On the asymptotic formula for the Green operators
of elliptic operators on compact manifolds™

By Daisuke FUJIWARA

Introduction

Minakshisundaram and A. Pleijel [9] studied the asymptotic behaviour of the
Green kernel of the Laplace-Beltrami operator on compact manifolds. There they
treated the Green kernel directly.

The aim of this note is to present, using L? theory, an indirect method to
obtain the asymptotic behaviour of Green kernels. To do this we use a kind of
pseudo-differential operators treated in [4]. One of the main results which is a
generalization of results in [9] is the following: Let X be a complex [-dimensional
vector bundle over a compact oriented C* manifold M without boundary and let
P be an elliptic pseudo-differential operator (see [8]) of even order 2m operating
on the sections of X whose principal symbol we denote by polz, §) with @ ¢ M and
cotangent vector £0 of M at x. If polx, &) satisfies the condition He in §2, the
value Eix, x, 0) of the kernel E(z, y, ¢) of Green operator (P-+0*"+0y)7" in the
diagonal set in MX M admits the asymptotic expansion

Elz, z, 6)~3 E;(x)o%i §j=» —0O ,
1

Where E;iz) are calculable by calculus of symbol at x of the operator P.
Results in this note are previously announced in [5).

§1. pg-pseudo-differential operators

Let M be a a-compact oriented differentiable n-manifold. We denote by X
and Y differentiable complex vector bundles on M of fibre dimension [, and l,. The
space of C> sections of X with compact support is denoted by 7 (M, X) and the
space of C~ sections of X is denoted by ~(M, X).

Let w: MXR' — M be the projection, then we denote the induced bundle of X
by ©'X. Then ™'X is isomorphic to X1s, where 1zt is the trivial line bundle
on R'.

DEFINITION. A continuous linear mapping P from (M, X)@_'/’(R’) into
&M, Y)@,A;'/‘"’(R’) is ecalled a j-pseudo-differential operator of order 2, if there is
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a sequence of real numbers s, >8> --- — —oo, such that for any fin (M, X)
and compaet set 7 in #Z{M) consisting of real elements g with dg+#0 on supp f
and for any non negative integer N, g itwatss) P( feistorteny ig the pull back of =a
section plf, g, p, 0, 4 in (M, Y and with some p;{f, gp, o} ¢ &M, Y], j=
9,1,2, -,

N1
2N(plf, gp, 0, 4)— 2 p,(f, go, 9)4%)
30

is bounded in (M, Y)@;{’(S@), where S, is the annulus Si={{p, ¢) ¢ R?; 1/2
g2 2} in R®.

Let {¢;} be a smooth partition of unity. Then P is a f-pseudo-differential

A

o4+

operator if and only if each of P;,=¢;Pe, is also a S-pseudo-differential operator.
Sinee any vector bundle is locally trivial, we may assume that P;, is represented
hy an [, X[, matrix each component of which is an operator operating on sections
of trivial line bundle. Thus all the results established in [4] are available in our
case. As to notations for various distribution spaces we follow the usual ones in
L. Schwartz {10] or A. Grothendieck [7].

§2. Existence of Green operator

In the following we assume that M is a compact oriented manifold with smooth
measure d# and that X=7Y. Further we assume the vector bundle X has a fixed
hermitian metric {]).

Let P be an elliptic pseudo-differential operator of even order 2m from 2/ {}M, X)
into itself having the following properties;

(He) for any x in M, u in the fibre X, over z and for non zero cotangent
veetor ¢ the complex number (Plz, & ulu) lies in the shadowed sector in the Fig. 1,
with 0<®<x. Here Plx, & is the principal symbol of the operator P.

We denote by LM, X) the space of L? sections of X with the inner product

{u, v):g twlvide, w, vE LM, X). Similarly, for real s, H*(M, X) represents the

M

o
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Sobolev space of sections of X. We put N=MXR' in the following. First note
that

1 @

is an elliptic g-pseudo-differential operater on /(M, X)@Jj“”(R’). Theorem 28 in
{4] implies that there is a S-pseudo-differential operator F of order —2m on
GM, X)© 77 (R) such that

(2) QoF=I+Q.
(3) FoQ=I+Q ..,

where Q.. and @ .. are j-pseudo-differential operators on (M, \25/ "(R') of
order —oo,

THEOREM 1. For any u< (M, X}@Q"(R‘) we have the a priori estimate:
For any real r

(4 Hullgreom aeert; o=ty SCUQUN ar e xR 01+ i raar R =150

with some constant C depending on .
Proor. By (2) we have

u=FQu—Q_,u
therefore,
{5) Hullgreem s o=t SHFQullyr+2m v o130 H Qe grtam v o=1x).

Since order of F is —2m and @ ., is of order —eco, Theorem 29 in [4] implies

(6) NFQuilgr+2m v, o=10 SCHQUI e s 01 x5 5

NQ cullyrsem iy, o=ty SCHullgrvs 01 -

Combining these with (5), we have the desired estimate (4} .
THEOREM 2. There exist constants C>0 and ©o>0 such that for any a in
10, 2ml, ©>70 and any ¢ € F (M, X), we have

(7) tr=ailoN pear, 0 SCIUP+T ol L2, x) -
The following proof is a modification of that of S. Agmon (1}, [2], [3].

Proor. Let ¢€ ZZ(RY) with ¢=1 in |s]<1 and gﬁR(s)zg’)( ;), then we have

;sn(o):jm e-mgs( ;) ds=Ri(Ro)
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16.alikn, =B | 13 (Ro) 1 -+0%do
R

= Ber(1+ (5) )%

=R'({1]l5+R*11911%)

and

T ~ ~
21 1) (0) = § #0e= RG(R0 7)) .

Therefore, for any non negative integer k,

e ae i om = 2| BRI =) (14 5%
A S L2k

<[ 1poe(1e] T Yao
R! | !

With some constant C>>0, we have
CY e pei* e gy, < (R[S rty + RS 22 k1, (1472))
<Cll¢pet|lutwy .
Thus
(8) Cl¢ et |yt SRV R | pllukmn +[[9]] L2y (|2} +1))
<Cllgret |k, .

Now apply the estimate (4) with r=0 to u=0&¢ ', Vo & F(M, X}, then we

have
2m

(9) R”SFA};} (R ]k rY, + (1“1“iflkmm}nglﬂr)”[QHH“’”"(M,J:)
L= )

SCHQull p2on: oty Hllul n2iv; w-1x)
On the other hand, there holds
HQu—({ P+ 0)R¢ el L2(x 01y

< B IDE R Do || pann gl e,

2m
<[k§;lHéizHH“{Rl)ﬁ“—'k]H(tc“LZ(M,,\W

2m
gR!!2.¥1(11¢i|L2<R1> + RS ur )P ol Lo x
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Combining this with {9), we have
o 2m X ) . -
(10) RI“'[;O(R“H 191 ak iy + L+ 1SH e lol g2m -5y )
<CRYVH S e IHP+Hel Loy, o+ RYA el L2, oo |16 L2y ]
2m
*‘rR‘f'g?;l(HéHL?nxl:+R““‘i§¢ Pk g T4 le)] L2000 x0)

Letting R — oo, we obtain from {10)

10

(11) :}(1‘}‘ T el gzm—i o, v SCHHPH+T™el 2o o HHel L2 xo

B

2m
AT el 2y, )

If 7 is so large that 2C<z, then we have from (11)
21» .
= [} e zmer SCHIP A2 0o
50

Therefore, for a=90, 1, 2, ---, 2m, we have proved (7). By the theory of inter-
polation, (7) holds for every a in [0, 2m].

COROLLARY. If P* is the adjoint operator of P, for any t>7, a in [0, 2m]
and any section 0 € (M, X), we also have

(12) wimellol] pagy o SCHHP*F 2ol oy %)

Proor. Since P* is also elliptic of order 2m, and its principal symbol satisfies
the hypothesis (He). Therefore we can replace P in (7) with P*.

When a linear mapping ¢ from HM, X) to H*M, X) is continuous, we shall
denote its norm as ,||®!|, for the time being.

PROPOSITION 3. If P s an elliptic pseudo-differential operator of order 2m
whose principal symol satisfies the hypothesis (He), then there is a constant to>>0,
such that for any real © the resolvents (P+7m-475)71, and (P*+412m4-7)"1 exist
and satisfy

(13) P24 7)o <C

(14) JNP*Fr2m L) Y o< C

(15) ol (P +22m 7o) [o< ClL + [ ]*m) !
(16) ol [(P* 422 47) Mo S CL A o2~

PrOOF. We have only to show that (P4e?m 47! and (P*47m41y)~! exist.
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Since (P+12"+1,) and {P*4-t?™+7,) have closed range, it is sufficient to prove that
they are 1 to 1. This follows from (7) and (12).

PROPOSITION 4. If P 18 the same as in Proposition 3, then there exist con-
stants 0,>0, 7,0, such that, for any © and |0]<0, there hold the following
estimates: for any 0<a<2m

(17) A (P+72met? +70) 7 o <C(1 + [2])o72m
(18) | (P* 7m0 4 7o) Mo <C(1+|])e2m .

Proor. Making use of the first resolvent equation together with (15) or (16),
we can prove that (P+72mgif47,)~1 and (P*4t¥me*l+174)7! exist and satisfy (17) and
(18), with a=0. The first resolvent equation reads

(P r2mgi0 p 1) =t == (Pd-vy) "1 4-72mg 0 ( P4 74) "L (P4 12mgi0 fo7y) 71 |
Thus we have
(19)  sull(P+7ime?? + 7)Y [o < Copl | (P+T0) 7 lo + 22 (1 + | 7]#) "L || (P4 70) Mo
This proves (17) with a=2m.

By interpolation, we have (17) for general ¢ €{0, 2m)]. Similar argument
proves (18).

THEOREM 5. If P s an elliptic pseudo-differential operator of order 2m whose
prineipal symbol satisfies the condition (He), then for any Z in the complex domain
3(6,, 0,) in the figure 2, there exist resolvents (P+Z*"+414)"! and (P*-+ 2%+ 1)1
satisfying, with any a €0, 2m],

(20) JHP+Z2 7)Mo < C(L 4| Z))e2m
(21) | (P*+ 2% +70) [ o S C(L+| Z])o2m
Im
/ x
T P (C)

| 0 |

f 0 F ¥ Re

o

/

Fig. 2.
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§3. Green operators and pseudo-differential operators

Let Z be in the complex domain X(6,,8,) in Theorem 5. Then the linear map-
ping E#*(Z): F(M, X)— F(M, X)

(22) E®(Zye=D4Y{P+Z™+1) 0, k=0,1,2, -+,
is continuous for fixed Z and E%*' (Z) belong to
L{L*M, X), L} (M, X))®Q?"(Z(51, 6,))

where 7 (X(0:, 6,)) is the space of holomorphic functions in X(6,, 0,).

LEMMA 6. For any k, there is a comstant C>0 such that, for any real
ge L (M), any o€ (M, X), any Z€ 36, 0,) with 6,<d,, 0.<0, and any A€ R,
we have

(23) Hem W E W (Z)(0e' )] L2, x) SCHOll 2o, xo L+ ZD 2"

Proor. Consider the following bilinear form B, on % (M, X)x 7'M, X)
{24) Bzly, §)=(e"""E©(Z)(pe'™), ¢)

=(E©(Z)(pe'R), e ¢) .

For fixed ¢ and ¢, B;(», ¢) is holomorphic in X(d,, 0,) and satisfies
(25) |Bz(o, HI<CA+IZD* el 2o, x) - P L2, x5
By Cauchy integral formula, we have for Z¢€ 3(8,, 0.) with 0.<d,, 0.<0,,
(26) IDEB (e, OISCAHIZN 2 el L2ar, 30 1] L2050 -
From this, (23) follows, because
(27) DyB(p, ¢)=(e"E ¥ (Z)(pe™), §) .

LEMMA 7. Let R,, R: be pseudo-differential operators of order —k, k>0, on
M, X) and let ¢, ¢ be in (M) whose supports are contained in a coordinate
netghbourhood U {(not necessarily connected). Then for any linear function z-&
of the coordinate function i, ---, z, in U, there exists a constant C>0, such
that, for any a, be[0, k], E€ R, Z€ J(6y, 01), u€ (M, X), we have

(28) [le=i=¢p By - E®(Z) oo™ ¢u) || wa car, x»
SCA+EN(L+1ZD) ™ |u)) gt e, x0
Proor. Using (63) in [4], we have

lle™#40, RuE® (Z) Ral @06 u) || o o 5
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SA+ED B E® (Z) Re(poe™ u) || 5o ar, x)
<CA+|E) N E(Z)Ralpoe wl| 2w, x)
SCA+EN*A+1ZD) | Baleae w12, x0
SCA+IENL+1ZD) 72 fem s Ral@ze ™ Su) || 20y x,
CL+EN " A+1ZD) 7 ull b o, x) -

THEOREM 8. The operator E%(Z), k=0, 1, 2, --- is a pseudo-differential
operator, in the sense of Hormander [6], of order —2m. The asymptotic expansion
of ¢ "EW(Z)(fe'%) is locally uniform in Z& 3(8,, 6,). That is, there is a sequence
8g=—2m>8, >8> - - — —0 of reals such that for all f€ (M, X) and compact
set Fof real functions g€ o7 (M) with dg+0 on supp f, and for any integer
N>0,

1

(29) Am N (g G0 (Z)( feitr) — N%; e (f, g)29)

remains bounded in o/ (M, X) uniformly in 221, g€ % and Z belonging to a
compact set in (0., 0y).
ProoF. E©(Z) satisfies

(30) (P+ 22 o) EO(Z) =]
(31) E 2P+ 24 =1 .

On the other hand we can choose a pseudo-differential operator E, of order —2m
on (M, X) satisfying

(32) (P+ro)Eo=I4+P_ ,
and
(33) Eo(P‘FTo):I‘i‘P;m,

where P_, and P, are pseudo-differential operators of order —co. Applying E;
from the left to (30), we obtain

{84) ENZ) =E—(Z"E+P_)E®(Z) .
Similarly,

EY(Z)=E—~EYNZ{Z*"Ey+P_.) .
So that we have

(35) EV(Z)=Ey—2Z*"E;~P_ . E+(Z*™Es+ P_Lo)E® (Z)(Z*Ey+ P ) .
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Replacing E©®(Z) in the right side of (35) by the whole sum in the right side of
{385), we have

E0(Z)=SA,Z +(Z"Eo+ P_ 2 E™(Z){Z*"Ey+ P_)? .

Where ]4,— is a pseudo-differential operator of order —2m—j. Repeating this process
k times, we obtain

2k+ym

(36) E®(Z)= 20 A;Zi 4 (ZEo+ P E® (ZY(Z*mEs+ P_o)*
i=

where A; is a pseudo-differential operator of order —2m-—j which is independent
of Z.

Let ¢, ¢ by any functions in (M), whose supports are both contained in
a coordinate neighbourhood U (not necessarily connected). Then for any integer
k>0, Z€ X(0,, 0:) with 6:<dy, 0:<0y, and any a=0, there exists a constant C,
such that for any % in (M, X) and any linear function z-§ of coordinate func-
tions (x1, -+, x.) in U, we have

(37) e E® (Z) ga(uei® 8| yo ar, vy SCA+Z1*) [l o car, x) -
In fact, it follows from (53) in [4],
(38) Hemi=to1 A (@oe™.8u) || o ar, x) SCH W o car, %y -
Applying Lemma 7 to (ZEy+ P_*E®(Z}(Z2*"E,+ P_.)* we have
(39) llewi i (Z*mEy+ PL L) EW (Z2)(Z°m Eo+ Pooo)* (P26 *u) || r2mk oy, x)
SCHZN) " [ull g2mi or, x0, Z€ 2By, 0y)
(36), (38) and (39) give that if Z¢ 3(d,, 01,
llemi=¢@: E® (Z) (0ue’®8) || y2me a0 SCLA | Z]) ¥ ] y2mk o, x) -
Interpolating these, we have for Z¢ (9, 0,)
(40) le™= o, B (Z) (02ue'™ )| o ar, 1y SCL+Z21) % el | o ar, x> -
Consider the following bilinear form B,{u, v) on He(M, X)X H (M, X) defined by
(41) B, (u, v)={e =0 E(Z)pue=¢, v) .
Then for fixed u, v, B;(u, v) is holomorphic in 3(d,, #;) and satisfies the estimate
(42) |Bz(u, )] <CALH1ZD* | ullgewn, o - [vHa-em, %) -

Hence for Ze€ 3(d,, 0;) with 8:<8,, 8:<0:, by Cauchy’s integral formula with
another constant C,
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(43) [DY (B, lw, vil<CO-H1Zh%Hullraur, oo o =2, 2 -
Taking account of the relation
(44) D%Bylu, v)=Le~ =i E® (Z)eaue, o),
(37) follows from (43).

Since (M, X)= (M, X)= N HM, X), (37) implies the linear mapping from

azi
M, X) to XM, X
w—r e R (D) eset s iy

are equi-continuous.

Now we can prove that E9(Z), Z¢ X (6., 0., are pseudo-differential operators.

Consider a finite smooth partition of unity }“_,J?J'f'j-:l, ¥,eCo(M). We may

it

assume that for any three j, k, 1€ J, there exists a coordinate neighbourhood U
(not necessarily connected) containing the union supp ¥, Usupp ¥, Usupp ¥,. Taking
(35) into account, we have only to prove that E®(Z)A is a pseudo-differential
operator whenever A is a given pseudo-differential operator. To this aim it is
sufficient to show that for any j, %, 1€ J,
(45) R; o =UE® (Z)W LAY
is a pseudo-differential operator.

Let x-& be any linear function of coordinate funections (a1, ---, 2,) in U, then
for any ue¢ /{M, X},
(46) emFER; e = I EO (2T AW ue )

=g iR O (Y et i AW e )

Since ¥, A% is a pseudo-differential operator, there exists an asymptotic expansion

(47) e AW )~ aalu, x, &)
ki)

in (M, X) topology. That is, there exists a sequence s;>8,> ---— —oo of reals
such that

N1
(48) (o= A Qe b0) — S an(u; @, 24 (2]+1)

™m0
remains in a bounded set By in &F(M, X).
Setting
(49) balu; @, 28, Z)=e WIED (Z)o =4 au(u; 3, §)20m)

we know that
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Ay
femi# R, et tu— b uy x, A, Z0 A L1 ey

m
are in the set
e VTR ( Zyie i By
Because the mappings
U — ¢THRPIE O (2t iy

are equi-continuous from (M, X) to ., (M, X}, ¢" % @IEY (Z (e By) remains

in a bounded set By in /#(M, X) when 2— oo, Z¢ 3(6,, 0 ]&[=1. From this
it follows that b.(u; 2, £, Z) are positively homogeneous of degree s; in &, In fact,
we have
, .. e . mod .
bulu, @, & Z)=lim A-snlem bR, e Su— SYby(u; a, 48, Z)) .
Pt}

Thus we have proved that E(Z), Z¢ Y6, 0:) with 6,<8,, 0,<0; is a pseudo-
differential operator. Local uniformity in Z of the asymptotic expansion is also
obvious.

Finally by induction in & we shall prove that E®(Z), =0, 1, 2, ---, Z¢ X8, 0,)
are all pseudo-differential operators. This has been already proved for k=0.
Differentiating
(50) EO(Zyo=(P+ 22 415) 7"
in Z, and using (22) we have

(b1) EVZ)=—2m)Z*™ Y E®(Z))? .

From (51) it follows that E™(Z) is a pseudo-differential operator. Repeating this
process, we can prove that E%™(Z) Z¢ X{d,, 0,) are pseudo-differential operators.
This completes our proof.

REMARK. As to the estimate (37), a sharper form will be proved later.

Let Z be a point in an section X(f)) in the complex plane defined in the
Figure 3.

Im

i e 1

W‘B / ¢

Fig. 8.

@) 13720 .




262 Daisuke Fusiwara

Then, for o€ R', we have, from (37)
(52) HE:;"(UZ}u”L"(u,x,izc“””zf’m,x

Therefore the bilinear mapping
LAM, X)x /" (R') - LM, X)) 7R}
(0, ¢) - c2z>~~'$ o) E® (02)0)do
Rl

is continuous, hecause this is separately continuous and LM, X) and &/(RY) are
barelled (<7 %") spaces {cf. Cor. 1, Th. 2, §3 Chap. IV [6]). Therefore there is a
continuous linear mapping

G LAM, X)D. 7R — LHM, X)& 77 (RY)
0D — (2:3“5 Bloje (B 02)¢)do .

THEOREM 9. G2 satisfies

( 53 ) (P,+ Z'ZmDim +TD) {ZO) :I
( 54 ) Gg)) (P+ Z21nD?.;m +T0) =7

on (M, X)®.7(RY.

Proor. Both the mappings (P+Z"D™+7,)GY and GP(P+2Z°"D*™47,) are
continuous mappings from &M, X )@;}"’(R‘) to O (MXR'; w'X). Therefore,
we have only to prove (568) and (54) for functions of the form ¢®X4, ¢ ¢ (M, X,
o€ G(RY. In this case, the integral

(55) G o@9) = <°~)j Bie)eor (B (02)¢)do
B!
converges in LM, X’)@){},’”(R‘), (see {20)). Thercfore, applying G5 to (55), we have

(56) (P+Z* D™ +70) G5 {0 R0)

= | Borem Pz 4 ) B 0Z)e)do
R

:(23)45 Bl @geindo
R

=9R¢.

Similarly,



Asymptotic formula for the trace of Green operators 263
(57) G2 P+ 22D 41} (e R6)

o BT A et \
=237 2D Slo)e B 0 Z)¢ide
I

+<2x>~1{ e 3l0) B (0 Z)({P-+70)¢)ido
f/43

-

={2x)"t g @“"(S(U}(E‘m (e Z){P+ Tg+ Zimgtni o

Jm
=0®e .
PROPOSITION 10. G continuously maps (M, X)2 {RY into
M, & (RY

PrROOF. Theorem 28 in [4] reads that there exisis a S-pseudo-differential
operator F'; of order —2m satisfying
(58) F (P+ 7Dy 42y =I+F, .,
where F7 . is a S-pseudo-differential operator of order —oco. Applying F, to
(53), from the left, we have
(59) G;zm:Fz“‘Fz,—w' Lzm .
Obviously G¥ maps (M, X)@j‘”(R‘) inte (M, X)@)j"’(k‘) continuously.
It follows from Theorem 27 in [4] F, _GY maps /M, X)@?"”(R‘) into

M, X)@,{f},,(R‘) continuously. This proves our Proposition 10.
PROPOSITION 11. For any ¢¢ /' (M, X),

(60) e G pe)) =BV (Z)p,  k=0,1,2, -
(61) D;(ewis:(;;))(gneier)):TkGAis'r(}ka)(g;eia:) , k::(), 1, 2’ -

PrOOF. For any k, from the definition of G,
e“ierfZ“)(‘peisz):(2;‘-)/46—:’3:5 (23)6(0_7)61'“(]&”1;\;((IZ)(/:)dU
R
=E"(tZ)p .
(61) follows directly from (60).
LEvMMA 12. Let f be in (M, X), and g be a real clement in (M, X} then
there is @ constant C20 such that, for any w€ (M, X)

(62) Hem @2 GP (e o D u)|| L2y ) SCAHZe)) 2 [l 2 x) -

Proor. By Proposition 11
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Hewter = Gylet v u)il 2 5
f:HE/O"(ZT)<Gi’1€)§!L'35.a1,X:
SCO-FiZeiy#mull 2oy 5,

where we have used (23,

LEMMA 13. Assume that B, and R. are B-pscudo-differential operators of
order — k<0, and that ¢, and ¢ are 1 7 (M) whose supports are both contained in
a coordinate neighbourhood U (not necessarily connectedi. Then for any real linear
Sunction x-€ of the coordinate funetions {(xy, -, z,) in U, there is a constant
C>0 such that for any wc (M, X), Z¢ X6, 0:) and 0<a<k, we have

(63 e toivsoio RG Y Raleaue =47 ) o x5
SCAHZh 2 ull yo o, ) -
Proor. Using (102} and (100) in [4], we have

(64) fleitr it o R\G Y Ruleaue! 549 [ oty x5
<CU+1EN e o RiG Y Relpaue’ = 8429 ) [ oty x,
SCAHENA+1zh)Hle =GP Rolpeue’ =3%e0) | p2y y,
SCA+IEN A+ A= Z) 2 le  Balpaue’ @ 609) || 12y
SCIAHRER T e) L+ e Z) e =640 Rygguet =809 12y v,
SCA+EN A+ el A+ [z Z) A+ 1 7)) Hull e o, 1o
SCAH=Zh Hullye o, 50

ProroriTioN 14.  Under the same hypothesis as in Lemma 18, for any a>0,
theve exists a constant C>0, such that for any uc (M, X) and any Z€ 3(6)
with 0,<0, and any k, we have

(65)  Hlemi it oG (eaet = 5 ) | yaar, 00 SCL+ 10 Z))H [l e car, 1

PrROOF. GY satisfies

(66) (P+ 22D o) GY =1
(67) GPIP+Zm D" 4ro)=1 .

There exists a S-pseudo-differential operator F; of order —2m which satisfies
(68) Fz(P+ 2D +7) =1+Q7% o
(69) (P+2mD" 7 Fp=14+Q;
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J

with B-pseudo-differential operators @; ... and @7 .. both of order —oo.
By the same process as we used in the proof of Theorem 8, we obtain

(70) GY=F;~G7Qz, -
and
(71) ;}ZFZ_“Q,Z, waZ “*‘Q,Z,—m(;?)QZ‘Mm

F;~Q7 -F; is a j-pseudo-differential operator of order —2m. Therefore, if
fixing Z in 3'(6,), we have from Thecrem 30 in [4]

(72) Hew i ivs0 o) (F = Q7 o g cagttaritsd Wl ger, o SO e vy -
On the other hand, applying Lemma 13, we have
(73) He»i:z"ihs‘\Q"lQ:?,mo ‘.{OVQZ,~:u9720“1";4”‘uﬂ1:“‘11_,\":TSZC‘L]‘.‘*%Z";) MHUHH“W:.\') .
Combining (71) with (72 and (73), we have
(74) ettt oGP enet v wl ey v SOt e o v
The constant C is independent of (&, o) and u, but may depend on Z. We must
show that the constant C in (T4) is independent of Z, if Z remain in the set
310,), 0:.<04.
Note that
(75) e~ 00GLy (pretou) =e " OG Y (Paet )
Really, by (60}, we have
(76) €7 0\G 7 (e u)
=@ O (Zo) (@2u)
:G~iu:g ‘;)! (@2%6"”) .
1t follows from (75) and (74) that we can choose a eommon constant 0<C<co in
(74) when Z runs on four rays Z=re" %2 and Z=re*“*%', 90,
Consider the bilinear form on (M, X)X (M, X)
BZ(&; g, u, ?)):(e—i('x-£+m)9»)ng‘)(pzei(r-$+w>u, 'U), ZG z"(()l) .
This is a holomorphic function if we fix & ¢ and %, ». On the other hand, from
(60), (41) and (42), this satisfies if Z ¢ 37{0),
(77) Bz, o, u, v)]=[Ke 0. B (Zo) {6 tu), v)|
:‘BZ”(uy ’U)!

< CA-+1Zal®Hullyo o, xo Helly e, x0
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What we have proved means that with a constant C,
(78) 1B (&, o, u, UHSC”u”n“w,x;HUHH“‘HM,x'> s
when Z runs on the four rays: Z=re*i:, Z=pe~i=20y,

It follows from Phragmén-Lindeléf theorem that there is a constant C indep-
endent of Z, &, r, such that

{(79) |Bz(&, o, u, 1‘)ISCI|NHH“<M,X‘;HUUfr“MM, X7y -
This implies that
(80) [le7ittoal 0, G opet 8490yl oy v, SCHU oy x)

where constant C is independent of (&, o) € R"*! and Z¢€ 3'(0;).
Finally we shall prove (65) for k=1, 2, ---
From (60) we have

(81 ) c“"("f“”"s’/‘xG(Zk" (¢2ei(x-;+w;m
=¢ S E® (Zo) (peei*fu) .
So that from (37), we have
(82) Hei@ 8430 0G0 (pae* T2 u) || ga gy, ) SCL+ | Zo)) 2} ul) o ar, x)
Consider the following bilinear form
BY(E, 0, u, v)=(e7 it 0, G (gt = it0al ), v)

ue FM, X), ve (M, X).
Then from (61)

(83) c*BFHE, o, u, v)=Die i it eGP (et =it ), )
=D4B,(&, o, u, v)., ZeZX'0).

Since {79) holds we obtain by Cauchy’s integral formula,

(84) [e* B2, o, u, WHZCLZI e o, oo o g e car, x0)

for any Z¢e X'(0.), 0.<0,. Thus (84) gives

(85) ettt 0,G 7 oot iy | ey ) SCloZI™ 1wl I na, x) »

Combining this with (82}, we have

(86) llemtizi+e0 0,G Y @aet =400 u] | ya gy, vy SC(L+1020) 7 ||wl | ge a0

for Ze X'(0,) with 0.<0,.
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Now we can prove the fundamental theorem.

THEOREM 15. For any fized Z€ X{0;) with 0,<6,, the operator Gy is a
B-pseudo-differential operator of order —2m.

Proor. There exists a fS-pseudo-differential operators F, of order —2m which
satisfies

(87) (P+ZDi 1) F,=1+Q

where Q_., is a S-pseudo-differential operator of order —oo. Applying F, from
the right to (67), we have
(88) GH=Fs~GP Qo

Let S ¥7%=1 be a finite smooth partition of unity. We may assume that for

ied

any three ¥';, ¥,, ¥,, there exists a coordinate neighbourhood U (not necessarily
con:azcted) containing the union supp ¥; Usupp ¥, Usupp ¥,.

We wish to study the asymptotic behaviour of

(89)  Quuime o WIGPYIQ FHue ), 12<[ER+ ol <2

where 2-& is a real linear funection z:&:+.--+2,5, of coordinate functions 2=
{zy, --+,2,) in U. Note that

(90) ¢TI ir PEQOPLQ P Hugiiitin)
:e“ii(z‘5+sa)qT?G;”}]/‘keii(::é+na)e-ii!:-5+aa)q,"kQ_mlp'%(ueil(z'e-faa)) .
Since @_. is a B-pseudo-differential operator of order —oo, for any N>0,
AN[gmithenr 2 () W2y gittz-i+e0))]
remains in a bounded set Ay in (M, X)@Z(S), where
S={(&, o) € R™Y, 1/2<|812+ 0|22} .
On the other hand, Proposition 14 means that the mappings
[T e“il(z~;’+3q)qf§GZ° ?[fkeil(z«ufw)u
are equi-continuous from (M, X) to (M, X). Therefore,
(91) AN (gritaitea PERDYLQ  Wieidiz-tteoiqy)

remains bounded in (M, X) if - o and (§, 0) €8, that is (31) remains bounded
in (M, X)® 7°(S), when 2— co.

To complete the proof, we must prove that (91) is bounded in (M, X )@)Z’ (S).
Differentiating (91) by &,, we have
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(92) ,QND;,p {g~idtz-E+aoi W?G?Wﬁ@-ww%“ faefren g

:2"""1[_3;”3“‘1'!2'5*:«7)@’?Gg)qfﬁ@ﬂmwf(ueii{z~5+aa)\
o gTidizftea W?GQ’W%Q,wa(x,ue“""““”’)] .

Since the mapping v — —x,v is a continuous mapping on (M, X)®=Z?(S),
2”“(%8“““"“‘“qfﬁGf’@'iQ,_wll"f{ue‘*”‘5“30;‘)

is bounded in (M, X)@ Z’(S). Since z,u € (M),
IQN+1(eu—iﬂz-{?‘hg}W?GQ}g}'iQ_»mw‘?(ueiéiz~f+aa)))

is also bounded in (M, X)@ Z(S). Combining these, we prove that (92) is

bounded in 7 (M, X)@ Z(S).

Next, differentiation of (91) by ¢ gives
(93) AV D [gmitiz-t+eal zp";’,Gizm y/zQ_m(g}'%QH’(z.e‘i‘au)u)]

:ZND.; [6”“‘("5‘“") quG’Z{’) zp”ke:'i(x-5+nu)e-—i1(z.5+aa)Il{'kQ_‘w(w?em{z.g-&sa)u)]
ZZNDU[Q-UW’I]T?,EW) (AZo)W g1 P2 8g=idiz-ttaa) Ilka“m(w‘%eil{:-€+xa)u)]
__:,zlv[e_uz-s(zz)yr?Em (2Zo‘)(Yl’ke‘*"5e‘i*<"f“’”> W,‘Q_mw%ei“"éh”’u)
—s‘—e"“'5“"}W?G(gm’[fke“"'5"“"‘“”Da(e““"“"““) ka_m(ll’fe“"'f’"”’u)]
::,;N[gzemizt:-g+u>11f§Grzi) (Ilfkeé,i{x-f-kw)e~:’j(:-$+sn>kaQ_ww%eiﬂx-Eﬂw) u)]
+ 2N[e—-iﬂz~£+sa)gr’;’_Gg’)qr,;cii{z-€+Sg)Da[e—il{z-f#-aa)ka*mqf%(eil(:‘e-i‘xq)u) 1.
Here we used (60).

Since ANHg At Q  Pleitt=-itsdy are bounded in (M, X)@&‘(S), and
the mappings v —» ¢~ ERIPIGR (Y683 -¢+29y) are equicontinuous on & (M, X)
{Proposition 14),

2N+1Ze»u;:-g+sm@‘?G;>(wkeix(z-smo)e-«iuz.eﬂa)ger_mzp'geu::-s«l-aayu)
remain bounded in (M, X)@ Z(S).
ANDslgmitatto I Q  Wieitizitany) are bounded in F(M, X)@%(S}, because
Q. is 2 S-pseudo-differential operator of order —co. The mapping
P > ikl Etem @’?Gtzmwkgmz-sﬂa)v
being equicontinuous on (#(M, X) (Proposition 14),
X-"'[e‘“"'f“’"’Q’?G?’Ufke"“*"““’Dae‘“("“"’) quQ_m(zp’feil(:'é'Fw) u)]
remain bounded in (M, X)@‘{g'{S). Combining these with (93)

VD, (it O YIGOTIQ_ (st y))
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are bounded in (M, X)&@ #(S). Therefore
2”6”*3"'5+’”’W§G§)W2Qﬂw ?e\‘i(rshoa)u
are bounded in (M, X)® Z\(S).
Repeating these processes, we can prove that
,Z-"'e‘ii(:'f‘*”)ﬂ]’? g)) EQ_mqf%eu(:-shm)u

are bounded in (M, X)®#(S).
This completes the proof.

§3. Asymptotic behaviour of kernels

Let G¥ and E*(Z) be as in §2. First we shall collect estimates obtained.

In the following three theorems, we assume that ¢; and ¢. are fixed funections
in 7 (M) whose supports are both contained in a coordinate neighbourhood U (not
necessarily connected). Further we assume that z-£& is a linear function of coordi-
nates x;, ---, @, on U.

First from Theorem 29 in [4]

THEOREM 16. For any a€ R', there is a constant C such that for any
be[—2m, 2m], Ze€ Z'{0,) and any ue DM, X), we have

(95) [le7i @40 o, GD (aei G-5H00 ) || yatd g x)
ZCAA+ &+ e lull yow, x0 -

COROLLARY. For any w€R, there is a constant C such that for any
be[—2m, 2m], Z&€ X(3:, 0:) with 6,<8;, 0,<0,, and any u€ F(M, X), we have

(96)  lem "1 E® (Z) (pee*u)| [ gers o, vy SCU+IENL+IZ]) " [ull pear, x) -

This is a sharper form of (37). However we omit the proof.
Finally, from Theorem 31 in [4], we have

THEOREM 18. There exists a constant C>0 such that for any bci0. 2m],
Z€ X7(0,) with 0,<0; and for any ¢ (M, X), we have

(97) §le"‘""G?’(e“"u)l!mﬂm,mSC(1+10!)”‘2”‘Huiluam.m .

COROLLARY. For any a€ R, there exists a constant C>0, such that, for any
be[0, 2m), Z€ X (G2, 02) with 6,<8,, 0,<0,, and any we (M), we have

(98) ”E(m(z)u”m‘”’w,x;SC(I'*‘|Z|)b-2m[|u”u“(u,m .
Proor. By (60) and (97) we have for any Z¢€ 3/(0,)
(99) HE(M(ZU)?'{HH““’(M,.Y)SC(1+]U|)b—2mHu”H“su,X) .
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Replace ¢ by |Z| and Z by Z/|Z|, then we have (98) for z in 3’(0). This and
(37) give (98).

THEOREM 19 (Approximation in uniform norm). For any Z in X'(0), let Gz
be any S-pseudo-differential operator such that GY —G 2.1 18 of order less than
-l.  We define the operator E\(Z) by

(100, E(Z)p=e 151G 2 | (e171g) .
jzt

Then

(101} HEm(2)97“‘151‘:23‘.4?|i11“*bm,x;‘ §:C(1+|Zi)b'Eglu“n“‘zﬂ,x,« s

Jor any 0:0<1, and ¢ ¢ (M),
PrROOF. From Theorem 31 in [4] with @ =G} —G,, we have (101}.
COROLLARY. For any Z¢ 37(0:) let F, be an arbitrary f-pseudo-differential
operator such that the symbol of either F,(P+Z*"D>™+) or (P+ZD 4+ F,
18 wdentically I on MxXR'. We define the operator E’(Z) by

E(Zyp=e "2\ F 7 (e121g) | Vee (M, X) .
12!

Then, for any 1320, b=0, and a ¢ R there is a constant C>0 such that Jor any
e M), we have
(102 |§E<O’(Z)—E(Z)Q’/‘[ifla>ib(ﬂ,’x;éC(l—HZI) ’H?HH“{M,X) .

REMARK. We saw in Theorem 28 in [4] that we could find F, through a
caleulus of symbols.

Now let us consider the kernel of the Green operator E(Z).

THEOREM 20. Let A be a B-pseudo-differential operator of order sy< —mn then
the operator Blo) defined by

(103) Blo)g=e¢ v Agierg 0 (M, X)

has a kernel Blx, y. o) in v (MxM, Hom{X, X))@/,’ w(RY with the estimate:
For any ve>0, there is a constant C.>0,

(104) IBla, y, o) <Ce(l+]of)rotne .

Proo¥. Let 0<2r<—si—n and let ¢, and ¢, be arbitrary functions in </ (M).
Then we have from Theorem 31, in [4]

{105) [{Bio)¢y, 9"’2>li\:C(1‘*‘|9'|)8°+"+2’|I‘i'fx[|11~<”r’i’3"7m,.¥aH‘.»"'zgln‘("v'g’ﬂw,_m .

Thus this bilinear form ¢,, ©: — (Blo}¢:, ¢ has the unique continuous extension
on H @M, X)xH »»-r1(M, X'). which we denote again with the symbol
{(Bioyx, x>,
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By Sobolev's embedding theorem, the embedding mapping ¢: H»=2+ (M, X) —
(M, X} is completely continuous. Therefore its adjoint

{106) ) M, Xy Hom ML X

is also completely continuous, see [11]. We denote with d,, J, the Dirac measures
concentrated on arbitrary points @, ¥ on M. For any o, let us define the section
Bix, y, o) of the bundle Hom (X, X)=XXX' on MxXM by

(107) (Blx, y, oyu, vi=(B{ojud,, ¥4,

uc X, v€ X,, where X, is the fibre of X over the point 2 in M. In fact if x, — 2,
¥, = yin M, then 6, >4, 6, -3, in ol (M), (M) topology. ¢* being com-
plete continuous 0., —d,, 0, -0, strongly in H"»#"7(M). This implies Bir, y. o)
is econtinuous in (2, y). We must prove that B{r, u, ¢) is the kernel of the
operator B{s}. To prove this, it is sufficient to show that

(108) Bioyp, = ﬂ Ble, y. o) ¢{a) 6y ida) pdy)
MM

for any ¢<¢ &M, X), ¢e (M, X’), whose supports are both contained in a
coordinate neighbourhood U (not necessarily connected) of M. By coordinate fune-
tions ), -+ -, 2, in U, we can identify U with an open set 2 in R*. Let p{x) be
the density of measure p(da), that is p(a)dx, --- dz,.=plda).

Divide U into a net _f", of cubes with sides 1/k. Let {z, 5., be the set of
vertices of the net 7. By the theory of Riemannian integral, the measure

1 . .
vez= 21 @lrg el ) 0.,
=1k
o1, N .
(vk’:_}jl o Dl o ol; 1005 s reSDectlvoly>
i

tends to ¢lxipizide, (Pla)plx)da, respectively) in 7 (M), when k-» oo, Therefore
we have

“Bi:v, Y, o) elx) Pl pldxy pidy)
3

M

o

. 1 & . . )
:}‘}m an‘ng(l'j,k, Yiw O1RZ; 05 005 60054

.12 N N v ,
=lim fn B (BO)0y; 4 0: 5 0P a0 P55 0)
] " FE

:}_im {Bla)v/, vy

=(Blo}¢, ¢ .



272 Daisuke FUJIWARA

This proves (108).

The estimate (104) follows from (105) and (107).

Finally we shall prove that B(z, ¥, ¢) belongs to & (Mx M, Hom(X, X})@f,,,(R‘).
For this purpose, it is sufficient to show that for any measure » in 7”/(MXM;
X®X),

(109) ssy<o>=5i3<cc, v, o) vidz, dy)

4

belongs to 7, (R'). (ef. A. Grothendieck [7], Theorem 13, n° 8 Chap. II.)

Let ¢ and ¢, he arbitrary functions in (M} whose supports are both con-
tained in a coordinate neighbourhood U (not necessarily connected). Then we can
identify XU with UxC!. For any linear function z-£=x,8,+2:8+ - +2,&, of
coordinates i, ---, 2, valid in U, we define bix, &, o) by

(110) blz, & o)=c i =000, Bt =it |

This is an [ %] matrix each component of which is a function in Q-‘(U)(}A?;)/fﬁ, satis-
fying

(111) |D:DIDIb(x, &, o) <C(1+]&]+ |o])7o=181=171
(cf. (10) in {4}}. Then from Lemma 5 in [4], for any ue G(U, X)
Blo)ulz) =e ¢, B{¢yeirou)

=<2x)—"§ Wb, &, o)ei=-ide
R R?l

Therefore by direct caleulation, for any ue (U, X), ve G(U, X'),

(112) {Blz, y, o)uly), v{e))={Blo)usd,, vd.>
= L[ bl & ety via)ds
oY) Jan
Hence
(113) DB, y, o)=(2)" } S Dibiz, &, o)e=v ids
ey Jan

T:]-’ 2’ 3: R

which is continuous in (x, ¥, ¢) € MXMXR' by (10) in [4]. Moreover there holds
the estimate,

(114) \DIB(, v, a)ISCL (L8] + o) 0-7de

<C{1+|af)ror4s
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Therefore, for any measure » in ¢/(MxM, X2X*), DIé.lv) is continuous, and

satisfies the estimate
(115) | DIgu(a)| <ClIvl|{1+a])®0 1%, =0, 1, 2, ---

where C is a constant independent of » and ¢, |jv]l is the total variation of v.
Therefore ¢.€ 7 4(RY). This completes the proof.

We have proved

COROLLARY. Let ¢ and ¢, be functions in </ (M) with the following prop-
erties both supp¢; and supp¢. are contained in a coordinate ncighbourhood U
(not necessarily connected) and @,=1 in some neighbourhoed of x,, in M, i=1,2.
Then expressing by coordinate, we have

(116) Bz, 21, o) =(275)“"P(xz)_ls by, &, o)ef e S
R“

where
b(x, 5’ 0-) :sole—i(:-si-sa)B(gpzei(1:-54—!07) .

THEOREM 21. If 2Zm—n>r>0, then the Green operator (P+Z™™41t))"! has
the kermel E(xi, 2, Z) belonging to ¢ (MxM, XQX'& 7 (X(ds, 02) with the
esttmate, for (21, %2, Z) € MXMX 3 (8,, 65),

(117) VB, 22, Z) |[<CQA+H|Z))T .

E(x:, 22, Z) is given by (116) with B=G7'.
PrOOF. We shall show that E¢ & (MxM; X@X’)@yy (¥(60, 0. For this
purpose, it is sufficient to show

.(2) :,,J S Eles, 22, Z)v(duides)
xM

is holomorphic in X(ds, 0) for any measure v in ¢/ (MxM, X'®X). Obviously if

visin (M XVQG (M, X), then ¢.(Z) is holomorphic in 3 (ds, 8,) and satisfies

(118) |PAZY ISCGA+IZD v,

where |[|v|| is the total variation of v. If » is an arbitrary measure in
@' (MxM, X®X'), we choose a sequence {v,} ¢ 7' (M, X)Q7 (M, X') which tends
to v in measure. We may assume total variations of v,, k=1,2,3, .-. are uniformly
bounded. Therefore ¢..(Z) tends pointwise to ¢.(Z) and uniformly boun ded.
Since ¢.,(Z) are holomorphic in (8, 6:), by Montel’s theorem, @.(Z) is also
holomorphic and satisfies the estimate (118). This proves Theorem 21.

From Theorem 21, follows
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THEOREM 22. We assume that 2m—n>r>0. For any Z<X'(0,), let F, be
any B-pseudo-differential operator such that the symbol of either F,(P+Z*™DI" +1,)
or (P+ZmD 41 F, is identically I. We define the operator E(Z) by

(119) Ej0yu=eF,le*vu) ocR,uc M X).

Then, E‘Z(a) has a kernel E(x, y,0) which belongs to 77 (Mx M, X@X')@}é&,m‘)
with

(120) | Bz, y, 0) | <Cl1+]| Zo )77 .
Moreover for any k>0, there is a constant C such that

(121) | Elz, y, Z0)—E,(x,y, 0) | <C{1+]| Zo |)7* .

E;(z, 9. 0) 15 given by the corollary to Theorem 21.

ProOF. Since the p-pseudo-differential operator G —F, is of order —oo,
Theorem 22 follows from Theorem 20.

Now our main theorem follows from Theorem 22.

THEOREM 23. We assume 2m—n>r>0. We denote the Green kernel of the
elliptic operator (P+Z%*™4t) by Elx,y,Z), where Z is in IS'(0:),0:<6;. Let
F, be any p-pseudo-differential operator such that the symbol of either
F (P+Z™DY 415) or (P+Z™D+v)F, is 1 and let ¢ be in (M) which is
equal to 1 in some neighbourhood of x and whose support is conitained in a
coordinate neighbourhood U. With a real linear function x-&=x:11+2oba+ - + 2,54
of coordinate functions T, ---,x, tn U, we denote the asymptotic expansion of
gt itea) WFZ(#‘G‘ (z+&+a0) by

(122) e“i(1-51'1:1)(/)}7’29066(z-£+30)~§ofj‘ 2@, & 0 .
i=
Then, the asymptotic expansion of Elx,x, Zo), Z€ 3'(0s), in o, is given by

(123) Ele, , Zo)~ 5 otstr(2z) | j i 2le 8, 1ds
i=0 plx) Jga

where 8; is the homogeneous degree of fi  in &, 0.

PROOF. First we note that the kernel Ej(x,v,¢) of the mapping
w—> e F , (etvu) exists in G (MxM, X®X)®5F’M(R‘) and for any k>0 there
exists a contant C>0 such that
(124) | Elw, y, Zo)—E;(x, y, 0) |<Cl1+] Zo )™

(Theorem 23).
On the other hand E‘Z (x, z, o) is given by
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(125) B, (e, 7, 0)=(27)" j Fale & 0de |
where f,lx, &, o)==t 0oF 0ei ¢t Sinee, if |&|+|0] is sufficiently large,

(126) |(Fate6.0)= 2, fr.2lr 8,90 | <ClE L+ Lol

we have, for large o,

(127)

~ N-1 |
z(, %, 0) = (27)7"0(2) 7 2 0%" fi 2,8, “d”f{
1= R»

g}fjl(x, z, o) — (27)ple) '_’2“ j F; 2lz, o, a)do
5

<(2r) ol )X (f20.8.0) -5 fis.t ))c&

g(zz-»)-w(x)g (114101 nde

Rﬂ
<@r)mel) (o) vt

(128) follows from (124) and (127).
COROLLARY. Using the notations in Theorem 23,

(128) Trace (P+0?mZ*™+1o)7!
~Fomen| WO s e e
iTe n P(T)

when ¢ - o,

§4. Examples.

Here we shall show some examples. All the vector bundles treated n the
following are trivial line bundles. First we begin with the simplest case where
n=1,m=1.

Example 1. Let M be the unit sphere S! and X be the trivial line bundle
on S. As a local parameter of S!, we choose the arc length x. Consider the
elliptic operators

d? d

— . R ad y 1 1
P= dm2+b(x) e +elx), b,ce F(SY, on S
and
__@¢ & a 1y Rl
Q== i~ 35 ~+b(x) in +¢(z) + 7o, 7,>0 on S!XR!.
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Let #,€ 8! and z-& be a linear function of the coordinate z, in some neighbourhood
of z. Then for any C* function ¢ which is equal to 1 near z, and has its support
contained in a coordinate neighbourhood of wo,

et (:.5+sa}§gQ¢ei (z+f480) :§2+02+1b(ﬂ3)5+0(x) +7q .

By Theorem 15, if 7, is sufficiently large, the inverse @' of @ exists as a S-pseudo-
differential operator. Setting

e—i{z-f%*so)gpQ—lgDei (:-E+M)~§ gj(x, 5’ g)
3=0

near o, gj,7=0,1,2, ---, are determined by the generalized Leibniz rule:
(129) o go=1
gt 290 00 o oo

(130) gi-qot+ or 08 +go-1=0

. o 09s0q o 090 Bq 1 0% %o _
(181) I O M R R el
where
(132) go=£&%+0°
(133 @1=th{x)§ ,
(134) gz=c{x)+7p .

Therefore, we have

03 —
(136) g1=—b§ (g +o?)?
(137) ga= (210’ ~b?—c—7o)(§?+0%) 2

+ (b2 —2ib') (£ + 0%) %o

Since

B Jp—— S
Lle‘-’w?"’” ’ Sm Eror =2

j _& 3,
a (E2402)3 -8

Applying Theorem 28 to this case, we have

g5,
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(138) Elzo, 20, 4/ 0% +7) =‘12“0‘“ + { ~1~1é/-(2ib’ (o) —b(zo)?} — :11 {e{zo) +70) }0‘3 +0{o-%)

where E(z, v, ¢) is the kernel of the Green operator (P+06%)~!. Replacing ¢? with
o2—7¢ in (138), we obtain

THEOREM 24.
(139) Elzo, 20, 0)~ ; ot {«4116 (24’ (o) — b(ao)?) — i clao) }a~s+0(a—5)
and
o - _ 2% 1 y 1 _
(140) trace (P+0%)~'~zo~l4a SS { - (21b (a:)—b(a:))——»'vc(x)}dwo(o 5.
o (16 4

REMARK. The second term of (139) and (140} does not always vanish.
As special cases, the following two cases among others are interesting.
(i) b=c=0.

In this case, we have from the generalized Leibniz rule,

oy T
(141) go=(§2+0%)2, g:=0, gF‘(‘éé;@)e’
0=gs=g4: cre =g 1=t .

Therefore,

s 1 Ty _

Elzo, 2o, v 024 1o) ~ o 1— 4 3+0(o"¥)

for any N>0.
Thus for any N>0,
(142) tim 0% Bl 20,0) = 5 o) =0.
(148) lim (o¥ trace (P+0™) '—zo~1)=0.

o0

{142) and (1438) can be verified by calculating Elz,z,0) exactly. In fact, we have

(144) E{x,x,0)=""0"1coth 20

AT NI

0'1(1—‘264”‘}‘ . ) .

iy b=0, ¢=—2qcos2x.
In this case, P is called the Mathieu’s operator. (139) and (140) give,
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(145) Blao, 20,0)~ 7+ g €05 21)o 0 + 00"

{146) trace (P4 o) "1~ma~140(c"5) .
Now we examine higher order term. (185), (136), (137) give
(147) go=(£+0%7", g1=0, g2=(2q cos 2x—7o)({§*+0%) 2.

And the generalized Leibniz rule gives

. gy 092 00 o 0G0 0qa 1 gy 0°qn 1 ¥y 9 _
gsGot-g2-qa1-t ow ot +go-qs+ Y 9 ot aez 31 ops  oev -
Therefore

— o 092 0q_
(148) gs= Qo( on o )

=4q(&%+0%)~%(sin 22)2¢ .
As to g, we have

ot 292 00 1 O%ge O _

(149) ge Qo+ ox  og +g2q2+ 2 o =0
replacing g., gs with (147), (148) we have
(150) g.= {(2q cos 22 —70)2 —24q eos 22} (£2+ 072

-32q cos 2x0% (&% 4 0%) 4.
Since

de 531, o d& 3
Sm (€02 T 642" S “42 ™

integrating (150) in & over R?, we have

1

a 3 3 .
(27) Sm gulx, &, 0)d§={ 431 cos?2x +g eos 2z — 4 Toq COS 20 470 IVGA}G 5,

Therefore,

E(x()y Zo, '\/02+7D)~ ; 0‘~1+( 1‘(1 [da] 2{,{:"“’1 1‘0)0"3

2

3 1 3 3
+ ( 4 cos? 2x+~§q cos 2z~ 4 Fod 08 2x+ 16 % )0'5

+0(g~7) .

Replacing ¢% with ¢2—1, and integrating in =, we have
THEOREM 25. For Mathieu's operator P, we have the asymptotic expansion,
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(147) Elx, x, o)~—é o 14 é q cos 2xo“3+(—z~ cos?2x+ éq cos 2::)0'5
+0{(e"7) .
(148) trace (P+0%)-lmmo-1 +2 70-54-0(0~") .

Example 2. Let M be a compact orientable compact Riemannian manifold of
dimension # and let X be the trivial line bundle over M. In the following we put
P=4" where 4 is the Laplace-Beltrami operator associated with the Riemannian
structure of M. First we note that if 2m>n, the value Bz, =, 0) of the Green
kernel of {4™+¢?")~! on the diagonal set of MXM is obviously independent of
local coordinates.

A simple but interesting consequence of Theorem 23 is the following gener-
alization of Example 1 (i).

THEOREM 26. If the metric of M is locally Euclidean near x in M, for any
N>0, we have

(149) lim a”{E(x, 2, 0) — (27) P, 1 (2m) "t —— T an—zm} =0.
ome sin- "

If M is locally Euclidean,
T
2m

(150) lim oN{trace (4™ +a?™) "1 — (27) Pw, 1 (2m) 71—
e sin

Where, w,_y is the volume of the unit n—1 sphere and v(M) is the volume of M.
Proor. We have only to prove (149), because {150) follows from (149).

For any o€ /(M) with ¢=1 near = and with its support in a coordinate
neighbourhood, setting,

6-i(x'e+”)§0Q§Dei (x-£-+ag) -—_:q(x, 5’ 0) =l E |2m+02’"+‘¢.’0 s

where z-£ is a linear function 2:&;+ - - - +2,£&, of the coordinate functions x4, - - -, 2.
Therefore, we have
glx, &, 0)=( &P +om4y)t,

Replacing ¢?™ with ¢°"—71, and integrating in & over R", we obtain
E,s, o)~<2n)-»jmu g |om -+ 0%m)idg

— -n -1 . ,n,v, p—— ’n, - n—2m
— (27)~"(2m) w,,-lB< ey 1= )a .
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This completes the proof.

It is interesting but very complicated to calculate the asymptotic expansion
of Elz,z,0). In the following, we shall confine ourselves to the case that M is
an orientable compact hypersurface embedded in R**! with the metric induced by
the embedding and we shall give a geometric interpretation of the second term of
the expansion.

Let M be an orientable smooth compact hypersurface in R**! and let @ be a
unit tangent veetor to M at z in M. Then the curvature of the geodesic tangent
to w at 2 iz a symmetric quadratic form a(w). The eigenvalues pi(x), p2(2), < -, Pa()
of the matrix associated with a(w) are called principal curvature of M at x. The
J-th mean curvature K,(z) of M at x is the j-th elementary symmetric function of

n~-prineipal curvatures divided by < . >, that is
J

(151) ( ; K=, S, pule) - puyla)
Our results are the following
THEOREM 27. There exist constants A and B depending only on n and m
such that for any smooth compact oriented hypersurface M in R™:, the value of
the Green kernel of P=4%", 2m>n, on the diagonal set in MxM admits the
asymplotic expansion,

T R a-n—Zm
nw

2m
+{AK,(z)?+ BK;(2))g»im2
+ 0o 2m—4) |

(151) Elx, z, 0)~2n)"2m)~ 1
sin

ProOF. Choosing a suitable orthonormal frame in R™*!, we may assume that
M is given by 2,.1=1/2(px¥+ - + .22 + 05, p;=p;(0), where and hereafter we
denote by O, those funetions u of x,,---,x,, which satisfy

[y |4+ 2z Dulrr-z) |<M as z;—0.

Thus the metric on M is of the form

ds*= E"?‘, (Ok1— Qi (Pr1- + - Putn) + Os)dzida,

k

here a;;(r1, -+ -, 7.) is & quadratic form of 7;---7,. So that the Laplace-Beltrami
operator is
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]
—df= 2 0y —aipas, S Pala) +05) é’;
g
3 bulp - pIm 0D T
3 X

)

where ¢;;(py, -+, P) is a homogeneous polynomial in py, -, p, of degree 2. From
this, we have

A2f = 3 (8;;—2a;;(;rxs, + -+, Dala) +Os) o

ik ox ax am,‘
of
+‘,j'k’l(0¢;kz(171, <, Pa)y+ Od)- o301, axk
af
+‘_§k(d;‘j(Ph <o, DA+ 0 02:0z,

+lower order derivatives of f,

where ¢;;u1(rs, =+, 7x), and di;{rs, <+, 7.) are homogeneous polynomials in 7y, -+, 74
of degree 2.

I z-&=x:1-&61+ - +2,-&, is a linear function of z, and if o€ F (M), ¢=1 near
the origin and has its support in a small neighbourhood of the origin, we have
the following asymptotic expansion near the origin

e-‘i (:-e+:a)§0(dﬂm+Df7ﬂ +T0)(pe{ (z-E+80)
=2 ( =20+ 066,62 | § |Pri+ o

B, 4.0k

+<Z’)i JZk l(c;,»“(pl, o, D)+ 00)E,6,8, | £ 124

+<m> ) ': pl, "’,}),,)4*01)5,'5”5[2"“4

+lower order term in &, 0.

Therefore, setting

(x & 0') ’2 ( u(plxlr DY pnxn) +08)§¢f,5f I E |2m“‘

i(z, &, 0)

(
I

{153) ﬂ;) c”"‘ (D1, + -+, P T+ 026 646, | § 1P
m

2 )t Tk tJ pl: MY pn) +01)$«'55 I e '219;—(

we have, by the generalized Leibniz rule,
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r}o'fh:l
. . 8ge g _
(154) g Qo+go %4‘? axi 85‘ —0

. . 9. 9 _ . g 0gy 1 Tgo g _
rQutu @it D o gg, TOUtI G s t o B om0 seag, 0
From (154)
go=qv"
- 3y O ?

Considering ¢o(0,&,0)=|&[?™+¢?™ and ¢,(0, £, 0)=0, we have
91(0,§,0)=0,

and
,091 e -2 ach__“ -3 m@f‘fqtmﬁqq*)
0 lu=o <q“ Oz o 2: 0z,0x; 0&; /l.=0
7 2go - 0—2_, 9%q,
ax,ﬂxj 2=0 6x,-6xj Z=0 »
So that
- 990 -3 0%q, 0qo _2 0qy
155 = 1( < A0 THe _,>
(155) ge 20 & 2‘35" o i Om0x; 08 o oz, £=0
~ 5 ' gz
=0
—oc L s % ~24«9,2‘1°,W_>
o (22 o202, TP Vonm; Mo

After replacing qo, ¢1, ¢2 in (155) with (158), integrate in & over R*, then we have
the result.

From Theorem 27 follows

THEOREM 28. Under the same condition as in Theorem 27

(156) trace (4™ 402 =i~ (27)~"(2m) "1 - p(M)gm2m

+<AS K (x)de+ BS X, (x)dx),n—zm—z
M
+0(0n—2m—2) .

A, B are constants depending only on n and m. (M) is the volume of M.
REMARK. It is possible but rather complicated to determine the constants 4
and B above. We omit to do this here. But in the case of n=2 m=2, after a
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somewhat long calculation we can prove
THEOREM 29. If M is an oriented compact C* surface in R®,

(157) Elx, z, 0)~ '1‘61:“—” {217:-1H(x)2 _m,1307 71K (x) }a"-{-O(o“‘) ,

where H(z) (resp. K(z)) the mean (resp. Gaussian) curvature of M at z.
THEOREM 30. If M is an oriented compact C° surface in RS,

1

2 —~— -2
(158) trace (42404 67 v{M)o

+ { 217:“15 Hiz)¥dx ——;7—2~0f~75"v(M Jx(M) }0 -
" 3

+0(c7%),

where x(M) is the Euler-Poincaré number of M.
To obtain (158), we have only to integrate (157) over M and apply the Gauss-
Bonnet formula.

University of Tokyo
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