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Derivatives of Secondary Classes and

2-Normal Bundles of Foliations

By Taro ASUKE

Abstract. Derivatives of secondary characteristic classes for fo-
liations are discussed. It will be shown that one can construct the
derivatives in a parallel way to the standard construction of secondary
characteristic classes, namely, by using connections and applying the
Chern-Weil theory. Some relationship of connections in the construc-
tion and transverse TW-connections, which is significant in the study
of deformations of the Godbillon-Vey class and the Bott class, are also
discussed.

Introduction

It is known that some secondary characteristic classes for foliations ad-
mit continuous deformations. That is, the classes vary continuously accord-
ing to deformations of foliations. If the families are differentiable, we can
consider the derivatives of characteristic classes with respect to deformation
parameters. Such derivatives are studied by Heitsch et. al. [12], [13], [14],
see also [9], [4]. Secondary classes and derivatives of them are constructed
in terms of connections and deformations of them so that independence
of cohomology classes of choices is to be shown. It is done for secondary
classes usually by using the Chern-Simons forms. On the other hand, it
usually relies on combinatorial arguments for derivatives of them. In this
paper, we give a framework by which derivatives of secondary classes are
treated as secondary classes for foliations and deformations. In particular,
there will appear a kind of truncated Weil algebras such as WO, and WU,.
If we restrict ourselves to the Godbillon-Vey class and the Bott class, then
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it is known that deformations are related with transverse projective struc-
tures and that transverse projective TW-connections are relevant [5]. We
will discuss how connections associated with deformations of foliations and
transverse TW-connections are related. Roughly speaking, there is a cer-
tain extension of the tangent bundle of ambient manifolds which has some
parameters. There is a connection such that the constant term of it with
respect to the parameters is a deformation of foliations, and the linear term
of it is a deformation of transverse projective structures.

1. Preliminaries

ASSUMPTION. We assume the following throughout the paper. We de-
note by M a manifold equipped with a foliation F. The foliation F 1is
assumed to be transversely holomorphic unless otherwise mentioned. The
arquments for real (smooth) foliations are almost parallel and easier. The
term ‘smooth’ stands for the term ‘of class C°°’, even in the transversely
holomorphic case. We work in the smooth category unless otherwise men-
tioned.

Let p and g be the dimension and the complex codimension of F, re-
spectively. Then, a foliation chart is given by a triple (U,V x B, ), where
p: U —V x BCRP xC? We usually let (x,y) be the natural coordinates
on V x B. For simplicity we identify U and V x B, and regard (z,y) as
coordinates on U.

Notation. We will frequently compare coefficients of tensors, connec-
tions, etc. in what follows. Once a chart is chosen and coefficients are
defined, the symbol ‘™’ is used to express another chart and the coefficients

on it. For example, if (U, ¢) is a chart and if ay, ... , a4 are coefficients of a
tensor on (U, ¢), then (U, ) represents a chart such that U NU # & and
ai,...,aq represent the coefficients on (U, p). The coeflicients are often

considered as entries of matrices, and the multiplication rule of matrices is
applied. For example, if w',... ,w? are coefficients of a C%-valued 1-form
and if aé-, where 1 < 4,5 < g, are coeflicients of a gl,C-valued 2-form, then
we set w = (w') = H(w! -+ w?), a = (a’) and define a Aw to be a Cl-valued

J . . . .
3-form of which the i-th entry is given by > ajAw’ = ajAw’. Note that we
J

make use of the Einstein convention. Finally, when coefficients of tensors,
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etc., are expressed, the Roman indices will begin from one, while the Greek
indices will begin from zero.

Notation 1.1. Let U be an open subset of M and E a vector bundle
over M. We denote by I'y(F) the module of the smooth sections to E over
U, even in the transversely holomorphic case. If U = M, then we denote

I'y(E) also by I'(E).

DEFINITION 1.2. Let U and U be foliation charts and © the transition
functlon from U to U. Then, under the identifications of U = V x B and
U~V x B, ¢ is of the form (v,). We refer « as the transverse component
of .

DErFINITION 1.3. If F is a real foliation, then we set E(F) = TF,
namely, the subbundle of T'M which consists of vectors tangent to leaves.
If F is transversely holomorphic, then we denote T'M & C by T'M by abuse
of notations, and define E(F) to be the complex subbundle of T'M locally
spanned by E(F) and 5 where 1 < ¢ < ¢. In the both cases, we set

Yy
Q(F)=TM/E(F). We call Q(F) the normal bundle in the real case, and

the complex normal bundle in the transversely holomorphic case. We denote
by 7 the projection from T'M to Q(F), and by p the one from Q(F) to M.

We locally set e; = 7 , and choose (eq, ... ,eq) as a local trivialization

Gy’b

of Q(F) unless otherwise mentioned.
2. 2-Normal Bundles of Foliations

The 2-tangent bundle of a manifold M is by definition of the tangent
bundle of the tangent bundle TM [22]. We will first introduce 2-normal
bundles of foliations as an analogy.

Notation 2.1. We denote by TGL,C the tangent group of GL,C. That
is, TGL,C is the tangent bundle of GL,C equipped with the following mul-
tiplication. Let I; be the unit element in GL,C. We identify T7, GL,C with
the Lie algebra of the left invariant vector fields on GL,C, and denote it by
gl,C. Then, we have a natural identification TGL,C = GL,C X gl,C as man-
ifolds. If (A, B), (A, B') € TGL,C = GL,C x gl,C, then (A, B)(A",B') =
(AA', (A")'BA' + B'). Therefore, TGL,C = GL,C x gl,C as Lie groups.
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A matrix representation of T'GL,C is given by

(A, B) < A"; i) € GLy,C.

This representation is indeed given by the natural action of T'GL,C on
TC? [22]. If we denote by tgl,C the Lie algebra of TGL,C, then the induced
representation is also given by (X,Y) — <‘;( ;)

Let Q) (F) be the complex vector bundle of rank 2q over Q(F) defined
as follows. Let [ = [(t) be a curve in Q(F). We can locally represent I(t) as

[(t) = (2(t),v(t)) e U =V x B. Let [(0) = (2,v) and %(O) = (2,9). U, U

are foliation charts and if ¢ is the transition function from U to U , then ¢
induces a transition function from p~1(U) to p‘l(ﬁ ) which we denote by .
If we denote by ~ the transverse component of ¢, then we have ¢ = (¢, D7),
namely, ¢ o l(t) = (p(2()), Dyywv(t)), where z(t) = (x(t),y(t)) € UN Uc
U, and

d(pol)
dt

82,71‘
| | | - Oyoyk
H’y;-k“y by H’y;.k. Note that H’y;.k = H’y}q and that y = m.(2) holds in
Q(F). We set QP (F) = {(z,v;9,0)} and define p(QQ),I/: QP(F) — Q(F)

by pg)(zw;y‘,@) = (z;v) and v(z,v;y,0) = (z;9), respectively. It is easy to

see that p(Q2 ) and v are globally well-defined.

where z = (z,y), £ = (4,y) and H’y}hy = (y). We often denote

DEFINITION 2.2. We call pg): QP(F) — Q(F) the 2-normal bun-
dle of F.

The following diagram commutes:

QF) —— QF)

| Jre
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A local description of Q) (F) is given as follows. If ¢ € Q(F), then ¢ is

vl

represented as (z, vlep + - + vqeq) on a foliation chart. Letv = | : | and
Uq

regard (z,v) be coordinates on 7~ 1(U). Let (U,V x B, ¢) and (U,V x B, $)

be foliation charts and ¢ € 7~ Y(U) N7~ 1(U). If both (z,v) and (Z,7)

~ 0
represent ¢, then (2,v) = (¢(z), Dvyyv), where z = (z,y). We set n; = p
v
Then, a local trivialization over 7=1(U) is given by (e1,... ,€q M1, ,7q)-
If we set p2Q1 =pgo p(Qz), then the transition function from (pg)_l( ) to

(pg) ' (U) is give by
—~ ~ ~ Dy, O
(€1,--- s eq, M1, - - ’UQ)(s@(Z),DVyv) (Hyyv D7y>

=(e1,...,€q M, .- ,nq)(m}) ,
where (H’yyv)§ = H’yji.k,yvk.

Several foliations are naturally defined on Q(F) and Q¥ LetUcCc M
be a foliation chart. If we choose (e1,...,eq,M,...,1n,) as a local trivial-
ization, then (z,v) are coordinates on 7~ 1(U), and (z,v;y,9) are coordi-
nates on (pél)_l(U ). We can define foliations of Q(F) by locally setting
Fo = {y,v are constant} and 7*F = {y is constant}. Similarly, we can
define foliations of Q(?)(F) by locally setting

F@ = {y,v,9,% are constant},

.7:1(2) = {y, v,y are constant},

.7:2(2) = {y, v are constant},

]:3(2) = {y, y are constant},

ff) = {y is constant}.
Note that 7*F is indeed the pull-back of F by 7, and that ]:2(2) = 7@ rp,
ff) - pél*f and ~7:1(2) = 2(2) 05’:352). Note also that instead of dealing with

pg): QP (F) — Q(F), we can work on v: Q) (F) — Q(F) by exchanging
v and y. This point of view is relevant in §5. Finally we remark that the
2-normal bundle Q) (F) is closely related to the 2-jet bundle of F which
are usually denoted by J2(F).
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3. Infinitesimal Deformations and 2-Normal Bundles

We will introduce infinitesimal deformations of foliations after Heitsch
[13] (cf. [12], [9], see also [16]).

DEeFINITION 3.1. Let U be an open subset of M. A section X € Iy of
Q(F) is said to be foliated if Ly X = 0 for any section Y of E(F), where Ly
denotes the Lie derivative with respect to Y. We denote by ©x the sheaf
of germs of foliated sections of Q(F).

Let V? be a Bott connection on Q(F) and denote by dg» the covariant
differentiation associated with V°. It is known that {\"E(F)*®@Q(F), dgs }
is a resolution of O [12], [9], [11].

DEFINITION 3.2. An infinitesimal deformation of F is an element of
H 1(]\4 ;Or).

If o is a representative of an infinitesimal deformation of F, then ¢ can be
locally represented as o = e;0?, where (e1,. .. ,e,) is the local trivialization
of Q(F) as above and o! are 1-forms such that

~i i g
o' = Dvjo’.

In addition, as we identify fibers of Q(F) with C? by the trivialization, there
is a gl,C-valued 1-form (w;) such that

(3.3) do' + Wi Aol + &5 AT =0,

where (0%,...,0%) = (dy',... ,dy?) is the dual to (eq,... ,e,) and w = (w;)
denotes the connection form of V* with respect to (e1, ... ,e,). By using a

partition of unity, we may assume that
. —1i “k .l
W = (DY) @f Dy

By abuse of notations, we set ¢ = (¢%). Then, (3.3) is represented as
do+wAho+wANl=0.

Let (z,v;9,0) be local coordinates for Q) (F). As w is the connection
form of a Bott connection, w;» = f;kdyk holds for some functions f;k We
set

i opi ok
P = TV
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o = @ - <a —9,09>’

w (0]
W@ —
(w +dp + [w, ] w)

on Q(F), where [w, p] = wp — pw.
LEMMA 3.4 (cf. [5, Theorem 1.20]).

1) If we set
D @)
2~ = p®@ — Ty
D*¥~y =D Vip,w) (H"Yy v D'Yy) )

where p = (x,y), then,

2) We have
(3.5) do® + @ A e = 0.
3) The family {w(2)} of tgl,C-valued one-forms gives rise to a connection
on QB(F) — Q(F) which we denote by V2. Conversely, if {&}
is a family of local connection forms of a connection on Q3 (F) —

Q(F), then {t*@}, namely, the restriction of {W} to M determines an
infinitesimal deformation of w with respect to 6.

PROOF. We have
w = (D)~ (dDv) + (D) ~'@(D~),
& = (D7)~ o(Dy)

oy' *y'  Oy'n Oy Oy°

and f ]’k = ﬁ—ﬂlw o7 fmna—yj o Therefore, we have

pj = Fiv"

(o o o 0o ot
oyt dyioyk oyt oyl oyF ) oy

= (DY Hi(HA Y + B, DY).
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Hence we have

dp = —(Dv)"H(dD)(Dy) " (Hv)v + (D)~ (dHy)v + (D)~ (H7)dv
( 7" ( D )(DV) (D) + (D)~ (dp) (D)
D)~

w,o—(D'y) (dD’Y)(D’Y) (Hv)v+(D'y) H(dDy)(Dy) "' p(Dy)
+ (DY) 'B(H)v + (Dy) "' 0p(D),

pw = (Dy)” ' (Hy)o(Dv) "' (dDy) + (Dy)~ (Hy)v(Dv)~'&(D7)
+ (DY) "'p(dDv) + (D)o (D),

p6 = (Dy)" (Hy)o(Dy)~'0 + (Dy) ' 5.

Therefore,

The part 1) follows from the last equalities. If we set

_ 1~ AL
(D) (D) + (D) 60 = (3 ),

then we have

Al = A3 = (Dv)"1(dDy) + (D7) '@ (D7) = w,

A3 =0,
and
(A= —(Dy) " (HY)v(Dy) "' (dD)
+ (D) HdH~)v + (Dv) " (H~y)dv
(3.6) N
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Consequently, {w@)} gives rise to a connection on Q@ (F). This shows the
first claim of 3). On the other hand, we have

do=do—d(ph)
=—wWANO0—wAo—dpANO—pdf
=—(w+dp)ANO—wA(T+p0)+pwnb
=—(w+dp+[w,p)) N —wAG.
This shows the part 2). The latter part of 3) follows from the fact that the

equality (3.5) reduces to the defining condition of infinitesimal deformations
of w. This completes the proof. (I

REMARK 3.7. Lemma 3.4 implies that {#(®)} formally defines a folia-
tion of Q?)(F). Indeed, if each #?) is a local trivialization of T*Q(F), then
a foliation is defined and w(® defines a Bott connection.

REMARK 3.8. Let
R@ = duw® 4 @) A2

be the curvature form of V(2 with respect to (2. If we denote by R =
dw + w A w the curvature form of V® with respect to 6, then, we have

R(Q): R O
[R,p] +dw + [w,w] R)’

where [R, p] = Rp — pR and [w,w| = & Aw + w Aw. By the equality (3.5),
we have

R@ A 9@ =0,

There are several choices in defining p, 0® and w®. We will study how
they affect {w®}. We denote by p, 8’ w®’ etc., newly obtained ones.
First we fix 6, w and o. Suppose that {az-k} is a family of functions such
that

Gk = A
(39) { T —1i~l m n
@ = (DY) [y (DY)7 (DY) -
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Then,

I 1 i pk

Conversely, any infinitesimal deformation of w with respect to o is of this
form. Accordingly,

@ _ @ (0 O
w w +(A0 O)’

where (AH); = aé.kﬁk. We can replace w in a similar way, namely, let {b;k}
be a family of functions such that

bl = bl
(310) { Zk ¥ —1i71 m n

If we set (BG); = bj-kek , then the connection form of a Bott connection is of
the form w + B# and vice versa. Let w’ = w+ B6 and V’ be the connection
defined by «’. Then, the ‘identity map’ from H*(\'E(F)* ® Q(F),dy) to
H*(N'E(F)*®Q(F), dys) given by [0] — [o] gives an isomorphism. Indeed,
if o is an infinitesimal deformation, then the infinitesimal deformation w’ of
w' with respect to o is given by

W' =&+ Bo,
where (BO');- = bj.kak. Accordingly,

p' = p+ B,
0
92 — p(2) _
Bbv)’

o _ o, (B0 OY, 0 0
v Bo B d(Bv) + (B, p| + [w, Bv] + [B9,Bv] 0O)°

where (Bfv)! = b;ké’j v¥. Next, we modify o. Let 0’ be anther representative
of the infinitesimal deformation [¢] € H!(M;©#). Then,

(3.11) o't = Ji—l—dfiﬁ—w;fj —i—gﬁﬁj

holds for a family of functions {f;} such that fi= (ny)§ f7 and a family

of functions {g;} such that §; = (D'y)};glk(Dv)_lé (we again make use of a
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partition of unity in order to assume that eigj-é?j is globally well-defined).
An infinitesimal deformation of w with respect to ¢’ is given by

(3.12) W = &+ Qi+ (dg + [w, 9],

where w; = Fi dyk and Qi = dF;k + Finlfﬂdyl so that Q;k A dyF =

(dw+w A w) Therefore 0( ) and w(® are replaced by

0
HOe) ( )
T\ wf+g0

O @)
2 — ,(2)
v +<ﬂf+dg+[w,g] 0)'

Finally, we can replace 6 by 6’ = (D()f, where ( is a local biholomorphic
diffeomorphism. Then, the connection form of a Bott connection, say V', is
given by

= —(dD¢)(D¢) ™ + (DQw(D¢) ™

In this case, the mapping D¢: H*(N'E(F)* @ Q(F),dy) — H*(N'E(F)*®
Q(F),dy) given by [o] — [(D(¢)o] is an isomorphism. Indeed, we have

d((D¢)o) + &' A ((D¢)o) + (DC)w(DC) ™ A ((DG)8) =

We also see that an infinitesimal deformation of w’ with respect to o’ is
given by (D¢)w(D¢)~!. We have

p=—H{u(D¢) ™ + (D¢)p(D¢) ™,
0" = (D¢)o 2>+< " )

(Hv)dy
(3.13) W' = —(dDP)(DP) + (PP (DP) T,
where
i 0T 0y L 07 g Oy

= fl "
J aylaym ay] ayl mn ’\ ’
29

i 0%y 17 m
H a P = (i .
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The equality (3.13) is shown by essentially the same calculations to
show (3.6).

LeEMMA 3.14 (cf. [5, Theorem 1.20]). Let e]H = ej—mpé» = ej—nif;kvk.

- 1,
If we set p = (p}) and F' = ( p IO>, then we have the following.
~ ~H ~ Dy O
1) (e{{,...,ef, Tye-- )(O ny) (e{{,...,ef,m,...,nq).
2) The connection form of V3 with respect to (ell, ... ,eé{,m, ce s Tg)

L <w O>
s given by o ow)

3) F~19® = (9>
g

1,
PROOF. If we set p = (p]) and F = <

D O
~H ~H =~ ~ Y
(el,...,eq, 1,...,77q)<0 Dv)

— (@ s 5 A1) I O\ (Dy O
= Tyevoe s q77717-"777q —Z)\ I O D’y

(e1,... eq,m,... 1)

@)

>, then we have
p 1

( (D7)~ val)(Dv) ! (DS)l) (—ﬁl()l;v) DOW)

e{l,... ,651,7717--- 77711)
I 0 I o
- (p I) ( “HHyv) = (Dy)THA(D) I>
H - ! 7
(e1, ... 77 - 7g) (p _ (D’y)fl(HT’v) — (ny)*lﬁ(D’)/) I) .

Since p = (Dv)~Y(dDv)v + (Dv) " p(D~), we have

— (Dy) "' (HAyv) — (D)~ 'p(Dy) = 0.
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Next,wehave(e{l,...,eqH,m,...,nq):(el,...,eq,m,...,nq)Fand
O O w O
FldF + F 1w F = .
+ v —dp O + pw+w+dp+|w,pl —wp w
z(“.) O).D
W ow
H

The vectors e;’ are versions of horizontal lifts of e; in the sense of [22,
Chapter 2], see also [5, §1]. Finally we again remark that we can exchange
v and ¥ in the construction.

4. Deformations of the Godbillon-Vey Class and Relation to Pro-
jective Structures

If we discuss only the Godbillon-Vey and Bott classes, the construction
can be largely simplified. The following vector bundle is relevant. We set
Jv = det D~. Note that

1 1 Olog Jvy
tr Dy~ HAly, = Dy~ HAyjy = o

We set tr Dy~ 'Hy = (tr DV_I%Hvé-l e tr Dv‘léHvéq).

DEFINITION 4.1 (cf. Definition 2.2). Let Kg_?)*l be a vector bundle
over K ;1 defined as follows. Let U be a foliation chart and e = e; A--- Aeq

0 2)_
8yi>' We set Kjgr L=

be a local trivialization of K ]f-l, where e; = 7 <

{(z,w;y,w)}, where
(2, @ 9,1) = (9(2), Jygw; Dy, Jyy tr(Dy,  Hyyg)w + Jyyb).

The projection to K}l, denoted by 1_)(2), is defined by 1_)(2)(2,w;y,w) =
(z,w). We denote by v the mapping from K;_?)_l to Q(F) defined by
v(z,w;y,w) = (2,y). Then, v: KJ(TZ)_1 — Q(F) is a vector bundle.
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The following diagram commutes:
2(2)

Kg)fl K]—__l

where p is the natural projection.

REMARK 4.2. One might notice that 1_9(2): Kg)_l — ]f-l is quite sim-
ilar to pg o p: Q(]?) — M, where p: Q(j-:) — Q(F) is a certain vector
bundle appeared in [5]. This is later discussed.

First we study v: K](f)*l — Q(F). This bundle is related to pg):

QP (F) — Q(F) as follows. If we set

Jry 0 )
L - —_ . )
! (J'ytr(D’y YHyy) Ty
then the transition function is given by Lv. Let V be a Bott connection on

Q(F) and {w} the family of connection forms as in the previous sections.
We represent w§ = ;kdyk and set ,03- = f;kyk Recall that 0 = o — pf and

w® = N 0 . Weset w=trw, w=trwand p=trp. If we
w+dp+[w,p w -

represent w = frdy®, then f; = fi. and p= fiv. Let (e1,... ,eq,My- -+ 7))
be the local trivialization of Q) (F) as in §2. We set

1
(5:—(771/\62/\-"/\€q+61/\772/\63/\--~/\6q
q

+"’+61/\"'/\6q—1/\77q)7
0=0"A--- N6,
G=0 " ANOPA-NOT+OLANGEAGP A NGY
+O A AT AT,

o _ (2
= E b
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Let A be the vector space spanned by

mAer A AGA-Neg— (1) InjANet A A€ A+ Aeg,
T]i/\el/\'-~/\€j/\-”/\6q,
m/\nj/\el/\---/\a-/\---/\gj/\---/\eq,

where i # j and ‘7’ means omission. Let V' be the vector space spanned by
e and 6 modulo A. Then, (e ¢) gives a local trivialization of K (f2 )-1, Indeed,
if we denote by Ay = JyD~~! the adjugate matrix of D, then we have

e =Yuler A Aeg)
= (det DY)EL A -+ A&y + (tr(AyH~))S
— Jye + Jytr(Dy~ Hy)s,

V4§ = J6.

Thus (e, §) can be identified with (e, 8%) We have the following

LEMMA 4.3 (cf. Lemma 3.4 and [5, Theorem 1.20]). We have

1) 5(2)

= (Ly)8®.

2) do@ + @ A9 = 0.

3) w® = (Ly)"Y(dLy) 4+ (Ly)'&® (L), namely, {w®} gives rise to a
connection on K@ (F)~! which we denote by V2.

PROOF. First, the coefficients of % A 62 A --- A 69 in E are equal to
(Dy)FGY, where GY denotes the (I, 1)-cofactor of Dv. Therefore, we have

& = tr((Av)(Hyv))0 + (det Dy)3.
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The part 1) follows from the above equality. The part 2) follows from the
following one, namely,

q
— 1 . e ~k PR
_d;(e A ANGEA A@q)

q
== ) (1! (91/\---/\(9j_l/\wlj/\el/\QjHA.../\gk/\.../\gq)
k=1

><<91/\ AT A (O A+ dp F [w, p))FAGEA ORI A /\eq)

q q
=D ) (—nFt (91/\---/\9’“’1/\wf/\&l/\ﬁkﬂ/\'-ﬁ\ﬁq)

11=1

ol ol
i < i
1§
=
AN
<.
=
I MQ
I
—
—_
S—
<
|
L

X
—
>
>,
>
>
Q
El
>

"/\Qj_l/\wlj/\91/\9j+1/\"'/\"'/\9q>

I
[
(]
T
[y
~—
£
L
/N
>
—

Aej”ijfAejA@jHA---/\E’M---/\Gq)

Eond
Il
—_
<.
A
-

]
N

-
—
<.
A
ol

X <01/\~--/\9j_1/\wi/\9k/\0j+1A---A&k/\---Aﬁq)

Aek‘lA(w+dp+[w,p])’,g/\e’“/\ekal/\---/\Hq)
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_(df-l-dg)/\(el/\.../\gq)

>
Il
—
~

T
e

Finally, we have

w = (det Dy)~'(ddet Dy) + @,

and
&+ dp
—w+d (((det DV)—lad;%m + E(D’y)?) (D,y>—1;"aj)
=0+ dp+d ((det Dy)—lad(;%mvz)
=@+ dp — (det Dy)~*(d det Dy)adg%vi
+ (det Dy)~d (Mgi;mvi) '
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Therefore the part 3) also holds. OJ
Let ef be as in Lemma 3.14. Note that
1
S==(mAes N Nell +efl Ampnes Ao nell
q
+---+e{l/\---/\ef_1/\nq)

holds in K (F)~1. We set e = elf A Nell.

LEMMA 4.4 (cf. Lemma 3.14 and [5, Theorem 1.20]). We have the fol-
lowing.

1) (eH,é):(e,6)< L O).

—trp 1
i 2 [det Dy 0
H _ (,H
2 @5 (7 ) = o)

3) The connection form of Y® with respect to (eM,68) is given by

c2)

Note that d (% 0 + (% 0 N 0) _ dg 0 . See also [3].
) W w w w dw dw

In view of Lemma 4.4, we introduce the following

DEFINITION 4.5. Let w be a 1-form on Q(F) such that w(n;) = 0 for
1 < ¢ < g. Such a 1-form is called a generalized infinitesimal deformation
of w with respect to 6 when it is regarded as a coefficient of connection on
K g )=1, More concretely, we consider a connection of which the connection

matrix with respect to (e §) is given by <i g)

A generalized infinitesimal deformation is an ordinary one if dw(n;) = 0.
As we will see, the constant and the linear parts of w with respect to g are
relevant.
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Next, we study Q(Q): Kg_-z)_l — K]__.l (we refer to [5] for details of
Er,Q(F) and TW-connections. See also [20]). A local trivialization of
K g )1 g given by (e;, §) and the transition function is given by

— (e 3 Dy 0
(ei 8) = (& 9) (tr Dy~ 'Hvyw J’y) '

We set k:j__-l = {(z,w) € Kz'|w # 0} and denote by k:_(}%)_l the restriction of
Kg)_l to k:g_%)_l. Let &£ be the C*-principal bundle associated with K]__-l.
Note that k;l and £r are indeed the same. On a foliation chart, we can find
local coordinates on Ex such as (z,u) = (z,y,u) € (RPxC?) xC*. By taking
the logarithm and changing the order, we may make use of (x,logu,y) as
local coordinates which we denote by (x,3°,3%). Let E (]? ) be the subbundle

0
of TEr locally spanned by 9 and TR 0 < p < g (we omit e in the real
€z Yy Yy

case), and set Q(F) = TEx/E(F). A local trivialization of Q(F) is given
-1

1 tr(Dy " H7) I
0 D~y

order to compare k:g)_l with Q(j-: ), we change the order again and choose

0
by <W’ ei> and the transition function is given by (
Y

<ei, W) as a local trivialization. Then, the transition function is given
Yy

by

~ D~ 0
b= (tr(Dv‘lH'y) 1>'

Note that

A transverse TW-connection, say VTV, is a linear connection on Q(F) of

0
which the connection form with respect to (ei, W) is given by
Y

-1 (dy°I, dy n v 0
q+1 0 dy° Lig)+a 0)°



912 Taro ASUKE

where dy = *(dy! --- dy?). If we change the local trivialization into a
horizontal one, namely, to
0
(6?’ 0) ’
Ay

where e — fi=—=, then the connection form is changed into

80’

-1 (dn’I, dn v 0
- 0 + ,
q+1 0 dn a 0

where n° = dy® + f;dy’ and 0’ = dy’. We further change the local trivial-

ization into | e, = |. Note that eﬁ‘ — fiw—=—. Then, the connection

P ow
form is changed into

—1 (dn’1, v 0 0 0
q—|—1<0 dn0+wao+0—%~”‘

Now let (e,6) be the trivialization of K @-1 Q(F) and recall that
0
(e,6) can be identified with <e, 8—w> Therefore (e, 6) is identified with

<eH , 88 > If we regard K (2-1 4 fiber bundle over M , then we can consider
w

(e?, efl, 8%) as a local trivialization. We can represent a point on K g)_l
by (z,v%,w,u), where z is the projection of the point to M and (v%,w,u)
are the coefficients with respect to (e?, el %) If VTW is a transverse
TW-connection and V® is a connection as in Definition 4.5, then we can
ask if there are some relationship between them. For this purpose, we need

the following

DEFINITION 4.6. Let Lx be the line bundle over M locally spanned by

900" By abuse of notations, we denote their pull-backs to Q(F) and K ;1
Y
again by Lr. Let Q(F)" be the subbundle of K](,_?)*l over Q(F) locally

0

spanned by { } where eé‘ P — fjﬂ' We denote by hg the projection
Y
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from Kg)_l to Ly determined by the decomposition Kg)_l = Q(F)'®Lg.
We denote by (Kj__-l)H the subbundle of K ;?)—1 over K ]__-1 locally spanned
by ef. We denote by hx the projection from Kj(ﬂ_?)_l to Lr determined by
the decomposition K}z)_l = (K;-l)H @ Lr.

We have the following

THEOREM 4.7. Suppose that

) 0
TW [ _h, i _ (2) H
hg (VXh <eiv + —8wu>> = hg <VXH <e w + —8wu>>

for any X € TM and (v',w,u), where if X = e;a’, then X" = ela’ and

i
XH = eZ-Hai. Then we have a; = ﬁ% that is, the linear part of a gener-
Y
alized infinitesimal deformation of w is equal to the infinitesimal deforma-
tion of a TW-connection. In general, the linear part with respect to §° of
a generalized infinitesimal deformation of w is an (original) infinitesimal

deformation of w in the sense of [3] (even back to [12]).

Proor. We have
ho [ VEIW (el + iu = i(wa-(Xh)vi + fia'u)
@\ var % ow ow: ‘

= 2 (waa(X)0 + fiaiu),

ow
e (S0 (4 o)) = g @OX (X )
= (o (Xpw+ w(X)u).

Since f;a' = w(X), the equality in the claim holds if and only if a;v’ =
w. O

The linear term of a generalized infinitesimal deformations is a kind of
non-linear connections in the sense of [22].

In order to deal with deformations other than Godbillon-Vey class and
Bott class, we need a generalization of Theorem 4.7, which will be discussed
elsewhere.
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REMARK 4.8. Let 6 = f;dy’ be the connection form of a Bott connec-
tion, say D, on K}l with respect to dy' A --- A dy?, and set n° = dy® + 6,
n' = dy’. If we set wT™W to be the connection form of a TW-connection with
respect to (V?, D), then

1 0F r o0
™W _ _ miqg M
=i (0 ) o)

where T is the connection form of V® with respect to <8iy1’ ceey 8%/‘1’ %)

[5] and n = t(nt --- n9). If we set 6TV = t(n! ... 17 1°), then we have,
provided that V? is transversely torsion-free [5],

0

A0V 1 TW A gTW _ :
0
do + a; A dy

Thus, slightly different from Lemmata 3.4 and 4.3, the torsion of a TW-
connection for (V?, D) (as a linear connection) is related to the curvature
of D.

REMARK 4.9. The Frobenius theorem and the torsion-freeness a Bott

connection on Q(F) are related as follows. Let (eq,... ,e4) be a local trivi-
alization of Q(F) and *(#',... ,69) be the dual. If V? is a Bott connection,

q , .
then Vle; = e;w;, where (wj) is the connection form of V® with re-
i=1

spect to (e1,...,eq). If X € E(F), then Vie; = n[X,¢;]. Therefore,
do'(X,e5) = X(0'(¢5)) — ;(0°(X)) — 0°([X, &5]) = —0'(Vie;) = —wi(X).
On the other hand, we have wi A 0% (X, ¢;) = 6iw;-(X), where 6} denotes the
Kronecker delta. Hence we have df +w A = 0 on E(F) @ TM. Thanks
to the Frobenius theorem, we have‘ a gl,C-valued 1-form, say 7 = (T;), such
that dd + 7 A6 = 0. Let A = (aj) be a GLyC-valued function such that
0 = Ady. Then, (A~'dA+ A~'7A) Ady = 0. Therefore, if we can represent
A7ldA+ A7 A = (b;) and b;'» = b;kdyk, then bé-k = ij. This is the case if
T is the connection form of a transversely torsion-free Bott connection with
respect to (ei,... ,eq).
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5. Characteristic Classes
We begin with invariant polynomials on TGL,R and T'GL,C.

LEMMA 5.1.  Let I(TGL,C) be the algebra of invariant polynomials. If

(X1 O
X e tg[qC, then we represent X € tg[qC as X = <X2 X1>'

1) Let f € I(GL,C). If we set f(X) = f(X1), then f € I(TGL,C). We
denote f again by f.

2) If we set
Ef' .
~ tr XiXo X777 k>0,
(X)=¢ S T
0, k=0,

then, by, € I(TGL,C).

A O

PROOF. Ifg—(B A

> € TGL,C, then

-1
Ang:< AX, A 0 >

BX{A '+ AXoA 1 — AX;A1BAY AX A7E

The first claim immediately follows from this. In order to show the second

claim, we first remark that k; XiXoX f_i_l is the bottom-left component
=

of X*. In other words, if we represent X* = Gjl g) , then /b\k(X) =trYs.

It follows that ©

r(BY1A™! 4 AY, A7 — AViAT'BA™Y)

be(9Xg™") =1t

tr(BY1A7Y) + tr(AY, A7) — tr(AY1 A1 BA™Y)
tr

t

(BY1A ) 4 trYs — tr(BA 1AV A7)
rYs.

Hence by, € I(TGL,C). O
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Actually we have by, (X) =ktr XoX f_l but we prefer the expression as
above for its naturality seen as above.

The polynomial Ek will correspond to the infinitesimal derivative of the
Chern characters. If we work on the Chern classes, a certain variant of /b\k
is useful. In order to introduce it, we recall the relation between the Chern
classes and the Chern characters.

Notation 5.2. Let o;, ¢ = 1,...,q, be the i-th elementary symmet-
ric function in z1,...,z,. Formally we set og(z1,...,74) = 1. We set
(X1, xg) =] 4+ b for j=1,... and To(x1,... ,74) = q.

The relation between o; and 7; is well-known (cf. [15, 14.1 and 19.3]).

q .
PROPOSITION 5.3.  If we set f(t) = Z i(x1,...,xq)t", then

i=0

i(—l)jTj(m,... L xg) t) = —t— /f

j=1
holds in R[[t]], where t° is regarded as 1.

PROOF. We have f(t) = (14 x1t)--- (1 + z4t). It follows that

/f dlogf( t) = Z(_l)jTjJrl(a:l,... ,:L’q)tj. O

§=0
COROLLARY 5.4. There is a polynomial Pj in y1,... ,y; such that
7; = Pj(01,... ,0j).

Example 5.5. The concrete form of the polynomials Pi for small k are
as follows. We regard y, = 0 if k£ > q.

Pi(y1) = y1,
Pa(y1,y2) = yi — 2o,
P3(y1,y2,y3) = yi — 3y1y2 + 3y,
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Py(y1, Y2, y3, Y1) = yi — 4yty2 + 2y3 + 4y1ys — dya,
Ps(y1, 92, Y3, Y4, Y5)

=y} — 5yiy2 + By1ys + Syiys — Syays — Byiya + 5ys,
Ps(y1, Y2, Y3, Y4, Y5, Y6)

=yt — 6yiy2 + 9T Y5 + 6yiys — 12015203
— 6yiya + 6y1ys — 25 + 6y2ya + 3y3 — 6y

THEOREM 5.6. Let ¢; be the i-th Chern class and ¢; the j-th Chern
character. Then, ¢; = Pj(c1,... ,¢;)/j!.
C ly, if we set g(t) = 3" CLy

onversely, if we se = ,
y g PO
exp g(t). Therefore, the converse of Theorem 5.6 also holds.

Tj41(T1, ... ,2q) VT, then f(t) =

THEOREM 5.7. Let Qf be the polynomial in 11,... , 7T determined by

00 00 i

—1) .
Z thk = exp ( )1 Tj+1t]+1
k=0 7=0 J T

Then, ¢, = Qx(c1,2¢a,...  k!lcy).

Example 5.8. The concrete form of the polynomials @ for k = 1,2,3
is as follows.

Q1(m1) =71, Q2(71,m2) = % (rf = 72),

1
Q3(11,72,73) = 6 (1 — 3mim +73).

DErINITION 5.9. If I = {i1,... iy}, then we set I; = I\ {i;} and
T[ = Ti, ** Ti,, where 7gg = 1. Let 71,75, ... be formal variables and set

,
ori(tsT) = ZTZ{ZT[l.
=1
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We represent Q; as Qi(71,...,7;) = >, arrr, where |I| =i + -+ +1,, and

|T|=i
set

bi = Z a167'1(b1,2b2,... ,z’!bi;a,%\g,... ,z"c})
[|=i

Ezample 5.10.

~ ~ ~ 1~ ~ ~ ~
bl = bl, bg = bl/C\l — b2 and b3 = 5[)1/0\% — bl/C\g — bQ/C\l + b3
We define a subgroup 7T'SL,C of TGL,C by TSL,C = SL,C x s[,C C

q q
GL,C x gl,C and denote by ts[;C the Lie algebra of T'SL,C. Then, the
following is known.

THEOREM 5.11 (Takiff [21], Rais-Tauvel [19, Théoréeme 4.5]).
I(TSL,C) = C[éa, ... ,Eg, b2, .. , by,
I(TSLyR) = R[Cy, ... , Gy, ba, ... bl

The following is a direct consequence of Theorem 5.11.

THEOREM 5.12.

I(TGL,C) = C[é1,... ,¢4,b1,... , by,
I(TGLGR) = R[¢1, ...,y b1, .. byl

PRrRoOOF. First we show the theorem for TGL C. We will show that
I(TGL,C) c Cley, ... , cq,bl,..

. ,b | and that ¢;, b are algebraically inde-
pendent. We have

tgl,C = {(X,Y) | X,Y € gl,C},

and

Ad(ap) (X, Y) = (AXAT A(BX = XB+Y)A™),
a’d(Xl,Yl)(X27 YZ) — ([X17X2]7 D/la XQ] + [Xla YQ])y
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where (A, B) € TGL,C and (X,Y), (X1,Y1),(X2,Y2) € tgl,C. Let F €
I(T'GL4C). We may assume that F' is homogeneous of degree d. Let f be the
polarization of F', i.e., the symmetric multilinear mapping on (tg[q(C)d such
that F(X) = f(X,...,X) for X € tgl,C. Let I = (I;,0) and J = (O, 1),
where I, denotes the unit matrix. Then Z(T'GL,C) = {tI + sJ |t,s € C}.
If X =(Y,Z) € tgl,C, then we can decompose X as X = X'+ tI + sJ,
where X’ € ts[,C, t = %trY = %’c\l(X) and s = %trZ = é/l;l(X). Let
K ={Ki,... ,K,}, where 0 < r < d and each K, is either I or J. We set
fe(X1, .0 X)) = f(X],..., X, Ki,...,K;). If K =@, then we set
fx = fo= f. Note that the order of K;’s does not affect fx, . x, because
f is symmetric. Then, ff is a symmetric, invariant polynomial on 7'SL,C.
Therefore, by Theorem 5.11, there is an element of I(7'SL,C) of which the
polarization is equal to fx. We have

F(X1,..., Xa)
= f(til +s1J,. .. tal + 84.)
+ (F(X, tol + 59, ... tgl + sqJ) + -
+ f(tl + 81, tg 1D +sq-1J, X}))
+o A f(X L XD)
=tita- - tafr...1
+ (s1ta - tafr. g +tsats - tafr.. 10+
+"'+t1"'td—lsdfl,---,l,J)
ot s1Safge
+ (to---tafr,. 1(X7)+ -+ s2---sqfs... (X))
+ (b1 tar fr,. 0(Xg) + -+ 510 sa1 .. 0(Xg))
N =0, T ¢ )

As the above equality holds identically on Xi,...,X,, we see that f €
Cléa, ... ,Gq ba, ... b][c1,b1] = C[é1,... €y b1,... by Finally, & and b
are algebraically independent by Lemme 3.3 of [19]. Since there is an obvious
inclusion of I(T'GL4R) into I(T'GL4C), the same holds for I(T'GL,R). O

DEFINITION 5.13. Let J,K € {(j1,...,Jq) |jr € N}. We set |[J| =
J1+2ja+- - +qjg and | K| = ko+2ks+- - -+ (g—1)ky, where K = (k1,. .. , k).
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Then, we set

I, ={c;j €Clei,...,cql| |J] > q},
Iq7q={CJC'K€(C[Cl,... ,Cq,él,... ,éq]| |J]+]K]/>q}.
If ¢ € I, then we set

ki1 —1 - ko—1 - kq—1.
ock = kici' " Cica - cq+ kacicy® éacsccg o+ kger o cg—104” Cye

Finally, let DI, be the ideal of Clcy, ... , g, é1, ... , ¢,] generated by I, 4 and
{6cy|cy € 1}, and set
Cyler, ... scq] =Clex, ... ¢4l /1y,

(C,Lq[cl,... ,Cq,él,... ,éq] = (C[Cl,... ,Cq,él,... ,éq]/DIq.

We define Cycy, . .. , ¢,] by replacing ¢; by ¢;.

We formally set ¢ = ¢ and @ = 1.

DEFINITION 5.14. We set degc; = deg¢; = degc; = 2i, degh; =
degu; = degh; = deg; = degi; = 2i — 1. Let
WOq = /\[hl, . ,h[qﬂ ®Rq[cl, ce ,Cq],
WU, = Alur, @z, ..., ugl @ Cyler, . .. ,eql @ Cylén, - .., ¢4l
DWOq = /\[hl,hQ, e ,ilq] A /\[hl, hs,... ,h[q}]

®Rq,q[cl,... ,Cq,él,... ,éq],
DWUq = /\[’[Ll,ﬂz, .. ,ﬂq] A /\[ﬂl,i@, ... ,&q] AN /\[ﬂl,ag, - ,ﬁq]
®@Cygler, - scq ety ) @ CyglCr, .o gy C1y e v, Gl

where [¢] denotes the greatest odd integer less than or equal to ¢, and set

dhz‘ = C4, dhZ = éi,

du; = ¢; — ¢, du; = ¢, dﬂz = él', de; = de; = dé; = déz =0.

PROPOSITION 5.15.  The natural homomorphisms from H*(WO,) to
H*(DWOy) and from H*(WUg) to H*(DWUy) are injective. More pre-
cisely, H*(WOy) is isomorphic to {f € H*(DWO,) | f does not involve h;
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or ¢}, and H*(WUy,) is isomorphic to { f € H*(DWUy) | f does not involve
?.M, aj, ék or El}

PrOOF. As the number of ‘dots’ are well-defined on the cohomology
level, we can decompose H*(DWO,) according to that number. It is easy to
see that H*(WO,) is the part of H*(DWO,) of which the number is equal
to zero. The same arguments work on WU, and DWU,. [J

Ezxample 5.16. We have
H*(DWO1) = (1, hic1, hicr, hahier),

where the bracket means that the cohomology is generated as a linear space.
The class hyc; is the Godbillon-Vey class, 25101 is the infinitesimal deriva-
tive of the Godbillon-Vey class, and 251 hicy is the Fuks-Lodder-Kotschick
class which will be introduced in Example 5.28.

Ezample 5.17. We can also determine H*(DWU;) by using simple
spectral sequences. Let

A = (f e DWU | f does not involve ;).
Then, A is closed under d. More concretely, if we set
B = (c181, 18, ek, e |k, 1 e N,
then, we have
A=B®uB®uB®iuB,
where the product is the wedge product. We have

* — — . JLE— . — = — D —
H (A) = <1701701,01017U101,U101,U10161,U10101,U1U16101>,

* ~ — — . JLE . - - — D —
H*(DWU;/A) = ui(1, c1, €1, €161, Ui e, U1 €1, U1 €181, U1 C1C1, U U1 €1 CL ).
We have an exact sequence of complexes

0—-A—DW; -DW;/A—-0
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and that of cohomologies
o — H*Y(DW,/A) & H*(A) — H*(DW),)
— H*(DW,/A) S H*(A) — - .

The connecting homomorphism 9 is indeed given by the differential d so

that we have
p

(1), r=20,
(32). =2
(tycr,ure1, a1 (cr + é1)), r =3,
HT(DWUl) = ﬂ16151>, r =35,

o~ o~

Uu1c1€1, U1t c1C1, U1Ui1C161), T =6,

U1a1@16151>, r=71,

—~

@)

, otherwise.

Up to multiplication of constants, ¢1+¢; is the first Chern class, uy(c1+¢1) is
the imaginary part of the Bott class, ujci¢; is the Godbillon-Vey class, and
Uici, ¢ are the infinitesimal derivative of the Bott class and its complex
conjugate. The absence of the infinitesimal derivative of the Godbillon-Vey
class corresponds to the rigidity of the Godbillon-Vey class for transversely
holomorphic foliations [4]. Note also that the infinitesimal derivative of
the Chern classes are also absent. This is of course due to the integrality
(therefore the rigidity under deformations) of the Chern classes. Finally we
remark that there is no direct analogue of the Fuks-Lodder-Kotschick class.
See also Remark 5.34. Instead of that, the classes of degree 6 and perhaps
the class of degree 7 are variants.

Let ég: WO, — DWO, and 6: WU, — DWU, be the (commutative)
derivations which satisfy érec; = ¢; and éRh; = hi, and 6cj = ¢, 6¢; = ¢;
and éu; = 1; —1;, respectively. It is easy to see that dr and § are well-defined
and commute with d. Therefore, we have the following

ProproSITION 5.18. There are well-defined  derivations OR:
H*(WO,) — H*(DWOy) and 6: H*(WU,) — H*(DWU,) such that

oRhi = hi, Srei = ¢,

(5(&2) =u; — ai, (S(Cl) = ¢, (5(51) = 5,
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Some of results in [13] and [4] can be summarized as follows.

THEOREM 5.19. There is a well-defined bilinear pairing
Dxg: HY(M;0x) x H*(DWO,) — H*(M;R)
for real codimension-q foliations, and
Dx: HY(M;0f) x H*(DWU,) — H*(M;C)

for complex codimension-q transversely holomorphic foliations. If o €
HY(M;OF) is an infinitesimal deformation and if o« € H*(WQO,) (resp.
B € H*(WU,)), then Dxg(o,6(a)) (resp. Dx(o,6(B))) is the infinitesimal
derivative of a (resp. 3) with respect to o.

Before proving Theorem 5.19, we recall the Chern forms and Chern-
Simons forms. Let w® be the connection form of a connection V@ on
Q@ (F) obtained from a Bott connection and an infinitesimal deformation
of F. Then, the curvature form R®? of w®? is by definition

2 ’ )

DEFINITION 5.20. We define i-th Chern forms ci(R(Q)), 0<i<gq, by
the condition

q
det ()\Iq N R<2>) = er(RP)XTH,

Note that ¢g(R®)) = 1. In the real case, we replace 2my/—1 by 2r. In
general, if f is a TGL,C-invariant polynomial, then we set f(R(?) =
f(R®, ... R®) where we make use of the Chern convention.

It is well-known that f(R®)) is closed.

Let w(()Q) and w%g) be connection forms. We set wt@ =(1- t)w(()Q) + twf),

and represent f (R,g)) = a + B Adt, where o and 3 do not involve dt.

DEFINITION 5.21. We define the Chern-Simons form of f by

1
Ap(w® W) = /O Bdt.
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It is well-known that dA s(w,w(®) = F(RP) = F(R?) (see [7)).
We also need a version of the Bott vanishing theorem.

LEMMA 5.22. Let I be the ideal of Q*(M) locally generated by
dy',...,dy?, where (y*,... y?) are local coordinates in the transverse di-
rection. If we denote by I" the ideal of Q*(M) locally generated by {aq A
o ANap|ag,... o €1}, then Ek evaluated by R belongs to IF1.

Ry O
Ry Ry
R; belongs to I. On the other hand, b,(R®) is a certain sum of entries of
RiRyRY 1. O

PROOF. If we represent R? as R(?) = ( >, then each entry of

Finally, we make use of the following

LeEMMA 5.23 (cf. [13, Theorem 2.16], [4, Lemma 4.3.17]). Let J =
(j1,---,dq) € N9 If |J| > q, then 6c;(R®) = 0, where dcy is as in
Definition 5.183.

A proof can be found as a part of the proof of [13, Theorem 2.16] and
also in [4, Lemma 4.3.17] so that we omit it.

PROOF OF THEOREM 5.19. Let V? be a Bott connection on Q(F), V"
a unitary (resp. metric) connection on Q(F) with respect to a Hermitian
(resp. Riemannian) metric h, a family of local trivializations {6} of Q*(F)
and an infinitesimal deformation {o} of {6} which represents an infinitesi-
mal deformation of F. For simplicity we denote {8} and {c} by 6 and o,
respectively. Let w® and w” be connection forms of V? and V" with respect
to the dual of 6, and & an infinitesimal deformation of w’ with respect to
Wb O (2) Wb O
o. We set w®@ = (7 p | wo = b , R = dw® 4+ w? Awb and
W w O w
R® = dw® + w@ A w@ . Let INDX be the algebra homomorphism from
(E(F)*®Q(F)) x DWU, to Q*(M) determined by the conditions that
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Dx(i) = A, (", ") — A, (Wb, wh),
Dx(é:) = bi(R®),

Dx(&) = bi(R®),

D (i) = Ay, (0, W),

Dx(iis) = Ay, (0, )

By the construction and Lemma 5.22, ﬁx and EXR are well-defined and
induce bilinear mappings on the cohomology, which we denote by Dy and
Dxp, respectively. We denote the product foliation of M x [0, 1] by F x [0, 1],
namely, the leaves of F x [0, 1] are of the form L x [0, 1], where L is a leaf of

i @_( w O (2
F. Let {aj;} be as (3.9). If we set w;™ = (d} 1A w)’ then w,™ is the

connection form of a connection, say VISQ), on Q) (F) with respect to 6(2).
Note that w® can be also viewed as the connection form of a connection
on Q@) (F x [0,1]) with respect to the pull-back of 8 to M x [0,1]. Let
¢ be a cocycle in DWU,. If we represent go(Vb,Vf)) = @1 + p2 A dt,
where @1 and @9 do not involve dt, and if we set ¢ = [ 2, then we have
dg = p(V?, V(()Q)) —(VP, V?)). If we replace w,w by w+ B, w+ Bo, where
B is defined by (3.10), then we set wy = w + tB60 and w; = w + tBo. Let
VY and V@’ be the connections defined by w + Bl and & + Bo, then, by
repeating almost the same argument as above, we can find a primitive of
(VP V) — (V¥ V), Suppose that o is replaced by ¢’ by (3.11). By
the same argument in the proof of Lemma 3.14, we see that g does not affect
©(V?, V). By considering oy = 0 + d(tf) +w (tf) and by repeating again
the same argument as above, we see that ¢(V?, V@) and ¢(V?, V®)) are
cohomologous. If we replace 6 by (D¢)#, then p(V?, V(?)) does not change
by (3.13), because invariant polynomial are considered. Finally, if we replace
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h by another metric, then we can form a 1-parameter family of metrics and
connections, and show by similar arguments as above that the cohomology
class remains the same. [J

REMARK 5.24. A related but different construction can be found in [8].
Characteristic classes for deformations of foliations are also studied in [6]
from another viewpoint. We also remark that Theorem 5.19 is shown by
more combinatorial arguments in [13] and [4].

REMARK 5.25. The differential forms b; and ¢; can be obtained from
K@ (F)~! and V) appeared in §4.

DEFINITION 5.26. The elements in the image of ¢ in H*(DWOy) (resp.
H*(DWUy,)) are said to be infinitesimal derivatives of secondary classes. If
o € H'(M;Ogf), then the image of infinitesimal derivatives under
Dxp(o,6( - )) (resp. Dx(o,6( - ))) are called the infinitesimal derivatives
with respect to o.

Example 5.27. We have DW; = DWO;. Consequently,

H*(le) = H*(DWOl) = <1,h161, hlcl,h1h101>.

EXAMPLE 5.28. The class hic] € H?*T1(DWO,) is the Godbillon-Vey
class. The class (q + 1)hyc! € H?7(DWO,) is the infinitesimal deriva-
tive of the Godbillon-Vey class. Note that (g + 1)hic! = 6(hic?) holds in
H 2qu1(DVVOq). There is another class which involves A1, hy and ¢;. Indeed,

d(hlhlc({) = élhlc(f — hlc(frl =0

in DWO,, because ¢!, ¢1¢? € DI,. The class (g+1)hihic? € H2H(DWO,)
is introduced by Fuks [10], Lodder [18] and Kotschick [17], and called the
Fuks-Lodder-Kotschick class in [4].

In the transversely holomorphic case, the Bott class is defined by ujc{
if the complex normal bundle is trivial. In general, the imaginary part of
the Bott class is given by /—1uy(cf + c‘f_lél + .- +¢l) € HHH(DWU,)
if we choose R or C as coefficients of cohomology. On the other hand,
the infinitesimal derivative of the Bott class is defined as an element of
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H?2YDWU,) or H*1(M;C) even if the complex normal bundle is non-
trivial. Indeed, the infinitesimal derivative of the Bott class is given by
(q + V)iyc] € H* 71 (DWU,).

Therefore, the infinitesimal derivative of the imaginary part of the Bott
class will be represented by two cocycles in DWU,, namely,

A= (q + 1)\/ —1(&16‘{ — ﬁ16‘f),
Ao = V=1 —wr)(cf + -+ +¢)

q
+ \/—_12 ((q — k:)c'lcgfkflélf + k‘é_lc(f*kélffl) .
k=0

We have the following
LEMMA 5.29. The above cocycles A1 and A2 are cohomologous.
PROOF. Let
= (qinc] " + (g — Dinc{ *er + el 4+ qine] )

q
= Z ﬂl((q — i)ulcq_’_lél + iﬂlcg_lézl_l).

=0
Since
q q—1
_ q—ii a7
dp = quyicy — E uc; ¢+ E u1cq c{ — qu1Cy
i=1 7=0

— ﬁl(qc'lc(f_l + (q - 1)0'16({_251 + élc?_l + -t qé_lé(ll_l),
we have Ao + v —1du = A\1. O

If we assume that normal bundles of foliations are trivial, then we can
modify the construction as follows.

DEFINITION 5.30. We set dege; = deg¢; = dege; = 2i, degh; =
degu; = degt; = degh; = degu; = degti; = 2i — 1. Let
Wq = /\[hl,hz,. .. ,hq] ®Rq[61,. .. ,Cq],
DW, = Alhi, ha, . s hgl ANR1 hay oo hyl @ Ryglets - s cqrély v sl
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We set
dhz = Cy, dh, = Cl

When we consider W, ® C and DW, ® C, we denote by h; and h; by u; and
u;. We set

du; = ¢;, du; = ¢;, du; = ¢, dﬂl = é—i, de; = de; = dé; = déz =0.
Then, W, ® C = Alug, ug, ... ,uql ® Cyler, ..., cq]. We set
W, ® C = Alui, tg, ..., 0y @ Cylci, ..., ¢l

We define DW, ® C in an obvious way, and set W;C = (Wg@C)A (W, ®C)
and DWE = (DW, ® C) A (DW, & C).

ProposITION 5.31. The natural homomorphisms H*(W,) — —
H*(DW,) and H*(W, ® C) — H*(DW, ® C) are injective.

The proof is almost identical to that of Proposition 5.15.

Let 6f: W, — DW, be the (commutative) derivation which satisfies
6@@ = ¢; and 6]f£hi = h;. We denote the complexification of 6@ by 6% Tt is
easy to see that 5@ and 6" are well-defined and commute with d. We have
the following

PROPOSITION 5.32.  There are well-defined derivations 6k : H*(W,) —
H*(DW,) and §*: H*(W, ® C) — H*(DW, ® C) such that

(5]§hl = hi, 5@01 = éi,

5Fu7; = Tli, (5FCZ' = éi-

Note that a derivation on H *(W;C) with values in H* (DW;C) is naturally
defined.

THEOREM 5.33.  Once a homotopy type of trivialization of the normal
bundle of F is fixed, there is a well-defined bilinear pairing

Dxk: H'(M;©5) x H*(DW,) — H*(M;R)
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for real codimension-q foliations , and
Dx': HY(M;05) x H*(DW, ® C) — H*(M;C)

for complex codimension-q transversely holomorphic foliations with trivial-
ized complex normal bundles. If 0 € H'(M;OF) is an infinitesimal defor-
mation and if a« € H*(W,), then Dxk (o, 6k () or Dx¥(0,6%(83)) is the
infinitesimal derivative of o with respect to o.

Proor. The theorem is proven in an almost the same way as that
of Theorem 5.19. Let s be a trivialization of the normal bundle in the
homotopy type we have chosen. Let V? be a Bott connection on Q(F ), V*
the flat connection with respect to s, 8 the trivialization of Q*(F) dual to s,
and an infinitesimal deformation {o} of § which represents an infinitesimal
deformation of F. Let w® and w® be connection forms of V? and V* with
respect to s, and & an infinitesimal deformation of w? with respect to o.
Wi 2) _ (Wb O> @ _ <Wb O) bbb @2) _

e set w\* = | . b | wo o = p | B =dw’ +w’ Aw” and R =
w o ow O w
dw® +w® Aw® . Let Dy be the algebra homomorphism from (E(F)*
Q(F)) x (DW, ® C) to *(M) determined by the conditions that

Dx"(ci) = ci(R),
EXF(UZ) = AC«; (wb7ws)7
Dx"(¢i) = bi(R®),

_ »

5X§(Ci) = ci(R),
Dxk(hi) = A, (w’, ),
Dxk(¢e) = bi(R®),

Dk (hi) = Ap, (@@, wf?)

Then, by repeating arguments of the same kind of as in the proof of The-
orem 5.19, we can show that the mappings induced on the cohomology are
independent of choices. [
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Note that a homomorphism from H *(DWS:) to H*(M;C) is induced
by Dx*.

REMARK 5.34. Example 5.11 of [4] shows that D" indeed depends on
the homotopy type of s. It is shown by examining @uic] of a transversely
holomorphic foliation of which the complex normal bundle is trivial. It is
also shown that the effect of the change of trivialization is indeed valued in C,
which suggests that there are no direct analogue of Fuks-Lodder-Kotschick
class in the category of transversely holomorphic foliations unless the trivi-
ality of normal bundles is assumed, because this fact implies that the imag-
inary part of the Fuks-Lodder-Kotschick class hardly makes sense. There is
indeed no direct analogue in H*(DWU;) calculated in Example 5.17. On
the other hand, it seems unknown in the real case if there is a family or
infinitesimal deformation of a foliation of which hlhlc(f is non-trivial even
if ¢ = 1. Similarly, it is unknown if the classes 111?']16151, ULU1C1C1, ﬂlﬂlclél
and uytiticic; € H*(DWU7) in Example 5.17 can be non-trivial for some
infinitesimal deformation or not (the above-mentioned example in [4] does
not work).

6. Determination of H*(DWO2) and Comparison with H*(DWU),;)

We will first compute H*(DWO3). This is again done by means of
spectral sequences. We have

I = I(c},c1c0,¢3),
1272 = I(Ci’, C1C2, Cy, Clég, 0262, 01('32, 02('32, 62),
DI, = I(C?, c1c2,Cy, C1C2, C2Ca, C1Cy, CQé%, 5, €161, €162 + Caly, CaC2)
= I(C:%, ci1c2, C%, C%C.Q, CoCo, clc'g, Cgcg, 62, 0%0.1, c1Co + Cgél),

where I(f1,..., fr) denotes the ideal generated by f1,... , fr.
Let

A={f € DWO; | f does not involve hj},
By ={f € A| f does not involve hy or hg},
By = {f € A| f does not involve hy}.
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Then, A, By and B are closed under d. As vector spaces, we have

2 ke 22 ks k2 -k .k k-
By = <1>cl:Clv62?ClvCQa0270162701627616170261(: _610162) ‘ k> 0>7
B1 = By ® h By.

By examining the long exact sequence associated with 0 — By — By —
B1/By — 0, we see that

HT(Bl) = <1?cl7c%7627627ég> D <h1€%>

Next, we examine the long exact sequence associated with 0 — By — A —
A/B; — 0. Note that H*(A/B;) = hoH*(By). The result is

H*(A) = <1, C1, C%, Ca, h16%> D <h261 + iLlCQ, }'LQC%, I:LQCQ, hgé%, hliLQC%).

Finally, we consider the long exact sequence associated with 0 — A —
DWOy — DWO3/A — 0, where H*(DWO2/A) = hi H*(A). We obtain

(1), r =0,
(c2), r=4,
(h1c2, hica, hlc%, hico + hact), =5,
(hihic?), r =0,
H"(DWO,) = @262%2 . L r=T
(hahicy, hahica, hihacy), r =238,
(hlhghlc@, r=29,
(ha3), r=11,
(hah1c3), r =12,
0, otherwise.

Up to multiplications of constants, the class ¢y is the first Pontrjagin class,
hic? and hic? are the Godbillon-Vey class and its infinitesimal derivative,
hico is one of the ‘classical’ secondary classes in H°(WOs), and hihic? is
the Fuks-Lodder-Kotschick class. In general, we can compute H*(DWO,)
etc., by means of spectral sequences as above. It seems however difficult to
obtain a set of basis as a vector space such as the Vey basis for H*(WO,)
or H*(W,).
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In what follows, we denote ¢;,¢; € WU, C Wg: by v;, v; in order to avoid
confusions. Given a transversely holomorphic foliation, we can forget the
transverse holomorphic structure [1], [2]. This corresponds to the natural

maps BT (;C — BI5, and qu — BTQq. Accordingly, we have homomor-
phisms

A: H*(WOy,) — H*(WU,),
X H (W) — H* (W, ® C).

The same can be done for H*(DWU,) and H*(DWOg,). The relevant maps
are

DX: H*(DWO,,) — H*(DWU,),
DX: H*(DWa,) — H*(DWS).

They are defined by DGA-homomorphisms DA: DWOy, — DWU, and
DX: DWy, — DWY such that

D(¢;) = (vV=1)' Z(—l)kvi,kﬁk,
k=0
2i41

DA(hgis1) = (_21)Z V-1 Z (—=1)*g; g1 (vk + Ok,
k=0

DA(E:) = (V=1)

(—=1)* (9 0k + ik k),

Ms.

o

[en]

DA(hgis1) = (_21)i V=1 (= 1) (tii—pr1 (vk + ) + Uit (0 + Dr)),
k=0

where vg =99 =1, 99 = 0 = 0, and

DX(e;) = (V=1 > (= 1)Fv;_y i,
k:02z‘+1

mil V-1 Z (—1)* ;g1 (ve + Or),
k=0

2

—~

~ o~

DA(h2it1) =
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Sy U

DA(hy;) = 5 (= 1)* (ugi—k 0k + Urvai—k),
k=0
ﬁX(CZ) = (\/ —1)i (—1) (bi,k’l_)k -+ 'Ui—ki_)k),
k=0
. (_1)1 2i+1 . ‘
DX(hgit1) = 5 V-1 (=1)%(t2i—pt1 (v + Vx) + U2i—pg1 (0 + Vi),
k=0
o (1) &
DA(h2i) = — > (—1)F (i gDk + ivi—g + ik Vg + Ugli—g)-
k=0

We have the following version of Lemma 3.1 of [1].

LEMMA 6.1.

1) If F is a transversely holomorphic foliation, then there is a natural
homomorphism Ag: H*(M;Or) — H*(M;Org), where Fr is the fo-
liation F but the transverse holomorphic structure forgotten.

2) The homomorphisms DX and DX induce on the cohomology the ho-
momorphisms DX and DX such that Dxp(Ae (o), a) = Dx (o, DA(«a))
and DXIE()‘@(O-% a) = Dx (o, DA(e)).

PROOF. Let V? be a Bott connection on Q(F). Let 6 be a local triv-
ialization of Q*(F) and w be the connection form of V® with respect to
the dual of 0. A section o = (¢7) of AN'E(F)* ® Q(F) is a representative
of a class in H'(M;Og) if and only if there is a gl (C)-valued 1-form
such that do + w Ao+ pup A0 = 0. If we choose Or = 0 ® 0 as a trivi-
alization of Q(Fr) ® C = Q(F) ® Q(F), then Vi = V* @ Vb is a Bott
connection on Q(FRr) ® C and wr = w@ w is its connection form. Therefore,
OR = 0 © & gives a dyp-closed form in N(E(Fr)* ® C) @ (Q(F) ® C).
Note that E(Fr) ® C = E(F) N E(F). If we set ur = p & [, then
dor + wr A oR + prR A Or = 0. Similarly we can show that if o is dys-
exact, then o @ 7 is dvﬁ%—exact. Therefore, if we set Ag(0) = oR, then Ag

induces a homomorphism on the cohomology. Thus the part 1) is shown.
The proof of the part 2) is essentially parallel to that of [1, Lemma 3.1] so
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that we give only the sketch. First we note that ¢; and ¢; calculated by
using VR are equal to the right hand sides of defining relation of l~)>\(cz)
and D)\(CZ) calculated by using V? @ VP. Then, by integrating the relation,
we see that D\ gives a desired homomorphism. The proof for DX can be
done in a parallel way. O

The following is a corollary to Proposition 5.15.

LEMMA 6.2. We have KerA = Ker DA N H*(WOy,) and Im\ =
Im DA N H*(WU,).

If ¢ = 1, then the mapping DA is given by the conditions that
hy = v/ —1uy,
1 — V—=1(v — 11),
C2 = U171,
hi V=111 — 1),
ha > U101 + Gy 1,
¢ — V—=1(01 — 11),

Co — U1V + 1312}1.
Therefore, we have

Ker D)\ = <CQ, hl(C% — 262), hlc%, hlcz + i’LQCl, ilgCQ, iLthC?, thlCQ,
hlhghlc%, hgég, hthC%, h2h1é§>,
Im D) = <1, UL v101, (ﬂl — al)alvlﬁﬁ.

We have CQ,hl(c% — 2c9) € Ker\ and 1,ujv;07 € ImA.  Note that
2+/—1uyv177 is the Godbillon-Vey class and that

(111 — al)vlﬁl + w0101 + ﬁlvlfjl
= —d(ﬂl(ﬂl(Qvl + ’Dl) + a1(2’51 + Ul))).

In general, the Godbillon-Vey class is equal to %v—lﬂlvf@‘{’, and

: PR P} a1 =g o dma—1x
(1 — up)v{0] + quivy “010] + quiviv]{ U1

= —d(@{of (ua((g + i + qor) + a1 ((g + 1)o1 + qur))).
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This gives another proof of the rigidity of the Godbillon-Vey class in the
category of transversely holomorphic foliations.

We next study the mapping DX: H* (DW3) — H*(DW; ® C). We can
show by similar arguments as above that

H"(DW,) =

\

{
{
{
{
{

{
{
{
{
{
{

1), =0,
hic3, hyca, hic3, hyca + hacr), r=>5,
hhict), r =6,
hoca, hocs), r=71,
hghlcl, hghlcg, hlhgcl,

hihact, hihaca, hihoc?, ho(hica + hac)), =S8,
hihahic3, hihihac?), r=9,
hahaca), r = 10,
haé3, hahihac?, hahihaca, hihahoc?), r=11,
hah1é3, hihahihac}), r=12,
hahac3), r =14,
h2h1h202> r =15,

otherwise.

7

The mapping D) is given by the conditions that

hi — \/—1(U1 — ’L_Ll),
1
hy — 5(11,1’[_)1 + ﬂl?)l),

c1 — V—=1(v1 — 1),
co = V101,

hi vV =1(iy — 1),
ha — 191 + 11,
¢ — V—=1(01 — 11),

Co — V1V + 1'7}11]1.
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Therefore,

Ker D\
= <h1(C% — 202), hlc%, thQ + hzcl, hQCQ, hQCQ, iLthC%, ilthCQ, hthC%,
hihac?, hihaca, hihact, ha(hica + hact), hihohicl, hihihac?,
hahaca, haés, hahihact, hahihaca, hihohact,
hghlég, hlhghlhgc%, hghgé%, hgh1h26g>,
Im DX
= (1, (u1 — w1)v1v1, (W1 — ur)(ug — 1)v101).
As we mentioned in Remark 5.34, we know that the class wjujv; can be
non-trivial. The class does not belong to Im DA, which implies that the
non-triviality is not derived from deformations of real foliafcions. On the
other hand, the image of the Fuks-Lodder-Kotschick class 3h1hic? is equal
to —6(1u; — u1)(u1 — @ )v1v1 which is non-trivial in H*(DW; ® C) and
H*(DWUj). However, we do not know any example of which (1 — 1) (uy —
121)11161 is non-trivial.
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