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Notes on Generalizations of Local Ogus-Vologodsky

Correspondence

By Atsushi SHIHO

Abstract. Given a smooth scheme over Z/p"Z with a lift of rel-
ative Frobenius to Z/p"T'Z, we construct a functor from the category
of Higgs modules to that of modules with integrable connection as
the composite of the level raising inverse image functors from the cat-
egory of modules with integrable p”*-connection to that of modules
with integrable p™~!-connection for 1 < m < n. In the case m = 1,
we prove that the level raising inverse image functor is an equivalence
when restricted to quasi-nilpotent objects, which generalizes a local
result of Ogus-Vologodsky. We also prove that the above level raising
inverse image functor for a smooth p-adic formal scheme induces an
equivalence of Q-linearized categories for general m when restricted to
nilpotent objects (in strong sense), under a strong condition on Frobe-
nius lift. We also prove a similar result for the category of modules
with integrable p"*-Witt-connection.
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Introduction

For a proper smooth algebraic variety X over C, the equivalence of
the category of modules endowed with integrable connection on X and the
category of Higgs modules on X (with semistability and vanishing Chern
number condition) is established by Simpson [10]. In search for the analogue
of it in chatacteristic p > 0, Ogus and Vologodsky proved in [9] similar
equivalences for a smooth scheme X; over a scheme Sy of characteristic p >
0. One of their results [9, 2.11] is described as follows: Denote the structure
morphism X; — 57 by fi, let Fg, : S1 — 51 be the absolute Frobenius

morphism, put X]El) =5 X Fs,,S1 X1, denote the projection Xl(l) — 51

by fl(l) and let Fx /g, + X1 — X{l) be the relative Frobenius morphism.

Assume that we are given smooth lifts fo : Xo — Sg,f2(1) : Xél) — Sy

of f1, fl(l) to morphisms of flat Z/p?Z-schemes and a lift Fy : X — X2(1)
of the morphism Fx, g which is a morphism over Sy. Then there exists
an equivalence between the category of quasi-nilpotent Higgs modules on
xM
(There is also a version [9, 2.8] which does not assume the existence of fa
and F5. In this case, the categories they treat are a little more restricted

in some sense.) The key of their proof is the Azumaya algebra property of

and that of modules with quasi-nilpotent integrable connection on Xj.

the sheaf Dg?l) /51 of differential operators of level 0 on X; over S;. Also,
in the above situation, one can give an explicit description of this functor
as the inverse image by ‘divided Frobenius’. (See [9, 2.11.2], [4, 5.9, 6.5] or
Remark 1.12 in this paper.)

The purpose of this paper is to construct a functor from Higgs modules
to modules with integrable connection for smooth schemes over some flat
Z/p"Z-schemes and study the properties of this functor and related functors.
Let us fix n € N and let S, 1 be a scheme flat over Z/p"*1Z. Let us put
S; =8, 11®Z/PZ(j € N,<n+1), let f1, Fs, be as above and for 0 < m <

n, let us put X{m) =51 XFg.5 X1, denote the projection Xfm) — 51 by
fm) and for 1 <m < n, let F)((T)Sl : Xl(m_l) — Xfm) be the relative Frobe-

nius morphism for fl(m) . Moreover, assume that we are given a smooth lift
st Xng1 — Spy1 of f1, smooth lifts £{7) : X\ — S,41 of £ (0 <

m < n) with fl(o) = f1 and lifts FT(LT% : Xflﬁl_l) — Xf:ﬁ)l of the morphisms
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(m)
X1/S1

Fat X — Sp, £ xM™ 5 (0 <m <), B xMY o x
be fnt1 ®Z/p"Z, f(+1 QRZL/p"Z, F(H ® Z/p"Z, respectively. Under this as-
sumption, first we construct the functor 9" : HIG(X,, X\ ))qn — MIC(X,,)9"
from the category HIG(X}ln) )9 of quasi-nilpotent Higgs modules on Xﬁb n)
to the category MIC(X,,)® of modules with quasi-nilpotent integrable con-
nection on X,,.

(1 < m < n) which are morphisms over S,y;. Furthermore, let

The construction of the functor ¥9" is done in the following way: For 0 <
m < n, let MIC(™) (X}lm))qn be the category of modules with quasi-nilpotent
integrable p™-connection (also called ‘quasi-nilpotent integrable connection
of level —m’) on X, (m) , that is, the category of pairs (£, V) consisting of an
OX("” -module &£ endowed with an additive map V : £ — £@Q! Xt /s, with

the property V(fe) = fV(e)+pTe®df (e € &, f € OXT(;n)), the 1ntegrabllity
and the quasi-nilpotence condition. (The notion of p"-connection is the case
A = p™ of the notion of A-connection of Simpson [11].) Note that we have
HIG(X,S"))QH = MIC™ (X,(Ln))q’[1 since p” = 0 on X", We construct the

functor ¥4 as the composite of functors FTET} A MIC™) (X xm ))q“ —

MIC(™=1 (X xim ))q“ for 1 < m < n, which are defined as the inverse
image by d1v1ded Frobenius (which we call the level raising inverse image)

associated to FTEJF%, as in the case of [9, 2.11.2], [4, 5.9].

The first naive question might be whether the functor 9" is an equiv-
alence or not. (Note that, since the sheaf of differential operators of level 0
on X, over S, does not seem to have Azumaya algebra property, it would
be hard to generalize the method of Ogus-Vologodsky in this case.) Unfor-
tunately, the functors F(™)*9 are not equivalences (not full, not essentially
surjective) for m > 2 and so the functor ¥" is not an equivalence either.
So an interesting question would be to construct nice functors from the

functors FT(LT{ M As a first answer to this question, we prove that the

functor F( )’ an
a closed 1mmersion Spy1 — S of Sp41 into a p-adic formal scheme S flat
over Z,. This generalizes [9, 2.11] under the existence of S. To prove this,

is an equivalence, under the assumption that there exists

we may work locally and so we may assume the existence of a smooth lift
i X — S of fur1, a smooth lifs O : XM — 5 of £V and a lifs

FO . X — XO of the morphism Y

X1/8:" In this situation, we introduce
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the notion of the sheaf of p-adic differential operators DUY o level —1

xM/s
of X over S, which is a level —1 version of the sheaf of/p—adic differ-
ential operators defined and studied by Berthelot [1], [2]. Then we prove
that the category MIC(I)(XS))qn is equivalent to the category of p"-torsion
quasi-nilpotent left Dg(_(})) y S-modules and re-define the functor F1)*an a9
the level raising inverse image functor from the category of p™-torsion quasi-

nilpotent left Dg(_(}g /s

left Dg?}s-modules. This is a negative level version of the level raising in-
verse image functor defined in [2, 2.2]. (We also give a definition of the
sheaf of p-adic differential operators of level —m and give the interpreta-
tion of (quasi-nilpotent) modules with integrable p™-connection and (level
raising) inverse image functors of them in terms of D-modules for general
m € N.) Then, one can prove the equivalence of the functor F ()xan

following the proof of Frobenius descent by Berthelot [2, 2.3].

-modules to the category of p"-torsion quasi-nilpotent

To explain our next result, let us fix m € N and assume that we are
given smooth lifts f : X — S of fi, fM : X1 — § of fl(l) and a ‘nice’
lift F: X — XM of Fx, /s, which is a morphism over S. Then, un-
der certain assumption on nilpotence condition, we prove that the i-th de
Rham cohomology of an object in the category MIC(™) (X (1)) of modules
with integrable p”-connection on X is isomorphic to the i-th de Rham
cohomology of its level raising inverse image by F' (which is an object in the
category MIC(m_l)(X ) of modules with integrable p™~!-connection on X)
when ¢ = 0, and isomorphic modulo torsion for general ¢. This implies that
the level raising inverse image by F' induces a fully faithful functor between
a full subcategory of MIC™ (X (1) and that of MIC(™ = (X) satisfying cer-
tain nilpotence condition and that it induces an equivalence of Q-linearized
categories (again under nilpotence condition), which gives a second answer
to the question we raised in the previous paragraph.

Also, we prove a Witt version of the result in the previous paragraph:
We introduce the category of modules with integrable p™-Witt connection
MIWC(™) (X1) on X; for a smooth morphism X; — Sj of chatacteristic
p > 0 with Sy perfect and the level raising inverse image functor Fj :
MIWC(m)(Xfl)) — MIWC™ 1 (X,) for X; — S] as above and Xfl) =
S X Fs,,S1 X1. We prove that the functor F} induces a fully faithful functor

between a full subcategory of MIWC (™) (Xfl)) and that of MIWC(™~1(X,)
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satisfying certain nilpotence condition and that it induces an equivalence of
Q-linearized categories (again under nilpotence condition). This result has
an advantage that we need no assumption on the liftability of objects and
Frobenius morphisms.

The content of each section is as follows: In Section 1, we introduce
the notion of modules with integrable p™-connection, (level raising) inverse
image functors and define the functor ¥ (V") from the category of (quasi-
nilpotent) Higgs modules to the category of modules with (quasi-nilpotent)
integrable connection as the iteration of level raising inverse image func-
tors. We also give an example which shows that the functor ¥, U4 are not
equivalences.

In Section 2, we introduce the sheaf of p-adic differential operators of
negative level and prove basic properties of it. In particular, we prove
the equivalence between the category of (quasi-nilpotent) left D-modules of
level —m and the category of (quasi-nilpotent) modules with integrable p"-
connection (m € N). In the case of schemes over Z/p"Z, we also introduce
certain crystalized categories to describe the categories of (quasi-nilpotent)
modules with integrable p”*-connection, and prove certain crystalline prop-
erty of them. In Section 3, we prove that the level raising inverse image
functor from the category of modules with integrable p-connection to that
of modules with integrable connection defined in Section 1 is an equiva-
lence of categories when restricted to quasi-nilpotent objects. In Section 4,
we compare the de Rham cohomology of certain modules with integrable
p"-connection over smooth p-adic formal schemes and that of the pull-back
of them by the level raising inverse image functor, and deduce the full-
faithfulness (resp. the equivalence) of the functor from the category (resp.
the Q-linearized category) of modules with integrable p™-connection to that

m=1_connection satisfying nilpotent conditions.

of modules with integrable p
In Section 4, we introduce the notion of modules with integrable p™-Witt
connection and the level raising inverse image functor from the category
of modules with integrable p™-Witt connection to that of modules with
integrable p™~'-Witt connection. We compare the de Rham cohomology
of certain modules with integrable p"*-Witt-connection and the de Rham
cohomology of the pull-back of them by the level raising inverse image func-
tor, and deduce the full-faithfulness (resp. the equivalence) of the functor

from the category (resp. the Q-linearized category) of modules with inte-
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grable p™-Witt-connection to that of modules with integrable p™~!-Witt-
connection satisfying nilpotent conditions.

While the main part of this work is done, the author is partly supported
by Grant-in-Aid for Young Scientists (B) 21740003 from the Ministry of Ed-
ucation, Culture, Sports, Science and Technology, Japan and Grant-in-Aid
for Scientific Research (B) 22340001 from Japan Society for the Promotion
of Science. Currently, he is partly supported by Grant-in-Aid for Scien-
tific Research (C) 25400008 and Grant-in-Aid for Scientific Research (B)
23340001.

Convention

Throughout this paper, p is a fixed prime number. Fiber products and
tensor products in this paper are p-adically completed ones, unless otherwise
stated. A local section of a sheaf £ on a (formal) scheme means a section
of £ on an affine open (formal) subscheme.

1. Modules with Integrable p”*-Connection

In this section, we define the notion of modules with integrable p™-
connection. Also, we define the inverse image functor of the categories
of modules with integrable p”-connection, and the ‘level raising inverse
image functor’ from the category of modules with integrable p™-connection

™m—1_connection for a lift of Frobenius

to that of modules with integrable p
morphism. As a composite of the level raising inverse image functors, we
define the functor from the category of Higgs modules to the category of
modules with integrable connection, which is a generalization of the inverse
of local Cartier transform of Ogus-Vologodsky [9, 2.11].

First we give a definition of p"-connection, which is a special case (the

case A = p™) of the notion of A-connection of Simpson [11].

DEFINITION 1.1. Let X — S be a smooth morphism of schemes over
Z/p"Z or p-adic formal schemes and let m € N. A p™-connection on an
Ox-module € is an additive map V : £ — E®op Qﬁ(/s satisfying V(fe) =
fV(e) + p™e @ df for any local sections e € &, f € Ox. We refer to a
p™-connection also as a connection of level —m.
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When we are given an Ox-module with p™-connection (£,V), we can
define the additive map Vj : £ ®p, Q’)“(/S — & ®oy Ql)ﬂ;g which is char-
acterized by Vi(e @ w) = V(e) Aw +p"e ® dw.

DEFINITION 1.2. With the notation above, we call (€, V) integrable if
we have V1oV = 0. We denote the category of Ox-modules with integrable
p™-connection by MIC(™) (X).

When m = 0, the notion of modules with integrable p™-connection is
nothing but that of modules with integrable connection. In this case, we
denote the category MIC(™ (X) also by MIC(X). Also, when X, S are
schemes over Z/p™Z with n < m, the notion of modules with integrable p™-
connection is nothing but that of Higgs modules. In this case, we denote
the category MIC(™) (X) also by HIG(X).

REMARK 1.3. For a smooth morphism f : X — S of p-adic formal
schemes and n € N, we denote the full subcategory of MIC(™ (X) consisting
of p"-torsion objects by MIC(™) (X)p. If we denote the morphism f®Z/p"Z
by X,, — Sp, the direct image by the canonical closed immersion X, — X
induces the equivalence of categories MIC™ (X,,) — MIC(™)(X),,.

Let us assume given a commutative diagram

X 4 .y

(1.1) l l

S —— T

of schemes over Z /p™Z or p-adic formal schemes with smooth vertical arrows
and and an object (£,V) in MIC™)(Y) (where MIC(™) (Y) is defined for
the morphism Y — 7). Then we can endow a structure of an integrable
p™-connection ¢g*V on ¢*& by ¢*V(fg*(e)) = fg*(V(e)) +p"g*(e) @df (e €
E,f € Ox). So we have the inverse image functor

g MICM™) (V) — MIC™)(X); (£,V) — ¢*(E,V) := (¢*E, g V).

REMARK 1.4. Let us assume given the commutative diagram (1.1) of p-
adic formal schemes with smooth vertical arrows and let us denote the mor-
phism gRZ/p"Z by gy, : X, — Y5,. Then the inverse image functor g* above
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induces the functor g* : MIC!™(Y), — MIC(X),, and it coincides
with the inverse image functor g* : MIC(™(Y,,) — MIC(™(X,,) associated
to g, via the equivalences MIC™(X,,) — MIC(™(X),,, MIC(™)(Y;,) —
MIC(™)(Y),, of Remark 1.3.

Next we introduce the notion of quasi-nilpotence. Let X — S be
a smooth morphism of schemes over Z/p™Z which admits a local coordi-
nate t1,...,tq. Then, for (£, V) € MIC™)(X), we can write V as V(e) =
Zle 0;(e)dt; for some additive maps 6; : € — £ (1 < i < d). Then we
have

0= (VioV)(e)=> (0i6; — 0;6:)(e)dt; A dt;.
1<J

So we have 6;0; = 0;0;. Therefore, for a = (a1,...,aq) € N¢, the map
0 =TI, g7 is well- deﬁned

DEFINITION 1.5. With the above situation, we call (£, V) quasi-nilpo-
tent with respect to (t1,...,tq) if, for any local section e € &, there exists
some N € N such that §%(e) = 0 for any a € N with |a| > N.

LEMMA 1.6. The above definition of quasi-nilpotence does not depend
on the local coordinate (t1,...,tq).

PrROOF. When m = 0, this is classical [3]. Here we prove the lemma
in the case m > 0. (The proof is easier in this case.) First, let us note that,
for f € Ox, we have the equality

m Of

D> _Oi(fe)dts =V (fe) = fV(e) +pedf = (f0i(e) +p" 5 )dt

So we have the equality

of

(1.2) O;f = f0; +p ot

Now let us take another local coordinate t},...,t),, and write V as V(e) =
Z, 1 0i(e)dt;. Then we have

8tz atz
Ze )dt; _Ze 8t’dt 72281&’ i
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ot;
Lot
J
Let us prove that, for any local section e € £ and for any a € N?, there
exist some f,, € Ox (b € N, [b| < |a]) with

(13) ()= 3 prlali g, b e),

[b|<|al

Hence we have ¢ = °

0;.

by induction on a: Indeed, this is trivially true when a = 0. If this is true
for a, we have

0,6 (e) = (> %m)( > g, 0% (e)

i [b]<|al

_ Z m(|a|—|b]) at f ,b9b+ei(€)

+pm<'a'-b'+l>%eb<e>> (by (1.2)

and from this equation, we see that the claim is true for a + e;.

Now let us assume that (£,V) is quasi-nilpotent with respect to
(t1,...,tq), and take a local section e € £. Then there exists some N € N such
that 6°(e) = 0 for any b € N |b| > N. Then, for any a € N%,|a| > N + n,
we have either |b| > N or |a| — |b] > n for any b € N¢. Hence we have either
p™al=) = 0 or #°(e) = 0 on the right hand side of (1.3) and so we have
0"“(e) = 0. So we have shown that (£, V) is quasi-nilpotent with respect to
(t},...,t};) and so we are done. O

REMARK 1.7. By (1.2), we have

ea(fe): Z m|b|6 f&“ b( )

otb
0<b<a

f

fore € £, f € Ox, and we have pmlbl L 51
9%(e) = 0 for any a € N%, |a| > N, we have 6%(fe) = 0 for any a € N¢,|a| >
N + p™d. Therefore, to check the quasi-nilpotence of (£,V) (with respect
to some local coordinate t1,...,tq), it suffices to check that, for some local
generator ey, ..., e, of £, there exists some N € N such that #%(e;) = 0 for

e pmblplO . Hence, if we have
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any a € N% |a| > N and 1 < i < r. Also, we can take N € N such that
9%(e) = 0 for any a € N, |a| > N and any local section e € £.

When a given morphism does not admit a local coordinate globally, we
define the notion of quasi-nilpotence as follows:

DEFINITION 1.8.

(1) Let X — S be a smooth morphism of schemes over Z/p"Z. Then an
object (&, V) in MIC™ (X) is called quasi-nilpotent if, locally on X,
there exists a local coordinate ¢1, ..., t4 of X over S such that (£,V) is
quasi-nilpotent with respect to (t1,...,tq4). (Note that, by Lemma 1.6,
this definition is independent of the choice of t1, ..., t4.)

(2) Let X — S be a smooth morphism of p-adic formal schemes. Then an
object (&, V) in MIC™)(X) is called quasi-nilpotent if it is contained
in MIC(™ (X),, for some n and the object in MIC(X,) (where
X, := X ® Z/p"Z) corresponding to (£,V) via the equivalence in
Remark 1.3 is quasi-nilpotent.

We denote the full subcategory of MIC(™) (X)) consisting of quasi-nilpotent
objects by MIC(™ (X)) and in the case of (2), we denote the category
MIC(™)(X),, N MIC™) (X))@ by MIC™) (X3,

Next we prove the functoriality of quasi-nilpotence.

PROPOSITION 1.9. Let us assume given a commutative diagram (1.1)
of smooth morphism of p-adic formal schemes or schemes over Z/p"Z with
smooth vertical arrows. Then the inverse image functor g* : MIC(m)(Y) —
MIC™) (X)) induces the functor g : MIC(™) (Y)an — MIC(™) (X)), that
18, g© sends quasi-nilpotent objects to quasi-nilpotent objects.

PRrROOF. In view of Remark 1.4, it suffices to prove the case of schemes
over Z/p"Z. When m = 0, the proposition is classical ([3], [2]). So we may
assume m > 0. Since the quasi-nilpotence is a local property, we may assume
that there exists a local coordinate t1,...,tq (resp. t},...,t,) of X over S
(resp. Y over T). Let us take an object (£, V) in MIC™)(Y) and write
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the map V,g*V as V(e) = X, 0)(e)dt], g*V(fg*(€)) = X, 0:(fg*(e))dts
Let us write g*(dt}) = >, a;;dt;. Then we have

gV (fg*(e)) = fg*(V(e)) + p"g*(e) ® df
= Z(aijfg*(e}(e)) +pmg*(e)g—£)dti

and so we have 0;(fg*(e)) = >_, ai; fg"(0(e)) +pm%g*(e). Let us prove

that, for any local sections e € £, f € Ox and a € N?, there exist some
fap € Ox (b € N4, |b] < |a|) (which depends on e, f) with

(1.4) 0°(fg*(e) = > pmla=tDr " (0" (),

[b|<lal

by induction on a: Indeed, this is trivially true when a = 0. If this is true
for a, we have

0:0°(fg*(e) = 0,0 Y p™Ia=PD £, 570" (e)))

|b|<|al
— Z(aijpm(‘d_'b')fa,bg*(9'b+€j ()
b
— a a *
4 prmllal |b|+1)ﬂg @ (e)))

ot;

and from this equation, we see that the claim is true for a +e;. From (1.4),
we can prove the quasi-nilpotence of (¢*&, ¢g*V) as in the proof of Lemma
1.6. So we are done. [J

Before we define the level raising inverse image functor, we give the
following definition to fix the situation.

DEFINITION 1.10. In this definition, ‘a scheme flat over Z/p>°Z’ means
a p-adic formal scheme flat over Z,.

For a,b,c € NU {oco} with a > b > ¢, we mean by Hyp(a,b,c) the
following hypothesis: We are given a scheme S, flat over Z/p®Z, and for
Jj € N,j <a,S; denotes the scheme S,®7Z/p 7. We are also given a smooth
morphism of finite type f1 : X1 — 51, and let Fx, : X; — X, Fg, :
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S; — 51 be the Frobenius endomorphism (p-th power endomorphism).

(1)

Let us put Xfl) = 5 X Fs, ,S1 X1 and denote the projection Xl1 — 5]

by fl(l). Then the morphism Fx, induces the relative Frobenius morphism
Fx,/s, : X1 — X{"
Sp of f1, a smooth lift fél) : Xlgl) — Sy of fl(l)7 and for j € N, 7 < b, denote
the morphism f,®Z/pIZ, f{") @Z/PL by f;: X; — S, £ XV — 55,

respectively. Also, we assume that we are given a lift F. : X, — Xc(l) of

. We assume that we are given a smooth lift f, : X —

the morphism F, /g, which is a morphism over S.. For j € N,j < ¢, let
Fj: X; — Xj(l) be F.®Z/p’7Z. Finally, when a = oo (resp. b = 0o, ¢ = 00),

we denote S, (resp. f : Xp — S, and fél) : Xél) — Sy, Fo: X — X,El))
simply by S (resp. f: X — S and fM: X0 — 5 F. X — xM),

Roughly speaking, Hyp(a, b, ¢) means that S is lifted to a scheme S, flat
over Z/p®Z, f1 : X1 — S1 and fl(l) : Xl(l) — S7 are lifted to morphisms
over Sy = S, ® Z/p’Z and the relative Frobenius Fx /s, + X1 — Xfl) is
lifted to a morphism over S. = S, ® Z/p°Z.

Now we define the level raising inverse image functor for a lift of Frobe-
nius. Let n € N and assume that we are in the situation of Hyp(n +
I,n+ 1,n+1). When we work locally, we can take a local coordinate
t1,...,tq of Xpq1 over S,41 and a local coordinate t/, ...,/ of Xr(Llle over
Sp+1 such that ., (t;) = t 4 pa; for some a; € Ox,,,. Hence we have
Er  (dt)) = p(t? “Ydt; + da;), that is, the image of the homomorphism

F* Q 1 So there

. 1 Q . . . 1
: — is contained in pf)
ntl Xﬁl/snﬂ Xnt1/Sn+1 P

n+1/Sn+1 '

exists a unique morphism F,; Qi{“’/s — Q% /s, Which makes the
n n

following diagram commutative

1 Fii o1
X1 /S Xnt1/Sn+1
| 4
F*
1 ntl 1
QXS)/S” Oy s,

where proj. denotes the natural projection and p denotes the map naturally

induced by the multiplication by p on Qﬁ(nﬂ Smi1 Using this, we define the
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level raising inverse image functor

(1.5) s MICt (X D) — MIcmY(x,)

as follows: an object (£,V) in MIC(m)(Xy(Ll)) is sent by F;,, to the
object (F}E,F;V), where F;V is the additive map characterized by
(FxV)(fFi(e)) = fF,1(V(e) + pmEi(e) @ df for e € £,f € Ox,.
(Here, by abuse of notation, we denoted the map

E Q! — FrE@0y 15 eQw Fr(e)® Fpp(w)

X(l)/s

also by FZH')
We need to check that the above definition of functor (1.5) is well-
defined. First note that the map F]V is well-defined, because we have

foree &, feOx,,9€0, 1) the equality

(FiV)(FFi(ge)) = fFoi1(V(ge)) +p™ ' Fr(ge) ® df
= [Fy.1(gV(e) +p™e @ dg) + p™ Fri(ge) ® df
= [F(9)F11(V(e) + ™ (fF}(e) © pF, 1 (dg) + F;(ge) @ df)
= fE;(9)F,1(V(e) +p" T F(e) @ d(fF;(9))

= (F;V)((fF}(9))F;(e)).

Next we check that (F*E, F*V) is a p™ !-connection. This follows from
the fact that, for e € Fi€ with e = ), fiF(e;) (fi € Ox,,,e; € £) and
f € Ox,,, we have the equality

(FaV)(fe) = (FiV)(_ [£iV(e:)
= D> ([ fiF i ((e)) + P (o) @ d(f f;)
= f Z JiFa(V(e) + 1 p" T (e @ dfy + 3 " fiF(e) @ df
:fF;;(e) +p" e ® df. Z Z

Finally, we need to check the integrability of (F;'€, F;*V). This is done as
follows: Let us take the local coordinate t1, ..., 5 of X,,41 over S, 11 and the
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local coordinate t/, ...,/ of X( )1 over Spy1 as above (so that Fr (t;) =
tf + pa;), take a local section e € £ and write

e) = Zei ®@dt,, V(e)= Zeij ® dt;.
@ J

The integrability of (£,V) implies that e;; = ej;. Let (F;iV)1 @ FjE®
Qk /s, — IRE® QX /s, be the morphism defined by (FiV)i(gow) =
(F*V)(g) N w + p™" g @ dw. Then our task is to show ((F¥V); o
(EXV)(fEr(e)) =0 for f € Ox,. This is actually calculated as follows:

(Fx¥)10 (FiV))(fFy(e))
= (FyV1(fF,,1(V(e) +p™ ' Fy(e)df)
= (F;V) ZfF* ¢i) ® Fppq(dty) + p™ ' Fy(e)df)

= Zan+1 (e) Aoy (dty) + > p™ ' Fyeq)df A F,, i (dt;)

%

+ meflfF*(ei) ® dF,, 1 (dt;) + p™ Frp (V(e)) Adf
=f Z Fria(V(e) A Fyy(dt) +p™ 7 f Z Fr(e:) @ dF,, . (dt})

= fZF; eij) ® (Frp (dth) A (dt]))

_ Oa;
m—1 *( . p—1 4, il
+p" T f E@ F,(e;) @d(t; “dt; + Ej o, dt
= m‘le Fr(e;) ® E &dt Adt; | =0
-7 = 1 ik ogot; ) T

So we have checked the integrability of (F*&, F;'V) and so the functor (1.5)
is well-defined.

Also, in the situation of Hyp(oo, 00, 00), we have the homomorphism
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- QﬁdU/S — Qﬁ(/s which makes the diagram
F*
Q) /S - Qﬁ(/s
| d
F*
Qi(m /S QX/s

commutative, and using this, we can define the level raising inverse image
functor

(1.6) F*: MIC™) (x (D) — MIC™ =D (X)
in the same way.

REMARK 1.11. Assume we are in the situation of Hyp(co, 0o, 00) and
put xM = x0 g Z]p"Z, X, = X ® Z/p"Z. Then the functor (1.6)
induces the functor F* : MIC!™ (X)), — MIC™ D (X),, and this
coincides with the functor (1.5) via the equivalences MIC(™ (X,(Ll)) —
MIC(™) (x 1), MIC™D(X,,) — MIC™Y(X), of Remark 1.3.

REMARK 1.12. Assume that we are in the situation of Hyp(2,2,2).
Then the level raising inverse image functor for m = 1 is written as Fy :
HIG(Xfl)) — MIC(X7). Let us see how it is calculated locally. Let us
take a local coordinate ti,...,tq of X and a local coordinate t},...,t, of

1) . . —
XQ( ) with F3(t}) =t + pa;. Then F, : Q;F)/Sl

Fo(dt]) = t “Ydt; 4 da; and the functor Fy is defined by using it. So we
obtain the following expression of the functor F3: A Higgs module (€, 6) on
X (1) 6f the form O(e) = Zf_l 0;(e) ® dt} is sent to the integrable connection
(F% X1/8, &, V) such that, if we write V = ZZ 1 Oidt;, we have

1 . .
— 0 X1/5, 18 written as

(l®e) =1 +Zaa]

Let ¢ : HIG(XY) — HIG(X™) be the functor (£,6) — (£, —0). Then, by
the above expression, we see that the functor Fy o coincides with a special
case of the functor defined in [4, 5.8] (the case m = 0 in the notation of [4])
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for quasi-nilpotent objects. (The underlying sheaf F}*E is globally the same
as the image of the functor in [4, 5.8], and the connections coincide because
they coincide locally.) Hence, by [4, 6.5], it coincides with the functor in [9,
2.11] for quasi-nilpotent objects.

We have the functoriality of quasi-nilpotence with respect to level raising
inverse image functors, as follows:

PROPOSITION 1.13.  Assume that we are in the situation of Hyp(n +
I,n+1,n+1) (n € N) (resp. Hyp(oco,00,00)). Then the level raising inverse

image functor Fy , MIC(m)(X,gl)) —  MIC™(X,,) (resp.
F* o MIC™(XxM) — MIC™ V(X)) induces the functor Fod

MIC™) (xMyan — MICtm =D (X,)9 (resp. F*an : MIC(™) (xW)an
MIC(™=1(X)an) | that is, Fy .y (resp. F*) sends quasi-nilpotent objects to
quasi-nilpotent objects.

PrROOF. In view of Remark 1.11, it suffices to prove the proposition
for Fy, ;. In the case m = n = 1, the functor Fy o (¢ is as in Remark
1.12) coincides with the functor in [9, 2.11]. Hence it sends quasi-nilpotent
objects to quasi-nilpotent objects. Since ¢ induces an auto-equivalence
of MIC(I)(Xl(l))qn, we see that F3 sends quasi-nilpotent objects to quasi-
nilpotent objects.

Next, let us prove the proposition in the case m = 1 and n general, by
induction on n. Let us take an object (£,V) in MIC(I)(X,(LI)). Then we
have the exact sequence

00— (p57v‘p5) B (5,V) — (8/pS7V) - 07

where V is the p-connection on £ /p€ induced by V. Since F), : X,, — X,gl)
is finite flat, the above exact sequence induces the following exact sequence:

0— F§+1(p5,V|pg) - :;-s-l(gvv) - ;-s-l(g/Pgav) — 0.

Then, since Fy (p€,Vipe) = F;(pE,Vlpe) and Fy (E/pE,V) =
F5(E/pE, V), they are quasi-nilpotent by induction hypothesis. Then, if
we work locally, take a local coordinate t1, ..., t4 of X,,+1 and write the con-
nection on Fyy, (E,V) as e ), 0(e) @ dt; (e € F); &), there exists some
N € N such that 6%(e) is zero in Fj;, | (E/p€) for any a € N? with |a| > N
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and any local section e € F}; £, by Remark 1.7. Then, since §(e) is con-
tained in F}f, | (p€), there exists some M € N such that §%7°(e) = 0 for any
b € N? with |b| > M and any local section e € F; 1€, again by Remark 1.7.
Hence F;,(€,V) is also quasi-nilpotent, as desired.

Finally we prove the proposition in the case m > 2. Let us take a
local coordinate t1,...,t4 of X,41, a local coordinate ¢/, ..., ), of X(+)1 with
Fr o (t)) =t + pa;. Take an object (£,V) in MIC(m)(X}ll)) and write
Vie) =Y, 0 (e)dt,, FxNV(fF}(e)) = >, 0(fFy;(e))dt;. Then we can prove
that, for any local sections e € &, f € Oy, and a € N¢, there exist some
fap € Ox, (b€ N |b| < |a]) (which depends on e, f) with

(1.7) 0L (fFna(e) = Y plm=DUal=hp B (6" (e)),

|b|<lal

in the same way as the proof of Proposition 1.9. From this we see the quasi-
nilpotence of F;,(&,V) = (F;&, F;;V) again in the same way as the proof
of Proposition 1.9. [J

REMARK 1.14. In the above proof, we used the results in [9]. Later, we
give another proof of Proposition 1.13 which does not use any results in [9]
under a slightly stronger hypothesis Hyp(co,n+1,n+1) or Hyp(co, 0o, 00).

Now we define a functor from the category of (quasi-nilpotent) Higgs
modules to the category of modules with (quasi-nilpotent) integrable con-
nection as a composite of level raising inverse image functors. Let us con-
sider the following hypothesis.

HyproTHESIS 1.15. Let us fix n € N and let 5,41 be a scheme flat
over Z/p""1Z. For j € N;j < n+1, let us put Sj := Sy1 @ Z/p’Z.
Let fi; : X1 — S1 be a smooth morphism and let Fgs, : S — 51 be the
Frobenius endomorphism. For 0 < m < n, let us put X; (m) = 51 % F2 .5 X1,

denote the projection Xl(m) — 51 by f1( and for 1 <m < mn, let F( ™)

X1/81
X {mfl) — X fm) be the relative Frobenius morphism for f1 -,
Assume that we are given a smooth lift f,+1 : Xp41 — Sp41 of fi,

smooth lifts f(m) : Xfﬁ:)l — Sp4q of flm) (0 < m < n) with f(o)

for1 and lifts F1§+])L ngl v o_, X( )1 of the morphism F)(( /)Sl( <
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m < n) which are morphisms over S,;. Finally, let f, : X,, — Sy,
(m) . X(m) _ Sn; Fr(bm) . X7(Lm—1) _ Xr(zm) be fn+1 ®Z/an f(+1 ®
Z/p"Z, Féiq ® Z/p"Z, respectively.

Then we define the functor as follows:

DEFINITION 1.16. Assume that we are in the situation of Hypothesis
1.15. Then we define the functors

U HIG(X ™) — MIC(X,), ¥ : HIG(X(™)™ — MIC(X,,)™

as the comp051te F(-i,-)i OF(i)l* o- OFrs_A,_)l 7F,,(:’_)i »qn Féi_)’ 7(311’1 . oFy(L:l_)l,*ﬂn

of level raising inverse image functors
FI - MICT) (X0) — MIC® (X[ D) (1 <m < n),
Frmsan . Ao (xmye — MICt D (x(m)er (1< m < n),

n

respectively.

Since the morphisms Fém) are finite flat, we see that the functors ¥, "
are exact and faithful. However, we see in the following example that the
functors ¥, 9" are not so good as one might expect.

Example 1.17. In this example, let us put S, 11 = SpecZ/p"*'Z and
let S ni1 ® Z/p'7 = SpecZ/p'Z, X; = Spec (Z/p’Z)[tT!] for j €
N,j7 < n+ 1. Also, put X(m) Spec(Z/pJZ)[til] for all m € N,j €
N,j < n+1 and let F( m XJ(.m v, X](. ™ be the morphism defined

by t + tP. Then Ffﬁ)l* Qi{(m Vs, Q;(m*”/s sends f(t)t~1dt to

f(tP)t7PtP=1dt = f(tP)t~'dt and the level raising inverse image functor
Fé_& : MIC(™) (X, (m)) — MIC(™~ 1)(X(m 1)) is defined as ‘the pull-back
by FU

For m € N and f(t) € (Xflm) O m), we define the p™-connection
(OXT(L’”) Vi) by Vg =pmd+ f(t )t~ ldt. Tt is locally free of rank 1. Since

(m) (m)

any locally free sheaf of rank 1 on X,;"” is free, any p™-connection on X,
which is locally free of rank 1 has the form (O ), V(y)) for some f(¢). For
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a p™-connection (O, (m), V), the p™~ L_connection F,(H_% (O oms Vi)

is equal to (OXT(Lm—l) , V(ry) thanks to the description of Fr(w% given in the
previous paragraph.

Let us make some more calculation on the p™-connection (O ) V £))-
It is easy to see that we have an isomorphism (OXT(L’”) Vi) & ((5X7<Lm), Vo)
if and only if (OX,(J")’V £(+)) is generated as OXT(Lm)—module by a horizontal
element. Since we have

mdg _1dg _
Vi 9(t) = p"—idt + gftrdt = g(p™tg o + f)tdt,
we see that (Ox(m), V) is isomorphic to (O m), Vo) if and only if there
! d
exists an element g € T'(X, xim (’)X ) With f = —pmtg_ld—g. If g is an

element in I'(X (™) C’)Xm)) it has the form g = c(t"V + phy) for some c €

(Z/p"Z)*, N € Z and h1 € T(X™) Oy m), and in this case, g~ has the
form ¢! (=N 4 phy) for some element hs in I‘(Xﬁbm), O (m). Then we have

. _.dg . dh
—p"tg = = —p"t(t N + pho) (NN ! + pd—tl)

dt
= —p™N + p™th(t)

for some h € F(X,s ™) OX(m)) Therefore, we have shown that if (O, (m)
V ¢(1)) is isomorphic to ((’)X(m),vo) f has the form —p™N + p™*1h(t).

Now, to investigate the functor W vIc (X ,(L)) — MIC(X,,),

n+1
first let us consider the p-connection (O V1). Then, since there does

Xﬁ})?
not exist N € N/ h € F(Xél),(’)x(l)) with 1 = —pN + p?h, it is not
isomorphic to (OX(1)7VO). On the other hand, we see that the connec-
tion F7(l+)1 (04w, V1) = (Ox,, V1) is isomorphic to Fﬁf(oxm,vo) =

-1

d
(Ox,, Vo) because we have 1 = —tg d—g when g = t~1. So we can conclude

that the functor F +)1* is not full. Secondly, let us consider the connection

(1),%

(Ox,,, V). If it is contained in the essential image of F), 41 » we should have
(OXn,Vt) = V(L—‘r)l (OX,(f)’vf(t)) = (OXn,Vf(tp)) for some f(t) Then we
have f(t?) —t = —N + ph for some N € Z and h € I'(X,,,Ox,, ), but it is

impossible. Hence we see that the functor F( ) /1 is not essentially surjective.
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Next, let us investigate the functors FT(LTi* : MIC(m)(Xém)) —
MICOm=D(x "1y Flms e MIcem) (x(™)an — MIcem-D (x ) yan
for m > 2. First let us consider the p™-connection (0X<m),me—1). We
see as in the previous paragraph that it is not isomorphic to (O X<m),Vo),

and that Féﬁ’:z’*((’)x(mhvpmq) = (O m-1),Vpm-1) is isomorphic to
FéT%’*(OXfLm)’VO) = (OXgm_l),Vg). If we put Vym-1(e) = d(e)dt, we

can see easily by induction that 0'(1) = (1_[2;(1)(10’”_1 —ip™))/t'. By this

and Remark 1.7, we see that (O V,m-1) is quasi-nilpotent. So the

(m)
Xn
functors Fr(LT:)l*, Fég,*,qn are not full. Secondly, let us consider the con-
nection (Oxﬁbmfl),vzyt). If it is contained in the essential image of Fﬁfﬂ*,

we should have (OXﬁLm_l)’vpt) = FvET}’*(OX;m%Vf(t)) = (OX,,(L’”‘I)’Vf(t"))
for some f(t). Then we have f(t?) — pt = —p™ !N + p™h for some
N € Nand h € F(X,(mel),(’)x(m_l)), but it is impossible. Also, if we
put Vp(e) = 9(e)dt, we can see easily by induction that 8'(1) = p'. By this
and Remark 1.7, we see that (OX(m—l),th) is quasi-nilpotent. Hence the
functors FT(LCQ*, FT(:_L%’*’QH
In conclusion, V¥ is not full, not essentially surjective for any m > 1, and

are not essentially surjective.

P9 is not full, not essentially surjective for any m > 2.

In view of the above example, we would like to ask the following question.

QUESTION 1.18. Is it possible to construct some nice functor (a fully
faithful functor or an equivalence) from the functors FSH*, Férfi’*’qn, pos-

sibly under some more assumption?
Several answers to this question will be given in Sections 3, 4 and 5.
2. p-Adic Differential Operators of Negative Level

In this section, first we introduce the sheaf of p-adic differential operators
of level —m (m € N), which is a ‘negative level version’ of the sheaf of p-
adic differential operators of level m defined by Berthelot, for a smooth
morphism of p-adic formal schemes flat over Z,. We prove the equivalence
of the notion of left D-modules in this sense and that of modules with
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integrable p™-connection. We also define the inverse image functors and the
level raising inverse image functors for left D-modules, which are compatible
with the corresponding notion for modules with integrable p™-connection
over p-adic formal schemes.

The definition of the sheaf of p-adic differential operators of level
—m (m € N) is possible only for smooth morphisms of p-adic formal schemes,
because we use the formal blow-up with respect to an ideal containing p™
in the definition. In the case of smooth morphisms X,, — S, of schemes
flat over Z/p™Z, we give a similar description by considering all the local
lifts of X, to smooth p-adic formal scheme and consider the ‘crystalized’
category of D-modules.

We also consider a variant of the ‘crystalized’ category of D-modules,
which is also related to the category of modules with integrable p™-con-
nection. As a consequence, we prove certain crystalline property for the
category of modules with integrable p™-connection: When f,, : X,, — S,
is a smooth morphism of flat Z/p"Z-schemes and if we denote the morphism
fn ® Z/pZ by X1 — S1, we know that the category MIC(X,,)%", which is
equivalent to the category of crystals on the crystalline site (X1/S5y)crys,
depends only on the diagram X; — S7 — S,,. We prove here similar
results for the categories of modules with integrable p”-connection, although
the result in the case m > 0 is weaker than that in the case m = 0.

2.1. The case of p-adic formal schemes

Let S be a p-adic formal scheme flat over SpfZ, and let X be a p-adic
formal scheme smooth over S. For a positive integer r, we denote the r-fold
fiber product of X over S by X". For positive integers m,r, let TX,(—m) (r)
be the formal blow-up of X" *! along the ideal p™Oxr+1 + KerA(r)*, where
A(r)* : Oxr+1 — Ox denotes the homomorphism induced by the diagonal
map A(r) : X < X" Let T _)(r) be the open formal subscheme of

T'x,(—m)(r) defined by

TX,(fm) (T) = {x € TVX,(fm)(r) |

P"Or, oy = (07 Oxe +KesAGYIOp, o))

Then, since we have (p"Oxr+1 + KerA(r)*)|x = p"Ox, the diagonal map
A(r) factors through a morphism A(r) : X — Tx _p,)(r) by the uni-
versality of formal blow-up. Let us put Iy _p)(r) = KerA(r)*. Let
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(Px,(—m) (1), Ix,(—m)(r)) be the PD-envelope of Op, (. (r) With respect to
the ideal Ix (_,)(r), and let us put Px _,(r) := &(’)XPX(—W) (r). Also,
for k € N, let P§(7(7m)(r),P)k(’(im)(r) be Px (—m)(r), Px,(—m)(r) modulo
TX (—=m) (T)[kJrH
tion.

. In the case r = 1, we drop the symbol (r) from the nota-

Note that Px (_,,) admits two Ox-algebra (Ox-module) structure in-
duced by the 0-th and 1-st projection X2 — X, which we call the left
Ox-algebra (Ox-module) structure and the right O x-algebra (Ox-module)
structure, respectively. Note also that, for m’ < m, we have the canonical
morphism Px, () — Px, (—m)-

Locally, Px (—m)(r) is described in the following way. Assume that X
admits a local parameter t1,...,tqy over S. Then, if we denote the ¢-th
projection X"t — X by m; (0 < ¢ < ) and if we put 7;, = Tyiqti —
myti, KerA(r)* is generated by 7;,’s (1 < i < d,0 < g <r—1) and we
have Tx (_m)(1) = %Ox Ox {7iq/P™}; ,» where {—} means the p-adically
completed polynomial algebra. So we have Px _p,)(r) = Ox (7iq/p™)
where (—) means the p-adically completed PD-polynomial algebra.

We see easily that the identity map X"+ — X7+ x v X" +! natu-
rally induces the isomorphism Px () (1) @0y Px,(—m) (1) — Px (—m)(r+
') and in the local situation, the element 7; ,/p™ ® 1 (resp. 1 ® 7;4/p™) on
the left hand side corresponds to the element 7; ,/p™ (resp. Tigq4r/p™) on
the right hand side. Then, the projection X? — X2 to the (0, 2)-th factor
induces the homomorphism

1,q’

0: 7DX,(—m) B PX,(—m) (2) = 7DX,(—m) ®(9X 7DX,(—m)

with 6(r;/p™) = 1;/p" @1+ 1® 7;/p™ (here we denoted 7; o simply by 7;)
and so it induces the homomorphism

65 PR — Pm) B0x PX (<)

Using these, we define the sheaf of p-adic differential operators of negative
level as follows:

DerFINITION 2.1. Let X,S be as above. Then we define the sheaf
Dg;/g)k of p-adic differential operators of level —m and order < k by
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Dgg/@ = Homo, (Py X,(—m)? OX ) and the sheaf Dg{/s) of p-adic differen-

tial operators of level —m by D X/S = Ureo X/Sk We define the product

(=m) (=m) (—m)
DX/Sk X DX/S v Dx/s ki

by sending (P, P’) to the homomorphism

1d®P

ek O ok P
Py ™ PR cm) ©0x PR cm) — P (—m) — Ox.

By definition, Dg(_/g) also admits two Ox-module structures, which are

defined as the multiplication by the elements in Dg( S)D Ox from left and
from right. We call these the left and the right OX module strucrure of
Dg(_/g). Note that P € Dg(_/gf)k acts on Ox as the composite

Ox — P (L — Ox

(where the first map is defined by f +— 1 ® f), and this defines the action
of D! /S) on Ox. For m’ < m, the canonical map Px, (=m) — Px,(—m)
induces the homomorphism of rings p_,,/ —, : Dg( /g) — Dg( /7;3 ).

Assume that X admits a local parameter %1, ...,tq over S and put 7; :=
1®t;—t;®1 € Ox2. Then, as we saw before, we have Px (_,y = Ox (7:/p™);
and so P¥ (=m) admits a basis {(r/p™)1 }\l\<k as Ox-module. (Here and
after, we use multi-index notation.) We denote the dual basis of it in Dg( /Tg)k
by {8<l>}|l|§k. When [ = (0,...,1,...,0) (1 is placed in the i-th entry),
o is denoted also by ;. When we would like to clarify the level, we
denote the element 8% by 9%)-m. Since the canonical map Px (—=my —

Px,(—m) sends (T/pm')[l] to p(m—m/)\l\(7-/pm)[l]7 we have me',fm(3<l>*m) _
p(m—m’)lllaﬂLm/

We prove some formulas which are the analogues of the ones in [1, 2.2.4]:

PropPoOSITION 2.2.  With the above notation, we have the following:

(1) For f € Ox, 1@ f =3, 0V (N (r/p™) in PY .
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(2) o (t) =1 (;) prlllgi=t
(3) oWl = g+,

(4) For f € Ox, 0 f = Dk —k <ll:’> O (f)o*".

PrROOF. (1) is immediate from definition. By looking at the coefficient
of (r/p™)W of 1@t = (t + p™(7/p™))’, we obtain (2). From the equality

@D ((r/p™)
= (0" (id ® 96T (7 /p™)T)
=@M (d ") (Y (r/pml e (r/pm)P) =

{ 1, ifi=1+1,
a+b=i

0, otherwise,

we see the assertion (3). From the equality

@ ) ((r/p™)) = 5<k>((1 ® f)(r/p™))
Za )(r/p™) (7 /p™))

=Wy (l ) ) o ()(r /pm) ),

l

we see the assertion (4). O

REMARK 2.3. Let Dy/s be the formal scheme version of the sheaf of
usual differential operators and let us take a local basis {9}, cna of Dy /55
which can be defined in the same way as {9%)} above. Then Oy admits
the natural action of Dy, g and we see, for | € N¢, m € N and f € Oy, the
equalities

o= (f) = p™oWe(f) = ™Mol ).

In particular, we have 9-m(f) — 0 as |I| — occ.

Next we define the notion of (—m)-PD-stratification and compare it with

the notion of left Dg( / S)—module.
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DEFINITION 2.4. A (—m)-PD-stratification on an Ox-module £ is a
compatible family of Pf(’(_m)—linear isomorphisms {ey : Pff’(_m) R0y & —
& ®oy 77§(7(_m)}k with €y = id such that the following diagram is commu-
tative for any k, &k’ € N :

Pf(,(—m) ®OX PA’;(/,(_m) ®OX g Hid@ek/ P§(7(_m) ®OX g ®OX Pf(vl,(_m)

" 6k®idl
8 (e g )

€ @0y PX (_m) @0x PX,(cm)-

The conditions put on {€x}x in the above definition is called the cocy-
cle condition. It is easy to see that the cocycle condition is equivalent to
the condition ¢§;(ex) = qfi(ex) o ¢f5(ex) for k € N, where qu denotes the
homomorphism 735(,(7
X3 — X2

We have the following equivalence, which is an analogue of [1, 2.3.2]:

N P§(7(,m)(2) induced by the (iaj)‘th projection

m)

ProrosITION 2.5.  For an Ox-module &€, the following three data are
equivalent.

(a) A left Dgg/g)—module structure on £ which extends the given Ox-
module structure.

(b) A compatible family of Ox -linear homomorphisms {0 : £ — € @0
Pﬁ’(,m)}k (where we regard € ®o P§(7(7m) as Ox-module by using
the right Ox-module structure of Pf( (_m)) with 8y = id such that the
following diagram is commutative for any k, k' € N :

r ideskk '
g ®OX P;Cg_(k_m) E— g ®OX P§(7(_m) ®OX P;C(’(_m)
0,1 ’
£ LN £ ®0x PX (_m)-

(¢) A (—m)-PD-stratification {ep}r on E.
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PROOF. Since the proof is identical with the classical case, we only
give a brief sketch. The data in (a) is equivalent to a compatible family of
homomorphisms py, : Dgg/g)k ®o, € — &€ satisfying the condition coming

(=m)

from the product structure of Dy /5

and pg’s induce the homomorphisms

Ok - € — Homo, (D)5}, &) = € B0y P, (kEN)

which satisfy the conditions in (b). So the data in (a) gives the data
(b), and we see easily that they are in fact equivalent. When we are
given the data in (b), we obtain the P§(7(7m)—linear homomorphism ¢ :
P;“(?(_m) ®ox € — £ Roy Pf(’(_m) by taking P§(7(_m)—linearization of ;..
Since € (1®x) = O () is written locally as 37 -, O (z) @ (r/p™)M, we see
that ¢ is actually an isomorphism because the inverse of it is given locally
by z®1 — ngk(—l)'l'(T/pm)[l] ® 0% (z). The cocycle condition for {ey}
follows from the commutative diagram (2.1) for {0}, and so the data in

(b) gives the data in (c). Again we see easily that they are in fact equiva-
lent. [

Next we relate the notion of left Dg(_?)—modules and that of modules
with p™-connection. Let X — S be as above. Recall that a p”*-connection
on an Ox-module £ is an additive map V : £ — € Qo Qﬁ(/s satisfying
V(fe) = fV(e) +pme®df (e € &, f € Ox). To give another description
of p™-connection, let us put J;(/S = Ker(P)lg(_m) — Ox). Then we have
a natural map « : Q}(/S — J)l(/s induced by the map 73)1(,(0) — P)lg(fm),
and locally « is given by dt; = 7, — p™(r;/p™). So «a is injective and
the image is equal to pmJ)l( /s Hence we have the unique isomorphism
0 Q%(/S - J)l(/s satisfying p™( = «. Via the identification by 3, a p™-
connection on & is equivalent to an additive map V : £ — £ ®p, J )1( /s
satisfying V(fe) = fV(e) +e®df for any e € £, f € Ox. (Attention: the
element df € J)l(/s here is the element 1 ® f — f® 1 € P)lf’(im), not the
element f(1® f — f®1).)

The following proposition is the analogue of [3, 2.9].

PROPOSITION 2.6. Let X — S be as above. For an Ox-module &,
the following data are equivalent:

(a) A p™-connection V : £ — € ®o J)l(/s on €E.
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(b) A Pk’(im)—linear isomorphism €7 : P)l(’(fm) Roy & — ERoy P)l(’(fm)
which is equal to identity modulo J)l(/s.

PROOF. Since the proof is again identical with [3, 2.9], we only give

a brief sketch. First assume that we are given the isomorphism €; as in
(b). Then, if we define V : £ — £ ®0p J)lqs by V(e) = e(l®e) —e®
1, it gives a p™-connection. Conversely, if we are given a p™-connection
V:iE& — £Roy J)l( /s let us define the P}(’(im)-linear homomorphism
€1t 77)1(7(_m) ®ox € — ERoy P)l(y(_m) by e(1®e) = V(e)+e®1. Then it is
easy to see that €; is equal to identity modulo J)lf /s To show that €; is an
1

—m) " Pxom)
induced by the morphism X? — X?;(z,y) — (y,2) and let s : £ ®o,
77)1(( — P)l(,(_m) ®0oy € be the isomorphism z ® £ — t(§) ® . Then we

) _m)
see that (so0e)? : 77)1( (=m) @Ox E — 73)1( (—m) ®Ox £isa 77)1( (_m)-linear

isomorphism, let us consider the isomomorphism ¢ : 73)1((

endomorphism which is equal to the identity modulo J )1( /s Hence it is an
isomorphism and we see from this that € is also an isomorphism. [

As for the integrability, we have the following proposition.

PROPOSITION 2.7. Let £ be an Ox-module and let V : € — £ ®p
1d®ﬁ7

Q%{/S £ ®oy JX/S be a p"-connection. Let €1 : P)lg(—m) ®oyx € —
&€ Roy 77 X, (—m) be the 77 (_m)—lmear isomorphism corresponding to V by
the equivalence in Proposition 2.6 and let uy : D;/s)l ®oy € — & be the
homomorphism induced by the composite

£ — 7))1(’(71) ®OX £ =L £ ®OX 7))1(’(71) = HOHIOX (Dg(/z‘l)P 5)
Then the following conditions are equivalent.
(1) (&,V) is integrable.

(2) w1 is (uniquely) extendable to a D™ module structure on & which

X/S
extends the given Ox-module structure.

1d®[3

( )-

PRrOOF. We may work locally. So we can write V(e) = >, 0;(e)dt
> 0i(e)(m/p™), using local coordinate. Then we have 111(0; ® €) =
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First assume the condition (2). Then, since [0;, 0j](e) = 0 for any e € £,
we have [6;,0;](e) = 0 for any e and so (£, V) is integrable. So the condition
(1) is satisfied.

On the other hand, let us assume the condition (1). Then, we define

the action of 9% ¢ Dg(_/?) on e € £ by % (e) := H?Zl Gfi(e), where

k = (k1,...,kq). To see that this action acturally defines a Dg(_/g)—module
structure on £, we have to check the following equalities for local sections
ee & and f € Ox (see (3), (4) in Proposition 2.2):

(2.2) R OF) () = 9k+R) (),

(2.3 oW = Y () oM e),

k'K =k

By the definition of the action of d%*)’s on e given above, the equality (2.2) is
reduced to the equality 0;0;(e) = 0;6;(e), that is, the integrability of (£, V).
In view of the equality (2.2), the proof of the equality (2.3) is reduced to
the case |k| = 1, and in this case, it is rewritten as

6,(fe) = f8i(e) + D fle (1<i<d)

This is equlvalent to the equality V(fe) = fV(e) + e® df in € ®p, J}(/S,
which is true by the definition of p™-connection. So we have the well-defined

DE(_/ZL) -module structure on £ and hence the condition (2) is satisfied. So

we are done. J

COROLLARY 2.8. For an Ox-module £, the following three data are
equivalent.

(a) An integrable p™-connection on £.

(b) A Dg(m?g—module structure on £ which extends the given Ox-module
structure.

(¢) A (—m)-PD-stratification {e}i on E.
In particular, we have the equivalence

MIC(™ (X) = (left DY /3-modules)
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and it induces the equivalence

MIC(m)( Yo — (left Dg(/g” ® Z/p"Z-modules).

PrOOF. It suffices to prove the equivalence of (a) and (b). When we are

given an integrable p™-connection on &, we have the desired Dg( /)s

structure on £ thanks to Proposition 2.7. Conversely, when we are given a

Dg( /g—module structure on £ which extends the given Ox-module structure,

we have the induced homomorphism g : D( X/ 5)1 ®oy € — €. It gives the
Ox-linear homomorphism

-module

£ — Homp, (Dgg/’g}l, £) = £ R0y P (_m)

(where the Ox-module structure on the target is induced by the right Ox-
module structure on 73)1( (7m)), and by taking the P)l( (7m)—linearization of

it, we obtain the homomorphism ¢; : 73)1(7(_7%) ®oy € — € ®oy P)l(,(_m)
which is equal to the identity modulo J )1( /s It is automatically an isomor-
phism by the last argument in the proof of Proposition 2.6, and it gives a
p™-connection V by Proposition 2.6. Then, V gives rise to the homomor-
phism pq by the rempe %IVGH in the statement of Proposition 2.7. Since pu; is
extendable to the D
sition 2.7 that V is 1ntegrable. So we obtain the integrable p”*-connection

V and so we are done. [J

-module structure by assumption, we see by Propo-

Next we give a D-module theoretic interpretation of the quasi-nilpotence
for objects in MIC(™)(X),,. The following proposition is the analogue of [1,
2.3.7].

PROPOSITION 2.9. Let f : X — § be a smooth morphism of p-adic
formal schemes flat over Z,. Let m € N and let € := (£,V) be an object in

MIC™) (X),,, regarded as a left Dg;/;) ® Z/p"Z-module. Then the following
conditions are equivalent.

(a) (&,V) is quasi-nilpotent as an object in MIC(™) (X),,.

(b) Locally on X, f admits a local coordinate such that the following con-
dition is satisfied: For any local section e € £, there exists some N € N
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such that %) (e) = 0 for any k with |k| > N, where ') is the element

mn Dg(_/;) defined by using the fized local coordinate.

(¢) The condition given in (b) is satisfied for any local coordinate.

(d) There exists (uniquely) a Px, (—m)-linear isomorphism € : Px (_m) @0y
£ — ERoy Px,(—m) satisfying the cocycle condition on Px (_p)(2)
which induces the (—m)-PD stratification {€x}1 on € associated to the

Dg;/g) -module structure on £ via Proposition 2.5.

(We call the isomorphism € in (d) the (—m)-HPD-stratification associated
to £.)

PROOF. The proof is similar to that of [1, 2.3.7]. First, let us work
locally on X, take a local coordinate t1,...,t4 of f and write V as V(e) =
S, 0i(e)dt;. Then, in the notation in (b), we have 6% = 0% for any k € N?.
Hence we have the equivalence of (a) and (b). When the condition (b)
is satisfied, we can define the morphism 6 : & — & ®oy Px (—m) by
0(e) = >, 0% (e) @ (r/p™) and by Px,(—m)-linearizing it, we obtain the
homomorphism € : Px ;) ®ox € — & ®oy Px,(—m) Which induces the
stratification {€x}x. The cocycle condition for € follows from that for {ex}
and the uniqueness is clear. Also, if we define 0’ : £ — Px,(—m) ®ox € by
0'(e) := S, (=)l (7 /p™)F @ 0% (e), we see that the Px,(—m)-linearization
of it gives the inverse of €. So € is an isomorphism and thus defines a (—m)-
HPD-stratification. Conversely, if we are given a (—m)-HPD-stratification e
associated to &, the coefficient of (7/p™)¥] of the elememt e(1®e) € £ ®o,
Px,(—m) = Dy E(r/p™ is equal to 0 (e), by Proposition 2.5. Hence the
condition (b) is satisfied. Finally, since the condition (d) is independent of
the choice of the local coordinate, we have the equivalence of the conditions
(c) and (d). O

DEFINITION 2.10. Let f: X — S be as above. Then, a left Dg;/gb)—
module £ is said to be quasi-nilpotent if it is p™-torsion for some n and that
it satisfies the condition (d) of Proposition 2.9. By Proposition 2.9, we have

the equivalence

MIC™ (X)) = (quasi-nilpotent left Dg(_/?)—modules),
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which is induced by

MIC(™) (X)9 =, (quasi-nilpotent left Dg;/g) ® Z/p"Z-modules) (n € N).

Next we give a definition of the inverse image functor for left D(__/T) -

modules. Let
x . x

(2.4) | |

S — S

be a commutative diagram of p-adic formal schemes flat over SpfZ, such
that the vertical arrows are smooth. Then, for any m, k € N, it induces the
commutative diagram

k C P;
PX’,(—m) > PX/7(7m) — X,

= A

Pk:

Yy —— Px(om) —— X

for i = 0,1, where p}, p; denotes the morphism induced by the i-th projection
X% — X', X? — X, respectively. So, if £ is an O x-module endowed with
a (—m)-PD-stratification {e;}x, f*€ is naturally endowed with the (—m)-
PD-stratification {gk*ek}k. Hence, in view of Proposition 2.5, we have the
functor

(2.6) f*:(left Dg(_/g)—modules) — (left Dg;??,—modules);

(&, {extr) > (f*E€, 49" erdn),

and this induces also the functor

(2.7) £ (left Dg(_/?) ® Z/p"Z-modules)

— (left D7), ® Z/p"Z-modules).

As for the quasi-nilpotence, we have the following:
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ProprosiTiON 2.11.  With the above notation, assume that £ is quasi-
nilpotent. Then f*E is also quasi-nilpotent.

PrROOF. When £ is quasi-nilpotent, the (—m)-PD-stratification {ef}x
associated to & is induced from a (—m)-HPD-stratification e. Then the
(—m)-PD-stratification {g*"e;}; associated to f*£ is induced from the
(—m)-HPD-stratification g*e by the commutativity of the diagram (2.5).
So f*& is also quasi-nilpotent. [

The inverse image functor here is equivalent to the inverse image functor
in the previous section in the following sense.

ProprosITION 2.12. With the above notation, the inverse image
functor (2.6) is equal to the inverse image functor f* : MIC(™(X) —
MIC (™) (X' defined in the previous section via the equivalence in Corollary
2.8. (Hence the inverse image functor (2.7) is equal to the inverse image
functor f* : MIC™)(X),, — MIC"™)(X"),, defined in the previous section.)

PROOF. Assume given an object (£,V) € MIC™)(X) and let
(f*€, f*V) € MIC(™)(X") be the inverse image of it defined in the previous
section. On the other hand, let (&, {ex}) be the (—m)-PD-stratification as-
sociated to (€, V), let (f*E,{g" ex}) be the inverse image of it defined above
and let (f*€,V) be the object in MIC(™) (X') associated to (f*€,{g""ex})
via the equivalence in Corollary 2.8. Since the underlying O x/-module f*&
of (f*€, f*V) and that of (f*&, V) are the same, it suffices to prove the co-
incidence of p™-connections f*V and V. To see this, we may work locally.

Take a local section e € £ and let us put V(e) = ), e;da;. Then we
have f*V(e) = Y2 f*e; ® df*(ay).

On the other hand, if we denote the composite £ N ® Q}(/S Pt
5®J)1(/S by V/, we have V'(e) = >, e;(da;/p™). Hence ¢! : 73)1(7(77”) RE —
ER® P)l(y(fm) is written as

c(lee)=e@1+V(e)=e®1+ Y e @da/p™
i



Ogus-Vologodsky Correspondence 825

Since g'* : 77)1(’(_ — Py ) sends da;/p™ to df*(a;)/p™, we have

m) J(—=m

g e(l® fre) = fre®1+ Z frei® gt (dai/p™)
=ffe®1+ Zf*ei ® df*(a;)/p™,

and so we have V(f*e) = > [fei ® df*(a;). Therefore we have f*V = v,
as desired. U

REMARK 2.13. Proposition 2.11 together with Proposition 2.12 gives
another proof of Proposition 1.9 in the case of p-adic formal schemes flat
over Zjy (at least in the case m > 1).

Next we define the level raising inverse image functor for D(:/)_ -modules.
The following proposition is an analogue of [2, 2.2.2].

PROPOSITION 2.14. In the situation of Hyp(co, 00, ), F induces nat-
urally a PD-morphism ® : Px (1) — PX(l)y(_m) (with respect to the
PD-ideal on the defining ideal of X — PX7(_m+1),X(1) — PX(l),(,m),
respectively).

Proor. We may work locally. So we may assume that there exist a
local parameter t1,...,tq of X and a local parameter ¢/, ..., of X(1) such
that F*(t}) = t¥ + pa; for some a; € Ox (1 < i < d). Let us put 7 :=
1@t —t; @1 € Oxe, 7 =101 —t;®1 € Ox))2 and let us denote the
morphism F x F : X2 — (X(1)2 simply by F2. Then we have

(2.8) Fy =1t - ol+p(lea —a;®1)
=(r+t@ol) -t @1+pl®a —a;®1)

p—1
—k
ZTZP-FZ <Z> tf le—f-p(l@ai—ai@l).
k=1

Hence there exists an element o; € [ := Ker(Ox2 — Ox) such that

F?*(7]) = 77 4+ po;. So, when m > 2, the image of F2"(7]) in Ory (_pssy bE
—1 ~1 _

longs to I +pI C (p" " Ory ) )P +2(0"  Ory _iry) =P 01y i1y

So, by the universality of formal blow-up, F? induces the morphism
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Tx (—ms1) — TX(l),(—m) and by the universality of the PD-envelope, it

induces the PD-morphism ® : Px (_,,11) — Px/ (—m), as desired. When

m = 1, the image of FQ*(TZ»/) in Opy ,, is equal to p!TZ-[p] + po; and so it be-

longs to pOpX"(O). Hence F2? induces the morphism Px ) — TX(1)7(_1) and
then it induces the PD-morphism ® : Px ) — PX(1)7(_1), as desired. [J

REMARK 2.15. In the same way as the above proof, we can prove also
that, for 7 € N, the morphism F"*!: X"t — (X(D)+1 paturally induces
the PD-morphism ® : Py (_p,41)(1) — PX(l)y(_m)(T).

Let the situation be as in Hyp(oo,00,00) and let m € N. Then, by
Proposition 2.14, we have the commutative diagrams

k - Di
PX,(—m+1) » Px (—m+t1) X

(2.9) 4’% <I>l Fl
6

b;
— Pxo,my —— XU

k
PX(l):(_m)

51) denotes the morphism induced by the i-th pro-

jection X2 — X, (XM)2 — X respectively and ®* is the morphism
naturally induced by ®. So, if £ is an O y)-module endowed with a (—m)-
PD-stratification {e}, F*€ is endowed with a (—m + 1)-PD-stratification
{®*"¢;,}. Hence, in view of Proposition 2.5, we have the functor

for i = 0,1, where p;,p

(2.10) F* :(left D;Z?}S—modules) — (left Dg(_/gﬂ)—modules);

(&, {extr) — (f €A ertn),
and this induces also the functor

(2.11) F* . (left Dﬁ(_g;}s ® Z/p"Z-modules)

— (left Dg(_/gﬂ) ® Z/p"Z-modules).

By the existence of the diagram (2.9), we can prove the following in the
same way as Proposition 2.11 (so we omit the proof):

ProprosiTION 2.16.  With the above notation, assume that £ is quasi-
nilpotent. Then F*E is also quasi-nilpotent.
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The level raising inverse image functor here is equivalent to that in the
previous section in the following sense.

ProrosiTiON 2.17. With the above notation, the inverse image
functor (2.10) is equal to the level raising inverse image functor F* :
MIC™) (X)) — MIC™ (X)) defined in the previous section via the
equivalence in Corollary 2.8. (Hence the inverse image functor (2.11) is
equal to the inverse image functor F* : MIC(™) (X)), — MIC™~D(X),,
defined in the previous section.)

PROOF. Assume given an object (£,V) € MIC(™ (X®M) and let
(F*E,F*V) be the level raising inverse image of it defined in the previ-
ous section. On the other hand, let (€, {€x}) be the (—m)-PD-stratification
associated to (£, V), let (F*E, {®*"¢;}) be the level raising inverse image of
it defined above and let (F*£, V) be the object in MIC 1 (X) associated
to (F*E,{®""¢;}) via the equivalence in Corollary 2.8. Since the underly-
ing Ox-module F*& of (F*E, F*V) and that of (F*£,V) are the same, it
suffices to prove the coincidence of p™-connections F*V and V. To see this,
we may work locally. So we can take t;,%, a; as in the proof of Proposition
2.14. Take a local section e € £ and let us put V(e) = >, e;dt;. Then, by
definition, F*V(e) = 3> F*e; (1" dt; + da;).

On the other hand, if we denote the composite £ Y ® Q}X/S i E®
J)l(/s by V/, V/'(e) = 3, e;(dt:/p™). Hence €' : P)l(’(_m) ®E — 5®73)1(,(_m)
is written as

c1@e)=c@1+Vie)=e®@l+ Y e@dt/p™
i
Since ®!" : Pi (cm) — Pl (=m) Sends dt;/p™ to tf_l(dti/pmfl) +
da;/p™ ! by the calculation (2.8), we have
(1@ Fre) = Fre®@1+ Y Fe; @ ' (dtj/p™)
i

=Fe®1+ Z Fre; ® (tffl(dti/pm_l) + da; /p™ 1),
i

and so we have V(F*e) = Y [fe® (tffldti + da;). Therefore we have
f*V =V, as desired. [J
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REMARK 2.18. Proposition 2.16 together with Proposition 2.17 gives
another proof of Proposition 1.13 under Hyp(oco, 00,00), as promised in
Remark 1.14.

2.2. The case of schemes over Z/p"Z

In the previous subsection, we defined the sheaf of p-adic differential
operators of level —m for smooth morphisms of p-adic formal schemes flat
over Zjy. The construction there does not work well for smooth morphisms
of schemes flat over Z/p™Z because we needed the formal blow-up with
respect to certain ideal containing p™ in the construction. In this subsection,
we explain how to interpret the notion of the category of modules with
integrable p™-connection for smooth morphisms of schemes X,, — S, flat
over Z/p"Z and the (level raising) inverse image functors between them in
terms of D-modules, under the assumption that S, is liftable to a p-adic
formal scheme S flat over Z,. (Note that X,, is not necessarily liftable to a
smooth p-adic formal scheme over S globally). The key point is to consider
all the local lifts of X, to a smooth p-adic formal scheme over S and consider
the ‘crystalized’ category.

DEFINITION 2.19. Let S be a p-adic formal scheme flat over Z,, let
Sp = S®Z/p"Z and let f : X,, — S,, be a smooth morphism. Then
we define the category C(X,,/S) as follows: An object is a triple (U,, U, iy)
consisting of an open subscheme U,, of X,,, a smooth formal scheme U over
S and a closed immersion iy : U, < U which makes the following diagram
Cartesian:

- f

Up——X, — 5,
lm lm
U S.

A morphism ¢ : (Up,U,iy) — (Vp,V,iy) in C(X,,/S) is defined to be a

pair of a morphism ¢, : U, — V,, over X,, and a morphism ¢ : U — V
over S such that the square

U, Y, U

on | o]

vV, -V, v
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is Cartesian.

LEMMA 2.20. Let S be a p-adic formal scheme flat over Z, and let
fof' : U — V be morphisms of smooth p-adic formal schemes over S which

(—m

coincide modulo p™. Then, for a DV/S) ® Z/p"Z-module E, there exists a
canonical isomorphism 7 g 1 fTE — f*E of Dé_/gn) ® Z/p"Z-modules.

PrROOF. Let {€;}r be the (—m)-PD-stratification associated to £ and
let f7, '} : P‘k/,(_m) — Plk]’(_m) be the morphism induced by f, f/, respec-
tively.

First let us prove that f; is equal to f’ » modulo p™. Since P"“,’(_m) is
topologically generated by Oy and the elements of the form (1 ®a —a ®
1)/p™ (a € Oy), it suffices to check that the images of these elements by
fi coincides with those by f, modulo p". For the elements in Oy, this is
clear since f and f’ are equal modulo p". Let us consider the images of the

element (1 ®a—a®1)/p™. If we put f*(a) — f'*(a) =: p"b, we have

f(®a-ae1)/p™) - frll®a—a®1)/p")
=((1® f(a) = f(a)@1)/p™) = (1 f"(a) = f(a) @1)/p"™)
=p"(1®b—>bx1)/p™.
Hence f; is equal to f’ 1 modulo p", as desired.

Let us put f = fmodp™ = f'modp™, fr = f; modp” = f's modp”.
Then we have the canonical isomorphism
Ty fRE S TTE S €,
and since we have f'jep = f;’;ek = frex, Trp gives an isomorphism as
D(U_/Tsn) ® Z/p™Z-modules. O

Using these, we give the following definition.
DEFINITION 2.21. Let us take n,n/,m € N with n < n/, let S be a p-
adic formal scheme flat over Z,, let S,/ := SQZ/ pn/Z and let f : X,y — Sy

be a smooth morphism. Then we define the category D(~™(X,,//S),, as the
category of pairs

(2.12) ((C0)v:=w,, Viv)ec(X,,/S)s (Qp) (U, 1 Uit ) (V. Viv)eMor O(X, 1 /S) )
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where & is a D[(;/Z}) ®Z/p"Z-module and «, is an isomorphism ¢*Ey — &y

as D[(]_/?) ® Z/p"Z-modules satisfying the following conditions:

(1) Qi = id.

(2) oy = ay 0 @*(ay) for morphisms ¢ : (Ups, U, ig) — (Vir, Viiy), ¢ -
(Vi Vyiv) — (W, W, i) in C(Xw /).

(3) For two morphisms ¢,v : (Uy,U,iy) — (Vo Vyiy) in C(X,/S),
the isomorphism a;l oy p*Ey — &y — ¢*E coincides with Ty
defined in Lemma 2.20.

We denote the object (2.12) simply by ((Ev)v, (ay),) or (Ev)u-
We call an object (£)y € D")(X,,1/8S), quasi-nilpotent if each & is

(=m)

a quasi-nilpotent D;; /8 ® Z/p"Z-module, and denote the full subcategory
of D=")(X,,1/8), consisting of quasi-nilpotent objects by D(—™) (X, /S)&".

Then we have the following, which is a D-module theoretic interpretation
of the category MIC(™)(X,,):

PROPOSITION 2.22. Let us take n,n’,m € N withn < n’ and let S be a
p-adic formal scheme flat over Z,. Let Sy = S®Z/p”/Z, let f: X — Sy
be a smooth morphism and let X, — Sy, be f @ Z/p"Z. Then there exists
the canonical equivalence of categories

MIC™) (X,,) — D™ (X, /S),,  MICT™ (X)) = D™ (X, /8).

PROOF. Assume we are given an object (£,V) in MIC™(X,,). Let
us take an object (U,,U,iy) of C(X,//S), let us put U, := Uy ® Z/p"7Z
and denote the composite U, — U, U by . Then, via ?U, we can
regard &y := (£, V)|y, as an object in MIC™)(U),, by Remark 1.3, and by
Corollary 2.8, we can regard it as a D(U7?) ®7Z/p"Z-module. Also, for a mor-
phism ¢ : (Uy,U,iy) — (Vur, V,iy) in C(X,//S), the induced morphism
U, — V, := V®Z/p"Z gives the isomorphism «, : p*Ey — &y as objects

in MIC™)(U,) and it induces the isomorphim as D[(J_/Z}) ® Z/p"Z-modules
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by Remarks 1.3, 1.4, Corollary 2.8 and Proposition 2.12. We can check eas-
ily that the pair ((£y)v, (cp),) defines an object in D™ (X,//S),. (The
condition (3) in Definition 2.21 comes from the fact that the isomorphism
o, defined above depends only on ¢ modulo p™.)

Conversely, if we are given an object ((£)v, (p)y) in D™ (X, /),
each &y naturally defines an object in MIC(m)(Un/)n, and the transition
maps a,,’s depend only on ¢ modulo p”/ up to canonical isomorphism. Hence
Eu’s glue to give an object in MIC™ (X,,/),, = MIC™ (X,,). We can check
that these functors give the inverse of each other, and so obtain the first
equivalence.

To obtain the second equivalence, it suffices to see the consistence of the
definitions of quasi-nilpotence. This follows from Proposition 2.9. [

Next we define the inverse image functor for the categories D(~™)(—/—).
Let n,n',;m € N with n < n/ and assume given the following commutative
diagram

N

X,y S, S
4l | |
Y, T, —=— T,

where S, T are p-adic formal schemes flat over Z,, S,y = S® Z/ p" 7, T,y =
T®Z/ pn/Z, the right top arrow and the right bottom arrow are canonical
closed immersion, the left top arrow and the left bottom arrow are smooth.
Under this situation, we define the inverse image functor

DY /T — DU (X,0/S)n

as follows: Let us take an object £ := (Ey)y in DE™(Y,,/T), and
(Up,Uyiy) € C(X,/S). Then, locally on U, there exists an object
Vo, Vyiy) € C(Y,/T), a morphism ¢, : Uy — V, over f, a mor-
phism ¢ : U — V over S — T with ¢ oiy = iy o ¢,s. Then, we define
the ng_/gb) ® Z/p"Z-module (f*E)y by (f*E)y := ¢*Ey. When there exists
another object (V!,, V', iy+) € C(Y,/T) with morphisms ¢/, : Uy — V!,
@' : U — V' as above, there exists an isomorphism ¢ : V — V’ locally on
V', Then, since 1o and ¢’ are equal modulo p"', we have the isomorphism

T Lo

O &y — (Lo) & 57 Y E,
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and this is indendent of the choice of ¢ because, when we are given another
isomorphism ¢ : V. — V', we have the commutative diagram

T/ Lo

O &y —— (Lop) &y —5 Y Ey

H TL/OL%LOSOJ« H

GE —— (o) &~ Gy
(the commutativity of the left square is the pull-back of the property (3) in
Definition 2.21 by ¢* and that of the right square comes from the definition
of 7_,_). Therefore, we can glue the local definition (f*&)y = ¢*€y and

define the D[(;/Tsn) ® Z/p"Z-module (f*E)y globally. We can also check that
the (f*&)y’s for (Uy,U,iy) € C(X,/S) form an object f*€ := ((f*E)v)v
in D™ (X, /S), in the same way. By the correspondence £ — f*&, the

inverse image functor
J*: DEMW (Y [ T) — D™ (X /)

is defined. Because this functor is defined locally as the inverse image func-

tor of D(__/T“) ® Z/p"Z-modules, it induces the functor

Fom s DU (Yo JTYE — DU (X [ S)M

Also, we see by the construction that the inverse image functors f*, f*"
here are equal to the inverse image functors of modules with integrable
p™-connection

fi s MICI(v,) = MICC)(X,,),
Fra s MICT (Y,) % = MICO™ (X,,)%

(where X, := X,y @ Z/p" L, Yy, := Yo Q Z/p"Z, frn, := [ & Z/p"Z) defined
in Section 1 via the equivalences in Proposition 2.22. (See also Proposition
2.12.)

Next we define the level raising inverse image functor. First we prove
the following lemma, which is an analogue of Lemma 2.20.

LEMMA 2.23.  Assume we are in the situation of Hyp(oo,n+1,n+1).
Let f, f': U — V be morphisms of smooth p-adic formal schemes over S
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which coincide modulo p"*' and put f := f @ Z/p"Z = f' @ Z/p" 7 -
Unt1 — Vag1. Assume moreover that this morphism fits into the following
commutative diagram

Un—|—1 L) Vn—H

| |

Frt 1)
Xoy1 —— Xpio

where the vertical arrows are open immersions. (So f, f' are local lifts of
F,+1 and so we can define the level raising inverse image functor for f, f'.)

Then, for a Dg;/gn) ® Z/p"Z-module &, the canonical isomorphism TR

& — f*& in Lemma 2.20 (which is a priori an isomorphism as D((J_/?) ®
Z/p"Z-modules) is an isomorphism of Dé_/snﬂ) ® Z/p"Z-modules.

PROOF. Since F), 41 is a homeomorphism, we may shrink V so that
f,f': U — V are homeomorphisms. Then we can replace U, 1, V11 by
X1, Xfll_gl and then by putting X := U, X(1) := V| we may assume that
the situation is as in Hyp(oo, 00, 00) (but we have two lifts f, f’ instead of
F there).

Let {€; } be the (—m)-PD-stratification associated to € and let &5, @'}, :
P§(<1)7(_m) — Péﬂ(,(,m) be the morphism induced by f, f’ respectively, by
Proposition 2.14. (See also the diagram (2.9).)

Let us prove that @} is equal to @’ . modulo p™. To prove this, we may
work locally. So we assume that there exist t;,t},7;,7/ as in the proof of
Proposition 2.14. Note that f and f’ coincide modulo p"*!. So, by the

* * .
calculation similar to (2.8), we see that f2*(7/) — > (/) can be written as
an element of the form p" 1 (1®b;—b;®1). Then, by definition of ®, &'}, we
have ®% (1;/p™) — @' (1:/p™) = p"{(1®b; —b; ®1)/p™1}. Since 7);(1),(,7”)
is topologically generated by Oy ) and 7//p™’s, we see the coincidence of
@5 and @', modulo p”, as desired.

Let us put ®, = @5 mod p™ = @', mod p™. Then, since we have & ej, =
5Zek = ®jep, the isomorphism 7y ¢ in Lemma 2.20 gives an isomorphism

as Dg(_/g) ® Z/p"Z-modules. So we are done. [J

Under Hyp(co,n’,n’) with n’ € N,n’ > n—+1, we define the level raising
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inverse image functor

Fr o D (x 8Ty, — D (X, /8,
as follows: Let us take an object £ := (&y)y in D(_m)(XT(L})/T)n and
(Up,Uyiy) € C(X,/S). Then, locally on U, there exists an object
Vo, Vyiy) € C(Xfl})/T), a morphism ¢, : U,y — V,» over F,/, a mor-
phism ¢ : U — V over S with ¢ o iy = iy o ¢,,. Then, we define the
Dg/snﬂ) ® Z/p"Z-module (F},E)y by (F€)y = ¢*Ev, where the right
hand side denotes the level raising inverse image by ¢. When there exists
another object (V!,, V' iy/) € C(XS)/T) with morphisms ¢/, : U,y — V,,
@' : U — V' as above, there exists an isomorphism ¢ : V — V’ locally on
V'. Then, since top and ¢’ are equal modulo p”/, we have the isomorphism

— T, )
@ &y — (Lo ) &y =57 ey,

and this is indendent of the choice of ¢ as before. Therefore, we can glue
the local definition (F),€)y := ¢*Ey and define the Dé;?) ® Z/p"Z-module
(F%&)u globally. We can also check that the (F5€)y’s for (Uy,U,iy) €
C(X,s/S) form an object F*& := ((F*&)y)y in D™ (X,,,/S), in the
same way. By the correspondence & — F,&, the level raising inverse image
functor

FY . D™ (XS)/S)n — DU (X, /S)

is defined. Because this functor is defined locally as the level raising inverse
image functor of D(__/)_ ® Z/p"Z-modules, it induces the functor

E s DEmM(X ) Ty — DO (3, /S

Also, we see by the construction that the inverse image functors E¥,, F.;%"
here are equal to the level raising inverse image functors of modules with
integrable p-connection

Eryy s MIC™ (x (V) — M1ctm=Y(x,,),

n

Frd o mict(x(Vya — MIctm=b(x,, )

defined in Section 1 via the equivalences in Proposition 2.22. (See also
Proposition 2.17.) In particular, we have given another proof of Proposition
1.13 under the assumption Hyp(oo, n+1,n+1), as promised in Remark 1.14.
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2.3. Crystalline property of integrable p”*-connections

In this subsection, we prove a crystalline property for the categories
MIC(™) (X,,), MIC(™ (X,,)9" for a smooth morphism X,, — S, satisfying
certain liftability condition. We prove a similar result also for the cate-
gories MIC(™) (X)), MIC(™) (X )9 for a smooth morphism X — S of p-adic
formal schemes flat over Z,. The key construction in the former case is a

variant D™ (Xim+e/S)n (where e = 1 or 2) of the category of the form
D) (—/=)_ defined in the previous subsection and the (level raising) in-
verse image functor for it.

The starting point is the following, which is an analogue of [2, 2.1.5]:

PROPOSITION 2.24. Let
X Y

Lol

S —— T

be a diagram of p-adic formal schemes flat over Spf Z,, such that the vertical

(

arrows are smooth. Let m,e € N, let £ be a left Dﬂ?-module and assume
one of the following:

(a) p>3,e=1orp=2e=2.
(b) &€ is quasi-nilpotent and e = 1.

Let us put Xppye := XQZ/p™ 7 and let frre : Xmee — Y be a morphism
over T. Assume that f, f' : X — Y are morphisms over T which lift fu1e.
Then there exists a canonical Dg(_/?)—lmear isomorphism Ty : fre —
frE.

Moreover, when & is p"-torsion and f and f' are equal modulo p"*™™ for
some n > 1, the isomorphism Ty g is equal to the isomorphism 7y 1 defined

in Lemma 2.20.

Proor. By assumption, we have the commutative diagram

fm+e Y

Xm—|—e —

(2.13) ml ldiag.

x By wp Y,
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and by the universality of formal blow-up and PD-envelope, the lower hor-
izontal arrow factors as

(2.14) X — TY,(fmfe) B Ty}(,m) — Y xrY.

Let us denote the morphism X — Ty (_,, in the diagram (2.14) (the
composite of the first two arrows) by ¢ and let us denote the composite

Xe = X ® Z/p°Z — Xompe ™5 Y by f.. Then the diagram

x, -, vy

(2.15) ml l

/

g
(where the right vertical arrow is the morphism induced by the diagonal
map) is commutative: Indeed, using the fact that OTY,<_m) is locally topo-
logically generated by sections a with p"'a € Oyy,y, the commutativity
of the diagram (2.13) induces that of (2.15). Then, by the universality of
PD-envelope, the diagram (2.15) induces the commutative diagram

fe

X, —— Y

e

(2.16) ml lm

X —2— Py

m)-
In the case (a), the defining ideal pOx of the closed immersion X, — X
is topologically PD-nilpotent. So the morphism X — Py (_,,) in (2.16)

factors as X 25 Py
gx(ny), where 7, is the isomorphism of (—m)-PD-stratification associated to
€on Py . In the case (b), we define 75 ¢ := g*(n), where 7 is the

isomorphism of (—m)-HPD-stratification associated to &€ on Py, (_,,). Then

(—m) Py (_p) for some 7 € N. Then we define 7y ¢ :=

we see that 7 g is an Ox-linear isomorphism.

So it suffices to prove that 7y is Dgg/g)-linear. Let us put F =
fXE,F = f"E, let us take | € N, let p; : P)lg(_m) — X (i = 0,1) be
the morphism induced by the i-th projection X? — X and let ¢ : p{F —
poF, € : piF — pyF' be the isomorphism of (—m)-PD-stratification for
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F,F on P)l(v(

lowing diagram of sheaves on P)l( (—m)*

) Then it suffices to prove the commutativity of the fol-

pf]'—/ P1(Tf/,f) p’{i’:
(2.17) e;l ql

3 (Trr )
e F L e

Let us consider the following commutative diagram

Xm+e St ’ Y
(2.18) l l
X2 (fvaflel) Y4
where the vertical arrows are the diagonal embeddings. Then, by the uni-
versality of formal blow-up, the composite Px ;) — X 2 UxLL xS y+4

factors as Px (_pm) , Ty (—m)(3) — Y4, and we see (in the same way
as the proof of the commutativity of (2.15)) that the commutativity of the
diagram (2.18) induces that of the following diagram:

x, I Y

(2.19) l l

PX,(—m) L TY,(—m)(g)
Then, noting that the defining ideal of the closed immersion X, — X —
Px (—m) admits a PD-structure canonically, we see that the diagram (2.19)
gives rise to the morphism h : P)lg(,m) — Py () (3). Also, the defining
ideal of the closed immersion X, — P)l(7(_m) still admits a PD-structure
canonically.
Assume that we are in the case (a). Then the PD-structure on the

defining ideal of X, — P!

X, (—m) is topologically PD-nilpotent. So the

LR P}‘i’(_m)(3) — Py, (_m)(3) for some

)(O§i<j§3)bethe

morphism h factors as P§{7(_m)

s € Nys > I,r. Let ¢ : P}s/(_m)(S) — Pf,(_

m
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morphism induced by the (i, j)-th projection X* — X?2. Then we have
Po(Ty.) = Pogs(ns) = hiqia(ns) and pi(Tp f) = hiqis(ns). Also, when we
denote the morphism P)l(y(,m) — Pii,(fm) induced by fx f: X2 — Y2 by
@, we have ¢ = ¢*(ns) = h*q,(ns) and similarly we have €, = h*ga3(n5). So
The commutativity of the diagram (2.17) follows from the cocycle condition
for ns. So we are done in the case (a). In the case (b), we can prove the
commutativity of the diagram (2.17) in the same way, by replacing 75 by n
and Pé',(—m) by PY,(fm)-

Finally, let us assume that £ is p™-torsion and that f and f’ are equal
modulo p"™™ for some n > 1. Let us consider locally and take a local
coordinate ti,...,tg of Y over T. Then, by definition, the isomorphism

T [E — f*E is written as

e = () — £ @) ™ 0®e),

keNd

and the k-th term on the right hand side is contained in (k!)~'plkl" f*& C
p"f*€ = 0 when k # 0. Hence we have 77 /(f"*(e)) = f*(e) and this implies
the equality 7y p = 77 p. O

REMARK 2.25. When £ is p™-torsion and f, f are equal only modulo
p", the isomorphism 7y s above is not necessarily equal to the isomorphism
7r.¢ in Lemma 2.20 unless m = 0.

By the argument in [2, 2.1.6], we have the following immediate corollary
of Proposition 2.24 (we omit the proof):

COROLLARY 2.26.

(1) Let uspute =1 ifp>3 ande=2ifp=2. let f : X — S be a
smooth morphism of formal schemes flat over Z, and let Xpyye —
Simte be f QZ/p™ L. Then the category

MIC(m) (X) = (left Dg;/g)-modules)

depends only on the diagram Xp1e — Smie — S and functorial
with respect to this diagram.
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(2) let f: X — S be a smooth morphism of formal schemes flat over Z,
and let Xpmy1 — Smy1 be f @ Z/p™ T Z. Then the category

MIC(™) (X)® = (quasi-nilpotent left Dgg/g) -modules)

depends only on the diagram X,41 — Sm+1 — S and functorial
with respect to this diagram.

Next we consider the case of p™-torsion objects. First, using Proposition
2.24, we give the following definition:

DEFINITION 2.27.

(1) Let us put e=11if p >3 and e = 2 if p = 2. Let us take n,n’;m € N
with m + e < n/, let S be a p-adic formal scheme flat over Z,, let
Sy =85® Z/p”/Z and let f : X,, — S, be a smooth morphism.
Then we define the category D™ (X, /S)y as the category of pairs

g = 7’ / )

() (U, Uity ) (Vs Viiv )EMor O(X,,1/S) )

(=m)

where &y is a D ® Z/p"Z-module and o, is an isomorphism

U/s
&y — &y as D[(J_/gz) ® Z/p"Z-modules satisfying the following
conditions:

(a) Qiq — id.

(b) apoy = ayp 0 ¢*(ay) for morphisms ¢ : (Uy,U,iy) —
(Vn’a v, iV)) ¢ : (Vn/7 Vv, ZV) - (Wn’7 W, ZW) in C(Xn’/s)

(c) For two morphisms ¢,¢ : (Uy,Uiy) — (Viu,Viiy) in
C(X,//S), the isomorphism aqzl oy, Py — Ey — Y*E
coincides with 7y, , defined in Proposition 2.24.

We denote the object (2.20) simply by ((&v)v, (ay),) or (Ev)u-

(2) Let us put e = 1 and let us take n,n’;m € N, S, f : X,y — S, as
in (1). Then we define the category D (X, /S)A" as the category
of pairs (2.20) where &y is a quasi-nilpotent D[(]_/gl) ® Z/p"Z-module
and o, is an isomorphism ¢*&y — &y as D[(;/Sn) ® Z/p"Z-modules
satisfying the conditions (a), (b), (¢) in (1).
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When n’ > max(m + n,m + e) (where e is as in Definition 2.27),
we have the equalities E(m)(Xn//S)n = D)(X,/S)n, D™ (X /)" =
D) (X, /S)¥ because the isomorphisms T, used in Definition 2.27 are
equal to the isomorphisms 7, , used in Definition 2.21. Now let us note
that, for n’,n” € N with m + e <n’ <n”, the functor

v C(Xpn)S) — C(Xn/S);
(U, Uyitr) = (Uny i= Upr @ 29" 2, U, Uy < U <% U

induces the functors r : ﬁ(m)(Xn//S)n — ﬁ(m)(Xnn/S)n, r
D™ (X /S)At — D™ (X, /S)A". Hence we obtain the functor

221)  R:D"™ (Xpie/S)n = D™ (X /S)n —> D™ (X, /S)n,
(222)  R:D"™(Xpie/S)® 1 D™ (X, /S) =5 DM (X,, /)
for n’ > max(m + n,m + e). Then we have the following:

PROPOSITION 2.28.

(1) Let uspute=1ifp>3 and e =2 if p=2. Let us take n,n’;m € N
with n' > max(m + n,m + e) and let S be a p-adic formal scheme
flat over Z,. Let S, =S ® Z/p”/Z, let f: X,y — Sy be a smooth
morphism and let Xp1e — Smte be fQZ/p™ L. Then the functor
(2.21) is an equivalence of categories.

(2) Let us put e = 1 and let the other notations be as in (1). Then the
functor (2.22) is an equivalence of categories.

PROOF. Since the proof is the same, we only prove (1). To do so,
it suffices to construct the inverse of the functor r : E(m) (Xmte/S)n —
ﬁ(m)(Xn//S)n. So let us take £ := (Ey)y € ﬁ(m)(Xn//S)n and take an
object (Unm+e,U,iy) in C(Xpm4e/S). Then, locally on U, there exists an
object (Vyy, V,iy) in C(X,/S) and a morphism ¢ : U — V over S inducing
© : Upte — V,y which is a morphism over the canonical closed immersion
Xpmie — Xp: Indeed, if we put Uy := U ® Z/p™ Z, it is a smooth lift
of Upte — Xmte — Smare over S,r. Hence we have the isomorphism
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U, =V, between U, and some open subscheme V,, of X, locally on U.
Then, locally on U, V,; admits a smooth lift iy : V,,, — V over S and the
isomorphism U, = V,, is liftable to an isomorphism ¢ : U — V over S, as
desired.

Taking (V,/,V,iy) and ¢ : U — V as in the previous paragraph, we
define a D, %) © Z/p"Z-module 1~ (€)y by r~1(E)y := ¢*Ev. When there
exists another object (V!,, V', iy/) and another isomorphism ¢’ : U — V7,
there exists an isomorphism ¢ : V' — V' locally on V’. Then we have the
isomorphism

= T /Lo
e &y — (Lop) & T8 " Ey,

and this is indendent of the choice of ¢ because, when we are given another
isomorphism ¢ : V. — V', we have the commutative diagram

Tl op

QO*EV ;) (LOSO)*EV’ _— SDI*SV’

H TL,OAp,LOApJ/ H

P&y —— (0 @) Epy —TE .

Therefore, we can glue the local definition r1(€)y = ¢*&y and define
the D[(]_/?) ® Z/p"Z-module r~1(£)y globally. We can also check that

the 7= 1(&)y’s for (Upmie,U,iy) € C(Xmie/S) form an object r=1& =
(r~'&)y)y in D™ (Xm+te/S)n in the same way, and so we have defined
the functor r—! : D™ (Xn /S — D™ (Xmte/S)n, which is easily seen
to be the inverse of the functor r. So we are done. U

Let usput e=1if p > 3 and e = 2 if p = 2. Let us take n,m € N and
assume given the following commutative diagram

C
Xere — Omte — S

(2.23) fl l l

Ym+e — dmte —— T,

where S, T are p-adic formal schemes flat over Z,, Sy = S ® Z/p™ ¢,
Tie =T ® Z/p™¢Z, the right top arrow and the right bottom arrow are
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canonical closed immersions, the left top arrow and the left bottom arrow
are smooth. Under this situation, we can define the inverse image functor

(2:24) D7 Wt/ T)n — D" (Xt /)
in the same way as the inverse image functor
(2.25) 5 DY /T)y — D™ (X, /S), () > n)

defined before. Also, when n’ > max(m +n, m + e) and the diagram (2.23)
is liftable to the diagram

c

X, S, S
(2.26) fl l l
Y, T, - T

(where S,y = S ® Z/p"/Z, T, =T® Z/p”/Z, and the left top arrow and the
left bottom arrow are smooth), we have the equality Ro(2.24) = (2.25)o R.
Also, when e = 1, we have the inverse image functor

@27) DT Ve /TN — D X/
in the same way as the inverse image functor
(228)  fo: DOV, T)E — DEM(X, /ST (0 > n)

defined before, and when n’ > max(m + n,m + e) and the diagram (2.23)
is liftable to the diagram (2.26), Ro (2.27) = (2.28) o R. Hence we have the
following corollary of Proposition 2.28, which is the first main result in this
subsection.

COROLLARY 2.29.

(1) Let the notations be as in Proposition 2.28(1). Then the category
MIC(™) (X,,) = D) (X, /), (where X, := Xy @ Z/p"Z) depends
only on Xmye — Smye — S and is functorial with respect to this
diagram.
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(2) Let the notations be as in Proposition 2.28(2). Then the category
MIC(™) (X)) = DE™)(X,, /S)E™ (where X, := X @ Z/p"Z) de-
pends only on the diagram Xp41 — Sm+1 — S and is functorial
with respect to this diagram.

REMARK 2.30. Let S,n’ be as above and put S; := S®Z/p’Z for j € N.
Note that the above corollary does not imply that the category MIC(™) (Xn)
depends only on X, 1. — Spqe — S for any smooth morphism X,, —
Sn: The above corollary is applicable only for the smooth morphism X,, —
Sy, which is liftable to a smooth morphism X, — S,,.

Next we discuss the crystalline property of the level raising inverse image
functor. To do so, we need the following proposition.

PROPOSITION 2.31. Let the notations be as in Hyp(oco,00,00). Let

m,e € N,> 1, let £ be a left D;?;)/S-module and assume one of the follow-

ing:
(a) p>3,e=1lorp=2e=2.
(b) & is quasi-nilpotent and e = 1.

Suppose that we have another morphism F' : X — XU over S lifting
the morphism Fx, /s, which coincides with F' modulo p™te. Then the iso-

morphism Tpp @ F'*E — F*& defined in Proposition 2.24 is actually

(—=m+1)
DX/S

-linear.

PROOF. Let t;,t;,7;,7/ be as in the proof of Proposition 2.14. Then
we can write F*(t}) = t¥ + pa;, F'*(t}) = t! + pa; + p™*¢b; for some a;,b; €
Ox, and we see by the same calcuation as in the proof of Proposition 2.14
that there exist elements o; € I := Ker(Ox2 — Ox), o0, € Ox2 such that
(Fx F'Y*(1]) = 7' + poi + p"™*¢o}. So, for m > 2, the image of this element
in OTX,(—erl) belongs to meTx,(me) and in the case m = 1, the image
of this element in Op, © belongs to pOp,. " Therefore, in both cases, the
image of this element in Op, (cma1) belongs to p"Op, (—mi1)’
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Now let us consider the morphism b/ := (FxF, F'xF') : X? — (X(D)4,
Then we have the commutative diagram

Xm+e Fm—>+e X(l)

(2.29) l l

x2 M (xys

where F}, .. is the composite X, 1, — X Fox (), which is also written

as the composite X4e — X o x), Let us denote the g-th projection
(XMt — XM by 7, (0 < q < 3), (¢,q+ 1)-th projection (X1)* —
(X2 by 74441 (0 < ¢ < 2) and put Tig = Tayiti — Moty = o 01 (77).
Then Ker(O(X(l))4 — Oxq)) is generated by T{,q’S (1<i<d0<gqg<
3). If we denote the i-th projection X? — X by p; (i = 0,1), we have
R (1i0) = W™ (w5t — wth) = pgF*t, — pi F*t, = 0 and by similar reason, we
also have h/*(7;2) = 0. Also, we have

W (1ia) = B (w5t — wity) = pi Pty — ppF ey = (F x F')*(7))

and the image of this element in (’)ny(ierl) belongs to mepX,(imH). Hence,
by the universality of formal blow-up, the morphism Px (_,411) — X LN
(X)? factors as

hl/
Px a1y — Ty (Lo (3) — (XY™,

Furthermore, since C’)TX IR C) is locally topologically generated by the

elements in Oy 1) and the elements of the form Ti,’q /p"™, the commutative
diagram (2.29) induces the commutative diagram

X, _Fe | x (1)

l l

h//
Px (cmyny — Tx) (—m)(3),

Fm e
where X, = X ® Z/p°Z and F, is the composite Xe — X te e x (),

Noting that the defining ideal of the closed immersion Xe — Py (1)
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admits a PD-structure canonically, we see that the above diagram gives
rise to the morphism h : P)l( (cm1) Py,_m)(3) for any [ € N. Then,
in the case (b), we can prove the commutativity of the diagram (2.17)

on Pé( (—m+1) by using the morphism A, in the same way as the proof of
Proposition 2.24. In the case (a), we see that the morphism h factors as

P)lg(fmﬂ) LI Pf/’(fm)(?)) — Py (_)(3) for some s € N,s > [ because

the the PD-structure on the ideal of the defining ideal of X, — P)l( (—m+1)
is topologically PD-nilpotent, and then we can prove the commutativity of

the diagram (2.17) on P)l( (—m-1) by using hs. So we are done. [

Again by the argument in [2, 2.1.6] (see also [2, 2.2.6]), we have the
following immediate corollary of Proposition 2.31 (we omit the proof):

COROLLARY 2.32. Let the notations be as in Hyp(oco, 00, 00).

(1) Let us put e =1 if p > 3 and e = 2 if p = 2. Then the level raising
mverse image functor

F*: (left Dg(_(?)l)/ g-modules) — (left Dg(_/?ﬂ)—modules),

which is equal to the level raising inverse image functor F*

MIC™) (XD —  MICC™t)(X), depends only on Fpie =

m-e

Fmodp
(2) The level raising inverse image functor
F*9% : (quasi-nilpotent left pm -modules)

xMy/s

(—m+1)

— (quasi-nilpitent left D\ /s

-modules),

which is equal to the level raising inverse image functor F*9"
MIC™) (x (MDyan —, MICC™HD)(X) | depends only on Fpiq =
Fmodp™t!.

Next we consider the case of p™-torsion objects. Let m € N, > 1, assume
that we are in the situation of Hyp(oco,m +e,m + ¢e) withe =1if p > 3
and e = 2 if p = 2, and let us take n > 1. Then we can define the level
raising inverse image functor

(2.30) Fr, DU 1), — DY (X e/ )

m-e
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in the same way as the level raising inverse image functor
2.31)  E,:DC(xD)T), — DX, /8), (0 >0+ 1)

defined before. Also, when n’ > max(m +n, m + e) and when we are in the
situation of Hyp(oco,n’,n’), we have the equality R o (2.30) = (2.31) o R.
Also, when e = 1, we have the inverse image functor

(2.32) Frm DX T — DT (X /92

m-e m-+te

in the same way as the inverse image functor
(2.33)  Fy0: pOm(xWDmy@ s DE™(X, /)T () >0+ 1)

defined before, and when n’ > max(m + n,m + e) and when we are in the
situation of Hyp(oo,n’,n’'), we have the equality R o (2.32) = (2.33) o R.
Hence we have the following corollary, which is the second main result in
this subsection.

COROLLARY 2.33.

(1) Let m > 1 and let us put e =1 if p >3, e =2 if p=2. Then, under
Hyp(co,n’,n’) with n’ > max(m +n, m+ e), the level raising inverse
image functor

Fy: D™ (X /8), — DY (X, /S),,

(which is equal to the level raising inverse image functor Fy | :
MIC(m)(Xfll)/S) — MIC™ 1 (X,,/S)) depends only on Fpie =

F,y mod p™*e.
(2) Let m > 1. Then, under Hyp(oo,n',n’) with n’ > m + n, the level
raising inverse image functor
E s DO 18) — DU (X /8
(which is equal to the level raising inverse image functor F;f{l :
MIC(™) (X,(ll)/S’)qn — MIC™V(X,,/9)M) depends only on Fpqq =

F,y mod p™+!.
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REMARK 2.34. Let m,e,n’ be as above. Note that the above corollary
does not imply that, under the situation Hyp(oo,n + 1,n + 1), the level
raising inverse image functor

v s MIc™ (x(V /8y — MIctm=Y(x,,/S))

(resp. Fo& . MIC(W (X (V/S)a — MIC™ Y (X, /S)am)

depends only on F,, . (resp. Fy,+1): The above corollary is applicable only
in the situation Hyp(oo,n’,n’).

3. Frobenius Descent to the Level Minus One

In this section, we prove that the level raising inverse image functor for
relative Frobenius gives an equivalence between the category of modules
with quasi-nilpotent integrable p-connection and the category of modules
with quasi-nilpotent integrable connection. In terms of D-modules, this is
an equivalence of the category of quasi-nilpotent left D-modules of level —1
and the the category of quasi-nilpotent left D-modules of level 0. So we can
say this result as ‘the Frobenius descent to the level —1’. The method of
the proof is similar to the proof of Frobenius descent due to Berthelot [2].

The main result in this section is the following:

THEOREM 3.1 (Frobenius descent to the level minus one). Assume
that we are in the situation of Hyp(oo, 00,00). Then the level raising in-
verse image functor

F* o MICH (xMyan — MIC(X)w
is an equivalence of categories.

We have the following immediate corollaries:

COROLLARY 3.2.

(1) Assume that we are in the situation of Hyp(co,n + 1,n 4+ 1). Then
the level raising inverse image functors

s MIcW(x (M) MIC(X,,)9
Fr: DO — DOX )

are equivalences of categories.
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(2) Assume that we are in the situation of Hyp(oo,2,2). Then, forn € N,
the level raising inverse image functor

Fy DY () — DO (X

n

1 an equivalence of categories.

Proor. Since all the categories appearing in the statement satisfy the
descent property for the Zariski topology, we may work Zariski locally. Then
we can assume that we are in the situation of Hyp(oo, 0o, 00), and in this
case, the level raising inverse image functors are interpreted as the p™-torsion
part of the level raising inverse image functor

F* o MIcH (x Myan — MIC(X)am
in Theorem 3.1. So the corollary follows from Theorem 3.1. [J

Note that this gives a possible answer to Question 1.18. We prove several
lemmas to prove Theorem 3.1.

LEMMA 3.3. Let the notations be as in Hyp(co,00,00) and assume
that the relative dimension of f : X — S is equal to d. Then the morphism
® 1 Px/s0) — Pxwyg -1 defined in Proposition 2.14 is a finite flat
morphism of degree p*°.

ProoF. It suffices to prove that the morphism Py/g ) — X X xq)
Py /8,(=1) induced by ® is a finite flat morphism of degree p?. To show this,
we may work locally. So we can take a local coordinate t1,...,t5 of X over
S and a local coordinate /..., #; of X(1) over S such that F*(t)) =t + pa;
for some a; € Ox (1 <i<d). Letusput 7, :=1®t —t; ® 1 € Ox2, 7/ :=
Iet,—tiele O(x)y2- The homomorphism of sheaves corresponding to
the morphism Py /g ) — X Xy PX(l)/&(_l) has the form

(3.1) Ox (1} /P)1<i<a — Ox(Ti)1<i<d-
Since the morphism F? : X2 —s (X(1)2 sends 7/ to

1@t +pa;)) — (7 +pa;)) @1 =(r+t; @1 -t @1+ p(l®a; —a; ®1)

p—1
=+ (ZID trr p(l®a;—a;®1)
k=1
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and the morphism @ is induced by F?, it follows that 7//p is sent by

the morphism (3.1) to the element S P—)p~t <z> Rk Ti[p] +

> keNd k£0 %o ()7 For I € N, let us put I; := {k = (k;); € N*|k #
0,Vi,k; < p*1}. Then, since we have o%lo(a;) € KlOx C pOx for k €
N9\ (Ipu{0}), we see that 7//p is sent by the morphism (3.1) to the element
of the form Ti[p} + deo uLka + pv; for some u; i, € Ox,v; € Ox(Ti)1<i<d-
Hence, for I € N, (7//p) [#'] is sent by the morphism (3.1) to an element of the
form Tl-[pH—l] + Zkeu ui7l7k7[k] + pv;,; for some u; ;1 € Ox,vi; € Ox(Ti)1<i<d-

To prove the lemma, we may assume that X is affine and it suffices to
prove that the morphism (3.1) modulo p is finite flat of degree p?. Let us
put A:= Ox/pOx. Then the morphism (3.1) modulo p has the form

(3.2) Alzili<i<aizo/ (@ )in — Alyiili<i<ai=o/ ()i

(x;; corresponds to the element (7;/p) ") mod p and y;,; corresponds to the
element 71P'] mod p) and z;; is sent to an element of the form y; ;11 + a;y,
where a;; is an element in A[yi,l’]1§i§d,0§l’§l/(y£l/)i,l’ with no degree 0 part.
(Here the degree is taken with respect to y; ’s.) Let us denote the degree 1
part of a;; by b;;. Let us consider the A-algebra homomorphism

o Alzili<i<diz—1/(21)in — Alyili<i<dizo/ ()i

defined by a(z;—1) = vi0,(2i1) = Yig+1 + biy (I > 0). Let us define the
A-algebra homomorphism

B Alyiih<i<dio/ (¥ )is — Alzili<i<ai>—1/(2]))i

of the converse direction inductively, in the following way: First, let us
define (y;,0) := zi,—1. When we defined 3(y; ;) for 0 <1 <, we can define
B(bi;) since b;; is a linear form in y;p’s for 1 < i < d,0 <!’ <[. Then we
define B(y;14+1) := ziy — B(bi;). Then [ is well-defined, and it is easy to see
that a and (8 are the inverse of each other. Hence (3 is an isomorphism, and
so it suffices to prove that the composite 3 o (3.2) is finite flat of degree p?.
Notice that we can factorize 3o (3.2) as

(3.3) Alwiihi<icaizo/ (@8)i = Alzihi<icarz—1/(2%))ig

— Alzigi<i<ai=—1/(2]))ig
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by introducing new variables x; 1 (1 < ¢ < d) and by sending them to
zi—1 (1 <1i < d). Also, noting the fact that 5 sends y;; to linear forms in
zip's (—1 < 1" <), we see that x;; (I > 0) is sent by o (3.2) (thus by the
second homomorphism of (3.3)) to an element of the form z;; + ¢;;, where
¢y is an element in A[zi,l/]1§¢Sd,,1§l/§l/(z£l,)N/ whose degree 0 part and
degree 1 part are zero. From this expression, we see easily that the second
homomorphism in (3.3) is an isomorphism. On the other hand, it is clear
that the first homomorphism in (3.3) is finite flat of degree p?. So we see
that (o (3.2) is finite flat of degree p? and so the proof of the lemma is
finished. (I

LEMMA 3.4. Let the notations be as in Hyp(oco,00,00). Then the
defining ideal of the diagonal morphism X — X X yu) X admits a unique
PD-structure. So the closed immersion X X ) X — X xg X induces the
PD-morphism X X xa) X — Px (0)-

PRrROOF. We have the equality OXXX(1)X = Oxxqx/J (where J is the
ideal topologically generated by the elements 1 ®@ F*(y) — F*(y) @ 1 (y €
Ox)), and the kernel I of OXXX(UX — Ox 1is topologically generated
by the elements 1 @ x —x ® 1 (z € Ox). For z € Ox, let us take a lift

1’ € Oxq of 1®z € O, ) and put F*(2') = 2? + pz. Then we have
1

0=1® F*(2') - F*(z')®1
=1 —2?@1+pl®z—2®1)
=(l@ez—z)+21)P—2P1+p1l®z—2®1)
=(1lr—zx1)?

p—1
+Z(ZZ) @ 'el)(ler-—201) +plez—2®1)
i=1

in OXXX<1>X' So, in OXXX(l)X7 (1® 2z — 2 ®1)? has the form

(3.4) pa(ler—z®1)+p(l®z—2®1)

for some a € OXXX(I)X and z € Ox.
We should prove that the ideal I admits a unique PD-structure. Since
O Xx 1y X is a flat Z,-algebra, it suffices to prove that, for any x € Ox and
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EeN (1oz—z@1)Fc k!OXxX<1>X- First we prove it for k = p! (I € N),
by induction on [. In the case [ = 0, it is trivially true. In general, we have

lozr—z1)
=(1oz—z@ )PP
=(pal@z—z@ 1) +plez—201)F  (by (34))

1—1
p 1—1
7

= prFl <p ) @ iler—2e1)?P Tler—ze1),
i=0

and by induction hypothesis, the i-th term is contained in

—1
- <pi ) v - DIOXx )X :ppl_l(pl_l)!OXXxu)X = P10xx ) x-
So we have (1® z — z ® l)pl € pl!(’)XXX(l)X, as desired. For k € N with
k # p' (VI € N), let us take the maximal integer I’ such that k is divisible by
p’. Then we have (1®z—z® 1) =(1@z—z® 1)pll(1 Rr—r® 1)]“_1’[/,
and it is contained in pl/!(k —pl/)!OXXXU)X = k!OXXXu)X by the result for
pl/ and the induction hypothesis. So we are done. [J

REMARK 3.5. By the same argument, we see the following: For d € N,
the kernel I; of the homomorphism C’)XXX<1)X<y1, o ¥d) — Ox (Y1, .-, Yd)
(induced by the diagonal morphism) admits a unique PD-structure. More-
over, if we put

Iy :=Ker(Oxx iy x (W1, ¥a) — Oxx_q)x),

I =L+ 1= KGT(OXXX(l)X<y1a "'7yd> - OX)’

we see that I admits a unique PD-structure compatible with that on I; and
that on I, since, for z € I; NIy, we have nlzl") = 2™ for both PD-structures.

REMARK 3.6. If we put X(r) to be the (r + 1)-fold fiber product of
X over XM, we see in the same way as the proof given above that the
defining ideal of the diagonal morphism X < X(r) admits a unique PD-
structure. So the closed immersion X (r) < X" ! induces the PD-morphism
X(r) — PX,(O)(T)-
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LEMMA 3.7. Let the situation be as in Hyp(co, 0o, 00). Then the defin-

ing ideal of the diagonal closed immersion X — Px ) XPe 1 Px (0)
admits a unique PD-structure. ‘

PROOF. The uniqueness follows from the fact that Px ) X Pey 1)

Px (0), being flat over Px (o) by Lemma 3.3, is flat over Z;,. Let us prove
the existence of the desired PD-structure. Since we have the uniqueness, we
may work locally. So we have the isomorphisms

(3.5) OPX,( Px (o) — Ox (7i)i ®Ox(1)<7—i,/p>i Ox (Ti)i

O)XPX(1)1(71>

= (0x ®o, ) Ox)(Ti0. Tin)i/1

(where 7,0 := 7, ® 1,751 := 1 ®7;), where I is the closed ideal topologically
generated by

(3.6) ®i(ri /) — @5/ /M (1<i<dkeN),

and @7 (j = 0,1) is the homomorphism

@*
Oxm (7i/p)i = Pxw (—1) — Px,0)

j-th incl.
= Px 0) ®ox Px,0)

= (0Ox ®o, ) Ox){7i,0, Ti,1)i-
First, let us note that, by Remark 3.5, the ideal

Ker((Ox ®o, 4, Ox)(7i0,7i1)i — Ox)
=Ker((Ox ®@o_ ) Ox)(7i0,Ti,1)i — Ox Qo) Ox)
+ Ker((Ox ®o_,, Ox)(Ti0,Tin)i — Ox(Ti0,Ti1)i)

admits the PD-structure compatible with the canonical PD-structure on the
ideal Ker((Ox ®0o ) Ox)(1i0,Ti1)i — Ox ®o ) Ox). So it suffices to
prove that the ideal I is a PD-subideal of Ker((Ox ®0o ) Ox){(Ti0,Ti,1)i —
Ox) to prove the lemma. If we denote the element (3.6) simply by a — b,
it suffices to prove that (a — b)) € I for any I > 1. If we take the maximal

m

integer m such that [ is divisible by p™, we have (a — b)) = < l ) (a —
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b)I=P"l(a — b)lP"]. So it suffices to prove that (a — b)lP"] € I for m > 0.
To prove it, it suffices to prove the following claim: For m > 0, there exist
elements ¢; € Ox (70, 7;.1)i (0 < j < m) with (a — b)P"! = >0 cj(a[pj] -
b[p]]), because alP’l — blP’l € 1. We prove this claim by induction on m.
When m = 0, the claim is trivially true. Assume that the claim is true for
m — 1 and put (a — b)P" 1 = >0 ! j(a[m — b)), Then we have

(a — b)) = w«a — p)m i)
p
m—11\p,,] Mm—1 ) )
_ Lm-')p-(Z ;) — pl)))i
o
m—1\p, [ mZ]
_ ~') PSS 2ol - o 4 4
pm ;
7=0

for some A of the form 22”;01 dj(a[pj] — blP’l). Moreover, we have

p—1
(@) el = P S I W S G
! (p?)Pp! — sl(p — s)! “

in the case p > 3, and it is easy to see that the second term on the right
hand side is a multiple of alP’] — b[P’l. Hence the proof is finished in the case
p > 3. The case p = 2 follows from the equality
(a[?’} _ b[2j})[2] — wal@ g 2pl2] 4 2]
= u(apﬁl} _ 5[2”1}) T+ oub@ T g [271p027]
= u(a®" = p2 Ty —plT (2] 2]y,
271
(20)12°

where u = So we are done. [J

Now we are ready to prove Theorem 3.1. The proof is similar to that of
2, 2.3.6].

PrOOF OF THEOREM 3.1. In the proof, we freely regard an obgect
in MICH(XM)an (resp. MIC(X)9") as a quasi-nilpotent left ng/s
module (resp. Dg?} g-module) or a p-power torsion module with (—1)-HPD-
stratification on X(1) (resp. 0-HPD-stratification on X).
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Since F : X — XW ig finite flat, the functor F* is faithful. Let
us prove that F™* is full. Let & : PX7(0)—>PX(1)7(_1) be the morphism
defined in Proposition 2.14, let u : X X yu) X—Px ) be the morphism
defined in Lemma 3.4 and let p,; : X Xy X — X (j = 0,1) be the j-th
projection. Let us take an object (£,¢') € MICH (X ()4 and let us put
(E,e) := F*(&,€) = (F*&', ®*) € MIC(X)®. Then u*e = u*®*¢ is an
isomorphism p;€ — P&, and by using Remarks 2.15 and 3.6, we see that it
satisfies the cocycle condition on X X y1) X X ya) X. So (€, u*e) is a descent
data on X relative to X(1). If we take a local coordinate t1, ..., t5 of X over
S and a local coordinate t1,...,t4 of X over S with F*(t) = t¥ + pa; (1 <
i<d)andifweput 7, :=1®t;—t;,®1 € Ox2, 7/ := 1, —ti®1 € O(xy2,
the PD-homomorphism of sheaves

* .
(®ou):Op ) — Opy ) — Oxx_)x

associated to ® o u sends 7/ /p as

p—1
fp— 1 pt Y <7;> I+ (1@ —a; 1)
j=1

p—1
DY (1;) t; 7~ (1®a -4l
j=1

p—1
+p Yy (?) i +(1®a —a;®1) =0,
j=1

So @ o u factors through X, Hence u*e is the pull-back of the identity
map on &' by X X ya1) X — XM that is, the descent data (€, u*e) is equal
to the one coming canonically from &’

Now let us take (&',¢),(F.,n) € MICOXI)m, put (£,6) =
F*(&,€),(F,n) = F*(F,n) € MIC(X,,)®™ and assume that we are given
a morphism ¢ : (£,¢) — (F,n). For an open subscheme U of X, let
us put UV = U xxy XD A := T(U,0x),A := T(UW,04),FE =
0(U,&),E = T(UW &), F :=T(U,F),F :=TUWY F). Then we have
A®u E' = E,A®4 F' = F and by the argument in the previous para-
graph, E,F are naturally endowed with the descent data relative to A’
coming canonically from E’, F’ and the morphism I'(U,p) : E — F is a
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morphism of descent data. Hence it descends to a morphism vy : B/ — F’.
By letting U vary, we see that {¢)y}y defines a morphism ¢ : & — F’
with F*(1)) = ¢. To prove that ¢ induces a morphism (&', ¢') — (F',7'),
we should prove the compatibility of ¢ with €,7’. Since ® is finite flat,
it suffices to prove the compatibility of F*¢ = ¢ with ®*¢' = ¢, d*n/ =7
and it follows from definition. So ¢ is a morphism in MIC() (X M)a" with
F*y = ¢ and so the functor F'* is full, as desired.

We prove that the functor F* is essentially surjective. Let us take (£,€) €
MIC(X)9". Then, as we saw above, u*e defines a descent data on & relative
to X1 Hence, for any open subscheme U of X and A, A, E as above, u*e
defines a descent data on the A-module E relative to A’. Hence it descends
to a A’-module E’ satisfying A ® 4 E/ = E, since A is finite flat over A’.
Next, let U be an open subscheme of X, U = J; U; be an open covering and
put Uy := U; NUj. Let E;, Ejj (vesp. Ej, E};) be the module E (resp. E')
in the case U = U;,U = Uj; respectively. Then we have the exact sequence

0— E—[[& — [][Es
i ij

and it implies the exactness of the sequence
0— B —|]E — ]]E;
( i,J

Hence, by letting U vary, E'’s induce a sheaf of O y1)-module &’ with F*&" =
E.

Let pj : Px ) — X,pg- : PX(1)7(_1) — xM (j = 0,1) be the mor-
phisms induced by j-th projection. Then € : pj€ — pi€ is rewritten
as € : O*pIE" — O*P/[E’. We prove that e descents to a morphism
e - p/i‘(‘:/ N p/gg/, Let m;; : PX,(O) XPX(l),(—l) PX,(O) — PX,(O) ((z,7) =
(0,1),(2,3)) be the morphism induced by the (4, j)-th projection X* — X2
and let p; (j = 0, 1) be the descent data on p;€ coming from p’;é". Then, to
see the existence of €, it suffices to prove the commutativity of the following
diagram, since ® is finite flat:

m33(piE) —— i (FE)
(37) ﬂé‘Sel ﬂalel

mha(pE) —L— mi (P5E).
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Note that, by Lemma 3.7, the morphism P = Px (0 XPey 1 Px () —

X* induced by two Px o — X 2’s induces the morphism v : P —
Px 0)(3). Let qij : Px 0)(3) — Px,0)(0 <4 < j < 3) be the morphism
induced by the (4, j)-th projection X* — X?2. By definition, pg is equal to
the pull-back by pg X pg : P— X x x (1) X of the descent data on £ relative
to X coming from &', and it is equal to the pull-back of € by

uo (po Xpo)ZQ02oviﬁ—>PX,(o)-

So we have pg = (po X po)*u*e = v*qle. We see the equality p; = v*¢j4€ in
the same way. On the other hand, we have m35¢ = v*qa3€, mj € = v"qo1€ by
definition. Hence the commutativity of the diagram (3.7) follows from the
cocycle condition for €. So we have proved the existence of the morphism
e pE — pHE.

¢’ is an isomorphism because so is €. Also, the cocycle condition for €
is reduced to that for e because ® is finite flat. Therefore, € is a (—1)-
HPD-stratification and so (£’,€) forms an object in MIC™M (X (D)4 with
F*(&',€') = (£,€). Hence we have shown the essential surjectivity of the
functor F* and so the proof of the theorem is now finished. [

REMARK 3.8. Assume that we are in the situation of Hyp(oo,2,2).
Also, let ¢ : HIG(X%I))Qln — HIG(XP))qn be the functor (£,60) — (£, —0).
Then, by Corollary 3.2(1), the functor

Fj ou: HIG(X ) — MIC (X))o

is an equivalence. In view of Remark 1.12, this reproves [9, 2.11] and a
special case of [4, 5.8] (the case m = 0 in the notation there). So we can
regard Theorem 3.1 as a generalization of their results in some sense. Note
however that our result is slightly weaker than their results in the sense that
we need the existence of a flat p-adic formal scheme S with S®Z/pZ = S;.

4. A Comparison of de Rham Cohomologies

In this section, we prove a comparison theorem between the de Rham co-
homology of certain modules with p”-connection on p-adic formal schemes
and the de Rham cohomology of the pull-back of them by the level raising
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inverse image functor associated to certain lift of Frobenius. As an applica-
tion, we prove the equivalence between the Q-linearization of the category of
nilpotent modules with integrable p™-connection and the Q-linearization of
the category of nilpotent modules with integrable p™~!-connection, under
the existence of a nice lift of Frobenius.

Let X — S be a smooth morphism between p-adic formal schemes
flat over Z, and let m € N. We define the category MIC™) (X)d" as the
category of projective systems (&, Vao)een in MICT™ (X)) with (£,,V,) €
MIC™) (X)) such that (En41, Vis1) — (En, Vi) induces the isomorphism
(Ens1, Vias1) ® Z)p"Z — (E,,V,) for any n € N. If we put (£,V) =
lim ,, (€, Vi) € MIC™ (X), we have (£, V) ® Z/p"Z = (£,, V) when each
En is quasi-coherent, by [1, 3.3.1]. We define several nilpotent properties for
objects in MIC(™) (X)& which are stronger than quasi-nilpotence as follows:

DEFINITION 4.1. Let X — S, m be as above.

(1) For a smooth scheme Y over S, := S ® Z/p"Z, an object (£,V) in
MIC(™) (V)9 is called f-constant (resp. lf-constant) if £ is a quasi-
coherent Oy-module flat over Z/p"Z (resp. a locally free Oy-module
of finite rank) and it is generated as Oy-module by elements e with
V(e) = 0. For [ € N, It is called f-nilpotent of length < [ (resp. lf-
nilpotent of length <) if it can be written as an iterated extension
of length <[ by f-constant (resp. lf-constant) objects.

(2) An object (&,V,) in MIC™) (X)3 is called f-nilpotent (resp. If-
nilpotent) if there exists some [ € N such that, for each n € N, there
exists some etale surjective morphism Y,, — X, := X ® Z/p"Z such
that (€., Va)ly, € MIC™)(Y,,)® is f-nilpotent of length < [ (resp.
If-nilpotent of length <1).

(3) An object (&, V,) in MIC(™ (X)2" is called nilpotent if it can be
written as an iterated extension by the object (Ox,,p"d).

We denote the full subcategory of MIC™ (X)d" consisting of f-nilpotent
(resp. lf-nilpotent, nilpotent) objects by MIC(™) (X)) (resp. MIC(™ (X )i,
MIC(™ =D (X)1).

DEFINITION 4.2. Let the notations be as in Definition 4.1. We call
an object (£,V) in MIC(m)(X) f-nilpotent (resp. lf-nilpotent, nilpotent)
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if there exists an object (£,, Vy)n in MICT) (X)) (resp. MIC(™) (X )i
MIC™) (X)) with (£,V) = lim,(E,, Vy,) € MICU™(X), and denote the
category of f-nilpotent (resp. lf-nilpotent, nilpotent) objects in MIC(™) (X))
by MIC™ (X)) (resp. MIC(™ (X) MIC(™) (X)™). Since each &, is quasi-
coherent for any (£,,V,), € MICT(X)2  the functor (&,,V,) —
(€,V) = lim (&, V) induces the equivalence

MIC™ (X)) = MIC™ (X)™,

(resp. MIC™ (X)) =, MICct™) (X)) MIC™ (X)2 = MIC™) (X)™).
(The inverse is given by (€,V) — ((€,V) @ Z/p"Z),.)
Note that we have implications
nilpotent = lf-nilpotent = f-nilpotent.
Recall that an object (£, V) in MIC(X) induces morphisms
Vi € ®ox Vyys — € @ox Wy

and they form a complex
0—>5Lg®0XQ_1X/SLE®OXQ§(/S&’7
which we call the de Rham complex of (£,V). We denote the cohomology
sheaf of this complex by H!(€,V) and the hypercohomology of it on X by
H(X, (€,7)).
To state the main result in this section, we give the following definition
to fix the situation.

DEFINITION 4.3. In this definition, G, denotes the scheme
Spec T[t*!] for a scheme T and the p-adic formal scheme Spf T{t*!'} for
a p-adic formal scheme T'. For a,b,c,¢ € NU{oo} with a > b > ¢ > ¢,
we mean by Hyp(a,b,c,c’) the following hypothesis: Let S; (j < a), f; :
X;— 8 (G <b) Vx5 <0),F: X; — XV (j < ¢) beas
in Hyp(a,b,c). Also, we assume that there exists a Cartesian diagram

F,
X, xM
(4.1) l l
p
Ghs, — Ghs,
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for some d € N Zariski locally, where the vertical arrows are etale and the
map p is the morphism over S which sends the coordinates to the p-th power
of them.

When a = oo (resp. b = 00, ¢ = 00), we denote S, (resp. fp : X — Sp
and fél) : XZEI) — Sy, F.: X, — Xc(l)) simply by S (resp. f: X — S
and fV: XM — 5 F: X — XM). In the local situation where there
exists the diagram (4.1), let ¢1, ..., %4 (vesp. t],...,t);) be the local coordinate
on X (resp. X(M) induced from the canonical coordinate of G, s via the
left vertical arrow (resp. the right vertical arrow) in (4.1) and let us put
=1t —-t1€ OX%T@', =1 ®t; —t; ®1e O(X(l))2.

Roughly speaking, Hyp(a, b, ¢, ¢’) means that S is lifted to a scheme S,
flat over Z/p*Z, f1 : X1 — S1 and fl(l) : Xfl) — 51 is lifted to morphisms
over S, = S, ® Z/p"Z, the relative Frobenius Fx /s, X1 — Xfl) is lifted
to a morphism over S, = S, ® Z/p°Z and nicely lifted to a morphism over
Se =S, ®ZL/p° L.

Then the main result in this section is stated in the following way.

THEOREM 4.4. Let the notations be as in Hyp(oo, 00, 00,00) and let
(£,V) be an object in MIC™) (XYM Then the level raising inverse image
functor F* : MIC™) (X)) — MIC V(X)) induces the natural isomor-
phisms

HOE, V) — HO(F*(E,V)).
H(E,V)®Q — HY(F*(E,V)®Q (ieN).

More precisely, F* induces the natural injective morphism
HY(E,V)—H(F*(E,V)) (i €N)

which is isomorphic when i = 0 and whose cokernel is killed by p¢, where ¢ is
a natural number which depends only on m,i and the length of lf-nilpotence

of (€,V).
Before the proof, we give several corollaries.

COROLLARY 4.5.  Let the notations be as in Hyp(oo, 0o, 00, 00) and let
(£,V) be an object in MIC™) (XMWY Then the level raising inverse image
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functor F* : MICT™) (X (1)) — MIC™ =1 (X)) induces the isomorphisms
HY(XW, (£,V)) — HO(X,F*(£,V)).
H(XW (£, V)®Q = H(X,F*(,V)®Q (i eN).
More precisely, F* induces the homomorphism
HY(XW (£,V))—H (X, F*(£,V)) (i eN)

which s isomorphic when ¢ = 0 and whose kernel and cokernel are killed by
p¢, where ¢ is a natural number which depends only on m,v and the length
of lf-nilpotence of (€,V).

ProoOr. This follows from Theorem 4.4 and the spectral sequences

Byt = H (XD, 1!(€,V)) = H*T(XW,(£,V)),
Ey' = H*(X,H'(F*(£,V))) = H*"'(X,F*(£,V)). O

To give two more corollaries, we introduce some more categories. Recall
that, under Hyp(co, 0o, m + 1), we have an equivalence

MIC D (X)0 = MICT™D(X, 0 1) > DD (X 1/S)00
= m—1 n_ = 7N n
= D" Xnmor /)3 = D (Kot /)3
for n € N. Let us define the category E(mfl)(XmH/S)?n as the
category of projective systems (& )ecN in 5(m71)(Xm+1/S)qn =
U, D"V (Xns1 /)P with &, € D™ (X1 /)@ such that Eppr —
&, induces the isomorphism &, 1 ® Z/p"Z — &, for any n € N. Then the
above equivalence induces the equivalence

(4.2) MICm=D (x)a =, D"V (x, ., /8).

Then we define the category D! )( Xmi1/8)d D D" 1)( Xm+1/5)% by the

essential image of MIC(™~1 (X)) MIC(™=1(X)2 by the equivalence (4.2),

respectively. Also, we can define the category D )(X (1) 11/5)3"%, the equiv-
alence

MIctm (x Myan =, (x| rgyam,
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and the categories E(m)(XT(,Brl/S)lf“ D™ (X(1+1/S) in the same way.
Note that we have the level raising inverse image functor

* —(m n m—1 n
e DXL 8)E — DY (K /9)3
induced by the ones Fy | : ﬁ(m)( mH/S)qn . pmY
n € N.
Then we have the following corollary:

(Xomy1/S)A" for

COROLLARY 4.6.

(1) Let the sitation be as in Hyp(co,00,m + 1,m + 1). Then the level
raising inverse image functor

* Y n m—1 n
Fppn : DXL /8)8 — DY (X /)8
induces the fully faithful functor
43 e pim gyl __ im=1) 5l
(4.3) e (X501/9)8 (Xm+1/5)e
and via the induced fully faithful functor
m 1 n n
(44) D™ (X(1/8) — D"V (K /)
between Q-linealized categories, D™ )(X(IH/S)H“ is a thick full sub-
category of ﬁ(m_l)(XmH/S)l.fil@.

(2) Let the sitation be as in Hyp(co, 00,00, m+1). Then the level raising
inwverse image functor F* : MIC(XW)an —, MIC(™=D (X)) jnduces
the fully faithful functor

(4.5) F* o MICO™) (x (Dt pprem=1) (x)H,
and via the induced fully faithful functor
(4.6) MIC(X M) — MICt™ D (X))

between Q-linealized categories, MIC(™) (X(l))}én s a thick full subcat-
egory of MIC(™—1) (X)%é“.
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PROOF. First we prove (2) under Hyp(oo, 0o, 00, 00). Since the source
and the target in (4.5) and (4.6) are rigid tensor categories and F* is a
tensor functor, it suffices to prove that, for (£,V) € MIC!™ (X (1) the
level raising inverse image functor induces the isomorphisms

H(XxW (£,V)) = HY(X,F*(£,V)),
HY(XW (£,V) @ Q — HY(X,F*(£,V)) ®Q,

and it follows from Corollary 4.5.

Next we prove (1). First we work locally and assume the existence of
F: X — X which lifts F,,;1 and assume that we are in the situation of
Hyp(co, 00, 00, 00) with this F'. Then the functor (4.3) is identical with the
functor (4.5) and the latter is fully faithful by the argument in the previous
paragraph. Hence the former is also fully faithful.

Since the categories appearing in (4.3) satisfies the descent property for
Zariski coverings, we can deduce from the argument in the previous para-
graph that the functor (4.3) is fully faithful globally, under Hyp (oo, co, m+

1,m + 1). Let us prove that D™ )( mH/S)lfrl is a thick full subcategory

fD(m 1)( m+1/5’)lfb via (4.4) globally, under Hyp(oco,00,m + 1, m + 1).
Let us take an exact sequence

4.7 0— I* 5/—>5—>F* g —0
m+1 m+1

in D"V (X1 /)y = MICO™D(X) € MICO"™D(X)g with &',&”

contained in D™ (Xf?Brl /S)¥n. Tt suffices to prove that £ is in the essential
image of the functor (4.4). We may assume that f,¢g are morphisms in
MIC™=1(X) and that g o f = 0 in MIC D(X). Then we have the
diagram

/ < g

0 —— Fp F € —— 0

o S

0 —— Kerg £ Img —— 0

in MIC™~V(X). Since a, 3 are isomorphisms in MIC" 1 (X)q, we have
some a € N and morphisms

o :Kerg — Fj, &', B F & — Img
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such that v o/ = o’ oca = p%, Bo B3 = 3 o = p® If we push the lower
horizontal line in (4.8) by ' and pull it back by (', we obtain the exact
sequence of the form

0— Fp & —& —Fp & —0

in MIC™=D (X)) with & isomorphic to £ in the category MIC™~ 1 (X)q.
So, by replacing £ by &1, we may assume that the exact sequence (4.7) is the
one in the category MIC(™ =D (X)) Now let us take a Zariski covering X =
Ua Xo by open subschemes such that, if we denote the corresponding open
covering of X(M) by X(1) = Ua X(g}), there exists a lift Iy, : X, — Xgl) of
F 41 for each o with which we are in the situation of Hyp (oo, 0o, 00, 00) (for
X4)- Then, since the functor F;;+1|X(<11> is equal to F* : MIC(™) (Xél))lfn .

MIC(™ =D (X)) we have the homomorphism
HY (XM, Hom(E",€")) — HY (X, Hom(F 1 E" Ef 1 ED)

whose kernel and cokernel are killed by p°®, where ¢ is a natural number
independent of a. So, by multiplying the extension class [£] of the exact
sequence (4.7) by p¢, we may assume that there exists an exact sequence

(4.9) 0— &) — Fa—E&"y0) — 0

in MIC(™) (X, (1))1f“ for each a such that F}, ,(4.9) is 1som0rph1c to (4.7)|x,,-
In particular, we have the isomorphism i, : ), 1 Fo — &|x,- So, if we put
iaB = igl Oig : 1 Fa — F) 1 Fpg on Xy N Xg, it satisfies the cocycle
condition. Then, since Fy ;| is fully faithful, we see that there exists an
object F in D(m 1)( m+1/S)lfn = MIC(m=D (X W) ity Fr F =E.
Hence € is in the essential image of the functor (4.4) and so we have shown
that D™ (Xéll_)I_l/S)l.ﬁ(l@ is a thick full subcategory of ﬁ(mil)(XmH/S)l.ff@.
So the proof of (1) is finished.

Finally, since the functors (4.5), (4.6) are identified with (4.3), (4.4), the
assertion (2) in general case is an immediate consequence of the assertion
(1). So the proof of corollary is finished. [J

COROLLARY 4.7. If we are in the situation of Hyp(oco, 00,m + 1,m +

1), the level raising inverse image functor F} ;| : E(m)(Xr(r}ll/S)(.ln —
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T(m=1)

D (Xma1/S)& induces the fully faithful functor

F(m=1)

(4.10) e DM s — DY (X /9)8,

giving the equivalence
—(m n = —=(m-1 n
(4.11) DX/ = D"V (Xmir/S)ig

between Q-linearized categories.  Also, if we are in the situation of
Hyp(oco, 00,00, m + 1) with X quasi-compact, the level raising inverse im-
age functor F* : MIC(XM)a — MIC™=1 (X)) induces the fully faithful
functor

(4.12) F* o MIC™) (x My — MIcm=1 (x),
giving the equivalence

(4.13) MIC(X M) = MIC™ D (x)8
between Q-linealized categories.

ProOOF. The full faithfulness of (4.10) and (4.12) follows from that
of (4.3) and (4.5). Also, by the same argument as the proof of Corol-

lary 4.6, we see that E(m)(Xﬁll/S)f@ (resp. MIC(X(l))?Q) is a thick full

subcategory of the category E(M_l)(XmH/S)fQ (resp. MIC(m_l)(X)?Q)
via the functor (4.11) (resp. (4.13)). Since any object in the categories
ﬁ(m_l)(XmH/S)fQ, MIC(m_l)(X)?Q is written as an iterated extension of
trivial objects, thickness above implies the equivalence of the functors (4.11),
(4.13). O

Note that Corollaries 4.6, 4.7 give possible answers to Question 1.18.
We give a proof of Theorem 4.4.

PROOF OF THEOREM 4.4. We have the homomorphism of complexes
from the de Rham complex of (€, V) to that of F*(&, V) induced by the level
raising inverse image functor. So, to prove the theorem, we may work locally.
So we may assume that the Cartesian diagram (4.1) exists globally. Then we
have F*E = @4t%E, where a runs through the set I := {a = (a;); € N¢|0 <
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a; <p—1}. If we express V: & — & ®Ox(1> Q_lx(l)/g

= oL &' dt; by
V(e) = ZV( )t /fldt/- F*V : F* — F*E R0y Q%{/S — @?ZlF*gti—ldti
has the property F*V(e) = 3, V;(e)t; 'dt;. (Here we wrote the element
F*(e) € F*E simply by e.) Hence we have, for a = (a;); € I,

(4.14) F*V(t%) = t*F*V(e) + p™~ 12(12# ttdt
=" {(1®V)) —l—pm_lai}(e)t;ldti.

For a = (a;)i € I, let 0, : € — € ®o_,) Yyny g = ol & dt) be
the linear map e — >, azet';'dt). Then, by (4.14), we have F*(&,V) =
(F*E,F*V) = ©ucr(E,V +p™10,) via the identification of @?ZIF*Etfldti
and ®,e; ®L, E7dt] on the target. Hence we have

(4.15) H(F*(E,V)) = ©actH (E,V +p™16,).
Let us consider the following claim:

Cramv 1. pHm=DD K v 4 pm=16,) = 0 for all i € N and a €
I,%#0.

First we prove that the claim 1 implies the theorem. We see easily
that the claim 1 and the equality (4.15) imply the injective morphism
HYE, V) — HY(F*(E,V)) whose cokernel is killed by p*(m=DG+1)  Also,
since &, 1= £ ® Z/p"Z is flat over Z/p"Z for each n, & is flat over Z, and
hence the both hand sides of (4.15) are flat over Z, when ¢ = 0. So the
claim implies the equalities H"(E,V + p™~16,) = 0 for a € I,# 0, and this
and (4.15) imply the isomorphism H(E,V) — HO(F*(E,V)), as desired.
So it suffices to prove the claim 1.

In the following, we denote the map 6, ® Z/p"Z : &, — &, ®0,

1
QX(1>/s

surjective morphism Y,, — X, ) (n € N) such that (&n, Vi)ly, is f-nilpotent
of length < I. For an open subset U C X let (£,V + p™16,)(U),
(Eny Vi +p"16,)(U) be the complex I'(U, 5®0X 0%/5), LU, En®ox Q% /5)
induced from the de Rham complex of (£,V + p™ 10,), (En, Vi +p"10,)
respectively and let H'((£,V +p™10,)(U)), H ((En, Vi +p™10,)(U)) be

also by 6,, by abuse of notation. Let us take [ € N and etale
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the i-th cohomology of this complex. To prove claim 1, first prove the
following claim:

CrLamM 2. For n € N and an open affine formal subscheme U C X,
we have p? ("= D) (£, V+p™10,)(U)) = 0 foralli € Nand a € I, #
0.

We prove claim 2. Let us put ' :==n+m —1 and let Y — X1 be an
etale morphism lifting Y,y — X ,r(l}) Take an affine etale Cech hypercovering
Us — U such that Uy — U is a refinement of ¥ x y1) U — U. Then,
since FE,, is quasi-coherent, we have

H' (€, V +p"10a)(U)) = H'((€n, V + 9™ 0a) (Us))

(where the right hand side denotes the i-th cohomology of the double com-
plex (£,,V +p™710,)(U,)) and so we have the spectral sequence

Eyt = HY (&0, V + p™710,)(Us)) = HY((En, V 4 P 10,)(U)).

Hence it suffices to prove p?™=VHY((E,,V + p™ 10,)(Us)) = 0 for all
s. By assumption, (&,,V,/)|y, is written as an iterated extension of f-
constant objects (£, Vo ;) (1 < 7 < 1) in MIC"™)(Us ® Z/p"' Z). Then
(Enry Vi + 0™ 10,) v, is written as an iterated extension of (Enr s Vi j +
P 0,) (1 < j <), and (En, Vi + p™10,)|u, is written an iterated exten-
sion of (Enj, Vi + 0™ 10,) := (Enr iy, Vi j + 0™ 10,) @ Z/p"Z (1 < j < 1).
So it suffices to prove

PV H ((Enj, Vg + 9™ 0a)(Us)) = 0.

Since (& j, Vi j) is f-constant, we have V,, ;(Ey ;) C p"Ew ; @ Qﬁ((l)/s'

Hence we can factorize V,, ; as

m—1

Vo 1 p 1
gn’,j ’ 571,1’ ® Q)((l)/s ? En’,j ® Q){(l)/sv

where ]_)m_l is the map induced from the multiplication by p™~! on En i ®

1
Ay g

Let $j 2y — Eny ® Qﬁd”/s be V,; ® Z/p"Z. Then it is a
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f-nilpotent p-connection and we have the commutative diagram

m—1

5»,17]' N N gn,j
(4.16) Vnai‘*pm*leal v+ l an+pm*19aJ/
Eng ® Vyayys — €ny @ Uy g T Enj ® D /8"

For k € N, let us denote the homomorphism &, ; ® QX<1>/S — Enj ®
Qk—i—l

X /s induced by V,; + p™ 10, (resp. Vj + 04) by (Vi + 0™ 10.)k

(resp. (V + 04)k). Then the commutativity of (4.16) implies that of the
following diagram:

€nj ® U0y /g /S = En;j ® Qlx<11>/s — & ® QZX<11>/S
(Vn7j+pm719a)ifll (€j+9a)ifll (Vn,ﬁp’"’l%)ifll
(417) &y Qg L @ I " @ Qs
(Vn,j+pm_19a)1l (€j+9a)zl (V”J""pm_le“)"l
Eng ® XL /8 — &® QZ)?(ID/S R €n;j ® Q;r(l”/s

From the commutative diagram (4.17), we see that it suffices to prove the
equality H'((€,.4, Vj+60,)(Us)) = 0 to prove the claim 2. Since (&,,;, V;) is

a f-constant p-connection, we see that v(é’n,j) C p€n;® Q; So we can

1)/s°
write (&,,5, Vj +0,) as an iterated extension by the Higgs module (& ;,6,)
(where &1 j = &, ®Z/pZ), and by [8, 2.2.2], we have H'((€1,5,04)(Us)) =0
for any i € N. Hence we have H'((€,,V; + 0,)(Us)) = 0(i € N) and so
the proof of claim 2 is finished.

Finally we prove the claim 1. For any open affine U C X, we have
the exact sequence

0 — lim" H* ' ((En, Vi + 9™ 10a)(U)) — H'((E,V +p™0,)(U))
- linnHl((gm Vn +pm710a)(U)) —0

and by claim 1, the first and the third term are killed by p2(m—1(+1),
Hence H'((E,V + p™10,)(U)) is killed by p*(m=D0+1) and so we have
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p4l(m*1)(i+1)Hi(5‘, V +p™16,) = 0, as desired. So the proof of the theorem
is now finished. [(J

5. Modules with Integrable p"-Witt-Connection

In this section, we define the notion of modules with integrable p™-Witt-
connection. We also define the level raising inverse image functor from the
categories of modules with integrable p™-Witt-connection to that of p™~1-
Witt-connection, and prove that it induces the equivalence of categories
between Q-linearized categories when restricted to nilpotent objects. This is
the Witt analogue of the equivalence (4.13) in Corollary 4.7. The categories
defined in this section is more complicated than the categories defined in
Section 1, but the equivalance proven in this section has the advantage that
we need no assumpion on liftability of Frobenius.

Throughout this section, we fix a perfect scheme S; of characteristic
p > 0.

DEFINITION 5.1. Let us assume given a smooth morphism X; — 5.
Let WOx, = lim,W;,Ox, be the ring of Witt vectors of Ox, and let
WQB(I = LiﬂannQ}I be the de Rham-Witt complex of X;. Then a
p"-Witt-connection on a WOx,-module £ is an additive map V : £ —
£ @woy, WY, satisfying V(fe) = fV(e) +pTe@df fore € &, f € WOx,.
We call a p™-Witt-connection also as a Witt-connection of level —m.

When we are given a W0Ox,-module with p™-Witt-connection (&, V),
we can define the additive map Vi : € Qwox, VVQ])“(1 — & QWox, WQ])?;l
which is characterized by Vi(e ® w) = V(e) Aw + p™e ® dw.

DEFINITION 5.2. With the notation above, we call (£,V) integrable
if we have V1 0oV = 0. We denote the category of WO x,-modules with
integrable p"-Witt-connection by MIWC(™) (X1).

It is easy to see that the category MIWC(™ (X)) is functorial with re-
spect to X1. We define the notion of nilpotence as follows:

DEFINITION 5.3.  An object (£, V) in MIWC™ (X)) is called nilpotent
if it can be written as an iterated extension by the object (WOx,, p™d). We
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denote the full subcategory of MIWC(™) (X1) consisting of nilpotent objects
by MIWC ™ (X)),

Let Fg, : S1 — 51 be the Frobenius endomorphism and let Xfl) =

S1 x g, X1. Then we define the homomorphism of differential graded alge-
bras

(51) (W, p"d) — (WO, ")
by the composite

(W
X

%1)7pmd) — liinn(Wnosl ®Wn+1(931 WnJrlQ;(il) y id ® pmd)
— liLnn(Wnosl QF W, 110s, Wh1Q%,,id @ p™d)
id;@; (WnQS{I ,pm—ld)

(where F' is the Frobenius in de Rham-Witt complexes). We denote the
homomorphism (5.1) also by F. Also, for a WOX(l)—module & and a local
1

section e € &, denote WOx, ®F,W0X<1) £ and 1®e € WOk, ®F,WOX(1)

1 1
£ simply by F.E,Fy(e). Then, for (£,V) € MIWC™ (X)), we define
F.(E,V) € MIWC™D(X,) by F.(E,V) = (F.E,F.V), where F.€ is
as above and F.V : F,.E — F.E @wox, WQ}Q is the map defined by
F.V(fF.(e)) = fE(V(e)) +pm 1 F.(e)df for e € £, f € WOx,. (The inte-
grability of F,(&,V) follows from the well-known formula dF' = pFd for de
Rham-Witt complex.) So we have the functor

F, - MIWC™ (x My — MIwem=D (X)),
and it is easy to see that it induces the functor
(5.2) F, s MIWC™) (x M Mrw e (x,)m,

An object (£,V) in MIWC™ D (X1) (resp. MIWC(’”)(X{I))) induces
the complex

0— & - & Doy, Wk, 5 € @woy, Wk, 2 -

yon
@

(resp. 0 — & > EQwo_,, WL o) 5 E@wo_,, W) ~5 ),
Xl )('1 X1 1
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which is called the de Rham complex of (E, V). We denote the cohomology
sheaf of this complex by H(€,V) and the hypercohomology of it on X;
(resp. X)) by Hi(X1,(E,V)) (resp. HI(XV,(£,V))).

Then we have the following theorem, which is the Witt version of The-
orem 4.4:

THEOREM 5.4. Let the notations be as above and let (E,V) €
MIWC(m)(Xfl))“. Then the level raising inverse image functor (5.2) in-
duces the natural isomorphisms

HO(E,V) — HY(FL(E,V)).
HU(E,V)®Q — HYF,(E,V)®Q (ieN).

We have the following corollaries, which we can prove in the same way
as Corollaries 4.5, 4.7. (So we omit the proof.)

COROLLARY 5.5. Let Sl,Xl,Xfl) be as above and let (E,V) €
MIWC(m)(Xfl))n. Then the level raising inverse image functor (5.2) in-
duces the isomorphisms

HO(X{Y, (£,V)) = H(X1, F.(E,V)).
mH(xW (£, V) ©Q = H(X,F.(6,V))®Q (i €N).

COROLLARY 5.6. Let Sl,Xl,Xfl) be as above. Then the level raising
inverse image functor (5.2) is a fully faithful functor which gives the equiv-
alence

(5.3) MIWC(X (M) = MIWC™ D (X)),
between Q-linealized categories.

PrROOF OF THEOREM 5.4. Since we may work locally, we may assume
that S; = Spec R, X7 = Spec By are affine. (Hence W,,S = Spec W, (R).)
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Also, we may assume that the homomorphism R — B; corresponding to
X1 — 57 factors as

(5.4) R — Ay := R[T})1<ica — A} == R[T*1<ica — By,

(2

where the last map is etale. Recall [6, 3.2] that a Frobenius lift of a smooth
R-algebra C is a projective system of data (Cp, ¢n, 6n)n>1 (with Cy the
same as the given one), where

e C,(n > 1) is a smooth lifting over W,(R) of C; satisfying
W (R) AW, 11 (R) Cngpr — Ch.

e ¢, (n>1)isamap C, — C,_j over F': W,(R) — W,_1(R) which
is compatible with the Frobenius morphism C7; — .

e 6, (n>1)isamap C, — W,(C}) such that the diagram

C, —s WL(Ch)

¢nl Fl
Ch_1 & Wi — 1(01)

is commutative.

Now let us define the Frobenius lift (A, ¢n, On)n, (A, @), 00) of Ay, A] by

Ay = Wi (R)[Ti]1<i<d on(Ty) =T}, bn(T3) = [Ti],
A= Wa(R)[TH hi<icas  a(TE) =T,F, 6u(TF) = (177,
where [—] denotes the Teichmiiller lift. Then we have a map (fn)n

(Apy Oy On)n — (AL, @, 60 )n over the map A; — A} in (5.4) such that
the diagrams

Ao AL A

(5.5) fnT fHT fnT m(ﬁﬁ

Ay =22 Ay, Ay =2 W (Ay)
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are coCartesian. Moreover, by the proof of [6, 3.2], there exists a Frobenius

lift (Bp,¥n,€n)n of By and a map (gn)n : (AL, @0, 00 )n — (B, ¥n, €n)n
over the map A] — Bj in (5.4) such that the diagrams

B, -, B _ B, — Wo(By)
(56) gnT gnflT gnT Wn(gl)T
A S Al (AL

are coCartesian. Let us define the Frobenius lift (A’SL ), ,(11), 6(1)) of Agl) =

R®pRr Ay by

A = Wo(R) @pw, () An, O = F@¢,, 6 :=id®6,,

n

and define the Frobenius lift (A’ 1), ¢’ O 1)) of A’gl) = R®ppr A} and
the Frobenius lift (Bfll), ,(L), 67(11)) fB{l) ‘= R®p g B in the same way.

Let us put B := linan,B(l) = liénnBT(Ll). Recall that we have the
map F : (Wﬂggl),pmd) — (Wﬂgl,pm_ld) of differential graded algebras
defined in (5.1). On the other hand, we have the map . (Q;B(l),p d) —
(Q%, p™~1d) of differential graded algebras such that the composite

—*

pi .
Qb 0y 2 ap

is the one defined by the homomorphism 1 : B(Y) — B induced by v,,’s.
(This 9 is a lift of relative Frobenius morphism B%l) — B1, and the map
F" for = 1 is the same as the one defined in Section 1.) Furthermore, the
morphisms €, e (n € N) induce the homomorphisms

€n : ( .Bnapm_ld) — (WRQ.B17pm_1d)7

€ := lim pey, ( jg,pmfld) — (Wle,pmfld),

6(1) : ( .Bgll),pmd) — (WnQ.Bg)?pmd)a

n

D = @neﬁj) :( 23(1),Pmd) — (W

Bil)vpmd%

and the well-known formulas FV = p, FdV = d, Fd[z] = [z]P~!d[x] of de
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Rham-Witt complexes imply the commutativity of the following diagram:

. F . _
(WQB(1)>pmd) > (WQBl7pm ld)
1

(5.7) E“)T T
(%0, p7d) —s (2, Ld).
To prove the theorem, it suffices to prove that the homomorphisms
(58) HY(F) : HY(WQy ), p"d) — H(WO, . p™ " d),
(5.9) H(F)®Q: Hi(WQ;Bg),pmd) ®Q
— H'(WQ%,,p" 'd)®Q (i €N)

induced by F' are isomorphisms. We prove this by using the commutative
diagram (5.7). First, by Theorem 4.4, the homomorphisms

(5.10) H(F") : HY(Qpyq),p™d) — HO(Q%,p™'d),
(5.11) H'(F) @ Q: H'(Q0),p™d) © Q — H'(Qp,p" ') Q (i€ N)
induced by F" are isomorphisms. (Hyp(oo, 00, 00,00) is satisfied because
of the left cocartesian diagram in (5.6).) Next we prove that the homomor-
phisms
(5.12) H'(e) : H(Q%,p™ ') — H'(WQ3,,p" 'd),
(5.13) H'(e)®Q: H'(Q%,p" 'd) 2 Q

— H'(WQ%,p" 'd)®Q (i €N)

induced by € are isomorphisms. To prove this, we follow the argument in [6,
Theorem 3.5]: First, let us note the commutative diagram appeared there

Q% ,d) ——— (Bap @y, QY ,id®d)
(5.14) Enl id@é"l
(WnQ.Bl ) d) ; (BQn ®A2n7¢n WTLQAl s ld (%] d)7

where we denoted the maps induced from e¢,, 6, by the same latters abu-
sively, and ¢” : Ao, — A, is the map ¢p110- -0 poy,. Also, in the proof of
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[6, Theorem 3.5], it is shown that we have the decomposition (W,Q% ,d) =
(Chi»d) @ (Cf,e» d) such that 6, : (% ,d) — (W,Qa,,d) induces the iso-
morphism of complexes (Q% ,d) — (Cf,d) and that the complex (Cf,,, d)
is acyclic. Hence 6, : (2% ,d) — (WnQ4,,d) is a quasi-isomorphism and so
is €y 1 (Qp,,d) — (WnQg,,d) by (5.14). Hence € := lim ne, @ (Qp,d) —
(WQ3g,,d) is also a quasi-isomorphism. Since Q%,WQ%I 's (i = 0,1) are
p-torsion free, we have H°(Q%,p™ 1d) = HO(QFB,d),HO(WQJ'BI,pm_ld) =
HY(WQ% ,d) and so the map (5.12) is an isomorphism. Also, using the
commutative diagrams

(m—1)

2 . . m— .
i—1 = i-1 P i—1 i—1 = i-1 P i—1
Qp — Qf — Qf WQB1 _— WQB1 e WQB1
| | | | | |
dl m=1lg]| dl d| p™ld | d|
1 P 1 1 i i $
i pmfl i pmfl i i pmfl i pm,fl i
Ay —— Qy — Q% W, —— W —— WQp
| | | | | |
d| p™m~1ld ]| d| d| p™ld | d|
1 1 1 1 4 N
) 2(m—1) . - ( ) .
ot = oFt —— i, wat = wagl —— Wyl
. 2(m—1) . .
i—1 P i—1 € i—1 i—1
0 Ot —— Wl —— Wi

o BT

i P! i € i pmt i
Qp —— Qp —— WO —— WQp

R R
. _ . € . 2(m—1) X
oFt —— ot —— waig! —— waoyl,
we can show that the kernel and the cokernel of the homomorphism
PV H () : H QG p™ Hd) — H(WQY,, p™ 1d)

are killed by p*(™~1). Hence (5.13) is also an isomorphism.
In the same way as above, we can also prove that the homomorphisms

(5.15) Ho>(eW)y - HOY(Q%), p™d) — HO(WQ;#), p"d),

(5.16) H(eM)Y@Q: H(Q,),p"d) @ Q
— H'(WQS,),p"d)®Q (i€N)
1



Ogus-Vologodsky Correspondence 875

induced by €M) are isomorphisms. Then, by (5.10), (5.11), (5.12), (5.13),
(5.15), (5.16) and the diagram (5.7), we can conclude that the homomor-
phisms (5.8), (5.9) are isomorphisms, as desired. (]
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