Theory of Hyperfunctions, II.

By Mikio Saro.

Suggested by the theory of distributions of L. Schwartz, we have introduced
another generalized concept of functions, that of hyperfunctions, which ineludes
that of distributions provided that the underlying manifold is analytic.

In our previous paper [9], we have expounded the theory of hyperfunctions
of one variable, but we have hitherto given only a rough outline of the theory
in case of more than one variables in [8]. The purpose of the present paper is to
give a full account of the general formulation of our theory. (The proof will be
published in a subsequent paper.) All definitions and theorems are so formulated
that this paper can be understood without reference to our former papers.

We have announced in [97 that we shall develop further our theory in case of
one variable in a forthcoming paper. We have however noticed in the meantime
that we had better include the * further theory >’ we intended to develop in a
“forthcoming paper’’ in the general theory, so that we have changed our program.

As we have sketched in [8], our generalization of the function concept is
carried out in utilizing the (relative) eohomology theory with sheaf-coefficients.
We can define each hyperfunction on a given m-dimensional real analytic mani-
fold M which ean be ‘analytically prolonged’ to a paracompact m-dimensional
complex analytic manifold X, as a relative m-cohomology class of X mod(X—M)
with coefficients in the sheaf of analytic functions (or more generally, in a locally
free analytic sheaf). By the excision theorem for relative cohomology moduli,
our definition does not essentially depend on the choice of the ‘prolongation X’.
In case M is an oriented manifold, our hyperfunction may be (at least locally)
regarded as a sum of ‘boundary values’ of some holomorphic functions in the
prolonged complex manifold. The concept of hyperfunctions may also be con-
sidered as a special case of another new concept: that of ‘analytic distributions’
which is defined on any (locally) closed subset of a complex analytic manifold.
The relation between these concepts can be schematized as follows:

Analytie distributions \
S Hyperfunctions

Cousin’s additive Qistributions\\
(modulo an ideal) S )
“Dirac functions
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It is shown that ecach hyperfunction on M can be identified with a cross-
section of an analytic sheaf over M (the ‘localizability ’ of hyperfunctions), that
each hyperfunction defined on a subdomain of M is always extended to a hyper-
function on M (the ‘eompleteness’ of hyperfunctions), and that the module of
holomorphie functions (of some type B) on M and the module of hyperfunctions
(of the type complementary to B) with compact carrier on M, constitute a couple
of mutually dual topological vector spaces in a natural manner provided that
the manifold M is paracompact (the ‘duality theorem’, which is closely related
to the Serre’s duality theorem for complex analytic manifolds).

The present paper consists of three Chapters. In Chapter I (81-§3), we
summarize briefly the results of [9) and show that they can be neatly expressed
in the language of the cohomology theory of sheaves. (The knowledge on sheaf
theory is not assumed beforehand.) This will also serve as a motivation to the
formulation of the general theory in terms of sheaf theory (see especially §3).
Chapter 11 (§4-45) concerns the cohomology theory of sheaves in general. In 84,
we summarize the well-known results on cohomology moduli with sheaf coeffi-
cients after Cartan [17], and extend them to the relative case. In §5, we intro-
duce all sheaf-theoretical notions used in our theory, in particular those of
associated relative cohomology moduli, of sheaves of distributions, and of pure
codimensionality. After these preparations, it will be easy to formulate our
theory systematically in Chapter III (§6-810); we shall extend all the results of
Chapter I in case of dimension 1 to the case of arbitrary dimensions in this last
and main Chapter of the present paper. (For the sake of simplicity, we confine
our eonsiderations to paracompact (complex and real) analytic manifolds through-
out this Chapter.) Further details as well as various applications of the theory
will be given in our subsequent papers.

The author expresses his hearty gratitude to Professor K. Yosida and Pro-
fessor S. Iyanaga for their kind encouragement throughout the investigations.
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Chapter I. A Summary of the Case of One Variable.

§1. Definitions.

Throughout this paper, C, R denote the complex plane and the real axis,
respectively. For any open set DcCC, D) will denote the ring of all holomor-
phic functions in D.

1.1. Let S be any locally closed subset of B (S will keep this meaning throughout
this paragraph). We denote with ©(S) the family of all the complex neighbor-
hoods of S, i.e. the open sets of C containing S as a closed subset. We denote
with %(S) and with %(S) the inductive limit of {M(D); DeD(S)} and that of
{?i(D—S y; De®(S)} by the canonical homomorphisms, respectively. AS) is re-
garded as an extension ring of (S) in a natural manner, whence an WS )-module
B(S) is defined by

(1.1.1) B(S)=(S) mod A(S).
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Each element of B(S) is called a hyperfunction on S. By the definition, each
hyperfunction g B(S) is represented by an element of (S) and hence by an
element ¢ D~S) with some D=T(S). We call such ¢ a defining function of
g, and write
g=l¢, D]={¢; or g@)=[¢@)] ...
Setting I=R D (a real neighborhood of S), and regarding g(x) as a hyper-
function on J in a natural manner, the above expression is written in the form*
(1.1.2) g(z)=¢(E+10)—¢(z—1i0)
where the * boundary values’ ¢(z+i0)eB(I) are defined by
¢(z-+i0)={e(2)¢ (@) ]2 ¢(2—i0)=—[E(@)¢ ()],

with
1 o Be. (JIz>0)
@<z)_{ . £(2) = o( z)w{ . ez
Furthermore, defining 1&B(I) by 1={&(2)3,..=~—[#2)],.. and identifying each f&
(7Y with f-1<B(), we can consider (/) as canonically embedded in B(I):
(1.1.3) WHTBUD.

We shall list now operations on hyperfunctions ((i)~(vi)).
(i) We have, for any f.€%S) and ¢.=[¢,.1€B(S) ¢=1,2,---, n),

NITOIAGRINTCIO

(ii) For gla)={¢(@)]...€B(S), we define
d ol 4 oy
2 g(x) e 9(2)_4:
whence we have, for any linear differential operator L.=fy(x) ;1! A+ ()
with fu(x)eWS),
L,g(?:)—'r 1Lz(rﬁ(z)4]z & .
(iii) For g(z)=[¢(2)]...€B(S), we define
g@)=—{¢@1: ., (E@=¢@)
whence the real part Ng(a) and the imaginary part Sg(z) of ¢(zx) are defined in
an cbvious manner ; a hyperfunction g(x) is called real-valued if Jg(x)=0.
(iv) For any open subset S’ of S, we have a canonical homomorphism
B(S) - B(S")
in which the image ¢S’ of g=[¢, D]&B(S) (the restriction of g onto S§') is
given by

*  The symbol [¢(2)].., may now be regarded as an abridgement of the symbol [¢{(z)132715

2= 10"
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g!8'=(¢, D']
with D’e®(S"), D'cD. The carrier of g is the smallest of closed F such that
gi(S—F)=0, while the carrier of singularity of g is the smallest of closed F
such that ¢g(S—F") is holomorphic.

(v) Let z=%x’) be a holomorphic function on I’ with the value in I such
that d&(z")/dz’+0 on I', I and I’ being open sets of R. For any g(@)=[¢{(z)7. .
eR(I), we define

g(&(x)) =+ Lg(E(N ] eV,
where + denotes the sign of d&(&’)/da’.

(vi) Let g=[¢, D] be a hyperfunction on a compact set KcR. We define
the definite integral of g(x) by

f glxydx=— 9{ ¢(2)dz

where I" denotes a rectifiable path in D going around K in the positive sense.®
For each g&B(K), we have g=[¢y, C] where ¢,&NWC—K), the standard defining
Sunetion of g, is defined by

1 1
¢o(z)= o0ri [ ~-:~L;:é~~g(:v)dfc (zeC—-K).
K

1.2. For example, a hyperfunction d(z) on {0}, the Dirac function, is defined by

R 1 1 . 1 ) 1 N 1
i@)== 5 [ z J‘ 2~@< 2+10 T x—1i0 )
for which we have

it
z-6(x)=0, 2-0"7(x)=-—no" "(z), (8""(@;'—;’@“ 6(9:)),

whenee it follows that the C-module spanned by 4(z), d'(x),---, 69 (x) constitutes
an A({0})-submodule of B({0}). d&(x) and hence the derivatives o'(z), 6"(x),--- are
all real-valued. We have, for any f(z)eN({0}),

fﬂwmwﬁm,fﬂmWMmPWﬂ%%
0}

]

§2. Localizability and Completeness of Hyperfunctions.
Now we shall give main properties of hyperfunctions.

2.1. Completeness. First of all, the existence of the standard defining function
for a hyperfunction on a compact set in R stated in 1.1. (vi) is generalized for

* It isialso easily shown that if g(x) depends on some ‘holomorphic parameters’, then
the definite integral of g{x) is a holomorphic function of these parameters.
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an arbitrary hyperfunction in the following manner.
Let S be a locally closed set in R, For any g=B(S) and for any Dy&(8),
there exists ¢oN(Dy) such that g="[¢s, Dy]. This means that the exact sequence

0~ U(Dy) — ADy—8) -+ B(S)

with canonieal homomorphisms is now completed to the exact sequence

(2.1.1) 0 A(Dy) — A(Dy—8§) — B(S) — 0,

or equivalently, that we can define B(S) by
B(S )= W(Dy— 8 ) mod W(Dy)
by means of any fixed Dy&T(S), instead of using the inductive limit as in (1.1.1).
From (2.1.1) follows
(i) that for any closed set F' of S, hyperfunctions on F are identified
with hyperfunctions on S whose carriers are contained in F, or equiva-
lently, we have an exact sequence
0~ BF)—B(S) — B(S—F)
with canonical homomorphisms, and
(ii) that for any open set 8’ of S, each hyperfuction on S’ is extended

to a hyperfunction on S, 1.e. the homomorphism by restriction: B(S )i‘ft-‘B(S”)
is surjective (Completeness theorem).
The results (1) and (ii) are subsumed in a single exact sequence :

(2.1.2) 0 = B(F) — > BS) I B(S— F) — 0.

2.2, Composition and decomposition. On the other hand, let {F,; n=1,2,.--}
be a locally finite family of closed sets of S, and let g.(x)e®(F)), n=1,2, ---,
be given. Then it is proved that there exists g(x)e®B(S) such that, for any open
subset §’ of § which intersects with only a finite number of F,, we have
glS'=1g.!8

where the sum in the right-hand side runs over those n for which §’ intersects
with F',. Clearly such g{z) is unique. We therefore call g{x) the sum of {g.(x);
n=1,2,---} and denote

2.2.1) g@)=1g,(x).
(2.2.1) implies
f(m)g(:t):;;if(x)gu(w) {(Ax)yeAN(S)),

g)=2g.x)  g¥(@)=2 g7 ().
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For example, let £(x) be a real-valued holomorphic function on an open set
ICR whose zeros x=ua,, a, --- (€1I) are all simple. Then we can define d(£(x))
eB(I) by 1.1. (v), and obtain

BEEN = F (@) - dr—a.),
Fa)p(Ea)=X1 @)E @)l -6 —a.).

Now it follows from the results of 2. 1. that, for any g(x)eB(S) and any
locally finite closed covering {F,; n=1,2, ---} of S, there exists a decomposition

g(x)z’_\;ign(a:) with g.(e)eB(F,) (Decomposition theorem).

2.3. Localization theorem. Furthermore, let {S.; «=N} be an open covering
of S, and let g {x)=¥®(S,). We shall say that {(S. ¢.); «&N} constitutes a
localized hyperfunction if every pair g., g; has a common restriction on S,~Ss:
galSa/\S!S:g;}'Sa/—\S;;.

Then, it follows from the above results that, for any localized hyperfunction
{(Sa) ga); ®E N}, there exists a hyperfunction geB(S) such that g.=g|8S. for
every a<=N. In short, every localized hyperfunction is equivalent to one (and
only one) hyperfunciion (Localization theorem).®

The definition (2.2.1) of the sum of {g,}, g.€B(F,), can be now paraphrased as
follows. Let {S.,; «a=N} be an open covering of S such that each S, intersects
with only a finite number of F,, and define h.&B(S.) by k.=>'9.|S.. Then
{(has Sa); a= N} constitutes a localized hyperfunction, and hence defines a
hyperfunction g=B(S). This g, which does not depend on the choice of {S.},
will be called the sum of {g,; n=1,2 ---}.

Another application of the localization theorem concerns the product of
hyperfunctions ([7], §3). Let g,(2),---, g.(x) be hyperfunctions on S such that
their carriers of singularity are mutually disjoint. Then we can define their pro-
duct g(x)=g:(x)---¢.(2)eB(S) as follows. By the assumption, we can choose an
open covering {S,; ae N} of S so that g,(z), -, g.(z) are all holomorphic on S,
with possibly one exception. Hence an A.(z)=B(S,) is defined by humll ¢.1Ss. Then
{(he, So); a€ N} constitutes a localized hyperfunction, and hence deﬁnes a hyper-
function g(x)eB(S). This g, which does not depend on the choice of {S.}, will
be called the product of gi(z),---, g.(z).

Furthermore, let ¢.(z) be a defining function of ¢.(#) =1, ---, n). Then, on

¥ (S, 918.); aeN}Y in Proposition 24, 1 on p. 180, {9], is the misprint of {(S,, g.); a€
N1.
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each S,, the ‘ boundary values’ ¢.(x+10) are also holomorphie for every v=1,..-,
" thh possﬂoly one exception; hence we can expand the product
g() = H (w,(:uLzO)wc*,('L—uzO)) as follows :

(2.3.1) glay= X1 -, g(edi0)- s ¢zt ,100)

(S50 PRE R
where right-hand side stands for the sum running over all 2" combinations of
signs.

2.4. Localizability from the view-point of sheaf theory. The above results can
be now neatly reformulated in the language of sheaf theory. We shall remind
here some concepts of the sheaf theory which will be used in the following.

Let X be any topological space. We shall denote with £(X) the totally of
open sets of X. If for each De¥(X) there corresponds a module {(D), and if
for each D, D'e¥(X), DD D), there corresponds a homomorphism opp: §(D) —
F(D’) such that gy, =identity and pp poppp=ppn (DDD'DD”), then we say
that the family of moduli {§(D); De¥(X)}, together with the family of homeo-
morphisms {v,,}, constitutes a pre-sheaf (of modult) over X. (For each ¢&FHD),
the image pou(¢)e®(Y) is usually called the restriction of ¢ onto D). If, in
addition, each %(D) is a ring, and each p,p is a ring-homomorphism, then we
are dealing with a pre-sheaf of rings.

Let U={U,; « N} be an open covering of some De¥(X). By a 0O-cochain
of W1 with coefficients in & is meant an element of the produet module 1! FUo)
ie. a ‘vector’ ¢=(¢ =y with components ¢.€FU.). A 0-cochain ﬂ_?c,‘;,)a:‘\, is
called a O-cocycle if each pair ¢., ¢ of the components have a common restrie-
tion on U, ~Us. A pre-sheaf ¥ is called a sheaf if for any De¥(X), any open
covering l={U,; e N} of D, and any O-cocycle ¢ of 1, there exists one and
only one ¥r&x(D) such that each component ¢, of ¢ is the restriction of v+ onto
U.. For any pre-sheaf %, the totality of 0-cocycles of 1l constitutes a submodule

2%, §) of H"[(U,,) The section module I'(D,F) of % over D is the module
naturally obtamed as the inductive limit of Z°1l, §) by refining the covering 1
of . Each clement of I'(D, §) is called a cross-section of §§ over D. By the
definition, we see that {I"'(D. %), De@X)}, together with the canonical homo-
morphisms, constitutes a sheaf over X (i.e. the sheaf determined by the pre-
sheaf %), and that there are canonical homomorphisms F(D)—I(D, ) (Dae¥X))
which are all bijective if (and only if) § is a sheaf. That is, each ¢&{D) can
be identified with each cross-section of § over D if and only if § is a sheaf.

In this terminology, the family of rings {N(S"); S’=¥(S)}, the families of
moduli {N(S); S'&¥8)), {B(S); S'e¥(S)}, together with canonical homomor-
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phisms all constitute pre-sheaves over S. 1t is clear that the preceding two pre-
sheaves are actually sheaves, while the localization theorem asserts that the last
one, the pre-sheaf of hyperfunctions on S, is also a sheaf.®

Remember that our sheaf ®; of hyperfunctions depends on S. If we want
to deseribe the module B(S) through a single sheaf Vxr=W, we need generalize
the above considerations to the relative case as below.

2.5. Relative case. Let X, ¥ be of the same meaning as above, and suppose
that we have an open covering U={U,; &N} of De¥X) such that a sub-
family 1 of 11 (le. W={U,; «&N'} with N’CN) is an open covering of some
D'e¥X), D'cD. (We call the couple (11, II") an open covering of (D, D). Each
0-cochain (or 0-cocycle) ¢=(¢u)ecx of Il with coeflicients in & will be called a (rela-
tive) 0-cochain (or 0-cocyele) of Wmod W if ¢,=0 for every «c N’. The totality
of O-cocycles of 1lmod 1l constitutes a submodule Z'0lmod UV, &) of Z%1L {).
We shall denote with I"(Dmod IV, %) the submodule of I'(D, §) naturally obtained
as the inductive limit of Z°1lmod I/, %) by refining the covering (i1, IV') of (D, D).
By the definition, Z%lmod V', ) is the kernel of the canonical homomorphism :
Zo1, $)—2Z°0V, §); hence I'(Dmod D', %) is the kernel of the canonical homo-
morphism : I'(D, F)—I"(D', §), or equivalently, the diagram
(2.5.1) 0-——I(Dmod D', §)—1I'"(D, §)—>I'(D', %)

is exact. If (D,, D)), D;DDj}, j=1,2, are two couples of open sets of X such that
D,oD,, D;oDj; we have a canonical homomorphism (the homomorphism by re-

* If Vweiuse Cartan-Serre’s theory on coherent analytic sheaves {Cartan [2i, [3]), we
can derive the localization theorem and the completeness theorem as follows (17]). Let
X be a non-compact Riemann surface, S a nowhere dense closed set in X. For any Dag(X),
we denote with 9{D) the ring of all holomorphic functions on D, and with B(5) the quo-
tient module (D ~ S)mod (D) (regarding (D) as a submodule of WD~ SY. Let I, 9, By
denote sheaves over X determined by the pre-sheaves {(D); Deg(X)}, {ND-S); DX,
{B(D); DEL(X)} respectively. The sheaf Bs has the stalk 0 except over S, and reduces to
the sheaf of hyperfunctions when S is a leeally closed set in R and X is a complex neigh-
borhood of S.

Clearly we have an exact sequence of sheaves

0 s A s A s B 0,
As X is a Stein manifold of dimension 1, and ¥ is a coherent analytic sheaf, the cohomo-
logy moduli H™X,%) of X with coefficients in ¥ vanish for all #n::1 by the theorem of
Cartan-Serre. Therefore, the above exact sequence gives rise to the exacl sequence of
section modules immediately :
0 e A(X Y s WX = 8) s [(X, By — 0
In case where S is a locally closed set in R, this result shows that any localized hyperfunc-

tion on S has a defining function (X~ S). This includes the localization theorem and
the completeness theorem.
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striction) : I'(Dymod D{, )~ I'(D;mod D}, ¥). In particular, for any D;, D,=9(X),
it is easily verified that the homomorphism

[(D;~ D mod Dy, §)—1'(Dymod Dy ~Ds, )

is bijective (the excision theorem); in other words, (identifying moduli which are
mutually canonically isomorphic) the relative section-module I'(Dmod 2, §§) essen-
tially depends only on the difference S=D- I’ (which is a locally closed set of
X).—This is why we use the notation *Dmod D'’ and the adjective relative’.
To emphasize this fact, we shall also write I'w.i(S, %) instead of I'(Dmod D', §);
thus, for any locally closed Sc X, we have ['wi(S, ®)=I"(Dmod(D—S), §) where
D) denotes any of open set &¥(X) containing S as a closed subset, or equivalently,
(2.5.1) is rewritten as follows:

(2.6.1) O~ I'eel(S, ) == 1'(D, §) - I'{D-8, F) (exact).

For any De¥(X), we have clearly I'ceil(D, H)=1"(Dmod ¢, §)=I"(D, §) (6=empty
set). On the other hand, (2.5.1) is generalized as follows: Let D, I/, D”e¥(X)
be a triple such that D>D’'>D”. Then we have an exact sequence by canonical
homomorphisms

(2.5.2) 00— 1" (Dmod D', §)—>I'(Dmod D", §) — I'(D'mod D", i¥).
Again, this can be rewritten as follows:

(2.5.2) O eI, §) —— Ial(S, )~ Lrat(S—F, §)

where S and F denote any locally closed set of X and any closed subset of S,
respectively.

Employing these notations, it will now be obvious that the module B(S) of
hyperfunctions over a locally closed subset SC R is expressed as follows by means
of the sheaf B="Bx:

BS)=1"vel(S, B)=1"(Imod (I—S),B)

where I denotes any real neighborhood of S.

Now, a sheaf i over X will be called complete (or hyperfine) if for any D,
D'e(X), DD, the canonieal homomorphism {(D)—{(D’) is surjective. This
is equivalent to say that we can add ‘-0’ to the exact sequences (2.5.1) and
(2.5.1y, or further, to the exact sequences (2.5.2) and (2.5.2). Furthermore, it
is proved that a sheaf § is complete if (and only if) it is locally complete, i.e.
for any p& X there exists an open neighborhood U of p such that the restriction
$U of & onto U (=the sheaf over U defined by {§(D); De¥(U)}) is complete.

Using this terminology, the completeness theorem for hyperfunctions, or
equivalently the formula (2.1.2), is nothing else but the assertion that the sheaf
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B over R which we have described above, is a hyperfine sheaf.

On the other hand, for any sheaf § over X and any locally finite closed cover-
ing {F.; »€N} of X, we can define a canonical homomorphism H L) — HX)
in an analogous way as we have defined the sum of hvperfunctlons in (2.2.1). It
is proved that this homomorphism is surjective if § is a complete sheaf; in other
words, the decomposition theorem is a consequence of the completeness theorem.
(This result is proved in the same way as the decomposition theorem for hyper-
functions ({91, Proposition 23.2) by employing Zorn’s lemma.)

We shall call a sheaf § fine if for any closed set X the canonical homo-
morphism pry : FX)—F(F') is surjective. Then, § is fine if and only if it is locally
Jine, i.e. if and only if each p€X has a neighborhood U>p such that $IU is a
fine sheaf over U. By the definition, every hyperfine sheaf is fine. If a sheaf
is fine, then for any D& E(X) and for any locally finite open covering {U,; a€ N}
of D, the canonical homomorphism 11 I'voi(U,, $5)—I'(D, §) is surjective, and con-
versely. In case the module U(D) I\S completely reducible for every De(X)
(which is the case if & is the sheaf of moduli over a certain field)*’, the condi-
tion that F' is fine is equivalent to the condition that for any closed set FcX
there exists a homomorphism 75 : F(F)—-HX) such that ppyee,=identity mapping
of F(F'), or further, to the condition that for De(X) and for any locally finite
open covering {U.; a€N} of D, there exists a system of homomorphisms 7, :
X, ¥)—rei(Uy, §) such that, denoting with « the canonical homomorphism
Iei(Us, H)—I(X, §), we have N 2 e 7.=1; hence in this case our definition of fine

sheaves coincides to that of H. Cartan [17.x%

§£3. Local defining functions.

3.1. Let {(Ss, 9o); «€N} be a localized hyperfunction on S, D a complex neigh-
borhood of S. For each a«& N, we have

(31.1) ga:[‘;"m U{r]

with some ¢, €W U,—S) and some U,=(S), where, by replacing U, by U, D
if necessary, we may assume U,c D from the beginning (Fig. 1). By the assump-
tion, there is a ¢ ;=W U.~U;) such that

3.1.2) ¢u(2)—os(2)=¢as(z) on U,~Usz—S

*' Actually, we consider in Chapter III only analytic sheaves, hence only sheaves of
moduli over the complex number field C.
**> In R. Godement [5], hyperfine sheaves and fine sheaves are called faisceaux flasques

and faisceaux mous, respectively.
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Fig. 1

for any «, 3& N. Conversely, if we have a complex neighborhood D of S, a family
{U,; o€ N} of open subsets of D such that L_J{]liDS, and a family {¢.; «EN}
of holomorphic functions ¢,eWU—-S) satisf;ii{\g the condition (3.1.2) with some
¢ EMU, U, then a localized hyperfunction {(S. ¢«); «&N} on S is deter-
mined by (3.1.1), and hence a hyperfunction g(z) on S. We call {{(¢., U.); «&N}

a system of local defining functions of g(x), and denote

(3.1.3) g={(¢e, Us); «eN]=[{¢.; 0&N], or
9(@0)=[(¢a(2), U); a& N1, ={¢a(®); «a€Nl...
In particular, we denote
g= l:(‘,'nli U!)y' t ('rf"m [jn)j: [‘fnly' M) ‘f’\'n]

if the index set N is the finite set {1, 2,---, n}.

Now take any open covering of D—S. We shall denote it with W={U,; «
& N’} regarding N’ as a set of indices disjoint to N, and define an open covering
of D by U={U,; w& N>N’} (oW). Then, setting ¢.,=0 for every «x&N’, we
can define ¢,;&WU.~U;) such that (3.2) holds even when «, 3& N~ N’. Clearly
they satisfy
(3.1.4) Caal2) =0, Caglz)= "f‘in(z>» )

Cas(B) = a2)+¢s(2)=0 on U, ~Us~U; (o, JEN~N')

and

(8.1.5) ¢, i(2)=0 if «,AeN".

The identities (3.1.4) mean that ¢=(Lus)e, sox—x' constitutes a l-cocycle of U
with coefficients in %, where Y denctes the sheaf of holomorphic funections de-
fined by {MU); UsC)} (together with the homomorphisms by restriction),
while the additional identities (3.1.5) show that the l-cocycle ¢ is a (relative)
1-coeyecle of Wmod . Conversely, if I, 11/ are as described above (ie. Il is an
open covering of D—S and 1l is an open covering of D containing 11’ as a sub-
family--in short: (I,1I") is an open covering of Dmod(D—S8)), and if
¢=(¢usd, 5ov- 57 18 any relative l-cocyele of Umod Il with coefficients in %, then
a system of local defining functions {(¢., U.); «&N}, ¢.€WU,—S), is determined
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by the identities
'r‘u(z):‘;ax(z> on Um’\ Ur& (‘Yéf\’ys KEA”);

and hence, a hyperfunction g(z)&®B(S). It is easy to see from the definition that
two of such l-cocycles of Umodll, say ¢=(¢u:)escv—y and ¢ =(¢ i 5o v =7
determine one and the same hyperfunction g&®(S) if and only if there are a
(relative) O-cochain Y= Y.)ecx-r of Hmodll! with coefficients in W {i.e. a 0-co-
chain of 1l in which ¢, vanishes for every v& N’) such that

(3.1.6) Fas(2)—as(2)=Va(2)—¥3(2) on U, ~Up

for every a, S&E N~N’, i.e, if and only if ¢—¢’ is a (relative) l-coboundary of
UImod V. In other words, it is each (relative) cohomology class of 1 mod 1l with
coefficients in A that corresponds in a 1--1 manner to each hyperfunction on
S. Roughly speaking, a ‘localized hyperfunction on S’ as defined in the preced-
ing paragraph is nothing but a ‘cohomology eclass of lmod1l’ with ecefficients
in . The module consisting of all these l-cohomology classes of U modll’ is
the (relative) l-cohomology module H'(mod I/, %). The assertion that this
Hi(limod I/, W) is canonically isomorphic to B(S) is another expression of the
localization theorem.

If we take a refinement (¥, T) of (I1, I’), we have a canonical homomorphism :
H'(Umed 1, ) — H'(T¥ mod ¥, A) which however is bijective in the present case.
Consequently, we can replace H'(llmod 1V, %) by the inductive limit thereof by
refining (U, 1), i.e. by the 1-cohomology module H'(Dmod(D - S), N) of Dmod(D—S).
We have thus

(3.1.7) BES)=H (D mod(D—S), ) canonieally ;

or equivalently, we can define each hyperfunction g=B(S) as a 1-cohomology
class of Dmod(D—S8) with coefficients in A. Through handling hyperfunctions
in one variable from the local standpoint, we are naturally lead to conceive our
theory in the framework of the relative cohomology theory of sheaves.

Now, as we have announced in the foreword, and will expound fully in
Chapter III, a hyperfunction in several wvariables are defined analogously to
(3.1.7) as follows: Suppose that M is an m-dimensional real analytic manifold,
and is ‘analytically prolonged’ to a paracompact m-dimensional complex analytic
manifold X. Then, a hyperfunction on M is an m-cohomology class of X mod(X—M )
with coefficients (in the sheaf) of holomorphic functions. Or equivalently, the
module B(M) of hyperfunctions on M is defined by

BM)=H"(Xmod( X~ M), N)
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where ¥ denotes the sheaf of holomorphie functions on M. Moreover, it is proved
that we have

HAY X mod(X— M), %=0 if n#m;
whence it is derived that the localization theorem and the completeness theorem is
valid also for hyperfunctions in several variables. As we shall develop in Chapter
HI1, all the results described in this Chapter for hyperfunctions in one variable
are then generalized in a natural manner to the ecase of arbitrary dimensions.

3.2. Representation of a definite integral by local defining functions. Now if
{{¢aes Us); =N} is a system of local defining functions of a perfect hyperfune-
tion geB(K), K denoting a compact set in R, then we can calculate the definite
integral of g(zx) directly from these ¢ (2)&WU,~K).

In this case, we can choose from {U,; «=N} a finite subfamily, say {U,;
v=1,---,n}, such that U U,>S (and hence, {(¢,, U.); v=1, ---, n} already is
a system of local deﬁnigg"fanctions of ¢). Set Uy=D-K, where D denote a
complex neighborhood of K containing U U,. Then, setting U={U,; v=0, 1,
«--,n} and W={U,}, an open coveringv‘ai;'l’i?’l) of Dmod(D—K) is defined. Let
©=(¢u)n,v-0,1....,» be a l-cocycle of Nlmodll’ corresponding to the given system
{(, U); v=1,--+, n} of local defining functions of g(z). Furthermore, let .,
#,v=0,1,-+-, % be a differentiable singular 1-chain (i.e. a sum of a finite number
of oriented differentiable arcs) in U,~ U, subject to the relation I',,=0, I" =
=Ly, such that I'=Iy,+--- +I,,, a singular l-chain in U,, satisfies the
following condition (Fig. 2):

(i) for »=1,---,n, I', is a bounding cycle in U,,

(i) Iy is a eycle in U, going around K in a positive sense.

Then we have

(3.2.1) [ g(@)de=— g_‘ f ¢wnl(R)dz.
Yr - T,

Fig. 2

The formula (3.2.1) is verified as follows.

Take a defining function (e.g. the standard defining function) P2y WUy) of
g(x), and set
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0

{ U AUy (1>0, :=0)

¢m=y —¢" U~ U, (=0, :>0)
0 (otherwise).
It is clear that (¢2.). ..0,1,-, . constitute a I-cocycle of 1lmod1l’ cohomologous to
©=(®umluue0,1,---, » ; hence we have
Ful2)=¢2u(2) + ¥ (2)—~V.(2) on U, U,
with some 0O-cochain (¥.)..01...., of Umodl’ (i.e. some Y eWU,), a=1,---,nand

Yo=0). Therefore, the right-hand side of (3.2.1) is devided into a sum IL+1,,
where I, and I, stand for

:—“\‘f ‘r:u(z)dz, I ﬁ_\1f(‘l’ (7) \lf(z))dZ

Iy

respectively. Now we have

I=— ::;f ¢(2)dz= —ﬁg"(z)dz_fg(«:)dm,

uo

and

I= f V(o= 561,lf(z)dz~);

(by the integral theorem of Cauchy), and hence the formula (3.2.1).

Our formula (3.2.1) now provides us a practical means to calculate the standard

defining function ¢y(z)= 271 f 9(z) dore*l[(C'—K) from a given system of loecal

T —
defining functions; namely we have
1 ‘[ py ({ ) dw

2/1,; gj‘_‘z
I

ol 2) = —

Hy

for z€C—D.

Chapter II. Preparations from the Cohomology Theory of Sheaves.

This chapter is devoted to the sheaf-theoretical preparations we need in our
theory. Only a brief account of results is given. Further details will be given
in our forthcoming paper. As to the general theory of sheaves, we refer to H.
Cartan (1], R. Godement [5]. When we fix a topological space X, we can define
for sheaves over X such notions as subsheaf, residue class sheaf, homomorphism
between sheaves, kernel and cokernel of a homomorphism, ete. in a natural
manner. The totality of sheaves over X constitutes a category, and even an exact
category in the sense of Cartan-Eilenberg [4], Appendix. As to the algebraic
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aspects of homology and cohomology theory, we refer to 4.

&4. Cohomology Theory of Sheaves.

4.1. Cohomology moduli with sheaf-coefficients.

Let X denote a paracompact T,-space. For any sheaf ¥ over X, the coho-
mology modult of X with coeflicients in 7

H”(Xy %‘)v n:'O, 1) 21"'

are defined (Cartan [1}). They have following properties.

(i) HYX, ¥ =I(X, %),
where I'(X, %) denotes the section module of § over X.

(ii) If ¥ is fine (and hence, if ¥ is hyperfine)

H"(X,%=0 for n>1.
Git) If 0 Fm G H—0

is an exact sequence of sheaves over X, then we have an exact sequence of coho-
mology moduli
0—— HYX, %)~ HY(X, &) — HY(X, )
o HY(X, ) HY(X, §)— H'(X, )
s HY(X, §)— H(X, ©) — HX(X, 9)

— e

where 9* denote connecting homomorphisms.
Giv) 1If me,fg‘m:.,kjo“iﬂ\ xt S
is a fine resolution of ¥, i.e. if it is an exact sequence of sheaves, each X" being
fine, then H"(X, ) is canonically isomorphic to the n-th cohomology module of
the chain complex
I, -5, -5 ..
{v) I U={U,; =N} is an open covering of X such that

H“(S{rgn e mSa 8‘):0 ('n> 1)

m?

holds for any m =0 and (g, « -+, an)=N™", then H*(X, %) is canonically isomorphie
to the n-th cohomology module of the chain complex

oo, -2 CHL, F)— - - -

where C'(1L, §), n=0,1,2,---, denote the cochain moduli of Cech for the covering
11 and 6 denotes the coboundary operator.
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Let us add two remarks:

a) Roughly speaking, the properties (i) to (iii) characterize the symbols H"(X, &)
completely. Namely, if {H"*; n=0,1, 2,-- -} is a connected sequence of covariant
Sfunctors (in the sense of Cartan-Eilenberg [17, Chap. III, §4) from the category
of sheaves over X to the category of moduli such that (i), (ii) and (iii) hold,
when H" is replaced by H*, then we have H*~H" canonically.

b) The sole property (iv) also suffices to determine our cohomology moduli, be-
cause it is shown that each sheaf has a fine (even a hyperfine) resolution.

4.2. Relative case. We shall next show how the above properties of cohomology
moduli H*(X, ) are extended to the relative cohomology moduli.

Let X’ be open subset of X which also is assumed to be paracompact. To
each sheaf § over X, there correspond relative cohomology moduli of X mod X’

with coefficients in §

HYX mod X7, ), n=0,1,2---.
They have following properties.
(i) HYXmod X/, §)=I"(Xmod X, §),
where I'(Xmod X', §) denotes kernel of the natural homomorphism by restriction
I' X, §—I(X', %), ie. the module consisting of sections of ¥ whose carriers lie
in X—-X".
(it) If ¥ is hyperfine
H"(Xmod X', &) =0 for n>=1.
(If the condition * % is hyperfine’ is replaced by ‘§ is fine’, the result is not neces-
sarily true.)

Gii) If 0

F—B—H—0
is an exact sequence of sheaves over X, then we have an exact sequence of
moduli
00— HY (X mod X', §) — HY(X mod X/, &) — HY(X mod X', H)
j;H‘(Xmod X, F—— H{(Xmod X!, ®)— H{X mod X', D)
-5 HY(X mod X', ) — H¥(X mod X’, 8) — H(X mod X', H)

]

> 0

(iv) If

73
0 —oxo-toxit,. ..

is a hyperfine resolution of &, i.e. if it is an exact sequence of sheaves, each

X" being hyperfine, then H*(Xmod X, ) is canonically isomorphic to the n-th
cohomology module of the chain complex
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I'(Xmod X', ¥)—"> ['(X mod X/, X))~ - ...

(v) If U={U,; acN} is of the same meaning as in 4.1. (v), and if W=
{U.; =N’} with N'cN, a sub-family of U, is a covering of X’, then
H*(Xmod X', %) is canonically isomorphic to the n-th cohomology module of the
chain complex

Co U mod I, )~ C' (U mod I/, F)~" - - -
where C*(lmod 1, §), =0, 1, 2,---, denote the relative cochain moduli of Cech
for the couple of coverings (11, 1I’), i.e. they are defined by exact sequences
0 CH(tmod IV, §) —— C (L, §) = C"(Il', F) —0.
(vi) For X'=:¢ (—empty set) we have
H"(Xmod X', H=H"X, ¥).
(vii) We have an exact sequence of moduli
0 > HY(X mod X', &)~ HY(X, &)~ H(X', )
L H(Xmed X, R HYX, ) H'(X, ®)

b
Y

More generally, for any descending triple XX’ 'DX" of paracompact open
sets, we have an exact sequence of moduli
0~ H{(Xmod X/, )~ HY (X mod X", F) — HYX mod X", §)

e H{(X mod X, §) — HY(X mod X, §) — H(X' mod X', &)

hd

iy

(viii) If X, and X. are both paracompact open sets, we have canonieal iso-
morphisms
H "(X'l\’/}fg mod X;, C(})ZH"(X] mod XIAX-:, ((\\)

Again, let us add some remarks:
a) The properties (i) to (iii) completely characterize the symbols H*(X mod X*, )
in the same sense as the corresponding properties on H™(X, %) characterize
HYX, ).
b) The sole property (iv) also suffices to determine our relative cchomology
moduli because each sheaf has a hyperfine resolution.
¢) The properties (vi) to (viii) concern the functors H"(x, §) from the category
of topological spaces to that of moduli with fixed F. They constitute the main
part of the axioms of Eilenberg-Steenrod for cohomology moduli if our H"(x, %)
are replaced by the cohomology moduli with constant coefficients (i.e. if the
sheaf &% reduces to a stmple sheaf in the sense of [1]).
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§5. The Sheaf of Distributions.

5.1. Associated cohomology moduli and the sheaf Dist’(S, %) of distributions.
Let X and X’ be of the same meaning as in 2,2, and set F=X—-X'. F is a
closed set of X, and hence, paracompact. Let ¥(X) denote the totality of open
sets of X, and D, D’ the variable elements of ¥(X) with D’cD. The correspond-
ence D—I'(Dmod(D—F), §)*, together with the canonical homomorphisms in-
duced by restriction gppn: I'(Dmod (D—F), &)~ (D' mod (DM --F), &), defines a
pre-sheaf over X. This pre-sheaf is a sheaf. Indeed, it is the greatest sub-sheaf
of ¥ whose stalks vanish except over F. We denote this sheaf with Dist%(F, §).
By the definition, we have

(5.1.1) I'(Dmod D~ X', %)=I'(D, Dist™(F, §)).
Now we introduce a new symbol *H*(Dmod D~ X', §)** by
H*Dmod D~ X', §)=H"(D, Dist(F, %))

which reduces to I'(Dmod D~ X', %) when n=0.

The correspondence D-— H"Dmod(D—F), %) for De(X), together with
the canonical homomorphisms induced by restriction pip: H*(Dmod(D—F), )
> H"(D'mod(D'~F), %) for D,D'e¥X), D'c D, defines a pre-sheaf over X.*¥
The sheaf determined by this pre-sheaf will be called the sheaf of n-distributions
of & and denoted with Dist"(F, ). It is ‘confined’ to F, i.e. the stalks of
Dist™(F, %) vanish except over F.

On the other hand, let &* denote a sheaf which is determined by the pre-
sheaf defined by the correspondence D—H"(D—F, %) for Del(X) (together with

* Note that D—-F=D, X'e¥X).

*%) The notation Dmod DX’ is used to suggest the fact that the excision theorem
is valid for our symbol "H "(, 3), i.e. that "H"(Dmod D~ X’, ) depends only on the difference
D—D~ X’ (which is a locally closed subset of X). We shall also use other symbols such as
PH*Dmod D~ X', §) in the same sense. Generally speaking, let U X) denote the totality
of locally closed subsets of X, and for S, S'eIR(X), let M(S, S’} denote the totality of
subsets S: of S~S’ which are open in S (i.e. S,&€2S)) and, at the same time, closed in
S’. M(S,8’) is a subset of M(X). For S, §’, §"cWMX), S, (S, 5 and S.=M(5,S")
imply Si~S.€M (S, S”) and hence this ‘ ~.-multiplication’® defines a map:

M(S’, S")yx M(S, 8"y~ M(S, 8.
It is now easy to see that W(X'), together with the totality of M(S,S’) (S, S’&WY X)), con-
stitutes a category (where each M(S, S’) stands for the totality of ‘maps’ from S to S’),
which also will be denoted with (X)) for the sake of simplicity. The excision theorem
asserts that our symbols "H™*, ¥), PH"=, &), ete. are functors defined on the category
P X) {(where the argument is S=D-D. X’). See the end of this subsection.

**% For n>0, this pre-sheaf itself is not necessarily a sheaf, contrarily to the case
n=0 described above.
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the canonical homomorphisms induced by restriction).*” In particular, & coin-
cides with the sheaf ¥ (which we shall call the confinement of T onto X7)
defined by

', §x =D~ X, 5.

We have now, in a natural manner,

(5.1.2) 0 ——» Disty(F, §) -~ § — & — Dist'(F, §) —0 (exact)
and

(5.1.3) @~ Dist*Y{F, ¥) (for n>1).

Now let

(65.1.4) 0 —mr § s YO e Yo v

be a hyperfine resolution of ¥, and, for each ¢>0, let £ be defined by

0o T s YO s Y s e e Y 700 (exact).

(In particular, we set £°=3%). We define new symobols "H"(x, %), ¢=0, n>0,
which we shall call associated relative cohomology moduli,** by
(H*(Dmod D~X', %) (n<q)
P «DmodD X', 94 (n>q).
It is proved that our definition does not essentially depend on the choice of the

sH*(Dmod D~X', %)=

resolution (5.1.4). We have, further, an exact sequence of moduli which we shall
call the fundamental exact sequence of Dmod D) X'¥#%:

' Our ®* is to be denoted by J(X’, & in notation of R. Godement [1], 4.17; the
continuous map = considered there being here specialized to the injection ¢; X'—— X,

## When we wish to distinguish the relative cohomology module H*{Xmod X', &)
defined in 4.2 from these assoeiated moduli, we shall use the term *principal relative eoho-
mology module’.

#© Az we shall explain in a subsequent paper, the method sketched below is essentially
equivalent to that of spectral sequence: (5.1.5) implies namely the existence of a spectral
sequence

EV> HY {Dmod D~ X', )

-

27
where the initial term EP? is given by HP{D, Distd{F, %)). (This result is closely related to
a theorem of J. Leray; sce R. Godement, loc. cit., Théoréme 4. 17. 1.)
More precisely: We can define still more associated relative eohomology moduli ¢H%*=
TH™ Dmod D~ X', %) (¢>7) which satisfy exact sequences

o

I';q,r: ey TR GO R ,gg]{n__‘ii,r}:{nﬂ,_,4111?”!.___,....
They satisfy in particular ¢H =0 (for r=¢q), =H "D, Dist%S, &) (for »r=¢—1), ="H* (for
»<20). Generally, we have for ¢¢’, »>7 a canonical homomorphism ZH"——9H?" so that
we have a commutative diagram yielding a translation between exact sequences: E,
E, . We have further, for g>r>>s, an exact sequences

y

] 5% A%
Ly v, st s TH R ‘EH”~“—~>‘,‘TH"—¢3~“~>§H"“—~>ZH””M*EH”“——*O
The general term EJ77 of the spectral sequence mentioned above is given by the image of

the canonical homomorphism ,_, SH"——""1"1H", (n=p+q, r22).
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(5.1.5)
)‘;“lH‘:’(D mOd D,/\Xls %)
LY Dmod D~ X7, %)

ey

0

» T HY(Dmod DX, §) ~— HYD,Dists(F, i)
»HY Y (Dmod D~ X', §) — HYD,Disti(F, %))

== ITH Y (Dmod D~ X', §) — ‘H"*(Dmod D~ X', §)—> H?D,Dist«(F, }))
Note that the second term “H¥(Dmod D X', ®) is the principal relative coho-
mology module of Dmod D X,

For the sake of brevity, we shall introduce following convensions.

For any locally closed ScX, (S, X) will denote the totality of Da¥(X)
containing S as a closed subset. By the excision theorem, the relative cohomology
moduli H*(Dmod (D—S8), §) (where D varies in (S, X)) are combined by eanoni-
cal isomorphisms. Identitying the ecorresponding elements of these moduli, we
denote these moduli simply with H2, (S, &). Similarly with the associated relative
cchomology module “H7 (S, §).

If F is a closed subset of S, we have natural homomorphisms

HYDmod(D—F), §)— H(Dmod (D~-S8), ¥,
H*Dmod(D—-S). %) — H*(D—F)mod(D—-S), ),

(5.1.6)  He(F, §)—— Hei(S, ), Heal(S, )~ Hes(S—F, 3).

The homomorphisms ¢* and ¢* in (5.1.6) are independent of the choice of De=T(S. X),
as are easily verified, and will be called dilution and restriction, respectively.
If S, S’ are both locally closed in X, and if S,<S,~S’ is such that it is open in
S and closed in S’, then a homomorphism Hya(S, §)— He(S’, &) is defined by
composing the restriction Hiw(S, §)— HeolS1, & and the dilution H..(S,, §)—
Heei(S', B).

Similarly with the associated relative cohomology moduli "H"(x, ¥).

5.2. Pure codimensionaltly. In the following, we describe some consequences
of the fundamental exact sequence (5.1.5) which we shall make use in Chapter III.
In the first place, we have a canonical homomorphism

HY(Dmod(D—F), &)~ I'(D, Disti(F, {)).

Furthermore, if Dist?(F,%)=0 for ¢=0,1,---, m—1, then we have as a consequence
of (5.1.5),

. o (0 (g=0,1,--+, m—1)
6.2.1) HY(Dmod(D—F), fzy):{[,(D Dist™(F, $)) (;._m)
) ’ﬁ‘ - *
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This means that, for ¢=0,1,---, m--1, the pre-sheaves defined by the corre-
spondence D— HYDmod(D~F), %) (not only the sheaves Dist(F, 7§) defined by
them) vanish identically, and that the correspondence D-— H™*(Dmod(D—F), %)
defines (not merely a pre-sheaf but) itself a sheaf. (This is a generalization of
(5.1.1)).

Definition. The closed set FcX is called purely m-codimensional (with
respect to %) if we have Dist'(F, ¥)=0 for g#m.

Then, F is purely m-codimensional if and only if we have

i o [0 (n<m)

(5.2.2)  H*(Dmod(D—F), ;;):{HH_W(D’ DIStF) (s m)
for all Del(X).

Furthermore, if F' is purely m-codimensional, we have, for any closed subset
F’ of F,
pem (B mod (F—F"), ®) (p=m, nzm)
0 (otherwise),
where & stands for Dist”(F, %) which we here regard as a sheaf over F. In

(5.28)  *H"(Xmod (X—F), §)={

particular we have

H - "(Fmod(F—F"), &) (mz=m)
0 (n<m)
which reduces to (5.2.2) if we set F'=F. (5.2.4) implies

Dist™-"(F", &) (nzm)

0 (n<m).

(G.24)  H'(Xmod(X—F"), §)=]

(5.2.5) Dist™(F”, ?})z{

Hence

Proposition 5.2.1. Let F be o purely m-eodimensional closed subset of X
with respect to ¥, The following two conditions for a closed subset F' of F is
equivalent :

(1) F” 45 a purely n-codimensional subset of X with respect to §.

(ity F' is a pwrely (n—m)-codimensional subset of F with respect to
Dist”(F, ¥).

5.3. A generalization. Thus far we have considered the section-module I'(x, &)
or more generally the cohomology moduli H*(x, §) only in case the ‘argument’ is
an open set De(X). We can however define these moduli equally well in ease
the argument D is replaced by any subset Ec X without any essential alteration,
and have again the results analogous to those of 4.1.-5.2. The module H™(E, %)
thus defined. however, turns out to coincide with the inductive limit of {H™(D,
M De¥X), DS}, Consequently, we can derive results for H(E, §) from the
results for H*(D, 3). This principle applies equally well to the relative ease; in
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particular, we can introduce the relative cohomology moduli H*(E mod E”, %) and
SHY(Emod E',§) of Emod E(E'cEcX) as the inductive limits of those of
Dmod D’ satisfying D, D'e(X), DoE and DD’ DE".

Further, the confinement %; of § to E is defined in the same manner by
the relation

(6.3.1) I'(D, §p)=I"(DE, %).

By the definition, i) there is a canonical homomorphism ¢: §— &z which
we shall call confining homomorphism ; ii) § vanishes (i.e. has stalk 0) except
over I'; and iii) if a sheaf ® over X such that G}(X—E)=0and a homomoerphism
SF: &G are given, then there exists a unique f': §z—G with f=foe.

Using the confinement §z, we can legitimately denote, for any E, E’ (with
E'clkcX)and E,=E—E',

HYEmod E', §)=H2 (E,\, Fz)

after the conventions of 5.1. Further, Dist®(E,, &) are defined as the sheaves
determined by the pre-sheaves {H"(E~Dmod E' ~D); De¥(X)}, or equivalently,
by the relation

0

» Distd(E,, ”81) TG (:%15’)
— Dist!(E£}, §x)—0 (exact), and
3, =Dist**(E}, §) canoniecally, (for n>1),
where &, denotes the sheaf determined by the pre-sheaf {H"(E' D, Ns);
Def(X)}.
The situation becomes simpler either if E’ is closed in E* or if §is a hyperfine
sheaf. Namely, we have in either case
i) the confining homomorphism §,— 3z is surjective, i.e.
0 — Dist (&}, Fr) — T —— T — 0 (exact),
il) Dist™(E\, §)=0 for =n>1,
i) Hp(Ey, §e)="H(E), Fr)=H"(E,, Dist(E, §)). (In case § is hyperfine,
these moduli are all 0 for n>1).

54. Dimension of a sheaf. We shall say that a sheaf & over a paracompact
Ty-space X is of dimension <m (in notation: dim¥<m), if (and only if) there
exists a hyperfine resolution of ¥ of length m+1:
0 F-— X Xl ¥ s )
with X° X!,-..,X™ hyperfine.
(Some of X/ may be the sheaf 0.) We have: dim¥<—1 if and only if §=0, and
dim <0 if and only if ¥ is hyperfine.

(5.4.1)

© This is the case treated by Godement [5] (§2.9 and §4.10).
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1f
(5.4.2) 0 O El s s ¥ 5 )

is any exact sequence such that dimX¥/<m~j for j=0,1,---, m—1. Then, ¥ is
dimension <m if and only if X™ is hyperfine. In particular, if ¥ is of dimension
<m, and X°, ¥',..., X" ! are hyperfine, then (5.4.2) yields a hyperfine resolution of
5.

If ¥ is of dimension <m, then
(i) for any D, D'e¥(X), DD, the canonieal homomorphisms H™(D, §)—
H“D, %), "H™D, F)—"H"(D', %) are surjective, and H"(D mod D', ¥),
PH*"(Dmod IV, %) vanishes for all n>m.
(ii) for any locally closed Sc X, the sheaf Dist*(S,{) is of dimension <m—n.
In particular, Dist™(S, %) is hyperfine, and Dist*(S, ) vanishes for all n>m.

Conversely, ¥ is of dimension <z if any one of the following conditions holds :

(1) For any De¥(X), the canonical homomorphism H™X, §)—H"(D, ) is
surjective.

(ii) For any De(X), H*"*Y{Xmod D, §=0.

(i) For any closed subset F'c X, Dist™(F, §) is hyperfine.

(iv) For any closed subset FcX, Dist™*{(F, §)=0.
Further, ¥ is of dimension <m if and only if it is locally of dimension <m, i.e.
if and only if, for any peX, there exists an open neighborhood U of p such
that dim U< m.

Chapter HI. General Theory of Hyperfunctions.

In case X is a manifold, the condition that X is paracompact means that
each connected component of X is perfectly separable. This implies that any
subset of X is also paracompact. As we have mentioned in the foreword, all
(complex and real) analytic manifolds considered in this Chapter are supposed
to be paracompact unless otherwise is stated.

§6. Analytic Distributions.

6.1. Analytic distributions. Let X be a complex analytic manifold of (complex)
dimension m. For any De¥(X), let WD) denote the ring of all (single-valued)
holomorphic functions defined on D. The correspondence D—(D), together with
the canonical homomorphisms induced by restriction, defines (not merely a pre-
sheaf but) a sheaf over X. This sheaf, the sheaf of (germs of) holomorphic
Sunctions, will be denoted by %. We have, by the definition,
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I'(D,W=WD).

A sheaf of M-moduli is called an analytic sheaf. That is, an analytic sheaf
% is a sheaf of moduli such that each I'(D, §) is an A(D)-module and each ca-
nonical homomorphism: I'(D, §)—I(D', %), D'cD, is an WD)-homomorphism, if
we regard I'(D’, %) as an W(D)-module in natural manner. An analytic sheaf is
called locally free if for each point p& X there are an integer »>=0 and a neigh-
borhood U of p such that, when restricted to U, § is N-isomorphic to W+ .- +N
(direct sum of » copies of ). Clearly the integer » is uniquely determined at
each p= X, and assumes a constant value within each connected component of X.
If it is constant throughout the whole domain X, ¥ will be called a locally free
analytie sheaf of rank ». In this case, we can regard ¥ as a sheaf consisting
of all local sections of some analytic vector bundle B with typical fiber C7; we
shall write §=%s for it.

Let As denote a locally free analytic sheaf as deseribed above. For any
closed subset S of X, the analytic sheaf Dist™(S, 2Us) is called the sheaf of analytic
n-distributions of type B over S. Each element of I'(S, Dist*(S, Un)) is called an
analytic n-distribution of type B over S.

Proposition 6.1.1. Any locally free analytic sheaf & over X is of dimension
<m.

This proposition is equivalent to the following

Proposition 6.1.2. For any open set D in C™, we have
H™(D,N)=0.

Suppose that the proposition 6.1.1 is true. Then we have a surjective homo-
morphism
H™C™, W) ——> H™(D, ).

On the other hand, we have H*(C™, A)=0 for any n>0, as is well known. Hence
the proposition 6.1.2.

Conversely, assume the proposition 6.1.2. For any pe<X, we can clearly choose
an open neighborhood U of p and a local coordinate z=(z,, :--, 2,) defined in U
such that §|U is isomorphic to a direct sum of some copies of WjU. FiU is of
dimension <m, because the condition that H™(U, §U)—H"(U’, §|U") is surjective
for any U'eU) is tt‘g‘ially satisfied. Hence the proposition 6.1.1.

A closed subset S of X is called purely s-codimensional if it is purely s-
codimensional with respect to the sheaf . Clearly such S is always purely s-
codimensional with respect to any locally free analytic sheaf.
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6.2. Pure codimensionality of subvarieties. Let S be a closed subset of X. Let
D denote any open set of the complex plane C (or more generally, any open
Riemann surface), K a compact subset of D. XX D constitute a complex analytic
manifold of dimension m+1. By 4.2. (vii), we have an exact sequence

D HE(SKE, W) HE(SX D, )= HE(SX (DK, W)y o
where A denotes the sheaf of holomorphic functions on XxD. However, it is
shown that we have a homomorphism f: HZ(SX K, W—H"(Sx(D-K), %) such

e

that 6*cf=1 (r=0,1,2,--+); whence the exact sequence above reduces to

0-—HZ(SX D, W——H(SX(D—-K), W->H1 (S X K, A)—0 (exact).

rel

Setting in particular K={p} (the set consisting of a single point), we know
that Sx{p} is a purely (s+1)-codimensional subset of XxD if, for every open
subset D’ of D, Sx D’ is a purely s-codimensional subset of XxD. Whence we
obtain

Proposition 6.2.1.  Let S be a closed subset of ¢ paracompact complex analytic
manifold X of dimension m. Let D,,---, D, denote open subsets of the com-
plex plane C, and set D=D,x--- XD, (cC*. If SxD is a purely s-codimen-
stonal subset of the (m+k)-dimensional complex analytic manifold XX D, then
Sx{p} ({p} denoting a set consisting of a single point of D) is a purely
(s-+k)-codimensional subset of XxD.

Further, we have

Proposition 6.2.2. FEach (m—s)-dimensional closed analytic subvariety V of
an m-dimensional paracompact complex analytic manifold X is purely s-
codimensional,

When, in particular, V is a closed submanifold of X (i.e. a closed subvariety
without singularity) this proposition is derived from the preceding proposition
immediately.

6.3. Analytic distribution on a point. Again, let X be a paracompact complex
analytic manifold of dimension m. Let 2" (0<n<m) denote the sheaf of holo-

morphic exterior differential forms of order n (in short, holomorphic n-forms).
m > m!

As is well known, 2" is a locally free analytic sheaf of rank ( n )=

= wlm—ni1
and hence be expressed by Wi, where T" denotes an analytic vectﬁxz(”liunf'é)lé
(viz. the vector bundle of antisymmetric covariant tangential tensors of order
n). In particular, £9=%, 02=0°40'4...4 Q"™ constitutes a sheaf of A-algebras,
i.e. the Grassmann algebra generated by 0.

Suppose a point pe X is given. Choosing an open neighborhood U of p and

a local coordinates z=(z;, +++, 2,,) defined in U/ and satisfying 2(p)=0, we can
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define a homomorphism between sheaves over U:
o: oMy — &Y U

by settin
& 1 (excluded)

o PN
6 e N e N 1Vvz, - oA e
O(dzyl,/x /‘.dz_;”)* 9g :1( 1) Z;, dl;x/\ ;\dl_,ﬁ,\ ,.\dz,,d .

It is clearly an ¥ U-homomorphism. Now we have an exact sequence of sheaves:

-
i

(6.3.1) 00— 0™ U—an—» AN o4

» 00U~ C,|U~—0 (exact),

where C, denotes a sheaf which has a stalk C on p and vanishes on X—{p}.
(6.3.1) induces an iterated connecting homomorphism for cohomology moduli:

(6.3.2) HY,({p}, C,) — HM({p}, 2.

By proposition 6.2.1, the set {p} consisting of a single point p is purely m-codi-
mensional ; whence we have Hf({p}, 2)=0 for ¢=0,1, .-+, m—-1, and =I({p},
Dist™({p}, ©*)) for gq=m. This fact implies that the homomorphism (6.3.2) is in-
jective, and that the right-hand term of (6.3.2) is replaced by I'({p}, Dist"({p},
097Y). The left-hand term of (6.3.2), on the other hand, is clearly equal to I'({p},
C,) (=C). Therefore (6.3.2) is restated as an injective homomorphism for sheaves
over X as follows:
(6.3.3) C,— Dist"({p}, 2") (injective).

It is proved that the homomorphism (6.3.2), and hence the homomorphism (6.3.3),

does not depend on the choice of U and z=(2,, -- -, 2.).

6.4. Analytic distributions on ¢ submanifold. Now let X, 2" be as described
above, and suppose that we have a (m—s)-dimensional closed submanifold X; of
X. Take an open set U of X and a local coordinate z=2(z,, ---, z,.) defined in U
such that X; U coincides with the inverse image of {0}*xC”-* in the analytical
mapping z: U—C™. Let Z denote the sheaf over U of subalgebras of Q|U
generated by dzy,---,dz,; i.e F=Z4EF4-.-.. 457, =AU, =AUz +---+
A Udzsy o+, E=WU)zin +rdz;. For each n=1,2,---, s define an AN U)-
homomorphism §: £*—£""! by
L - (exc/lgded)
o(dzine-- ,x,dzj")zwé}zjf ;;l(“l)”z’!jy'dz;l/\ coondzgaccordzs,  (Juec Je=1 000, 8)

Then we obtain an exact sequence of sheaves by (%] U)-homomorphisms :

6.4.1) LIRS LA LU T} § S )

where %, denotes the sheaf over X induced by the sheaf of holomorphie functions
over the (m-—s)-dimensional complex analytic manifold X;, and ¢ denotes the
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canonical homomorphism A — 3, induced by the injection X, X.

(6.4.1) provides us an iterated connecting homomorphism for eohomology moduli
for any U'el(U):

(64'2) Hng‘l(le\ (]/v ?[l)_m» H;:Z(X!/'\ UI; 2%,

As X, is a purely s-codimensional subset of X in this case, we can infer from
(6.4.1) that the homomorphism (6.4.2) is injective, and that the right-hand term
of (6.4.2) is equal to I'(X,~U’, Dist'(X,, £%). The left-hand term of (6.4.2) is
clearly equal to I'(X,~ U’ %) (=%(X,~U")). Therefore we have an injective
homomorphism for sheaves over U:

(6.4.3) A, j U —— Dist*(X;, EHU.

On the other hand, we have an exact sequence of locally free analytic sheaves
by canonieal homomorphisms:

0~ 2

» [ Q% mod EF — 0,
whence we obtain an injective homomorphism for ecohomology moduli:
H (X AU B —— Hi (X, AU, 2" (for any U'ef(U)),

and further, an injective homomorphism for sheaves over U:

(6.4.4) Dist(X;, £ U — Dist’(X,, €M) U.
Setting m=s in (6.4.4) and combining it with (6.4.3), we obtain

(6.4.5) AN, | U~ Dist’(X,, 2| U (injective).
Furthermore, it is proved that if (U, z;=(z;1,- -, 2m)), §=1,2, are two couples
of an open set of X and a local coordinates defined there satisfying the condition
described before, then two homomorphisms corresponding to (6.4.5) coincide when

they are restricted onto U,~U.. Consequently, we have now a canonical injective
A-homomorphism :

(6.4.6) M, — Dist* (X, £29).

We shall remind here that %, is a cohkerent analytic sheaf over X*. Each
cross-section of M, over X constitutes a Cousin's additive distribution in a
gencralized sense (i.e. a Cousin’s additive distribution modulo the sheaf J of
(prime) ideals of N defining the subvariety V); and the formula (6.4.6) provides

% The exact sequence (6.4.1) is called a projective resolution of WU by locally free
analytic sheaves. Generally, it follows from a theorem of K. Oka that, for any coherent
analytic sheaf & over X and for any peX, we have, choosing a suitable open neighbor-
hood U of p, a projective resolution

e R B - By F U — 0 (exact)

of 3 U consisting of locally free analytic sheaves {¥,; n=0,1,---} and A-homomorphisms 4.
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us an example that a Cousin’s additive distribution may be regarded as an analytie
distribution on some analytic subvariety of X. For further discussion, see a

forthecoming paper of ours.

§7. Hyperfunctions.

7.1. Analytic transformation. For any complex analytic manifold X of dimen-
sion m, we shall denote with T(X) the tangential vector bundle over X. The
fiber of T(X) at p (which we shall denote with T(p)) is the tangent space of M
at p, i.e. the C-module of rank m consisting of all tangential vectors. Let X,
X’ be paracompact complex analytic manifolds of dimension m, m’ respectively,
and ¢ an analytic transformation from X’ into X. For each peX’, ¢ induces a
homomorphism d®,: T'(p)— T(@(p)) called the differential of @ at p. Denoting
with V. the totality of pe X’ where d¢,(T(p)), the image of T(p) by d®,, is of
a rank <%, we have an ascending sequence of closed subvarieties of X':

VicVic-- cV,=V,=-- =X, (#=min{m, m’)).

If V.,=X’, for some n, 0<n<p, and if V,_, is a proper subvariety of X’ (i.e.
if, for any connected component X,/ of X', V,.,~X.’ is a proper subvariety of
X."), we shall say that @ is an analytic transformation (or analytic mapping)
of rank m. Each peX’ will be called degenerate or non-degenerate point of @
according as peV,.; or not. If V, ,=¢ (the empty set), ® will be called non-
degenerate on X'. (In general cases, an analytic transformation may have differ-
ent ranks on different connected components of X’.) In case m<m’, an analytic
transformation @ is of rank m if and only if @ is an open mapping.

If m'=m+r, and if ¢: XX is a non-degenerate analytic transformation
of rank m, the couple (X, @) will be called an analytic fiber space of dimension
r over X.

What we have described above for complex analytic manifolds and transfor-
mations can be restated for the real analytic case without any alteration other
than replacing the qualifier ‘ complex analytic’ by ‘real analytic’ everywhere.

In particular, if ¢: M’—M is a non-degenerate analytic mapping of rank
m between real analytic manifolds of dimension m’ and m (m' =m-7r), (M, P
will be called an analytic fiber space of dimension r over M.

Suppose that we have a complex manifold X of dimension m, a real analytic
manifold M of dimension » laid in X (n<m), an analytic fiber space (X', ¥) of di-
mension 7 over X, and a subset M’ of the inverse image ¢ (M) of M such that
(M', ®|M’) is an analytic fiber space of dimension » over M. We shall then call the
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triple (X/, M, @) an analytic fiber space of dimension r over {X. M). The (com-
plex and real) dimensions of X and M are given by m/=m-+r and »n' =n-r,
respectively. (As to the meaning of ‘real manifold laid in X', see 7.2.)

7.2. Pure codimensionality of a real analytic manifold.

Lemma 7.2.1. Let D=D,x---xXD. be an open subsct of C*, denoting with
Dy,-<-, D, open sets in C (or more generally, let D be any Stein manifold of
dimenston k). Regarding RB*XD as a closed subset of an (m-+k)-dimensional
complex analytic manifold C*x D, we have

(7.2.1) HI(R"xXD,W=0  (for nm).
In particular we have, setting k=0,
HI(R", My=0 (for n#m).
We can define an open covering (U, 1) of (C"x D, (C"—R™)x D) by
N={U;; 3=0,1, ---,m}, W={U;; j=1,---, m},
U():"»C”JXD,
U,=C'x(C~RyxC"IxD (7=1,---,m).
This covering is a Stein covering, i.e. an open covering whose constituents are

Stein manifolds, and hence, the condition of 4.2. (v) is satisfied for any locally
free analytic sheaf. We have, consequently,

Hy(R"x D, %)= H"(lmod IV, ).

The dimension of the nerve of 1l being m, we have H}2(R"X D, )y=H"(lmodll’,
Ny=0 for n>m at once.
On the other hand, we have an exaet sequence

o R D, ) HE(RY X CX D, W) s H2(R7 X (C—RYX D, W)~ .

Consequently, if the formula (7.2.1) is valid for n=90,1, ---, & for some m, it is
also valid for #=0,1,--., k with m replaced by m-+1. Therefore we need prove
(7.2.1) only for n=m—1, i.e. we need only prove

(7.2.2) H (W mod 1, 90 =0.

Utilizing the integral formula of Cauchy-Weil, we can actually verify the formula
(7.2.2).

Consider a complex analytic manifold X of dimension m. A subset M of X
will be called a real analytic manifold of dimension n (<m) laid in X if for
each pe X there exist an open neighborhood U of p and a loeal coordinate z=—
(21,4 2») defined in U such that MU coincides with the inverse image of
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R*x {0}"-" in the analytic mapping z: U~ C™. (When this is the case, M is an
n-dimensional closed submanifold of X regarded as a real analytic manifold of
dimension 2m.) In case of n=m, we may legitimately regard X as an ‘‘analytical
prolongation of M.

Proposition 7.2.2. Let X be a paracompact complex analytic manifold of
dimenston m. Any real analytic manifold (of any dimension n<m) laid in
X is a purely m-codimensional subset of X.

This proposition is contained in the following proposition as a special case
of X=X', o=1.

Proposition 7.2.3. Let (X', ) be an analytic fiber space (of any dimension)
over a paracompact complex analytic manifold X of dimension m. Let M be
o real analytic manifold (of any dimension n<m) laid in X, M’ the inverse
image of M in the analytic mapping ¢: X' —X. Then, M is a purely m-
codimensional subset of X'.

As we can easily see from the proposition 6.2.2 and the local nature of pure
codimensionality (5.2., Definition), we need prove the proposition 7.2.3 only in case
m=mn.

By the definition, it suffices for the proof of the proposition 7.2.3 to show
that, for any point pe M’ and any open neighborhood U of p, there exists an
open neighborhood U, of » contained in U such that H (M U, =0 (for
nEMm).

We can choose an open neighborhood U, of #(p)<X, a local coordinate z=
(21, +, 2») defined in U, an open neighborhood U, of p=X’, and a local coordi-
nate 2'=(z|, -+, 2zl) defined in U,, so that they satisfy following conditions: i)
U,cU, ii) zi=z;00 for j<m, iil) (@, 251, -, 2h): Uy=> XX C™ " maps U, onto
U,x D homeomorphically, where D=D,,, X --xD,, with D, (j=m+1,---, m")
being an open set in C, iv) z: U;—C" maps M’ ~ U, onto R* x D homeomorphically.*’
In short, 2/ : U,—C” maps M’ ~ U, onto R™x D homeomorphically. Hence, by the
lemma 7.2.1, we obtain H: (M U, )=0 for n=tm, hence the proposition 7.2.3.

7.3. Hyperfunctions. Consider a paracompact complex analytic manifold X of
dimension m and a real analytic manifold M of dimension m laid in X. By pro-

* More generally, suppose that zmaps M' - U, onto a rectangular domain I={(xz, -,
Tm)ER™; —a;<;<a; for j=1,---,m} in R™ homeomorphically (0<¢;500). 1f a;<oo for
some j, replace x; by #; defined e.g. by Z;=u;/(a;*—2,%), and U, by a suitable open U, con-
tained in U, and containing I’ ~U,. And then, the situation is reduced to the case a;=¢0,
(j=1,---,m).
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position 7.2.1, all the sheaves Dist"(M, %), n=0,1,---, vanish except for n=m.
Similarly for Dist®™(M, %s) (where %n denotes the locally free analyvtic sheaf con-
sisting of local sections of an analytic vector bundle B over X).

Definition. We call Dist™(M, Un) the sheaf of hyperfunctions of type B
over M, and denote B for it. For any locally closed subset S of M, we denote:
Bu(S)=1"vi(S, Bu). Each element of Bu(S), i.e. each analytic m-distribution of
type B over 8, will be called a hyperfunction of type B over S.

If A=, ie. if B=XxC (product bundle), we shall simply write B, B(S)
instead of By, Bn(S), and omit the qualifying pharse “of type B’’. If Big a
vector bundle of differential forms, of tensors, of differential operators, ete. (of
some given type, respectively), then the hyperfunctions of the corresponding type
B will be called the hyperfunctions of differential forms, of tensors, of differential
operators, ete.

By (5.2.2) we have

(7.5.1) Be(S)=H2 (S, An).

By a complex neighborhood (resp. a real neighborhood) of S is meant an open
subset of X (resp. of M) containing S as a closed subset. The totality of com-
plex neighborhood of S will be denoted by D(S)="(S, X). By the definition,
(7.3.1) is rewritten as follows:

Be(S)=H"(Dmod(D—S8), Br) for any De®(S);

i.e. a hyperfunction g&Bs(S) is nothing else but an m-cohomology class of D mod
(D—S8) with coefficients in An. By proposition 5.2.1, Br is a hyperfine sheaf
over M. Hence we have, for any loecally closed Sc M and any closed subset FcS,

0o Bp(F') —— Bu(S) ~—— Bu(S— F) ~— 0 (exact)

(the completeness theorem)®; and for any locally finite closed covering {F,} of S,
we can naturally define a surjective homomorphism : 1185(F,)—Bs(S) (the de-
composition theorem). The carrier of geBu(I) (in nota‘zion: car g) is defined as
the complementary set I—1I’ of the greatest open set I’c:I such that g|I’=0.
Clearly it is a closed set in 1. We have, for any closed subset Sc 1,

Bu(S)={geBu(I); cargcS}.
It is clear from the definition that B is an analytic sheaf (i.e. 2 sheaf of -

moduli). Hence Vy(S) constitutes an A(S)-module for any S and any type B.

* Here we derived the completeness theorem frem proposition 6.1.1. Conversely, the
completeness theorem implies the existence of a hyperfine resolution of A of length m+1
as we shall show in 10.3, and hence the proposition 6.1.1.
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7.4. Derivation. Further, consider an analytic sheaf T over X consisting of
all germs of holomorphic linear differential operators. T constitutes a sheaf of
Y-algebras. On the other hand, % is naturally regarded as a sheaf of I-left-moduli.
Therefore, our sheaf W=Dist*(M, %) also constitutes a sheaf of T-left-moduli
in 2 natural manner, and hence, denoting I(S)=77S, T), the module WS) of
hyperfunctions constitutes a I(S)-left-module. Therefore we can talk about the

holomorphic linear differential equations satisfied by hyperfunctions.

There is a special class of hyperfunctions, that of analytic hyperfunctions,
which we define as follows. A hyperfunction ge®B(S) is called analytic at peS
if there exists a real neighborhood I,=p such that the 3I(I,)-submodule T(I})-gl/,
of B(I,) generated by g|I, is finite dimensional as an (Z,)-module, i.e. contains
only a finite number of linearly independent elements over A(I,). ¢ is called an
analytic hyperfunction on S if it is analytic at every point of S, i.e. if the sub-
sheaf T-g of B generated by ¢ as a sheaf of T-left moduli is locally finite dimen-
sional as a sheaf of -moduli. Roughly speaking, this condition means that ¢
satisfies a sufficient number of (independent) holomorphic linear differential
equations. It is proved that the carrier of singularity (as will be defined in 8.1.)
of an analytic hyperfunction g on I (€%(}M)) constitutes a (proper) closed subvariety
V of I. Each irreducible component of V will be called a threshold of g. Further-
more, thresholds are devided into two classes: regular thresholds (degenerate
and non-degenerate), and irregular thresholds. It is proved that an analytic
hyperfunction g on I whose thresholds are all non-degenerate regular thresholds
is completely determined from the restriction g/(J—V”), with 7’ denoting any
(proper) closed subvariety of I.

The utility of this notion of analytic hyperfunction consists in the fact that
almost all of the functions of frequent use in the applied analysis can be regarded
as hyperfunctions of this category. For further details, see subsequent papers of
ours.

7.5. Transformation of variables. Consider an analytic fiber space (X', @) of di-
mension 7 over a complex analytic manifold X of dimension m. Let M denote a
real analytic manifold of dimension m laid in X, and set M'=¢ (M). Let further,
B denote any analytic vector bundle over X, B’ the analytic vector bundle over
X' induced from B by the transformation ®. By proposition 7.2.3, we have
Dist™(M’, %n/)=0 except for n=m (where %p- denotes the locally free analytic sheaf
over X’ corresponding to B’). We shall call Dist™(M’, %Un-) the sheaf of hyper-
functions of type B’ over M, and denote Bu- for it. For any locally closed sub-
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set & of M, we denote Bu(S)=I"r(S', Bz} (=H (S, Us)). Each element of
By will be called a hyperfunction of type B’ over M. (Roughly speaking, it
stands for a hyperfunction which is ‘ holomorphic on each fibers’, or: a hyper-
funetion containing 7 ‘ complex holomorphic parameters’. See further 9.4.)

Now the transformation ¢ satisfies (X'~ M)cX—M, and hence induces a
homomorphism between cohomology moduli @*: H(S, Wu)— Hy(P~X(S), An) for
any locally closed subset S of M, or equivalently

(7.5.1) @*  B(S)

» B (YS)).

In other words, a hyperfunction on M induces in a nature manner a hyperfunction
on M’ (i.e. a hyperfunction on M ‘‘ assuming constant value on each fiber 7’).

In case r=0 in particular, Bx reduces to a sheaf of analytic distributions of
the original sense ; and our homomorphism ®* yields a transformation of variables
for hyperfunctions.

7.6. Hyperfunctions as boundary values of holomorphic functions. Let I, be
an open set in R, D (cC) a complex neighborhood of I, (+=1,---, m); hence
J=I,x---xI, and D=D,x---xD, denote a rectangular open set in R™ and a
complex neighborhood of I, respectively. Let (I, 1) be an open covering of (D,
D—1) defined by .
W=A{U,; v=0,1,---, m}, Ww={U,; v=1,-+-, m}

Us=D, U,=D;x-+-xD, (X(D,~L)XDy X+ XDy =1+, m).
As this is a Stein covering, we have by 4.2.(v)

(7.6.1) B Y= H"(D mod(D—TI), Wy=H"*(ll mod 11", %),

Namely, each hyperfunction g&B(I) corresponds to a m-cohomology class of
T mod1ll’ with coefficients in ¥, and hence, is represented by some m-cocycle ¢
(@ao- -, )EZ"(Tmod 1V, %) of Wimod1V'. Clearly ¢ has only one independent com-

ponent, for which we can choose the component ¢oi...., €Uy~ - ~U.). In other
words, we have an isomorphism Z"(WUmod W, W)=W(U;~---~U.,) by the corre-

spondence ¢« ¢or...,, or equivalently a surjective homomorphism
0 ?{(U[/\_"'/\U;rz)w)%([).
Of course the homomorphism ¢ depends on the ordering of sufficies 1, ---, m. If

a permutation is applied to these sufficies, the resulting homomorphism will be-
come # or —# according as the permutation is even or odd.

The homomorphism ¢ is derived also in the following way. In the first place,
denote with %, the confinement of % onto (C—R)*xC™¥, and with ®, and 9, , the
confinements of %, onto R*XC™ > and onto R’ 1x(C—R)XC™>, respectively (v=
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1,-+-, m). The sheaves &., ., may be also defined recursively as follows: &=,
®,==confinement of ., ; onto R*xC"* (1<:<m), 9, =confinement of &, onto
R’ x(C—R)xC" ' (0<:<m—1). Clearly we have exact sequences by confining
homomorphisms

0—G,—9, ., —0 (=01, m=1)
and hence, an exact sequence

(7.6.2) 0 — A — Dy — B,

—> e e s

2 Qo Gy 0
which yields an iterated connecting homomorphism

HO(I, G — H2(I, %),
By the definition, we have H?

rel

morphism with the restriction I"(D, 3.,)— I"(Z, %), we have a homomorphism

(7.6.3) F( U}/\' * ',/'\Urm “)‘)

(I, ®,)=01"(I,N,). Therefore, combining this homo-

> B(T).

It is easy to show that # coincides with the homomorphism (7.6.3). The surjec-
tivity of the homomorphism (7.6.3) is now derived from another fact that R™
is purely (m-v—1)-codimensional with respect to 9..

Now, for any Y¥r=vyrz;,---, 2.)€W U~ - ~Us,), and for any one (+,,---, #+,.)
of the 2" combinations of signs + and —, we shall define Yr(2;+,i0,- - -, @, = .0),
the ‘boundary value’ of Y |U,* -« ~Un*n (denoting U,*=U,~C*, with C*
={z&l, J2>0} and C-={z=C, J2<0}), as follows:

Y(r 100, + @10 = 1T ,6(,2) Yz, -+, 2,)
¥oes ]

where &(2) is as defined in 1.1. (Clearly this definition remains invariant if we
perform an even permutation of sufficies 1,-+-, m.) It follows immediately from
this definition that we have for any ge®(I)

g(xl’ Tty ’J,'_,,l):ﬁ('\l’(zl, "ty Zm))
= ;\__‘ il' ¢ im‘l’(ml i‘lio, Tty xmimio)
T

+
(= N T

with some Y &W( U~ ~U.). (The sum extends over 2" combinations of signs.)
Thus, any hyperfunction on I is represented as a linear combination of boundary
values of holomorphic functions in 2™ * quadrants’ U, i -« ~Un'n.

As is well known, a real analytic manifold M of dimension m is called oriented
if all the couples of an open set Ue¥(X) and a local coordinate z=(z, -+, 2..)
defined in U are classified into those of positive parity and those of negative
parity so that for any two: (U, z), (U’, z’) of such couples, the Jacobian of the
transformation x-—2’ satisfies the following condition :
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8z, :c,’,;)'>0 or <O on U~U

{ By, @)
according as (U, ) and (U, 2’) are of the same parity or of different parities.

Now let M bhe an oriented real analytic manifold of dimension m laid in a
complex analytic manifold X of dimension m. Then, for any pe M, we can choose
a complex neighborhood U of p and a local parameter z defined in U and adapted
to M such that (i) zmaps U onto a rectangular open set of €™ and hence, I=
U~ M onto a rectangular open set of R™, and (ii) ([, 2]I) is of positive parity.
Hence, for each g&B(M) we obtain (using the coordinaj:es (21,*+-,2,) in this order)
a representation of g}/ as a linear combination of boundary values of holomorphie
functions.

7.7. Hyperfunctions on the Cartesian product of manifolds. Let X,, X, denote
complex analytic manifolds of dimension wm,, . respectively, X=X, x X, the
Cartesian product thereof, @, the projection X— X, (§=1,2). Let further M,, M,
denote real analytic manifolds of dimension wm;, m. laid in X, X, respectively,
M=MxM. (cX) the Cartesian product thereof. Then, for any type B and any
De¥(X), we have canonical injeetive homomorphisins by 8.1.1 (see 8.1)
H!(M~D, No, ot ;.8) s Ba(M D) and
Na( D) > Bu(P; (M)~ D).
On the other hand, we have a canonical homomorphism
H™"(Dmod (D—®; (M), Un) — H" (D mod D ~ (031 (M.)— M), M)

i.e. HWD (M) A~D, An) —— H (M ~D, Noztiarn, 1)
and the corresponding homomorphism with sufficies 1, 2 interchanged

HH D (M) ~D, Up) —— H3(M D, Nt a1y, m).
The left hand sides of the homomorphisms above are Bu(@;Y(M)-~D), j=1,2.

(7.7.1)

Further, it is easy to verify that, setting De®D(M) and then going to the in-

ductive limit, these canonical homomorphisms become injective. Combining them

with (7.7.1), we have

Au(M) < (the inductive limit of {Ba(@; (M) ~D; DeDM)})
CHIHM, Aozt org . p)C Bs(M).

and the corresponding relation with sufficies 1, 2 interchanged. This result may

(1.7.2)

be schematized as follows :

Hyperfunctions on M
Z

Hyperfunetions on M containing real Hyperfunctions on M containing real
holomorphic parameters on 3, holomorphic parameters on M-
A ¢
H : i1
Hyperfunctions on M containing com- Hyperfunctions on M containing com-
plex holomorphic parameters on X, plex holomorphic parameters on X:
AX 7A

Holomorphic functions on M
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Now suppose for a moment that X, X, denote any paracompact T.-spaces,
X=X, x X, the Cartesian product thereof, and & any sheaf over X. Let %,. &
denote sheaves over X,, X, respectively, f a bilinear mapping from (¥, &) to &
(so that f induces a bilinear mapping I'(Dy, 1) XL (D2 §2)— 1" (D X D2, ) for any
D, =X, D.=8(X,)). Then, as is well known, f induces bilinear mappings between
cohomology moduli (see e.g. §6, Chapitre II of [5))

Fr Ho(Dy, ) x H(D., o)~ H* (DX Dy, )

for any D,e¥X,), j=1,2
We have further,

£ H"(Dymod Di, %)% H":(D:;mod D1, §:)
e H}l‘+Y::(D1 X Dg rﬂod (Di * D;)V(Dl X Dé)s (l\\')
for any D,, D'e(X,), D;cD,; or equivalently,
(7.7.38) JE HE(S RO H (S, §2) — Hea™* #2(S: X Sy B)

for any locally closed S;c X,.

Returing to the former notations, and letting %, be a locally free analytic
sheaf p, and f a bilinear mapping (Aa,, Ha,)—Nnu induced by a bilinear mapping
(B, B,)— B for vector bundles (i. e. a homomorphism B&B.— B between analytic
vector bundles over X), we obtain from (7.7.3)

S B, (8)) X Bp,(S:) — Bp(8, X S2)

for any locally closed S,cM,. On the other hand we have clearly
Fi N (D)X NeD,) — W (DX Dy) (D, =%X ).

We have further

f*: Q%SI(Sl)XE){'L(D_:) e ’2%1,(SIXD3)

£* N (D)X Be(S) —— Bu(D,;x S:)
where the right hand terms stand for the moduli of hyperfunctions containing
complex holomorphic parameters as we have defined before.

Setting in particular B.=X,xC, we can choose as B the vector bundle induced

from B, by ©,, and as f the natural mapping. Setting further S.= 3., and using
1=8p,(M.), we have a canonical homomorphism

By, (Sp) —— Ba(®1(S1))

by letting each g;&Bp,(S;) correspond to g/%1&Bu(S;x M.) (note that &;'(Sy)=
S,xM,). This coincides with the homomorphism (7.5.1).
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$8. Hyperfunctions Containing Real Holomorphic Parameters.

8.1. Let X be a paracompact complex analytic manifold of dimension m, M a real
analytic manifold of dimension #» (<m) laid in X, and consider an analytic fiber
space (X', M’, &) of dimension r over (X, M). Let §=%n denote a locally free
analytic sheaf over X’ (with B denoting an analytic vector bundle over X), and
3o the confinement of & onto @~'(M). In this case, it is proved that M’ is purely
r-codimensional with respect to §,.

In the following, we shall restrict our considerations to the case 7 =n:. {Gener-
alization to the general case is immediate). By what was stated above, we have
for any Ie@(M")

H, (1, §o)=1"(1, Dist" (M, Fo)).

-

Now, each element g H (I, %) will be legitimately regarded as a special kind
of hyperfunction on I, i.e. a hyperfunction on I holomorphic in variables over
M, as we call it. This interpretation is justified by the following

Proposition 8.1.1.  We have an injective canonical homomorphism for rela-
tive cohomology moduli :

(8.1.1) H; I, §)—— H2 (M, %) for any Ie¥(M")
or cquivalently, an injective canonical homomorphism for sheaves:
(8.1.1y Dist" (M, Fy) — Ba.

The homomorphism (8.1.1) or (8.1.1) is derived as follows.

Choose an open set U of X', and a local coordinate 2’=(z/,---, z/,) defined
in U and adapted to M’, such that 2/=2,® for je=m4-1,---, m’, with some local
coordinate z=(z,.1 --,2.) in M. For v=0,1,---,m, let I, denote the inverse
image of R*XC"™ ¥ in the analytic mapping z’: U—C™ : hence U=L2L,> -2, =
O (M)~U. Denoting with C*, €~ the upper and the lower half of the complex
plane C including the real axis respectively (i.e. C*={z&C; 32>0}, C ={zeC;
J32<0}), we further define I.*, I.” to mean the inverse images of R*xC*xC™ -+-1,
R C-xC™ -+, respectively; hence we have I,=71-*-I-, I . I.-=1I..,. The
confinements of &/ U onto 1., I,*, I,- (which are sheaves over U) will be denoted
with &, &, & respectively. (Hence Go=F|U, @, =F|U.) We set further, H, =
8, +@,. By the definition, there are confining homomorphisms

£ @, G, 7% G — Gy,

and hence (combining the above homomorphisms with the natural injections resp.
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projections), the homomorphisms
£ 0. —9H, 7O -G ;
(Clearly these are all %-homomorphisms.) Then we have exact sequences

.y

(8.1.2) 00—, > 9,5 @, ,——0, (=0,1,---, m—1)

and hence, an exact sequence

(8.1.3) R R L T s I
where we set: e=¢ +&7, p=yt—y", J=¢cop=c oy —g 07",

Consequently, for any open subset I of I,,, we have eonnecting homomorphisms
for cohomology moduli:

(8.1.4) 6% HX WL, S,y —— H: (I, ®,) =0,1,--+, m-1)
and an iterated connecting homomorphism for cohomology moduli :
(8.1.5) H 3", o) — Hi 1, ).

By the fact stated before, I, is (m’—u)-codimensional with respect to &, (v
<m). It is proved, further, that I, is (m’—y—1)-codimensional with respect to
& (and hence, with respect to §,). This fact implies that the homomorphisms
(8.1.4) are injective for n=m—.’, and hence, the homomorphism (8.1.5) is injec-
tive for n=m’':

(8.1.5) H (1, 30)— H (I, §).

rel

Furthermore, it is proved that the homomorphism (8.1.5) does not depend on the
choice of the local coordinate z=(z2{,---, z}-); whence we obtain the required
formulae (8.1.1), (8.1.1).

8.2. Substitution of particular values into real holomorphic parameters. Given
an ordinary function (or more definitely, a holomorphic function) f(z,,---, Zn’) in
m’=m-+r real variables, we can substitute special values ¢,---, ¢, into part of
variables 2, -+, z,, and obtain f(e;, -+, Cn, Tmut," "> Tu’), a function in the remain-
ing = variables x,.(,-: -, %o,

This process of substitution can be generalized to hyperfunctions in the follow-
ing case:

Let X, M, X', M’, ¢, B be of the same meaning as in 8.1. For each pe M,
set M)=0 p)~M', and denote with B(p) the restriction of B onto @ (p).
(Clearly @ !(p) is a closed analytic submanifold of X’ of dimension r.) Denoting
with %, the sheaf over X’ induced from ., by the injection: @ (p)— X', we
have clearly a natural (surjective) homomorphism ¢,: $~%,, and hence a natural
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homomorphism

epr Hi (1, %) — » HJ,

re

I(M;frxly gp) (z%mm(ﬂ/jplﬂxl)) for any IEE(M’);
or equivalently, a2 natural homomorphism
(8.2.1) er: Dist" (M, Sl M) — By

For each g H/, (I, %), the image ¢} (9)&By(M) ~I) will be called the value or
the specialization of g on the fiber M).

8.3. Another case. So far we have investigated mutual relations of analytic
distributions, hyperfunctions and holomorphic functions under some typical situ-
ations and obtained, among others, formulae (6.4.6), (8.1.1), (8.2.1). There are,
however, various generalizations of these results corresponding to the situations
more complicated.

For example, let X be a paracompact complex analytic manifold of dimension
m, X; a closed submanifold of X of dimension m,=m—s, M, a real analytic
manifold of dimension m, laid in M,. Further, let B denote any analytic vector
bundle over X, and B, the restriction of B onto X;. Then we have a commuta-
tive diagram of sheaves over M, consisting of four imnjective homomorphisms:

(8.3.1) Wn | M, > Dist*(X,, An)| M,
9| lo
Dist™:(M,, ?IB,)“}T’ Dist™(M,, Us),

er equivalently, a commutative diagram of moduli for any I,e¥%(M,):

(8.3.1)’ W (1,)~=> I'(I, Dist’(X,, An))
lg Iy
Bu () —  Bu(l).

g

Of these four homomorphisms, f and ¢ are the homomorphisms as introduced in
(6.4.6) and (8.1.1), respectively, while f/ and ¢’ denote homomorphisms induced
by f and g respectively, according to 5.2. The diagram (8.3.1Y may be inter-
preted graphically as follows:

Analytic distributions on the

Holomorphic ¢-functions on M, = gtgr]{t} of analytic prolongation
of M,

W U

d-funetions on M, > Hyperfunections on M,
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§9. Hyperfunctions on a Real Analytic Manifold.

o~

9.1. Spaces with analytic structure. Let S be a topological space, © a sheaf
over S of commutative algebras over the complex number field C. If we have a
complex analytic manifold X of dimension m, a homeomorphism ¢ from S onto a
subset of X, and an isomorphism 2 : 9 'A)=E between sheaves of algebras,
then we call the triple (X, ®, #) an analytic prolongation of (S, €) (of dimension
m).

For example, if X, X’ are analytic manifolds of dimension m, and ¢ is an
analytic homeomorphism from X’ onto an open set of X, then, denoting with Ay
the canonical isomorphism @71 )=y, (X, ¥, hy) constitute an analytic prolon-
gation of X'.

Roughly speaking, the analytic prolongation of (S, ©) is determined uniquely
in a local sense whenever it exists, provided that the analytic prolongation X is
paracompact ; that is, if we have analytic prolongations (X, @, k), 7==1,2, of
(S, €) of dimension m such that at least one of them is paracompact, then we
have still another analytic prolongation (X, ¥, hy) of (S, €) of dimension m, and
analytic homeomorphisms ¥';, j=1, 2, from X, onto open subsets of X, such that
¥, induces #,, h; from ®;, h; (i. e. the analytic prolongation (X, ¥, hs,) of (Xs, Uy )
induces (X, @, h;) from (X, @y, ha)).

Now, let S and € be of the same meaning as above. We say: & defines an
analytic structure of S (of dimension m), or (S,©) is a space with analytic
structure (of dimension m), if for each point peS, there exists a neighborhood
U of p such that (U, €[U) admits an analytic prolongation of dimension w.

When this is the case, we call each cross-section ¢ 1'(S, €) of & over a sub-
set S;c8S a holomorphic function on S,. Any (S, @) which admits an analytic
prolongation of dimension m clearly constitutes a space with analytic structure.
Conversely, if we have a space (S, €) with analytic structure of dimension m, then
we can construet an analytic prolongation (X, @, ) of (S, €) of dimension m, and
even a paracompact one, provided that S is paracompact. This being the case,
we can further choose (X, @, k) so that X contains @(S) as a closed subset, if
and only if S is locally eompact; we shall call such an analytic prolongation
(X, ®,h) a complex neighborhood of S. The totality of complex neighborhoods
of S (which is a cafegory rather than a set) will be denoted with T(S).

For the sake of simplicity, we shall hereafter use the symbol Uy in place of
&, to denote the analytic structure imposed on a topological space S. In the rest
of this paragraph, S will always denote a paracompact space equipped with an
analytic structure %y of dimension m.
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9.2, Analytic prolongation of a locally free analytic sheaf. By a locally free
analytic sheaf over S, we mean a locally free sheaf of M;-moduli. If we have a
locally free analytic sheaf ¥ over S, then we can choose an analytic prolongation
(X, 0, 1) of S with X paracompact, a locally free analytic sheaf % over X, and
an isomorphism f: »(¥)— ¥ compatible with the isomorphism k between the
sheaves of their operator ring. The couple (%, f), together with the analytic
prolongation (X, @, k) of S, will be called an analytic prolongation of ¥. Such
an analytic prolongation of ¥ is determined uniquely in the sense of local isomor-
phism ; that is, if we have analytic prolongations (ﬁ;,f’,.v), j=1,2, of % defined on
the analytic prolongations (X, &, k), 7=1,2, of S, respectively, then we have
still another analytic prolongation (3, fs) of % defined on an analytic prolongation
(X, P4, by of S, analytic homecomorphisms ¥ (j=1, 2) from X, onto open sets of
X, which induce @,, h; from @, h;, and isomorphisms 'll"k;-’(ﬁ,v)-—ngyz, compatible with
the canonical isomorphisms k¢, between the sheaves of operator rings which in-
duce f, from fs.

Let (X, @, k) and (&, 7) be any analytic prolongation of S (with X paracom-
pact) and any analytic prolongation of ¥ over (X, @, k), respectively, and consider
the relative cohomology module HX(H(S), §). It is then clear that these coho-
mology moduli corresponding to different choices of the prolongations (X, #, &) and
(3, f) are mutually combined by eanonical isomorphisms; hence, identifying the
corresponding elements in different moduli, we have one and the same cohomology
module which we shall call the realative cohomology module of S and denote
with H/.(S, %). Similarly with the associated relative echomology moduli
“H! (S, %), and the sheaf of distributions Dist"(S, ). Further, we can speak of
pure codimensionality of S; i.e. S is called purely n-codimensional if and only
if #(8) is purely n-codimensional in X.

9.3. Real analytic manifolds. Consider a paracompact real analytic manifold
M of dimension m and the sheaf Yy of holomorphic functions over M. Then A,
clearly defines an analytic structure of M of dimension m; M is then purely m-
codimensional as a result of proposition 7.2.1. Therefore, denoting with B an
analytie vector bundle (whose fibers are C-moduli) over M, and with Up=%,; p
the locally free analytic sheaf over M consisting of holomorphic local sections of
B, we can define the sheaf Bu=W s of hyperfunctions and the module Ba(M) of
hyperfunections by formulae

Bp==Dist™(M, An) and Ba(M)=1(M, Bp)=H (M, As),

r.

respectively. Clearly s is a hyperfine sheaf.
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More generally, we shall define a real analytic manifold (of (base) dimension
#e) with local complex fiber space (of dimension r) as follows: namely, it means
a topological space M equipped with an analytic structure 2 of dimension m +r
such that we can find for any pe M an open neighborhood I=p» and an analytical
prolongation (U, 2, k) of (I, Ay!I) such that z maps I onto an open subset of
R C". Clearly this notion reduces to that of a real analytic manifold or of a
complex analytic manifold if we set »=0 or m=0. By proposition 7.2.3. such M
is purely m-codimensional. Again, we can construct a locally free analytic sheaf
Ar over M of holomorphic local sections from an analytic vector bundle B (which
has a partly complex analytie, partly real analytic structure); we shall define the
sheaf Bp="8, p and the module Bu(M) by

Bp=Dist™(M, As) and Va(M)=1"(M, Bu)=H (M, Un),

respectively. In this case, the sheaf Bn is of dimension <r. We shall call each
element of Bs(M) a hyperfunction of type B on M. (It stands for *“a hyper-
function of m variables containing » (complex) holomorphic parameters.”)

It will be now clear that the results of §7-§8 can be extended to the ease
of any paracompact real analytic manifolds; the generalized results, however,
will not be repeated here.

9.1. The complex conjugate hyperfunction. For any complex analytic manifold
X of dimension m (with the structure sheaf ), we can define in an obvious
manner the complex conjugate manifold X (which is a copy of X) with the
structure sheaf Ay (which is a copy of ;) so that, denoting the natural (bijee-
tive) mapping X— X with &, we have a natural semi-linear isomorphism 1 ;
& (A)5 Uy (e, an isomorphism over the automorphism of the operator ring €
defined by taking the complex conjugate). Clearly the complex conjugate mani-
fold X of X thus defined is again a complex analytic manifold of dimension .
Consider a real analytic manifold M of dimension m. For any analytic pro-
longation (X, @, k) of M, we can define another analytic prolongation (X, ®, %) as
follows : X denotes the complex conjugate manifold of X, & denotes the homo-
morphism @<¢: M- X, and % denotes the isomorphism he(®@-'(k)): & (Uy)—y
(where ¢: X— X and k: AP Ay are as defined above). We shall call this
(X, . h) the complex conjugate analytic prolongation of (X, ®, h). The homeo-
morphism © and the isomorphism % naturally induce the isomorphism:
H*Dmod (D—#(M)), Ux)= H"(Dmod (D—d(M)), Ay) for any De¥(X), and D=
HD)e LX), i.e. the automorphism : BUI)=B(I) for any Ie¥(M). Or equivalently,
we have an automorphism ¢ of the sheaf By of hyperfunctions over M which is
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compatible with the automorphism of the operator-sheaf Y defined by taking
complex conjugate. It is easily verified that the automorphism c¢ is independent
of the choice of the analytic prolongation (X, @, ). Clearly we have ¢s¢=1. The
image ¢{y) of a hyperfunction g B(S) (S being a locally closed set of M) will be
called the complex conjugate of ¢, and denoted with §.

£10. Integration.

10.1. Infegration. If M is a paracompact, oriented (topological) manifold of
dimension i, then we can define, as is well known, the homology moduli H,.(M, C)
and the cohomology moduli H*(M, C) of M with coefficients in C, and in addition,
an inner multiplication between H,(M, C) and H*(M, C), i.e. a bilinear mapping
from HA(M,C)x H(M, C) into C (n=0,1,---, m).

If, in particular, M is a compact manifold, then we have a special element
of H.(M,C) called the fundamental cycle of X. Accordingly, we can specify a
canonical homomorphism

(10.1.1) H" (M, C)-C,

Let M be as described above (without assuming the compactness) and let M’
be an open subsct of M. Then we have the homology moduli H.(Mmoed M, C)
and cohomology moduli H"(Mmod M’, C) of Mmod M’ with coefficients in C, and
in addition, a bilinear mapping from H,.(Mmod M’, CYx H*(Mmod M, C) into C
for each =.

If, in particular, K=M~ M  is compact, then we have a special element of
H, (Mmod M’, C) which we shall call the fundamental (relative) eyele of Mmod M'.
Accordingly, we can specify a eanoniecal homomorphism

(10.1.2) H"(Mmod M, C) — C.

Now let X be a paracompact complex analytic manifold of dimension m. Let
2"(=r") denote the sheaf of holomorphic n-forms. Then we have an exact se-
quence of sheaves

(10.1.3) O O—r 05 0 L o

>0
where C denotes the simple sheaf with constant stalk €, while  and d denote
injection and cxterior derivation. respectively.

Consequently, we have a iterated connecting homomorphism between coho-
mology moduli:

(10.1.4) HY(X, &)~ H""(X, C) (n=0,1,---, m).

If, in particular, X is compact, then we can apply the homomorphism (10.1.1)
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with M replaced by X regarded as a topological manifold of dimension 2m, and
obtain a homomorphism

(10.1.5) H"X, C)y—C.
Setting m=n in (10.1.4) and combining it with (10.1.5), we obtain a canonical
homomorphism

(10.1.6) H*X, 27)—C.,

Let X and 2" be as described above (without assuming the compactness of

X), and let X’ be an open subset of X. From (10.1.3), we have again an iterated
connecting homomorphism between cohomology moduli :

(10.1.7) H'(Xmod X', 2y — H*"(Xmod X', C) (n=0,1,---, m).

If, moreover, K=X—X"’ is compact, then we can apply the homomorphism (10.1.2)
with M replaced by X regarded as a topological manifold of dimension 9m, and
obtain a homomorphism

(10.1.8) (Xmod X', Cy—-C.
Setting m=n in (10.1.7) and combining it with (10.1.8), we obtain a canonical
homomorphism

(10.1.9) H"(Xmod X', ") (.

Let X be a paracompact complex analytic manifold of dimension m, M a real
manifold in X, K a compact subset of M. The formula (10.1.9) now yields the
Jollowing eanonical homomorphism :

(10.1.10) By(K)——C.

The image of each g&Br+(K) by the canonical homomorphism (10.1.10) will be
called the (definite) integral of g, and denoted by

(10.1.11) f .. fg.

e K

m-fold
(The demain K of integration may be replaced by M.)
As to a more conerete representation of the integral (10.1.11), see p. 607 of
(8l.
We shall further generalize the notation of integration in a subsequent paper.

10.2. Duality theorem. Consider a paracompact real analytic manifold M of
dimension m and an analytic vector bundle B over M. We denote with BHS)
the %A(S)-submodule of Ba(S) consisting of g=Bu(S) whose earrier is compact,
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Such g Bu(S) will be called a perfect hyperfuncticn on S. Let B’ denote the
analytic vector bundle of the type complementary to B, i.e. the vector bundle
consisting of fibers B’ ==Homd«(B,, T) where B,, T} denote the fibers at p of B
and T respectively. (T™ denotes the analytic vector bundle of m-forms.) By the
definition, we have a bilinear map : An(S)XVHS)—BI(S). Therefore, combining
this map with the integration Bi(S)—C, we can define an inner product (f, ¢)
between fa¥n(S) and geBi(S). Further, it is proved that (i) (f, ¢)=0 for
every geBi(S) implies f=0, and (i) (f, g)=0 for every fe&Ws(S) implies y=0.
Hence we have

Proposition 10.2.1. An(S) and BVKS) constitute a pair of mutually dual
veetor spaces (Duality theorem). The Mackey topology induced in s (S) by
BHS) coincides with the ordinary topology in 2w (S).

Now let S; denote any locally closed subset of S. Then we have obviously a
canonical injective homomorphism: BHS,)—BH(S). Hence the proposition 10.2.1
vields (replacing B’ by B)

Corollary. The image of the canonical homomorphisrm HUn(S)—Wn(S|) is dense
in Wn(S;).

On the other hand, if S contains no open and closed subset which is disjoint
with S, the restriction (S)—A(S,) is clearly injective. Hence we have

Proposition 10.2.2. If S,cSc M, and if S contains no open and closed sub-
set disjoint with S\, then B*(S)) is a dense submodule of BX(S), in other words,
each perfect hyperfunction on S is approximated by a perfect hyperfunction
on S, (with respect to the Mackey topology induced in B*(S) by WS).

This proposition presents a clear difference between the topology of B*S)
and that of (&) of L. Schwartz. Roughly speaking, our topology of R¥(S) is
‘of non-localizable nature’ contrarily to that of (&), Further, this fact is linked
with the fact that we cannot define a separative topology in B(S) in a natural
way.

10.3. A space S with analytic structure N, of dimension m will be called of Stein
type if for any homomorphism «: W(S)—C as algebras over C there exists one
and only one pe&S such that o is induced by setting o(¢)=¢(p) for every ¢=U(S).
(The meaning of the symbol ¢(p) will be obvious.) For instance, it is proved
that every (paracompact) real analytic manifold is a space with analytic structure
of Stein type.

Now, for any type B, B5(S) will denote the inductive limit of {HZ(K, Up);
K:=compact subset of S} by dilution homomorphisms (as defined in 5.1.). Bx(S)
clearly constitutes an (S )-module.
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Further, denoting with B’ the analytic vector bundle complementary to B,
there is a canonically defined bilinear map Au(K)x H (K, An)—H" (K, A1), hence
a bilinear map

(10.3.1) WU (S)X BHS) —— BinS).

On the other hand, we have a canonical homomorphism Bs7(S) --C by (10.1.9),
and hence, combining this homomorphism with the bilinear map (10.3.1), we can
define a canonical inner product between Ap(S) and B#(S). The proposition 10.2.1
is now generalized as follows:

Proposition 10.3.1. If S is of Stein type, An(S) and BKS) constitute a
pair of mutually dual vector spaces. The Mackey topology induced in u(S)
by BA(S) coincides with the ordinary topology in Mu(S).

In case S is a complex analytic manifold (i.e. a Stein manifold), this propo-
sition reduces to a duality theorem of J.-P. Serre ([117).

Consider a ecomplex analytic manifold X of dimension m. Let 2° (=9), 04,

O and d: " 0" (n=0,1,---, m~1) be of the same meaning as in 10.1.
Let F=%s denote a locally free analyvtic sheaf over X.

Now, any complex analytic manifold of dimension m induces in a natural
manner a struecture of an oriented real analytic manifold of dimension 2m. We
shall denote with ©© the sheaf of holomorphic functions on X regarded as a real
analytic manifold of dimension 2m. © contains ¥ and the complex conjugate ¥
of A as subsheaves. A is the sheaf which determines the complex conjugate
analytic structure of X, and will be ecalled the sheaf of anti-holomorphic func-
tions on X. Similarly, 2° (=%), £1, --., 0™ and d denote the sheaves of anti-
holomorphic differential forms and the corresponding exterior derivation operator.
Setting Op=An®O and X"=0nF2", we have a well known exact sequence

o 4 oy d 4 5
’?[l) - )(2,-—»») 3‘,};——(-» sl *]1'; —0.

(10.3.2) 0

(Usually, the operators d, d above are denoted with d’, d’’ respectively, and the
sequence (10.3.2) is called d’/-resolution of %n.)

Further, denote with B the sheaf of hyperfunctions on X regarded as a real
analytic manifold of dimension 2m, and set Bp=p®uB, NVip=V,&L". Then,
9% is a hyperfine sheaf containing X3} as a subsheaf. Moreover we have an exact
sequence by Y-homomorphisms

(10.3.3) 0y — D= D= - = P20,

Clearly (10.3.3) yields a hyperfine resolution of Uy, and the injections Xj-— T3
induce a chain homomorphism from (10.3.2) to (10.3.3) over the identical mapping
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10.4. Integration, general case. As we have announced in [8] and shall expound
in detail in a subsequent paper, the notion of integration for hyperfunctions de-
fined in 10.1. will be generalized in the following case.

Let (X', ) denote an analytie fiber space of dimension » over a complex analytic
manifold X of dimension m. Let F be a closed subset of X, F” a closed subset
of @ (F) such that ¢ "(K)F’ is compact whenever K is a compact subset of
F. Further, let B be an analytic vector bundle over X, @ {(B) the analytic
vector bundle induced from B by @. On the other hand, for each peX corre-
sponds an r-dimensional complex analytic manifold @-Y(p). Denoting with TJ{(@ (p))
(s==0,1,--+, r) the tangential tensor bundle of contravariant anti-symmetric ten-
sors of order s, we can define an analytic vector bundle TV = U ,cxT{(0 Y{p))
over X', a subbundle of the tangential tensor bundle over X’ of contravariant
anti-symmetric tensors of order s. Accordingly, an analytic vector bundle B’
over X is defined by setting B'=U,cxB,, B,=HomdT},,, #(B),), where T/ ,
and @(FB), denote the fibers at p of T/ and @(B), respectively.

Under these circumstances, we can derive the following homomorphism as a
generalization of (10.1.1)

(10.4.1) o . HE(F, ) — H(F, As).

L5

If, further, we have an analytic fiber space (X", ') of dimension 7’ over X’ and
a closed subset F’’ of ¢’ (F’) such that ¢’ Y(K’)F"’ is compact whenever K'C F"
is compact, then, defining B” in an analogous way, we have homomorphisms
o HEV(F, W ) HE(F7, Awe) and (@e@7y s HE (B, Ap ) —H2(F, Un), and
obtain the relation

(10.4.2) (@Y = oh'*,

Consider now an analytic fiber space (M, ®) of dimension » over a real analytic
manifold M of dimension m, and an analytic vector bundle B over M. An analytic
vector bundle B’ over M’ is then defined in an analogous way as above. Let S
be a locally closed set in M, S’ a closed subset of @-!(S) such that ¢ Y(K)~S’ is
compact whenever KC 8§ is compact. We have then, setting n=m in (10.4.1), a
homomorphism

(10.4.8) @* 1 Ba(S) — Bu(S).

The image ®*(9')=g of a ¢g’€Bu-(S’) will be called the integral of ¢ along fibers,
and denoted with
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»-fold

f g or g(p):fri‘-—] g'(p).

@1 ntE g

(10.4.4) g

i

The formula (10.4.2) yields in this case the Fubini theorem for integration of
hyperfunctions.

10.5. Duality, another case. In the first place, suppose that we have three
sheaves &, &, & over a topological space X, and a bilinear mapping f: T X%
% (i. e. a homomorphism f: F&F.—F where F&F. denotes the tensorial pro-
duct of &, and §:). As is well known, f induces a bilinear mapping f*: H™:(Dy,
)X H"*(Da, Fa)— H"*"2(Dy ~ D2, &) for any D, D.€¥(X). The image of (gi, g2)
e HM(D,, §1)x H"(Ds, §2) is usually denoted with g,~g. and called the cup product
of ¢: and g.. Now, this notion of cup product is easily extended to the relative
case; namely, we have a bilinear mapping

(10.5.1) Fr H™(Dymod I, &) X H":(D. mod DY, &)
—— H "Dy ~ Dy mod (D] ~ Do)~ (D ~D3), )

for any D;, D}e¥(X), DicD, (§=1,2). Further, the result (10.5.1) is immediately
generalized to the case where D;, D] are replaced by arbitrary subset E;, E% of
X satisfying E'CE,.

Now consider a complex analytic manifold X of dimension m. Let B,, B,, B
be three analytic vector bundles over X, f a bilinear mapping from B, x B, to
B (i. e. an analytic mapping from B xB; to B such that f induces a bilinear
mapping By, ,X B:, ,— B, between fibers for any peX), or equivalently, a homo-
morphism from B®B; to B, where Bi®B: denotes the tensorial product of B,
and B, (whose fiber at peX is By ®B.,). As we have UnQulln,=Uneu,
canonically, f induces a bilinear mapping s, X¥Usp,—An. Consequently, (10.5.1)
yields a bilinear mapping for cohomology moduli

(10.5.2)  F*: HU(S: An) X HI5(Se, ) — H 'y "5(Sy~Ss, Ay

for any locally elosed Sy, S; (¢ X), or more generally,

f* H"(E,modE{, %Un)x H*":(E,mod E}, Un,)
s Hev (B ~ E, mod (E{ ~ E:)~ (B, ~E), Wn)

for any EicE,cX (j=1,2).

Now consider a real analytic manifold M of dimension m laid in a complex
analytic manifold X of dimension m, and an analytic fiber space (X', M’, &) over
(X, M). Let B,, B,, B be analytic vector bundles over X’, f a bilinear mapping
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from B;x B, to B. For any De¥X), we have by (10.5.2) a canonical bilinear
mapping

(10.5.83) f* HIA(@YM)~D, Un) X H.,(Dy, Ap,) — H (M ~D, An)
where we set Dy=D (0" X—-M)~M)=D—(@ (M)—~M'). The first and the last
terms in (10.5.3) are Bu,(@ (M) D) and Bs,(M' D), respectively. Taking De
D(P-(M)), and going to the inductive limit, we obtain

(10.5.4) S* Bp (0 (M)} HI (M, No-1 s, B,) — Bu(M"),

where %y, 5. denotes the confinement of s, onto @-'(M). Namely, we can
define a product of a hyperfunction over ¢ '(M) (i.e. a hyperfunction which is holo-
morphie on each fiber of ¢~YM)) and a hyperfunction over M’ containg real
holomorphic parameters on M as a hyperfunction over M’'. Specifically, if B
and B’ are analytic vector bundles of mutually complementry types, then we have
a canonical bilinear mapping Bx B’—T™', and hence a bilinear mapping

B (D~ (M) x H (M, N1 apy, B) — Ban(M).

Similarly we obtain, for any locally closed Sc M and any closed subset F of O3S,
a canonical bilinear mapping

B (D 1(S)) X Hiy(F, g1 a1y, 8) — Ba(F).

Further, we can clearly replace the first term by ZBB'((I)"(S)/\D') with any
De®(F). In case F is a compact set K, we can combine the integration
B1(K)— C with the above bilinear mapping, and obtain an inner multiplication

B (P (S) D)X Hy(K, Ng-1 0y, B)

+C.

In this case we have, as a generalization of proposition 10.1.1,

Proposition 10.5.1. The inductive limit of {Bu(@4S)~D); DeDE) and
H (K, No-1 o1, 8) constitute a pair of mutually dual vector spaces by the inner
multilpication defined above.

February 5, 1960 University of Tokyo
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Errata.

The author profits by this opportunity to correct some errors in his former paper [8] as
follows: ‘ Dist®(S, )’ in the expression (9) on p. 606 should be corrected to 'Dist*~/(S, §)’;
Proposition 2. (ii) on p. 606 should be supplemented by inserting ‘If Dist*(S, &=0 for
n=0,1,---, m—1, then’ in the beginning; and the description on a generalization of inte-
gration on pp. 607-608 should be revised as in 10.4 of the present paper.



