathcal{S}^*$ there exists some $f \in N''$ such that $\langle f(\mod \tilde{\mathfrak{p}}) = (J(\tau) - j_\theta)^{-1} \rangle$. Let m be a rational integer with $1 \leq m \leq \left[\frac{p}{12} \right]$. Then, by Theorem 1, we have

$$J(\tau)^m | U(p) \equiv b_m + \sum_{\theta \in \mathcal{S}^*} a_{m, \theta}(J(\tau) - j_\theta)^{-1} \mod \tilde{\mathfrak{p}},$$

with $b_m, a_{m, \theta} \in \mathbb{C}_p$ for $1 \leq m \leq \left[\frac{p}{12} \right]$, $\theta \in \mathcal{S}^*$, where b_m is the constant term of the Fourier expansions of $J(\tau)^m$. On the other hand, we have

$$J(\tau)^m | U(p) = J(\tau)^m | T_\nu(p) = p^{-1} J(p\tau)^m,$$

$$\equiv p^{-1} (J(\tau)^m - J(p\tau)^m) \mod Z[J(\tau)],$$

$$\equiv p^{-1} (J(\tau)^m - J(p\tau)^m) \cdot \left(\sum_{\theta \in \mathcal{S}^*} a_{m, \theta} (J(\tau) - j_\theta)^{-1} \right) \mod Z[J(\tau)].$$

Since $J(p\tau) \equiv J(\tau)^p \mod \tilde{\mathfrak{p}}$, we have

$$a_{m, \theta} \equiv m a_{1, \theta} j_\theta^{(m-1)p} \mod p.$$

Moreover, from Proposition 1, it follows that $a_{1, \theta}$ is not congruent to zero mod ν. Hence the determinant of the matrix $\{a_{m, \theta} \mid 1 \leq m \leq \left[\frac{p}{12} \right], \theta \in \mathcal{S}^*\}$ is not congruent to zero mod ν, so that we have

$$(J(\tau) - j_\theta)^{-1} \equiv \sum_{m=1}^{\left[\frac{p}{12} \right]} c_{m} (J(\tau)^m - b_m) | U(p) \mod \tilde{\mathfrak{p}},$$
with some \(c_m \in \mathbb{Q}_p^\times \).

Let \(p \geq 13 \) be a prime. Assuming \((H-1)\) and \((H-2)\), we showed in Proposition 19 that, for each \(\theta \in S^\kappa \), there exists \(\tilde{F} \in \mathbb{G}^\kappa \) satisfying \(\tilde{F} \equiv G_0 \pmod{v_\theta} \) and \(\tilde{F} \mid \tilde{U}_0(p) = \tilde{k}_\theta \tilde{F} \) with \(\tilde{k}_\theta \in v_\theta \), and that this \(\tilde{F} \) is unique up to \(\{1 - \hat{p}^m\} \)-multiples. Fix one of these \(\tilde{F} \) and denote it by \(\tilde{F}_\theta \).

Proposition 20. Assume \((H-1)\) and \((H-2)\). Take any element \(H \in N^\kappa \) satisfying \(H \equiv G_0 \pmod{v_\theta} \) with some \(\theta \in S^\kappa \). Then \(H \mid \tilde{U}_0(p)^{-1} \) is congruent modulo \(v_\theta \) to a linear sum of \(\tilde{F}_\theta, \theta \in S^\kappa \), with coefficients in \(v_\theta \).

Proof. By Proposition 20, for any \(\theta \in S^\kappa \), there exists a \(H_\theta \in N^\kappa \) such that \(H_\theta \equiv G_0 \pmod{v_\theta} \). We may put \(H_\theta = \sum \alpha_i^{(\theta)} G_i,\theta, \) with \(\alpha_i^{(\theta)} \in v_\theta \). Since \(H_\theta \equiv G_0 \pmod{v_\theta} \), we have \(\text{ord}_v \alpha_i^{(\theta)} \geq \rho_0 \) for \(\rho_0 \not\equiv 0 \pmod{\mathbb{Q}_p} \). Moreover, by Proposition 18, \(H_\theta \) belongs to \(\mathbb{S} \), so that we have \(\text{ord}_v \alpha_i^{(\theta)} \geq [p\rho_0 - 2]/p + 1 \). Now fix one of the elements in \(S^\kappa \) and denote it by \(\theta_0 \). Take any \(H \in N^\kappa \) satisfying \(H \equiv G_0 \pmod{v_\theta} \). Put \(F_1 = H = \sum \alpha_i^{(\theta)} G_i,\theta, \) with \(\alpha_i^{(\theta)} \in v_\theta \). Let \(F_1 = F_0 \mid \tilde{U}_0(p) = \sum \alpha^{(\rho)}_i G_i,\rho, \) and \(F_2 = F_1 + p \sum_{\theta \in \mathbb{S}, \rho \equiv \rho_0} b_{\rho}^\theta H_\theta \), where \(j < \infty \) and \(\theta \not\equiv 0 \pmod{\mathbb{Q}_p} \). Define \(\gamma_{ij,\theta}^{\rho} = \alpha_{ij,\theta}^{\rho} a_{ij,\theta}^{\rho} - \alpha_{ij,\theta}^{\rho} a_{ij,\theta}^{\rho} \) for \(1 \leq i, j \leq \kappa, \theta \not\equiv 0 \pmod{\mathbb{Q}_p} \). Then we have

\[
\begin{align*}
\text{ord}_v \gamma_{ij,\theta}^{\rho} &\geq 1, \\
\text{ord}_v \gamma_{ij,\theta}^{\rho} &\geq 1 + [p\rho_0 + pj_\theta - 6 - 2p/p + 1]
\end{align*}
\]

for \(\theta \not\equiv 0 \pmod{\mathbb{Q}_p} \), and \(\text{ord}_v \gamma_{ij,\theta}^{\rho} \) for \(\theta \equiv 0 \pmod{\mathbb{Q}_p} \). This follows from the facts that \(F_0 \mid \tilde{U}_0(p) = \tilde{k}_\theta F_0 \tilde{F} \pmod{v_\theta} \), and that \(F_1, F_2 \) belongs to \(\mathbb{S} \). Since \(a_{ij,\theta}^{\rho} = a_{ij,\theta}^{\rho} + p \sum_{\theta \not\equiv 0 \pmod{\mathbb{Q}_p}} b_{\theta}^\rho \alpha_{ij,\theta}^{\rho} \), we have

\[
\gamma_{ij,\theta}^{\rho} = \gamma_{ij,\theta}^{\rho} + p \cdot a_{ij,\theta}^{\rho} \sum_{\theta \not\equiv 0 \pmod{\mathbb{Q}_p}} b_{\theta}^\rho \alpha_{ij,\theta}^{\rho} - p \cdot a_{ij,\theta}^{\rho} \sum_{\theta \not\equiv 0 \pmod{\mathbb{Q}_p}} b_{\theta}^\rho \alpha_{ij,\theta}^{\rho},
\]

so that \(\text{ord}_v \gamma_{ij,\theta}^{\rho} \) satisfies the same inequality as (61). Put \(F_0 = F_0 \mid \tilde{U}_0(p) = \sum \alpha^{(\rho)}_i G_i,\rho, \) and \(\gamma_{ij,\theta}^{\rho} = a_{ij,\theta}^{\rho} a_{ij,\theta}^{\rho} - \alpha_{ij,\theta}^{\rho} a_{ij,\theta}^{\rho} \). Then we shall show that there exist some \(b_{\theta}^\rho \in v_\rho \) for \(\theta \not\equiv 0 \pmod{\mathbb{Q}_p} \), which is unique up to modulo \(v_\theta \), such that \(\text{ord}_v \gamma_{ij,\theta}^{\rho} \) satisfies the following inequality;

\[
\begin{align*}
\text{ord}_v \gamma_{ij,\theta}^{\rho} &\geq 2, \\
\text{ord}_v \gamma_{ij,\theta}^{\rho} &\geq 1 + [p\rho_0 + pj_\theta - 6 - 2p/p + 1]
\end{align*}
\]

for \(\theta \not\equiv 0 \pmod{\mathbb{Q}_p} \), and \(\text{ord}_v \gamma_{ij,\theta}^{\rho} \) for \(\theta \equiv 0 \pmod{\mathbb{Q}_p} \). Since we have \(a_{ij,\theta}^{\rho} = \sum_{\rho_1} a_{ij,\theta}^{\rho_1} c_{ij,\theta}^{\rho_1} \) and \(a_{ij,\theta}^{\rho} = \sum_{\rho_2} a_{ij,\theta}^{\rho_2} c_{ij,\theta}^{\rho_2} \), so that we have

\[
\gamma_{ij,\theta}^{\rho} = \sum_{\rho_1} \sum_{\rho_2} \gamma_{ij,\theta}^{\rho_1} c_{ij,\theta}^{\rho_1} c_{ij,\theta}^{\rho_2}.
\]
Masao Koike

\[(\sum_{a_1 \in \mathbb{Z}^n, \bar{a}_1 \in \mathbb{Z}^n} p \cdot b_{a_1}^1 a_{a_1}^{1^t})(\sum_{r, s_1} a_{r, a_1} c_{r, s_1})\]

\[= (\sum_{a_1 \in \mathbb{Z}^n, \bar{a}_1 \in \mathbb{Z}^n} p \cdot b_{a_1}^1 a_{a_1}^{1^t})(\sum_{r, s_1} a_{r, a_1} c_{r, s_1})\]

If follows that, for \(\theta \in S^e, \theta \neq \theta_0,\) we have

\[\gamma^{1^t}_{1^t, \theta_0} = \gamma^{1^t}_{1^t, \theta_0} c_{1^t, \theta_0} c_{1^t, \theta_0} - p \cdot b_{a_1}^1 a_{a_1}^{1^t} a_{a_1}^t = 0 \pmod{\mathfrak{p}^2} .\]

Hence, for \(\theta \in S^e, \theta \neq \theta_0, b_{a_1}^1\) is uniquely determined up to mod \(\mathfrak{p}\) such that \(\text{ord}_p (b_{a_1}^1 a_{a_1}^{1^t}) = 1.\) The second inequalities are obtained as follows; we have

\[\text{ord}_p (b_{a_1}^1 a_{a_1}^{1^t}) \geq 2 + \lceil \frac{\theta_0 - 1}{p+1} \rceil + \lceil \frac{\theta_0 - 1}{p+1} \rceil,\]

\[= 2 + \frac{\theta_0 + \theta_0 - 5 - 2p/p+1}{p+1} \quad \text{for} \quad \theta_0, \theta_0' \in S^e,\]

and,

\[\text{ord}_p (b_{a_1}^1 a_{a_1}^{1^t}) \geq 1 + \lceil \frac{\theta_0 + \theta_0 - 6 - 2p/p+1}{p+1} \rceil + \lceil \frac{\theta_0 - 1}{p+1} \rceil,
\]

\[\geq 1 + \frac{\theta_0 + \theta_0 - 5 - p/p+1}{p+1} \quad \text{for} \quad \theta_0, \theta_0' \in S^e,\]

Also we have

\[\text{ord}_p (b_{a_1}^1 a_{a_1}^{1^t}) \geq 1 + \lceil \frac{\theta_0 + \theta_0 - 2p/p+1} {p+1} \rceil + \lceil \frac{\theta_0 - 1}{p+1} \rceil,
\]

\[= 1 + \frac{\theta_0 + \theta_0 - 4 - p/p+1}{p+1} .\]

From (62), it follows that \(F_2 \mid \tilde{U}_0(p) \equiv k_{\theta_0}^2 F_2 \pmod{\mathfrak{p}^2},\) so that it holds \(F_2 \equiv a_1 \tilde{F}_{\theta_0} \pmod{\mathfrak{p}^2}\) with \(a_1 \in \mathbb{C}^e\) by Proposition 19. Therefore we have

\[F_1 \mid \tilde{U}_0(p) \equiv a_1 \cdot \tilde{F}_{\theta_0} - p \sum_{a_1 \in \mathbb{C}^e} b_{a_1}^1 \tilde{F}_{\theta_0} \pmod{\mathfrak{p}^2},\]

so that our proposition is valid for \(\alpha = 2.\)

For \(\alpha = 3,\) by the same argument, it can be proved that there exist some \(b_{a_1}^3 \in \mathbb{C}^e\) for \(\theta_0 \in S^e, \theta_0 \neq \theta_0,\) which is unique up to mod \(\mathfrak{p}\) such that

\[F_2 \mid \tilde{U}_0(p) \equiv a_3 \tilde{F}_{\theta_0} - p \sum_{a_1 \in \mathbb{C}^e} b_{a_1}^3 H_{a_1} \tilde{U}_0(p) - p^2 \sum_{a_1 \in \mathbb{C}^e} b_{a_1}^3 H_{a_1} \pmod{\mathfrak{p}^2},\]

with \(a_3 \in \mathbb{C}^e.\) Since \(H_{a_1} \tilde{U}_0(p)\) is already proved to be congruent \(\mathfrak{p}^2\) to a linear sum of \(\tilde{F}_{\theta_0}\) with \(\theta_0 \in S^e,\) our proposition is valid for \(\alpha = 3.\) Proceeding the same argument, we obtain the complete proof of this proposition. q.e.d.

Corollary. Put \(J^0(\tau) = J(\tau) - 744\), and \(J(\tau) = J^0(\tau) | U(p).\) Then, for \(\alpha \geq 1, J(\tau) | U_0(p)^{\alpha - 1}\) is congruent modulo \(\mathfrak{p}^2\) to a linear sum of \(\tilde{F}_{\theta, \theta} \in S^e,\) with coef-
ficients in ω_p^∞.

Proof. From Proposition 20, it follows that there exist some $H_\theta \in N^\infty$ with

$\theta \in S^\infty$ satisfying $H_\theta \equiv G_\theta \pmod{\mathfrak{P}}$ such that,

$$J_i(\tau) = \sum_{\theta \in S^\infty} a_\theta H_\theta,$$

with $a_\theta \in \omega_p^\infty$. Hence the corollary follows from the above proposition. q.e.d.

8-3. With these preliminaries, we discuss the conjecture of Atkin. First, we shall write down a slightly modified (stronger) version of the conjecture of Atkin, as follows. Let p be a prime number, and let α, n be any positive integers, and put $t_\alpha(n) := c(p^n)/c(p^n)$. Then the conjecture asserts first that $c(p^n) \neq 0$, and that $t_\alpha(n)$ are p-adic integers. Now put $d = \text{Max}\left\{1, \left[\frac{p}{12} \right] \right\}$. Then it asserts secondly that for each $1 \leq i \leq d$ there exists a sequence $(t^{(i)}(n))_{n=1}^\infty$ in ω_p^∞ and for each α an element $a^{(i)}_{\alpha}$ of ω_p^∞, satisfying the following congruences and the identities;

1. $t_\alpha(n) \equiv \sum_{i=1}^d a^{(i)}_{\alpha} t^{(i)}(n) \pmod{\omega_p^\infty}$,

2. let l be any prime number other than p. Then for all i, l, and n it holds that,

$$t^{(i)}(nl) = t^{(i)}(n) \cdot t^{(i)}(l) - l^{-i} t^{(i)}\left(\frac{n}{l}\right),$$

$$t^{(i)}(np) = t^{(i)}(n) \cdot t^{(i)}(p).$$

Here, $t^{(i)}\left(\frac{n}{l}\right)$ is defined to be zero if n is not divisible by l.

Now we assume,

(H-3) for $\alpha \geq 1$, $c(p^n)$ is a p-adic unit.

Then we have following;

Theorem 3. Let $p \geq 13$ be a prime number. Assume (H-1), (H-2) and (H-3). Let l be any prime other than p. Put $J_\alpha(\tau) := c(p^n)^{-1} J_i(\tau) | \hat{U}_\alpha(p)^{a-1} := \sum_{n=1}^\infty t_\alpha(n) \cdot q^n$. Then, for each $1 \leq i \leq d$, there exists \hat{F}_i in S^∞ which is a simultaneous eigenfunction of $\hat{U}_\alpha(p)$ and $\hat{F}_\alpha(l)$, and some $a^{(i)}_{\alpha} \in \omega_p^\infty$ for $\alpha \geq 1$, such that,

$$J_\alpha(\tau) \equiv \sum_{i=1}^d a^{(i)}_{\alpha} \cdot \hat{F}_i \pmod{\mathfrak{P}^\infty},$$

holds.

Proof. With (H-3), this follows immediately from Corollary of Proposition 21.

q.e.d.

Therefore we have the following;
COROLLARY. Let $p \geq 13$ be a prime number, and assume (H-1), (H-2), and (H-3). Then the conjecture of Atkin is valid.

§ 9. Numerical examples

9-1. By the aid of a computer, we can compute the eigenvalues of $T_{k^{(p-1)}}(p)$ for some small p. The obtained results are as follows.

(1) the case $p=17$.

For $1 \leq m \leq 4$, we have $\tilde{E}_{1+m}|T_{1+m}(17) = \tilde{E}_{16}$.

(2) the case $p=19$.

For $1 \leq m \leq 2$, we have $\tilde{E}_{1+m}|T_{1+m}(19) = \tilde{E}_{16}$.

(3) the case $p=23$.

For $1 \leq m \leq 2$, we have $\tilde{E}_{2+m}|T_{2+m}(23) = \tilde{E}_{22}$.

(4) the case $p=29$, 31.

For $1 \leq m \leq 2$, we have $\tilde{E}_{m^{(p-1)}}|T_{m^{(p-1)}}(p) = \tilde{E}_{p-1}$, and the characteristic polynomial of $T_{p-1}(p)$ is irreducible over F_p.

(5) the case $p=37$, 41, 47.

The characteristic polynomial of $T_{(p-1)}(p)$ is not irreducible over F_p, but has only one root in F_p, which is not zero.

(6) the case $p=43$.

The characteristic polynomial of $T_{(p-1)}(p)$ is irreducible over F_p.

From these results, it follows.

PROPOSITION 22. (H-1) is valid for $13 \leq p \leq 47$.

9-2. As for (H-2), we have a certain result for $p=5$, 7. Let $f(\tau) = \prod_{n=1}^{\infty} (1-q^n)$ and $g_5(\tau) = q(f(5\tau)/f(\tau))^4$, $g_7(\tau) = q(f(7\tau)/f(\tau))^4$. Then it is well-known that the modular function field with respect to $f(\tau)$ is generated by $g_5(\tau)$ over \mathbb{C}. Also, it is well-known that 0 and 12^3 respectively is the only supersingular invariant in characteristic $p=5$ and 7.

PROPOSITION 23. (1) We have $g_p(\tau) \equiv (J(\tau) - j_3)^{-1} \pmod{\tilde{\mathcal{S}}}$ with $\theta=0$ for $p=5$, $\theta=12^3$ for $p=7$.

(2) $\{g_p(\tau)^k\}_{k=1}^{\infty}$ forms an orthonormal basis of \mathcal{S}.

(3) Put $g_p(\tau)^k| \tilde{U}_0(p) = \sum_{\tau} c_{\tau} \cdot g_p(\tau)^k$. Then c_{τ} are rational integers satisfying $\text{ord}_p c_{\tau} \geq [p\alpha - k_{\tau} - 1/p + 1]$.

PROOF. With the results of Lehner about the coefficients of the modular

The author wishes to acknowledge his gratitude to Mr. Machida for making the program to compute the eigenvalues of $T_{k^{(p-1)}}(p)$.
equation ([10], 145, 147), the proof is easily obtained by the same method of that of Propositions 11, 12, and that of Lemma 4 in [3].

9-3. Concerning to the assertion (H-3), we have a following result.

Proposition 24. (1) The assertion (H-3) is valid for $13 \leq p \leq 23$. (2) For $13 \leq p \leq 97$, $c(p)$ is not divisible by p.

Proof. (1) Put $J_{a}(T) = J_{a}(T) \mid \bar{U}_{a}(p)^{n-1}$, for $a \geq 1$, and denote by F the generator of the free module $\mathcal{Z}_{p-1} \otimes_{\mathbb{Z}}$ over \mathbb{Z}_{p}. Then, from Proposition 1 and Theorem 1, it follows that $J_{a}(T) \equiv c(p) \cdot (J_{a}(T) - J_{a})^{-1} \pmod{\mathbb{Z}_{p}}$, and it is seen that $c(p)$ is not divisible by p. Also we have, by Proposition 4, $J_{a}(T) \equiv c(p) \cdot F \pmod{\mathbb{Z}_{p}}$. Since $J_{a}(T) = J_{a}(T) \mid \bar{U}_{a}(p)^{n-1} \equiv c(p) \cdot F \mid T_{a}^{-1}(p)^{n-1} \pmod{\mathbb{Z}_{p}}$, our proposition follows from Proposition 22.

(2) By Proposition 1, it is seen that $c(p)(\mod p) = - \sum_{\theta \in \mathbb{Z}_{p}} \hat{\xi}_{\theta}$. Also, by Proposition 1, it is seen that $\hat{\xi}_{\theta} = - (\theta^{m} - (\theta - 12)^{m})^{n-1} \prod_{\theta \neq 0}^{\theta \in \mathbb{Z}_{p}} (\theta - \theta')^{-1}$. We can check the assertion (2) using the table of the supersingular invariants in characteristic p in Deuring [4].

q.e.d.

References

(Received October 24, 1972)

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Tokyo
113 Japan