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Derivatives of Secondary Classes and

2-Normal Bundles of Foliations

By Taro Asuke

Abstract. Derivatives of secondary characteristic classes for fo-
liations are discussed. It will be shown that one can construct the
derivatives in a parallel way to the standard construction of secondary
characteristic classes, namely, by using connections and applying the
Chern-Weil theory. Some relationship of connections in the construc-
tion and transverse TW-connections, which is significant in the study
of deformations of the Godbillon-Vey class and the Bott class, are also
discussed.

Introduction

It is known that some secondary characteristic classes for foliations ad-

mit continuous deformations. That is, the classes vary continuously accord-

ing to deformations of foliations. If the families are differentiable, we can

consider the derivatives of characteristic classes with respect to deformation

parameters. Such derivatives are studied by Heitsch et. al. [12], [13], [14],

see also [9], [4]. Secondary classes and derivatives of them are constructed

in terms of connections and deformations of them so that independence

of cohomology classes of choices is to be shown. It is done for secondary

classes usually by using the Chern-Simons forms. On the other hand, it

usually relies on combinatorial arguments for derivatives of them. In this

paper, we give a framework by which derivatives of secondary classes are

treated as secondary classes for foliations and deformations. In particular,

there will appear a kind of truncated Weil algebras such as WOq and WUq.

If we restrict ourselves to the Godbillon-Vey class and the Bott class, then
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it is known that deformations are related with transverse projective struc-

tures and that transverse projective TW-connections are relevant [5]. We

will discuss how connections associated with deformations of foliations and

transverse TW-connections are related. Roughly speaking, there is a cer-

tain extension of the tangent bundle of ambient manifolds which has some

parameters. There is a connection such that the constant term of it with

respect to the parameters is a deformation of foliations, and the linear term

of it is a deformation of transverse projective structures.

1. Preliminaries

Assumption. We assume the following throughout the paper. We de-

note by M a manifold equipped with a foliation F . The foliation F is

assumed to be transversely holomorphic unless otherwise mentioned. The

arguments for real (smooth) foliations are almost parallel and easier. The

term ‘smooth’ stands for the term ‘of class C∞’, even in the transversely

holomorphic case. We work in the smooth category unless otherwise men-

tioned.

Let p and q be the dimension and the complex codimension of F , re-

spectively. Then, a foliation chart is given by a triple (U, V × B, ϕ), where

ϕ : U → V ×B ⊂ R
p ×C

q. We usually let (x, y) be the natural coordinates

on V × B. For simplicity we identify U and V × B, and regard (x, y) as

coordinates on U .

Notation. We will frequently compare coefficients of tensors, connec-

tions, etc. in what follows. Once a chart is chosen and coefficients are

defined, the symbol ‘̂′ is used to express another chart and the coefficients

on it. For example, if (U, ϕ) is a chart and if a1, . . . , aq are coefficients of a

tensor on (U, ϕ), then (Û , ϕ̂) represents a chart such that U ∩ Û �= ∅ and

â1, . . . , âq represent the coefficients on (Û , ϕ̂). The coefficients are often

considered as entries of matrices, and the multiplication rule of matrices is

applied. For example, if ω1, . . . , ωq are coefficients of a C
q-valued 1-form

and if aij , where 1 ≤ i, j ≤ q, are coefficients of a glqC-valued 2-form, then

we set ω = (ωi) = t(ω1 · · · ωq), a = (aij) and define a∧ω to be a C
q-valued

3-form of which the i-th entry is given by
∑
j

aij ∧ωj = aij ∧ωj . Note that we

make use of the Einstein convention. Finally, when coefficients of tensors,
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etc., are expressed, the Roman indices will begin from one, while the Greek

indices will begin from zero.

Notation 1.1. Let U be an open subset of M and E a vector bundle

over M . We denote by ΓU (E) the module of the smooth sections to E over

U , even in the transversely holomorphic case. If U = M , then we denote

ΓM (E) also by Γ (E).

Definition 1.2. Let U and Û be foliation charts and ϕ the transition

function from U to Û . Then, under the identifications of U ∼= V × B and

Û ∼= V̂ × B̂, ϕ is of the form (ψ, γ). We refer γ as the transverse component

of ϕ.

Definition 1.3. If F is a real foliation, then we set E(F) = TF ,

namely, the subbundle of TM which consists of vectors tangent to leaves.

If F is transversely holomorphic, then we denote TM ⊗C by TM by abuse

of notations, and define E(F) to be the complex subbundle of TM locally

spanned by E(F) and
∂

∂ȳi
, where 1 ≤ i ≤ q. In the both cases, we set

Q(F) = TM/E(F). We call Q(F) the normal bundle in the real case, and

the complex normal bundle in the transversely holomorphic case. We denote

by π the projection from TM to Q(F), and by p the one from Q(F) to M .

We locally set ei = π

(
∂

∂yi

)
, and choose (e1, . . . , eq) as a local trivialization

of Q(F) unless otherwise mentioned.

2. 2-Normal Bundles of Foliations

The 2-tangent bundle of a manifold M is by definition of the tangent

bundle of the tangent bundle TM [22]. We will first introduce 2-normal

bundles of foliations as an analogy.

Notation 2.1. We denote by TGLqC the tangent group of GLqC. That

is, TGLqC is the tangent bundle of GLqC equipped with the following mul-

tiplication. Let Iq be the unit element in GLqC. We identify TIqGLqC with

the Lie algebra of the left invariant vector fields on GLqC, and denote it by

glqC. Then, we have a natural identification TGLqC = GLqC×glqC as man-

ifolds. If (A, B), (A′, B′) ∈ TGLqC = GLqC × glqC, then (A, B)(A′, B′) =

(AA′, (A′)−1BA′ + B′). Therefore, TGLqC = GLqC � glqC as Lie groups.
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A matrix representation of TGLqC is given by

(A, B) 
→
(

A O

AB A

)
∈ GL2qC.

This representation is indeed given by the natural action of TGLqC on

TC
q [22]. If we denote by tglqC the Lie algebra of TGLqC, then the induced

representation is also given by (X, Y ) 
→
(

X O

Y X

)
.

Let Q(2)(F) be the complex vector bundle of rank 2q over Q(F) defined

as follows. Let l = l(t) be a curve in Q(F). We can locally represent l(t) as

l(t) = (z(t), v(t)) ∈ U ∼= V ×B. Let l(0) = (z, v) and
dl

dt
(0) = (ż, v̇). If U, Û

are foliation charts and if ϕ is the transition function from U to Û , then ϕ

induces a transition function from p−1(U) to p−1(Û) which we denote by ϕ̃.

If we denote by γ the transverse component of ϕ, then we have ϕ̃ = (ϕ, Dγ),

namely, ϕ̃ ◦ l(t) = (ϕ(z(t)), Dγy(t)v(t)), where z(t) = (x(t), y(t)) ∈ U ∩ Û ⊂
U , and

d(ϕ̃ ◦ l)

dt
(0) =

(
Dϕz ż, Hγijk,y ẏjvk + Dγy v̇

)
,

where z = (x, y), ż = (ẋ, ẏ) and Hγijk,y =
∂2γi

∂yj∂yk
(y). We often denote

Hγijk,y by Hγijk. Note that Hγijk = Hγikj and that ẏ = π∗(ż) holds in

Q(F). We set Q(2)(F) = {(z, v; ẏ, v̇)} and define p
(2)
Q , ν : Q(2)(F) → Q(F)

by p
(2)
Q (z, v; ẏ, v̇) = (z; v) and ν(z, v; ẏ, v̇) = (z; ẏ), respectively. It is easy to

see that p
(2)
Q and ν are globally well-defined.

Definition 2.2. We call p
(2)
Q : Q(2)(F) → Q(F) the 2 -normal bun-

dle of F .

The following diagram commutes:

Q(2)(F)
ν−−−→ Q(F)

p
(2)
Q

	 	pQ
Q(F) −−−→

pQ
M .
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A local description of Q(2)(F) is given as follows. If q ∈ Q(F), then q is

represented as
(
z, v1e1 + · · · + vqeq

)
on a foliation chart. Let v =

v1

...

vq

 and

regard (z, v) be coordinates on π−1(U). Let (U, V ×B, ϕ) and (Û , V̂ × B̂, ϕ̂)

be foliation charts and q ∈ π−1(U) ∩ π−1(Û). If both (z, v) and (ẑ, v̂)

represent q, then (ẑ, v̂) = (ϕ(z), Dγyv), where z = (x, y). We set ηi =
∂

∂vi
.

Then, a local trivialization over π−1(U) is given by (e1, . . . , eq, η1, . . . , ηq).

If we set p21
Q = pQ ◦ p

(2)
Q , then the transition function from (p21

Q )−1(U) to

(p21
Q )−1(Û) is give by

(ê1, . . . , êq, η̂1, . . . , η̂q)(ϕ(z),Dγyv)

(
Dγy O

Hγyv Dγy

)
= (e1, . . . , eq, η1, . . . , ηq)(z,v) ,

where (Hγyv)ij = Hγijk,yv
k.

Several foliations are naturally defined on Q(F) and Q(2). Let U ⊂ M

be a foliation chart. If we choose (e1, . . . , eq, η1, . . . , ηq) as a local trivial-

ization, then (z, v) are coordinates on π−1(U), and (z, v; ẏ, v̇) are coordi-

nates on (p21
Q )−1(U). We can define foliations of Q(F) by locally setting

FQ = {y, v are constant} and π∗F = {y is constant}. Similarly, we can

define foliations of Q(2)(F) by locally setting

F (2) = {y, v, ẏ, v̇ are constant},

F (2)
1 = {y, v, ẏ are constant},

F (2)
2 = {y, v are constant},

F (2)
3 = {y, ẏ are constant},

F (2)
4 = {y is constant}.

Note that π∗F is indeed the pull-back of F by π, and that F (2)
2 = π(2)∗FQ,

F (2)
4 = p21

Q
∗F and F (2)

1 = F (2)
2 ∩F (2)

3 . Note also that instead of dealing with

p
(2)
Q : Q(2)(F) → Q(F), we can work on ν : Q(2)(F) → Q(F) by exchanging

v and ẏ. This point of view is relevant in §5. Finally we remark that the

2-normal bundle Q(2)(F) is closely related to the 2-jet bundle of F which

are usually denoted by J2(F).
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3. Infinitesimal Deformations and 2-Normal Bundles

We will introduce infinitesimal deformations of foliations after Heitsch

[13] (cf. [12], [9], see also [16]).

Definition 3.1. Let U be an open subset of M . A section X ∈ ΓU of

Q(F) is said to be foliated if LYX = 0 for any section Y of E(F), where LY
denotes the Lie derivative with respect to Y . We denote by ΘF the sheaf

of germs of foliated sections of Q(F).

Let ∇b be a Bott connection on Q(F) and denote by d∇b the covariant

differentiation associated with ∇b. It is known that {
∧iE(F)∗⊗Q(F), d∇b}

is a resolution of ΘF [12], [9], [11].

Definition 3.2. An infinitesimal deformation of F is an element of

H1(M ; ΘF ).

If σ is a representative of an infinitesimal deformation of F , then σ can be

locally represented as σ = eiσ
i, where (e1, . . . , eq) is the local trivialization

of Q(F) as above and σi are 1-forms such that

σ̂i = Dγij σj .

In addition, as we identify fibers of Q(F) with C
q by the trivialization, there

is a glqC-valued 1-form (ω̇ij) such that

dσi + ωij ∧ σj + ω̇ij ∧ θj = 0,(3.3)

where (θ1, . . . , θq) = (dy1, . . . , dyq) is the dual to (e1, . . . , eq) and ω = (ωij)

denotes the connection form of ∇b with respect to (e1, . . . , eq). By using a

partition of unity, we may assume that

ω̇ij = (Dγ)−1i
k
̂̇ωkl Dγlj .

By abuse of notations, we set σ = (σi). Then, (3.3) is represented as

dσ + ω ∧ σ + ω̇ ∧ θ = 0.

Let (z, v; ẏ, v̇) be local coordinates for Q(2)(F). As ω is the connection

form of a Bott connection, ωij = f ijkdyk holds for some functions f ijk. We

set

ρij = f ijkv
k,
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θ(2) =

(
θ̃

σ̃

)
=

(
θ

σ − ρ θ

)
,

ω(2) =

(
ω O

ω̇ + dρ + [ω, ρ] ω

)
on Q(F), where [ω, ρ] = ωρ − ρω.

Lemma 3.4 (cf. [5, Theorem 1.20]).

1) If we set

D(2)γ = D(2)γ(p,v) =

(
Dγy O

Hγy v Dγy

)
,

where p = (x, y), then,

θ̂(2) = (D(2)γ)θ(2).

2) We have

dθ(2) + ω(2) ∧ θ(2) = 0.(3.5)

3) The family {ω(2)} of tglqC-valued one-forms gives rise to a connection

on Q(2)(F) → Q(F) which we denote by ∇(2). Conversely, if {ω̃}
is a family of local connection forms of a connection on Q(2)(F) →
Q(F), then {ι∗ω̃}, namely, the restriction of {ω̃} to M determines an

infinitesimal deformation of ω with respect to θ.

Proof. We have

ω = (Dγ)−1(dDγ) + (Dγ)−1ω̂(Dγ),

ω̇ = (Dγ)−1 ̂̇ω(Dγ)

and f ijk =
∂yi

∂ŷl
∂2γl

∂yj∂yk
+

∂yi

∂ŷl
f̂ lmn

∂ŷm

∂yj
∂ŷn

∂yk
. Therefore, we have

ρij = f ijkv
k

=

(
∂yi

∂ŷl
∂2γl

∂yj∂yk
+

∂yi

∂ŷl
f̂ lmn

∂ŷm

∂yj
∂ŷn

∂yk

)
∂yk

∂ŷr
v̂r

= (Dγ−1)il(Hγljkv
k + ρ̂lmDγmj ).
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Hence we have

dρ = −(Dγ)−1(dDγ)(Dγ)−1(Hγ)v + (Dγ)−1(dHγ)v + (Dγ)−1(Hγ)dv

− (Dγ)−1(dDγ)(Dγ)−1ρ̂(Dγ) + (Dγ)−1(dρ̂)(Dγ)

+ (Dγ)−1ρ̂(dDγ),

ωρ = (Dγ)−1(dDγ)(Dγ)−1(Hγ)v + (Dγ)−1(dDγ)(Dγ)−1ρ̂(Dγ)

+ (Dγ)−1ω̂(Hγ)v + (Dγ)−1ω̂ρ̂(Dγ),

ρ ω = (Dγ)−1(Hγ)v(Dγ)−1(dDγ) + (Dγ)−1(Hγ)v(Dγ)−1ω̂(Dγ)

+ (Dγ)−1ρ̂(dDγ) + (Dγ)−1ρ̂ ω̂(Dγ),

ρ θ = (Dγ)−1(Hγ)v(Dγ)−1θ̂ + (Dγ)−1ρ̂ θ̂.

Therefore,

σ̃ = σ − ρ θ

= (Dγ)−1σ̂ − (Dγ−1)(Hγ)v(Dγ)−1θ̂ − (Dγ)−1ρ̂ θ̂

= (Dγ)−1̂̃σ − (Dγ)−1(Hγ)v(Dγ)−1θ̂.

The part 1) follows from the last equalities. If we set

(D(2)γ)−1d(D(2)γ) + (D(2)γ)−1 ω̂(2)(D(2)γ) =

(
λ1

1 λ1
2

λ2
1 λ2

2

)
,

then we have

λ1
1 = λ2

2 = (Dγ)−1(dDγ) + (Dγ)−1ω̂(Dγ) = ω,

λ1
2 = 0,

and 

λ2
1 = −(Dγ)−1(Hγ)v(Dγ)−1(dDγ)

+ (Dγ)−1(dHγ)v + (Dγ)−1(Hγ)dv

− (Dγ)−1(Hγ)v(Dγ)−1ω̂(Dγ)

+ (Dγ)−1(̂̇ω + dρ̂ + [ω̂, ρ̂])(Dγ)

+ (Dγ)−1ω̂(Hγ)v

= ω̇ + dρ + [ω, ρ].

(3.6)
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Consequently,
{
ω(2)

}
gives rise to a connection on Q(2)(F). This shows the

first claim of 3). On the other hand, we have

dσ̃ = dσ − d(ρ θ)

= −ω̇ ∧ θ − ω ∧ σ − dρ ∧ θ − ρ dθ

= −(ω̇ + dρ) ∧ θ − ω ∧ (σ̃ + ρ θ) + ρ ω ∧ θ

= −(ω̇ + dρ + [ω, ρ]) ∧ θ − ω ∧ σ̃.

This shows the part 2). The latter part of 3) follows from the fact that the

equality (3.5) reduces to the defining condition of infinitesimal deformations

of ω. This completes the proof. �

Remark 3.7. Lemma 3.4 implies that {θ(2)} formally defines a folia-

tion of Q(2)(F). Indeed, if each θ(2) is a local trivialization of T ∗Q(F), then

a foliation is defined and ω(2) defines a Bott connection.

Remark 3.8. Let

R(2) = dω(2) + ω(2) ∧ ω(2)

be the curvature form of ∇(2) with respect to θ(2). If we denote by R =

dω + ω ∧ ω the curvature form of ∇b with respect to θ, then, we have

R(2) =

(
R O

[R, ρ] + dω̇ + [ω̇, ω] R

)
,

where [R, ρ] = Rρ − ρR and [ω̇, ω] = ω̇ ∧ ω + ω ∧ ω̇. By the equality (3.5),

we have

R(2) ∧ θ(2) = 0.

There are several choices in defining ρ, θ(2) and ω(2). We will study how

they affect {ω(2)}. We denote by ρ′, θ(2)′, ω(2)′ etc., newly obtained ones.

First we fix θ, ω and σ. Suppose that {aijk} is a family of functions such

that {
aijk = aikj ,

aijk = (Dγ)−1i
lâ
l
mn(Dγ)mj (Dγ)nk .

(3.9)
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Then,

ω̇′i
j = ω̇ij + aijkθ

k.

Conversely, any infinitesimal deformation of ω with respect to σ is of this

form. Accordingly,

ω(2)′ = ω(2) +

(
O O

Aθ O

)
,

where (Aθ)ij = aijkθ
k. We can replace ω in a similar way, namely, let {bijk}

be a family of functions such that{
bijk = bikj ,

bijk = (Dγ)−1i
l b̂
l
mn(Dγ)mj (Dγ)nk .

(3.10)

If we set (Bθ)ij = bijkθ
k, then the connection form of a Bott connection is of

the form ω + Bθ and vice versa. Let ω′ = ω + Bθ and ∇′ be the connection

defined by ω′. Then, the ‘identity map’ from H∗(
∧iE(F)∗ ⊗ Q(F), d∇) to

H∗(
∧iE(F)∗⊗Q(F), d∇′) given by [σ] 
→ [σ] gives an isomorphism. Indeed,

if σ is an infinitesimal deformation, then the infinitesimal deformation ω̇′ of

ω′ with respect to σ is given by

ω̇′ = ω̇ + Bσ,

where (Bσ)ij = bijkσ
k. Accordingly,

ρ′ = ρ + Bv,

θ(2)′ = θ(2) −
(

0

Bθv

)
,

ω(2)′ = ω(2) +

(
Bθ O

Bσ Bθ

)
+

(
O O

d(Bv) + [Bθ, ρ] + [ω, Bv] + [Bθ, Bv] O

)
,

where (Bθv)i = bijkθ
jvk. Next, we modify σ. Let σ′ be anther representative

of the infinitesimal deformation [σ] ∈ H1(M ; ΘF ). Then,

σ′i = σi + df i + ωijf
j + gijθ

j(3.11)

holds for a family of functions {fi} such that f̂ i = (Dγ)ijf
j and a family

of functions {gij} such that ĝij = (Dγ)ikg
k
l (Dγ)−1l

j (we again make use of a
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partition of unity in order to assume that eig
i
jθ
j is globally well-defined).

An infinitesimal deformation of ω with respect to σ′ is given by

ω̇′i
j = ω̇ij + Ωiljf

l + (dg + [ω, g])ij ,(3.12)

where ωij = Γijkdyk and Ωijk = dΓijk + ΓimlΓ
m
jkdyl so that Ωijk ∧ dyk =

(dω + ω ∧ ω)ij . Therefore, θ(2) and ω(2) are replaced by

θ(2)′ = θ(2) +

(
0

df + ωf + gθ

)
ω(2)′ = ω(2) +

(
O O

Ωf + dg + [ω, g] O

)
.

Finally, we can replace θ by θ′ = (Dζ)θ, where ζ is a local biholomorphic

diffeomorphism. Then, the connection form of a Bott connection, say ∇′, is

given by

ω′ = −(dDζ)(Dζ)−1 + (Dζ)ω(Dζ)−1.

In this case, the mapping Dζ : H∗(
∧iE(F)∗⊗Q(F), d∇) → H∗(

∧iE(F)∗⊗
Q(F), d∇′) given by [σ] 
→ [(Dζ)σ] is an isomorphism. Indeed, we have

d((Dζ)σ) + ω′ ∧ ((Dζ)σ) + (Dζ)ω̇(Dζ)−1 ∧ ((Dζ)θ) = 0.

We also see that an infinitesimal deformation of ω′ with respect to σ′ is

given by (Dζ)ω̇(Dζ)−1. We have

ρ′ = −Hζv(Dζ)−1 + (Dζ)ρ(Dζ)−1,

θ(2)′ = (Dζ)θ(2) +

(
0

(Hζv)dy

)
,

ω(2)′ = −(dD(2)ζ)(D(2)ζ)−1 + (D(2)ζ) ω(2)(D(2)ζ)−1,(3.13)

where

ρ′ij = − ∂2ŷi

∂yl∂ym
∂yl

∂ŷj
vm +

∂ŷi

∂yl
f lmn

∂ym

∂ŷj
vn,

((Hζv)dy)i =
∂2ŷi

∂yl∂ym
vldym.
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The equality (3.13) is shown by essentially the same calculations to

show (3.6).

Lemma 3.14 (cf. [5, Theorem 1.20]). Let eHj = ej−ηiρ
i
j = ej−ηif

i
jkv

k.

If we set ρ = (ρij) and F =

(
Iq O

−ρ Iq

)
, then we have the following.

1) (êH1 , . . . , êHq , η̂1, . . . , η̂q)

(
Dγ O

O Dγ

)
= (eH1 , . . . , eHq , η1, . . . , ηq).

2) The connection form of ∇(2) with respect to (eH1 , . . . , eHq , η1, . . . , ηq)

is given by

(
ω O

ω̇ ω

)
.

3) F−1θ(2) =

(
θ

σ

)
.

Proof. If we set ρ = (ρij) and F =

(
Iq O

−ρ Iq

)
, then we have

(êH1 , . . . , êHq , η̂1, . . . , η̂q)

(
Dγ O

O Dγ

)
= (ê1, . . . , êq, η̂1, . . . , η̂q)

(
I O

−ρ̂ I

)(
Dγ O

O Dγ

)
= (e1, . . . , eq, η̂1, . . . , η̂q)

×
(

(Dγ)−1 O

−(Dγ)−1(Hγv)(Dγ)−1 (Dγ)−1

)(
Dγ O

−ρ̂(Dγ) Dγ

)
= (eH1 , . . . , eHq , η̂1, . . . , η̂q)

×
(

I O

ρ I

)(
I O

−(Dγ)−1(Hγv) − (Dγ)−1ρ̂(Dγ) I

)
= (eH1 , . . . , eHq , η̂1, . . . , η̂q)

(
I O

ρ − (Dγ)−1(Hγv) − (Dγ)−1ρ̂(Dγ) I

)
.

Since ρ = (Dγ)−1(dDγ)v + (Dγ)−1ρ̂(Dγ), we have

ρ − (Dγ)−1(Hγv) − (Dγ)−1ρ̂(Dγ) = 0.
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Next, we have (eH1 , . . . , eHq , η1, . . . , ηq) = (e1, . . . , eq, η1, . . . , ηq)F and

F−1dF + F−1ω(2)F =

(
O O

−dρ O

)
+

(
ω O

ρ ω + ω̇ + dρ + [ω, ρ] − ωρ ω

)
=

(
ω O

ω̇ ω

)
. �

The vectors eHi are versions of horizontal lifts of ei in the sense of [22,

Chapter 2], see also [5, §1]. Finally we again remark that we can exchange

v and ẏ in the construction.

4. Deformations of the Godbillon-Vey Class and Relation to Pro-

jective Structures

If we discuss only the Godbillon-Vey and Bott classes, the construction

can be largely simplified. The following vector bundle is relevant. We set

Jγ = det Dγ. Note that

tr Dγ−1i
lHγljk = Dγ−1i

lHγlik =
∂ log Jγ

∂yk
.

We set tr Dγ−1Hγ =
(
tr Dγ−1i

lHγlj1 · · · tr Dγ−1i
lHγljq

)
.

Definition 4.1 (cf. Definition 2.2). Let K
(2)
F

−1 be a vector bundle

over K−1
F defined as follows. Let U be a foliation chart and e = e1 ∧ · · · ∧ eq

be a local trivialization of K−1
F , where ei = π

(
∂

∂yi

)
. We set K

(2)
F

−1 =

{(z, w; ẏ, ẇ)}, where

(ẑ, ŵ; ̂̇y, ̂̇w) = (ϕ(z), Jγyw; Dγyẏ, Jγy tr(Dγ−1
y Hγyẏ)w + Jγyẇ).

The projection to K−1
F , denoted by p(2), is defined by p(2)(z, w; ẏ, ẇ) =

(z, w). We denote by ν the mapping from K
(2)
F

−1 to Q(F) defined by

ν(z, w; ẏ, ẇ) = (z, ẏ). Then, ν : K
(2)
F

−1 → Q(F) is a vector bundle.
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The following diagram commutes:

K
(2)
F

−1
p(2)

−−−→ K−1
F

ν

	 	p
Q(F) −−−→

pQ
M ,

where p is the natural projection.

Remark 4.2. One might notice that p(2) : K
(2)
F

−1 → K−1
F is quite sim-

ilar to pQ ◦ p : Q(F̃) → M , where p : Q(F̃) → Q(F) is a certain vector

bundle appeared in [5]. This is later discussed.

First we study ν : K
(2)
F

−1 → Q(F). This bundle is related to p
(2)
Q :

Q(2)(F) → Q(F) as follows. If we set

Lγ =

(
Jγ 0

Jγ tr(Dγ−1Hγẏ) Jγ

)
,

then the transition function is given by Lγ. Let ∇ be a Bott connection on

Q(F) and {ω} the family of connection forms as in the previous sections.

We represent ωij = f ijkdyk and set ρij = f ijkẏ
k. Recall that σ̃ = σ − ρ θ and

ω(2) =

(
ω O

ω̇ + dρ + [ω, ρ] ω

)
. We set ω = tr ω, ω̇ = tr ω̇ and ρ = tr ρ. If we

represent ω = fkdyk, then fk = f iik and ρ = fiẏ
i. Let (e1, . . . , eq, η1, . . . , ηq)

be the local trivialization of Q(2)(F) as in §2. We set

δ =
1

q
(η1 ∧ e2 ∧ · · · ∧ eq + e1 ∧ η2 ∧ e3 ∧ · · · ∧ eq

+ · · · + e1 ∧ · · · ∧ eq−1 ∧ ηq),

θ = θ1 ∧ · · · ∧ θq,

σ̃ = σ̃1 ∧ θ2 ∧ · · · ∧ θq + θ1 ∧ σ̃2 ∧ θ3 ∧ · · · ∧ θq

+ θ1 ∧ · · · ∧ θq−1 ∧ σ̃q,

θ(2) =

(
θ

σ̃

)
,

ω(2) =

(
ω 0

ω̇ + dρ ω

)
.
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Let A be the vector space spanned by

ηi ∧ e1 ∧ · · · ∧ êi ∧ · · · ∧ eq − (−1)i−jηj ∧ e1 ∧ · · · ∧ êj ∧ · · · ∧ eq,

ηi ∧ e1 ∧ · · · ∧ êj ∧ · · · ∧ eq,

ηi ∧ ηj ∧ e1 ∧ · · · ∧ êi ∧ · · · ∧ êj ∧ · · · ∧ eq,

where i �= j and ‘̂’ means omission. Let V be the vector space spanned by

e and δ modulo A. Then, (e δ) gives a local trivialization of K
(2)
F

−1. Indeed,

if we denote by Aγ = JγDγ−1 the adjugate matrix of Dγ, then we have

γ∗e = γ∗(e1 ∧ · · · ∧ eq)

= (det Dγ)ê1 ∧ · · · ∧ êq + (tr(AγHγẏ))δ̂

= Jγê + Jγ tr(Dγ−1Hγẏ)δ̂,

γ∗δ = Jγδ̂.

Thus (e, δ) can be identified with

(
e,

∂

∂w

)
. We have the following

Lemma 4.3 (cf. Lemma 3.4 and [5, Theorem 1.20]). We have

1) θ̂
(2)

= (Lγ)θ(2).

2) dθ(2) + ω(2) ∧ θ(2) = 0.

3) ω(2) = (Lγ)−1(dLγ) + (Lγ)−1ω̂(2)(Lγ), namely, {ω(2)} gives rise to a

connection on K(2)(F)−1 which we denote by ∇(2).

Proof. First, the coefficients of σ̃k ∧ θ2 ∧ · · · ∧ θq in ̂̃σ are equal to

(Dγ)kl G
l
1, where Gl1 denotes the (l, 1)-cofactor of Dγ. Therefore, we have

̂̃σ = tr((Aγ)(Hγv))θ + (det Dγ)σ̃.
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The part 1) follows from the above equality. The part 2) follows from the

following one, namely,

dσ̃

= d

q∑
k=1

(
θ1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θq

)
= −

q∑
k=1

∑
j<k

(−1)j−1
(

θ1 ∧ · · · ∧ θj−1 ∧ ωjl ∧ θl ∧ θj+1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θq
)

−
q∑
k=1

q∑
l=1

(−1)k−1

×
(

θ1 ∧ · · · ∧ θk−1 ∧ (ω̇ + dρ + [ω, ρ])kl ∧ θl ∧ θk+1 ∧ · · · ∧ θq
)

−
q∑
k=1

q∑
l=1

(−1)k−1
(

θ1 ∧ · · · ∧ θk−1 ∧ ωkl ∧ σ̃l ∧ θk+1 ∧ · · · ∧ θq
)

−
q∑
k=1

∑
k<j

q∑
l=1

(−1)j−1

×
(

θ1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θj−1 ∧ ωjl ∧ θl ∧ θj+1 ∧ · · · ∧ · · · ∧ θq
)

= −
q∑
k=1

∑
j<k

(−1)j−1
(

θ1 ∧ · · · ∧ θj−1 ∧ ωjj ∧ θj ∧ θj+1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θq
)

−
q∑
k=1

∑
j<k

(−1)j−1

×
(

θ1 ∧ · · · ∧ θj−1 ∧ ωjk ∧ θk ∧ θj+1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θq
)

−
q∑
k=1

(−1)k−1

×
(

θ1 ∧ · · · ∧ θk−1 ∧ (ω̇ + dρ + [ω, ρ])kk ∧ θk ∧ θk+1 ∧ · · · ∧ θq
)

−
q∑
k=1

q∑
l=1

(−1)k−1
(

θ1 ∧ · · · ∧ θk−1 ∧ ωkl ∧ σ̃l ∧ θk+1 ∧ · · · ∧ θq
)
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−
q∑
k=1

∑
k<j

(−1)j−1

×
(

θ1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θj−1 ∧ ωjj ∧ θj ∧ θj+1 ∧ · · · ∧ θq
)

−
q∑
k=1

∑
k<j

(−1)j−1

×
(

θ1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θj−1 ∧ ωjk ∧ θk ∧ θj+1 ∧ · · · ∧ θq
)

= −
q∑
k=1

∑
j �=k

ωjj ∧
(

θ1 ∧ · · · ∧ σ̃k ∧ · · · ∧ θq
)

+

q∑
k=1

∑
j �=k

(−1)j−1
(

θ1 ∧ · · · ∧ θj−1 ∧ ωjk ∧ σ̃k ∧ θj+1 ∧ · · · ∧ θq
)

− (ω̇ + dρ) ∧
(
θ1 ∧ · · · ∧ θq

)
−

q∑
k=1

(−1)k−1
(

θ1 ∧ · · · ∧ θk−1 ∧ ωkk ∧ σ̃k ∧ θk+1 ∧ · · · ∧ θq
)

−
q∑
k=1

∑
l �=k

(−1)k−1
(

θ1 ∧ · · · ∧ θk−1 ∧ ωkl ∧ σ̃l ∧ θk+1 ∧ · · · ∧ θq
)

= −ω ∧ σ̃ − (ω̇ + dρ) ∧ θ.

Finally, we have

ω = (det Dγ)−1(d det Dγ) + ω̂,

and

ω̇ + dρ

= ̂̇ω + d

((
(det Dγ)−1 ∂ det Dγ

∂yi
+ f̂j(Dγ)ji

)
(Dγ)−1i

j v̂
j

)
= ̂̇ω + dρ̂ + d

(
(det Dγ)−1 ∂ det Dγ

∂yi
vi
)

= ̂̇ω + dρ̂ − (det Dγ)−2(d det Dγ)
∂ det Dγ

∂yi
vi

+ (det Dγ)−1d

(
∂ det Dγ

∂yi
vi
)

.
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Therefore the part 3) also holds. �

Let eHj be as in Lemma 3.14. Note that

δ =
1

q
(η1 ∧ eH2 ∧ · · · ∧ eHq + eH1 ∧ η2 ∧ eH3 ∧ · · · ∧ eHq

+ · · · + eH1 ∧ · · · ∧ eHq−1 ∧ ηq)

holds in K(2)(F)−1. We set eH = eH1 ∧ · · · ∧ eHq .

Lemma 4.4 (cf. Lemma 3.14 and [5, Theorem 1.20]). We have the fol-

lowing.

1) (eH , δ) = (e, δ)

(
1 0

− tr ρ 1

)
.

2) (êH , δ̂)

(
det Dγ 0

0 det Dγ

)
= (eH , δ).

3) The connection form of ∇(2) with respect to (eH , δ) is given by(
ω 0

ω̇ ω

)
.

Note that d

(
ω 0

ω̇ ω

)
+

(
ω 0

ω̇ ω

)
∧
(

ω 0

ω̇ ω

)
=

(
dω 0

dω̇ dω

)
. See also [3].

In view of Lemma 4.4, we introduce the following

Definition 4.5. Let ω̇ be a 1-form on Q(F) such that ω̇(ηi) = 0 for

1 ≤ i ≤ q. Such a 1-form is called a generalized infinitesimal deformation

of ω with respect to θ when it is regarded as a coefficient of connection on

K
(2)
F

−1. More concretely, we consider a connection of which the connection

matrix with respect to (eH δ) is given by

(
ω 0

ω̇ ω

)
.

A generalized infinitesimal deformation is an ordinary one if dω̇(ηi) = 0.

As we will see, the constant and the linear parts of ω̇ with respect to ẏ are

relevant.
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Next, we study p(2) : K
(2)
F

−1 → K−1
F (we refer to [5] for details of

EF , Q(F̃) and TW-connections. See also [20]). A local trivialization of

K
(2)
F

−1 is given by (ei, δ) and the transition function is given by

(ei δ) = (êi δ̂)

(
Dγ 0

tr Dγ−1Hγw Jγ

)
.

We set k−1
F = {(z, w) ∈ K−1

F |w �= 0} and denote by k
(2)
F

−1 the restriction of

K
(2)
F

−1 to k
(2)
F

−1. Let EF be the C
∗-principal bundle associated with K−1

F .

Note that k−1
F and EF are indeed the same. On a foliation chart, we can find

local coordinates on EF such as (z, u) = (x, y, u) ∈ (Rp×C
q)×C

∗. By taking

the logarithm and changing the order, we may make use of (x, log u, y) as

local coordinates which we denote by (x, y0, yi). Let E(F̃) be the subbundle

of TEF locally spanned by
∂

∂x
and

∂

∂ȳµ
, 0 ≤ µ ≤ q (we omit

∂

∂ȳµ
in the real

case), and set Q(F̃) = TEF/E(F̃). A local trivialization of Q(F̃) is given

by

(
∂

∂y0
, ei

)
and the transition function is given by

(
1 tr(Dγ−1Hγ)

0 Dγ

)
. In

order to compare k
(2)
F

−1 with Q(F̃), we change the order again and choose(
ei,

∂

∂y0

)
as a local trivialization. Then, the transition function is given

by

D̃γ =

(
Dγ 0

tr(Dγ−1Hγ) 1

)
.

Note that

∂

∂y0
= w

∂

∂w
.

A transverse TW-connection, say ∇TW, is a linear connection on Q(F̃) of

which the connection form with respect to

(
ei,

∂

∂y0

)
is given by

−1

q + 1

(
dy0Iq dy

0 dy0

)
+

(
ν 0

L(q) + α 0

)
,
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where dy = t(dy1 · · · dyq). If we change the local trivialization into a

horizontal one, namely, to (
ehi ,

∂

∂y0

)
,

where ehi = ei − fi
∂

∂y0
, then the connection form is changed into

−1

q + 1

(
dη0Iq dη

0 dη0

)
+

(
ν 0

α 0

)
,

where η0 = dy0 + fidyi and ηi = dyi. We further change the local trivial-

ization into

(
ehi ,

∂

∂w

)
. Note that ehi = ei − fiw

∂

∂w
. Then, the connection

form is changed into

−1

q + 1

(
dη0Iq

dη
w

0 dη0

)
+

(
ν 0

wα 0

)
+

(
0 0

0 −dww

)
.

Now let (e, δ) be the trivialization of K
(2)
F

−1 → Q(F) and recall that

(e, δ) can be identified with

(
e,

∂

∂w

)
. Therefore (eH , δ) is identified with(

eH ,
∂

∂w

)
. If we regard K

(2)
F

−1 a fiber bundle over M , then we can consider(
ehi , e

H ,
∂

∂w

)
as a local trivialization. We can represent a point on K

(2)
F

−1

by (z, vi, w, u), where z is the projection of the point to M and (vi, w, u)

are the coefficients with respect to

(
ehi , e

H ,
∂

∂w

)
. If ∇TW is a transverse

TW-connection and ∇(2) is a connection as in Definition 4.5, then we can

ask if there are some relationship between them. For this purpose, we need

the following

Definition 4.6. Let LF be the line bundle over M locally spanned by
∂

∂y0
. By abuse of notations, we denote their pull-backs to Q(F) and K−1

F

again by LF . Let Q(F)h be the subbundle of K
(2)
F

−1 over Q(F) locally

spanned by
{

ehj

}
, where ehj = ej − fj

∂

∂y0
. We denote by hQ the projection
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from K
(2)
F

−1 to LF determined by the decomposition K
(2)
F

−1 = Q(F)h⊕LF .

We denote by (K−1
F )H the subbundle of K

(2)
F

−1 over K−1
F locally spanned

by eH . We denote by hK the projection from K
(2)
F

−1 to LF determined by

the decomposition K
(2)
F

−1 = (K−1
F )H ⊕ LF .

We have the following

Theorem 4.7. Suppose that

hQ

(
∇TW
Xh

(
ehi v

i +
∂

∂w
u

))
= hK

(
∇(2)

XH

(
eHw +

∂

∂w
u

))
for any X ∈ TM and (vi, w, u), where if X = eia

i, then Xh = ehi a
i and

XH = eHi ai. Then we have αi =
∂

∂ẏi
ω̇, that is, the linear part of a gener-

alized infinitesimal deformation of ω is equal to the infinitesimal deforma-

tion of a TW-connection. In general, the linear part with respect to ẏi of

a generalized infinitesimal deformation of ω is an (original) infinitesimal

deformation of ω̇ in the sense of [3] (even back to [12]).

Proof. We have

hQ

(
∇TW
Xh

(
ehi v

i +
∂

∂w
u

))
=

∂

∂w
(wαi(X

h)vi + fia
iu)

=
∂

∂w
(wαi(X)vi + fia

iu),

hK

(
∇(2)

XH

(
eHw +

∂

∂w
u

))
=

∂

∂w
(ω̇(XH)w + ω(XH)u)

=
∂

∂w
(ω̇(X)w + ω(X)u).

Since fia
i = ω(X), the equality in the claim holds if and only if αiv

i =

ω̇. �

The linear term of a generalized infinitesimal deformations is a kind of

non-linear connections in the sense of [22].

In order to deal with deformations other than Godbillon-Vey class and

Bott class, we need a generalization of Theorem 4.7, which will be discussed

elsewhere.
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Remark 4.8. Let θ = fidyi be the connection form of a Bott connec-

tion, say D, on K−1
F with respect to dy1 ∧ · · · ∧ dyq, and set η0 = dy0 + θ,

ηi = dyi. If we set ωTW to be the connection form of a TW-connection with

respect to (∇b,D), then

ωTW = − 1

q + 1

(
η0Iq η

0 η0

)
+

(
Γ 0

α 0

)
,

where Γ is the connection form of ∇b with respect to

(
∂

∂y1
, . . . ,

∂

∂yq
,

∂

∂y0

)
[5] and η = t(η1 · · · ηq). If we set θTW = t(η1 · · · ηq η0), then we have,

provided that ∇b is transversely torsion-free [5],

dθTW + ωTW ∧ θTW =


0
...

0

dθ + αi ∧ dyi

 .

Thus, slightly different from Lemmata 3.4 and 4.3, the torsion of a TW-

connection for (∇b,D) (as a linear connection) is related to the curvature

of D.

Remark 4.9. The Frobenius theorem and the torsion-freeness a Bott

connection on Q(F) are related as follows. Let (e1, . . . , eq) be a local trivi-

alization of Q(F) and t(θ1, . . . , θq) be the dual. If ∇b is a Bott connection,

then ∇bej =
q∑
i=1

eiω
i
j , where (ωij) is the connection form of ∇b with re-

spect to (e1, . . . , eq). If X ∈ E(F), then ∇bXej = π[X, ẽj ]. Therefore,

dθi(X, ẽj) = X(θi(ẽj)) − ẽj(θ
i(X)) − θi([X, ẽj ]) = −θi(∇bXej) = −ωij(X).

On the other hand, we have ωik ∧θk(X, ẽj) = δjkω
i
j(X), where δij denotes the

Kronecker delta. Hence we have dθ + ω ∧ θ = 0 on E(F) ⊗ TM . Thanks

to the Frobenius theorem, we have a glqC-valued 1-form, say τ = (τ ij), such

that dθ + τ ∧ θ = 0. Let A = (aij) be a GLqC-valued function such that

θ = Ady. Then, (A−1dA + A−1τA)∧ dy = 0. Therefore, if we can represent

A−1dA + A−1τA = (bij) and bij = bijkdyk, then bijk = bikj . This is the case if

τ is the connection form of a transversely torsion-free Bott connection with

respect to (e1, . . . , eq).
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5. Characteristic Classes

We begin with invariant polynomials on TGLqR and TGLqC.

Lemma 5.1. Let I(TGLqC) be the algebra of invariant polynomials. If

X ∈ tglqC, then we represent X ∈ tglqC as X =

(
X1 O

X2 X1

)
.

1) Let f ∈ I(GLqC). If we set f̃(X) = f(X1), then f̃ ∈ I(TGLqC). We

denote f̃ again by f .

2) If we set

b̂k(X) =

tr
k−1∑
i=0

Xi
1X2X

k−i−1
1 , k > 0,

0, k = 0,

then, b̂k ∈ I(TGLqC).

Proof. If g =

(
A O

B A

)
∈ TGLqC, then

Adg X =

(
AX1A

−1 O

BX1A
−1 + AX2A

−1 − AX1A
−1BA−1 AX1A

−1

)
.

The first claim immediately follows from this. In order to show the second

claim, we first remark that
k−1∑
i=0

Xi
1X2X

k−i−1
1 is the bottom-left component

of Xk. In other words, if we represent Xk =

(
Y1 O

Y2 Y1

)
, then b̂k(X) = tr Y2.

It follows that

b̂k(gXg−1) = tr(BY1A
−1 + AY2A

−1 − AY1A
−1BA−1)

= tr(BY1A
−1) + tr(AY2A

−1) − tr(AY1A
−1BA−1)

= tr(BY1A
−1) + tr Y2 − tr(BA−1AY1A

−1)

= tr Y2.

Hence b̂k ∈ I(TGLqC). �
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Actually we have b̂k(X) = k tr X2X
k−1
1 but we prefer the expression as

above for its naturality seen as above.

The polynomial b̂k will correspond to the infinitesimal derivative of the

Chern characters. If we work on the Chern classes, a certain variant of b̂k
is useful. In order to introduce it, we recall the relation between the Chern

classes and the Chern characters.

Notation 5.2. Let σi, i = 1, . . . , q, be the i-th elementary symmet-

ric function in x1, . . . , xq. Formally we set σ0(x1, . . . , xq) = 1. We set

τj(x1, . . . , xq) = xj1 + · · · + xjq for j = 1, . . . and τ0(x1, . . . , xq) = q.

The relation between σi and τj is well-known (cf. [15, 14.1 and 19.3]).

Proposition 5.3. If we set f(t) =
q∑
i=0

σi(x1, . . . , xq) ti, then

∞∑
j=1

(−1)jτj(x1, . . . , xq) tj = −t
df

dt
(t)

/
f(t)

holds in R[[t]], where t0 is regarded as 1.

Proof. We have f(t) = (1 + x1t) · · · (1 + xqt). It follows that

df

dt
(t)

/
f(t) =

d log f

dt
(t) =

∞∑
j=0

(−1)jτj+1(x1, . . . , xq)t
j . �

Corollary 5.4. There is a polynomial Pj in y1, . . . , yj such that

τj = Pj(σ1, . . . , σj).

Example 5.5. The concrete form of the polynomials Pk for small k are

as follows. We regard yk = 0 if k > q.

P1(y1) = y1,

P2(y1, y2) = y2
1 − 2y2,

P3(y1, y2, y3) = y3
1 − 3y1y2 + 3y3,
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P4(y1, y2, y3, y4) = y4
1 − 4y2

1y2 + 2y2
2 + 4y1y3 − 4y4,

P5(y1, y2, y3, y4, y5)

= y5
1 − 5y3

1y2 + 5y1y
2
2 + 5y2

1y3 − 5y2y3 − 5y1y4 + 5y5,

P6(y1, y2, y3, y4, y5, y6)

= y6
1 − 6y4

1y2 + 9y2
1y2

2 + 6y3
1y3 − 12y1y2y3

− 6y2
1y4 + 6y1y5 − 2y3

2 + 6y2y4 + 3y2
3 − 6y6.

Theorem 5.6. Let ci be the i-th Chern class and ĉj the j-th Chern

character. Then, ĉj = Pj(c1, . . . , cj)/j!.

Conversely, if we set g(t) =
∞∑
j=0

(−1)j

j + 1
τj+1(x1, . . . , xq) tj+1, then f(t) =

exp g(t). Therefore, the converse of Theorem 5.6 also holds.

Theorem 5.7. Let Qk be the polynomial in τ1, . . . , τk determined by

∞∑
k=0

Qkt
k = exp

 ∞∑
j=0

(−1)j

j + 1
τj+1t

j+1

 .

Then, ck = Qk(ĉ1, 2ĉ2, . . . , k! ĉk).

Example 5.8. The concrete form of the polynomials Qk for k = 1, 2, 3

is as follows.

Q1(τ1) = τ1, Q2(τ1, τ2) =
1

2

(
τ2
1 − τ2

)
,

Q3(τ1, τ2, τ3) =
1

6

(
τ3
1 − 3τ1τ2 + τ3

)
.

Definition 5.9. If I = {i1, . . . , ir}, then we set Il = I \ {il} and

τI = τi1 · · · τir , where τ∅= 1. Let τ ′
1, τ

′
2, . . . be formal variables and set

δτI(τ
′; τ) =

r∑
l=1

τ ′
il
τIl .
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We represent Qi as Qi(τ1, . . . , τi) =
∑
|I|=i

aIτI , where |I| = i1 + · · ·+ ir, and

set

bi =
∑
|I|=i

aIδτI (̂b1, 2b̂2, . . . , i! b̂i; ĉ1, 2ĉ2, . . . , i! ĉi).

Example 5.10.

b1 = b̂1, b2 = b̂1ĉ1 − b̂2 and b3 =
1

2
b̂1ĉ

2
1 − b̂1ĉ2 − b̂2ĉ1 + b̂3.

We define a subgroup TSLqC of TGLqC by TSLqC = SLqC � slqC ⊂
GLqC � glqC and denote by tslqC the Lie algebra of TSLqC. Then, the

following is known.

Theorem 5.11 (Takiff [21], Rais-Tauvel [19, Théorème 4.5]).

I(TSLqC) = C[ĉ2, . . . , ĉq, b̂2, . . . , b̂q],

I(TSLqR) = R[ĉ2, . . . , ĉq, b̂2, . . . , b̂q].

The following is a direct consequence of Theorem 5.11.

Theorem 5.12.

I(TGLqC) = C[ĉ1, . . . , ĉq, b̂1, . . . , b̂q],

I(TGLqR) = R[ĉ1, . . . , ĉq, b̂1, . . . , b̂q].

Proof. First we show the theorem for TGLqC. We will show that

I(TGLqC) ⊂ C[ĉ1, . . . , ĉq, b̂1, . . . , b̂q] and that ĉi, b̂j are algebraically inde-

pendent. We have

tglqC = {(X, Y ) |X, Y ∈ glqC},

and

Ad(A,B)(X, Y ) = (AXA−1, A(BX − XB + Y )A−1),

ad(X1,Y1)(X2, Y2) = ([X1, X2], [Y1, X2] + [X1, Y2]),



Derivatives of Secondary Classes and 2-Normal Bundles of Foliations 919

where (A, B) ∈ TGLqC and (X, Y ), (X1, Y1), (X2, Y2) ∈ tglqC. Let F ∈
I(TGLqC). We may assume that F is homogeneous of degree d. Let f be the

polarization of F , i.e., the symmetric multilinear mapping on (tglqC)d such

that F (X) = f(X, . . . , X) for X ∈ tglqC. Let I = (Iq, O) and J = (O, Iq),

where Iq denotes the unit matrix. Then Z(TGLqC) = {tI + sJ | t, s ∈ C}.
If X = (Y, Z) ∈ tglqC, then we can decompose X as X = X ′ + tI + sJ ,

where X ′ ∈ tslqC, t = 1
q tr Y = 1

q ĉ1(X) and s = 1
q tr Z = 1

q b̂1(X). Let

K = {K1, . . . , Kr}, where 0 ≤ r ≤ d and each Kp is either I or J . We set

fK(X ′
1, . . . , X ′

d−r) = f(X ′
1, . . . , X ′

d−r, K1, . . . , Kr). If K = ∅, then we set

fK = f∅= f . Note that the order of Ki’s does not affect fK1,... ,Kr because

f is symmetric. Then, fK is a symmetric, invariant polynomial on TSLqC.

Therefore, by Theorem 5.11, there is an element of I(TSLqC) of which the

polarization is equal to fK . We have

f(X1, . . . , Xd)

= f(t1I + s1J, . . . , tdI + sdJ)

+ (f(X ′
1, t2I + s2J, . . . , tdI + sdJ) + · · ·

+ f(t1I + s1J, . . . , td−1I + sd−1J, X ′
d))

+ · · · + f(X ′
1, . . . , X ′

d)

= t1t2 · · · tdfI,... ,I
+ (s1t2 · · · tdfI,... ,I,J + t1s2t3 · · · tdfI,··· ,I,J +

+ · · · + t1 · · · td−1sdfI,··· ,I,J)

+ · · · + s1 · · · sdfJ,··· ,J
+ (t2 · · · tdfI,... ,I(X ′

1) + · · · + s2 · · · sdfJ,... ,J(X ′
1))

+ (t1 · · · td−1fI,... ,I(X
′
d) + · · · + s1 · · · sd−1fJ,... ,J(X

′
d))

+ · · · + f∅(X ′
1, . . . , X ′

d).

As the above equality holds identically on X1, . . . , Xd, we see that f ∈
C[ĉ2, . . . , ĉq, b̂2, . . . , b̂q][ĉ1, b̂1] = C[ĉ1, . . . , ĉq, b̂1, . . . , b̂q]. Finally, ĉi and b̂j
are algebraically independent by Lemme 3.3 of [19]. Since there is an obvious

inclusion of I(TGLqR) into I(TGLqC), the same holds for I(TGLqR). �

Definition 5.13. Let J, K ∈ {(j1, . . . , jq) | jr ∈ N}. We set |J | =

j1+2j2+· · ·+qjq and |K|′ = k2+2k3+· · ·+(q−1)kq, where K = (k1, . . . , kq).
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Then, we set

Iq = {cJ ∈ C[c1, . . . , cq] | |J | > q},

Iq,q = {cJ ċK ∈ C[c1, . . . , cq, ċ1, . . . , ċq] | |J | + |K|′ > q}.

If cK ∈ Iq, then we set

δcK = k1c
k1−1
1 ċ1c2 · · · cq + k2c1c

k2−1
2 ċ2c3 · · · cq + · · · + kqc1 · · · cq−1c

kq−1
q ċq.

Finally, let DIq be the ideal of C[c1, . . . , cq, ċ1, . . . , ċq] generated by Iq,q and

{δcJ | cJ ∈ Iq}, and set

Cq[c1, . . . , cq] = C[c1, . . . , cq]/Iq,

Cq,q[c1, . . . , cq, ċ1, . . . , ċq] = C[c1, . . . , cq, ċ1, . . . , ċq]/DIq.

We define Cq[c̄1, . . . , c̄q] by replacing ci by c̄i.

We formally set ¯̇c = ˙̄c and ¯̇u = ˙̄u.

Definition 5.14. We set deg ci = deg ċi = deg ˙̄ci = 2i, deg hi =

deg ũi = deg ḣi = deg u̇i = deg ˙̄ui = 2i − 1. Let

WOq =
∧

[h1, . . . , h[q]] ⊗ Rq[c1, . . . , cq],

WUq =
∧

[ũ1, ũ2, . . . , ũq] ⊗ Cq[c1, . . . , cq] ⊗ Cq[c̄1, . . . , c̄q],

DWOq =
∧

[ḣ1, ḣ2, . . . , ḣq] ∧
∧

[h1, h3, . . . , h[q]]

⊗ Rq,q[c1, . . . , cq, ċ1, . . . , ċq],

DWUq =
∧

[u̇1, u̇2, . . . , u̇q] ∧
∧

[ ˙̄u1, ˙̄u2, . . . , ˙̄uq] ∧
∧

[ũ1, ũ2, . . . , ũq]

⊗ Cq,q[c1, . . . , cq, ċ1, . . . , ċq] ⊗ Cq,q[c̄1, . . . , c̄q, ˙̄c1, . . . , ˙̄cq],

where [q] denotes the greatest odd integer less than or equal to q, and set

dhi = ci, dḣi = ċi,

dũi = ci − c̄i, du̇i = ċi, d ˙̄ui = ˙̄ci, dci = dc̄i = dċi = d ˙̄ci = 0.

Proposition 5.15. The natural homomorphisms from H∗(WOq) to

H∗(DWOq) and from H∗(WUq) to H∗(DWUq) are injective. More pre-

cisely, H∗(WOq) is isomorphic to {f ∈ H∗(DWOq) | f does not involve ḣi
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or ċj}, and H∗(WUq) is isomorphic to {f ∈ H∗(DWUq) | f does not involve

u̇i, ˙̄uj, ċk or ˙̄cl}.

Proof. As the number of ‘dots’ are well-defined on the cohomology

level, we can decompose H∗(DWOq) according to that number. It is easy to

see that H∗(WOq) is the part of H∗(DWOq) of which the number is equal

to zero. The same arguments work on WUq and DWUq. �

Example 5.16. We have

H∗(DWO1) = 〈1, h1c1, ḣ1c1, ḣ1h1c1〉,

where the bracket means that the cohomology is generated as a linear space.

The class h1c1 is the Godbillon-Vey class, 2ḣ1c1 is the infinitesimal deriva-

tive of the Godbillon-Vey class, and 2ḣ1h1c1 is the Fuks-Lodder-Kotschick

class which will be introduced in Example 5.28.

Example 5.17. We can also determine H∗(DWU1) by using simple

spectral sequences. Let

A = 〈f ∈ DWU1 | f does not involve ũ1〉.

Then, A is closed under d. More concretely, if we set

B = 〈c1c̄1, c1 ˙̄c
l
1, c̄1ċ

k
1, ċk1 ˙̄c

l
1 | k, l ∈ N〉,

then, we have

A = B ⊕ u̇1B ⊕ ˙̄u1B ⊕ u̇1 ˙̄u1B,

where the product is the wedge product. We have

H∗(A) = 〈1, c1, c̄1, c1c̄1, u̇1c1, ˙̄u1c̄1, u̇1c1c̄1, ˙̄u1c1c̄1, u̇1 ˙̄u1c1c̄1〉,
H∗(DWU1/A) = ũ1〈1, c1, c̄1, c1c̄1, u̇1c1, ˙̄u1c̄1, u̇1c1c̄1, ˙̄u1c1c̄1, u̇1 ˙̄u1c1c̄1〉.

We have an exact sequence of complexes

0 → A → DW1 → DW1/A → 0
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and that of cohomologies

· · · → H∗−1(DW1/A)
∂→ H∗(A) → H∗(DW1)

→ H∗(DW1/A)
∂→ H∗+1(A) → · · · .

The connecting homomorphism ∂ is indeed given by the differential d so

that we have

Hr(DWU1) =



〈1〉, r = 0,〈
c1+c̄1

2

〉
, r = 2,

〈u̇1c1, ˙̄u1c̄1, ũ1(c1 + c̄1)〉, r = 3,

〈ũ1c1c̄1〉, r = 5,

〈u̇1 ˙̄u1c1c̄1, ũ1u̇1c1c̄1, ũ1 ˙̄u1c1c̄1〉, r = 6,

〈ũ1u̇1 ˙̄u1c1c̄1〉, r = 7,

0, otherwise.

Up to multiplication of constants, c1+c̄1 is the first Chern class, ũ1(c1+c̄1) is

the imaginary part of the Bott class, ũ1c1c̄1 is the Godbillon-Vey class, and

u̇1c1, ˙̄u1c̄1 are the infinitesimal derivative of the Bott class and its complex

conjugate. The absence of the infinitesimal derivative of the Godbillon-Vey

class corresponds to the rigidity of the Godbillon-Vey class for transversely

holomorphic foliations [4]. Note also that the infinitesimal derivative of

the Chern classes are also absent. This is of course due to the integrality

(therefore the rigidity under deformations) of the Chern classes. Finally we

remark that there is no direct analogue of the Fuks-Lodder-Kotschick class.

See also Remark 5.34. Instead of that, the classes of degree 6 and perhaps

the class of degree 7 are variants.

Let δR: WOq → DWOq and δ : WUq → DWUq be the (commutative)

derivations which satisfy δRcj = ċj and δRhi = ḣi, and δcj = ċj , δc̄j = ˙̄cj
and δũi = u̇i− ˙̄ui, respectively. It is easy to see that δR and δ are well-defined

and commute with d. Therefore, we have the following

Proposition 5.18. There are well-defined derivations δR:

H∗(WOq) → H∗(DWOq) and δ : H∗(WUq) → H∗(DWUq) such that

δRhi = ḣi, δRci = ċi,

δ(ũi) = u̇i − ˙̄ui, δ(ci) = ċi, δ(c̄i) = ˙̄ci.
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Some of results in [13] and [4] can be summarized as follows.

Theorem 5.19. There is a well-defined bilinear pairing

DχR: H1(M ; ΘF ) × H∗(DWOq) → H∗(M ; R)

for real codimension-q foliations, and

Dχ : H1(M ; ΘF ) × H∗(DWUq) → H∗(M ; C)

for complex codimension-q transversely holomorphic foliations. If σ ∈
H1(M ; ΘF ) is an infinitesimal deformation and if α ∈ H∗(WOq) (resp.

β ∈ H∗(WUq)), then DχR(σ, δ(α)) (resp. Dχ(σ, δ(β))) is the infinitesimal

derivative of α (resp. β) with respect to σ.

Before proving Theorem 5.19, we recall the Chern forms and Chern-

Simons forms. Let ω(2) be the connection form of a connection ∇(2) on

Q(2)(F) obtained from a Bott connection and an infinitesimal deformation

of F . Then, the curvature form R(2) of ω(2) is by definition

R(2) = dω(2) +
1

2
[ω(2), ω(2)] = dω(2) + ω(2) ∧ ω(2).

Definition 5.20. We define i-th Chern forms ci(R
(2)), 0 ≤ i ≤ q, by

the condition

det

(
λIq −

1

2π
√
−1

R(2)

)
=

q∑
k=0

ck(R
(2))λq−k.

Note that c0(R
(2)) = 1. In the real case, we replace 2π

√
−1 by 2π. In

general, if f is a TGLqC-invariant polynomial, then we set f(R(2)) =

f(R(2), . . . , R(2)), where we make use of the Chern convention.

It is well-known that f(R(2)) is closed.

Let ω
(2)
0 and ω

(2)
1 be connection forms. We set ω

(2)
t = (1− t)ω

(2)
0 + tω

(2)
1 ,

and represent f(R
(2)
t ) = α + β ∧ dt, where α and β do not involve dt.

Definition 5.21. We define the Chern-Simons form of f by

∆f (ω
(2)
0 , ω

(2)
1 ) =

∫ 1

0
βdt.
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It is well-known that d∆f (ω
(2)
0 , ω

(2)
1 ) = f(R

(2)
0 ) − f(R

(2)
1 ) (see [7]).

We also need a version of the Bott vanishing theorem.

Lemma 5.22. Let I be the ideal of Ω∗(M) locally generated by

dy1, . . . , dyq, where (y1, . . . , yq) are local coordinates in the transverse di-

rection. If we denote by Ir the ideal of Ω∗(M) locally generated by {α1 ∧
· · · ∧ αr |α1, . . . , αr ∈ I}, then b̂k evaluated by R(2) belongs to Ik−1.

Proof. If we represent R(2) as R(2) =

(
R1 O

R2 R1

)
, then each entry of

R1 belongs to I. On the other hand, bk(R
(2)) is a certain sum of entries of

Ri1R2R
k−i−1
1 . �

Finally, we make use of the following

Lemma 5.23 (cf. [13, Theorem 2.16], [4, Lemma 4.3.17]). Let J =

(j1, . . . , jq) ∈ N
q. If |J | > q, then δcJ(R

(2)) = 0, where δcJ is as in

Definition 5.13.

A proof can be found as a part of the proof of [13, Theorem 2.16] and

also in [4, Lemma 4.3.17] so that we omit it.

Proof of Theorem 5.19. Let ∇b be a Bott connection on Q(F), ∇h
a unitary (resp. metric) connection on Q(F) with respect to a Hermitian

(resp. Riemannian) metric h, a family of local trivializations {θ} of Q∗(F)

and an infinitesimal deformation {σ} of {θ} which represents an infinitesi-

mal deformation of F . For simplicity we denote {θ} and {σ} by θ and σ,

respectively. Let ωb and ωh be connection forms of ∇b and ∇h with respect

to the dual of θ, and ω̇ an infinitesimal deformation of ωb with respect to

σ. We set ω(2) =

(
ωb O

ω̇ ωb

)
, ω

(2)
0 =

(
ωb O

O ωb

)
, R = dωb + ωb ∧ ωb and

R(2) = dω(2) + ω(2) ∧ ω(2). Let D̃χ be the algebra homomorphism from

(E(F)∗ ⊗ Q(F)) × DWUq to Ω∗(M) determined by the conditions that

D̃χ(ci) = ci(R),

D̃χ(c̄i) = ci(R),
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D̃χ(ũi) = ∆ci(ω
b, ωh) − ∆ci(ω

b, ωh),

D̃χ(ċi) = bi(R
(2)),

D̃χ(˙̄ci) = bi(R(2)),

D̃χ(u̇i) = ∆bi(ω
(2), ω

(2)
0 ),

D̃χ( ˙̄ui) = ∆bi(ω
(2), ω

(2)
0 ).

In the real case, we define D̃χR by the conditions that

D̃χR(ci) = ci(R),

D̃χR(hi) = ∆ci(ω
b, ωh), where i is odd,

D̃χR(ċi) = bi(R
(2)),

D̃χR(ḣi) = ∆bi(ω
(2), ω

(2)
0 ).

By the construction and Lemma 5.22, D̃χ and D̃χR are well-defined and

induce bilinear mappings on the cohomology, which we denote by Dχ and

DχR, respectively. We denote the product foliation of M×[0, 1] by F×[0, 1],

namely, the leaves of F × [0, 1] are of the form L× [0, 1], where L is a leaf of

F . Let {aijk} be as (3.9). If we set ω
(2)
t =

(
ω O

ω̇ + tAθ ω

)
, then ω

(2)
t is the

connection form of a connection, say ∇(2)
t , on Q(2)(F) with respect to θ(2).

Note that ω(2) can be also viewed as the connection form of a connection

on Q(2)(F × [0, 1]) with respect to the pull-back of θ(2) to M × [0, 1]. Let

ϕ be a cocycle in DWUq. If we represent ϕ(∇b,∇(2)
t ) = ϕ1 + ϕ2 ∧ dt,

where ϕ1 and ϕ2 do not involve dt, and if we set ϕ̃ =
∫

ϕ2, then we have

dϕ̃ = ϕ(∇b,∇(2)
0 )−ϕ(∇b,∇(2)

1 ). If we replace ω, ω̇ by ω+Bθ, ω̇+Bσ, where

B is defined by (3.10), then we set ωt = ω + tBθ and ω̇t = ω̇ + tBσ. Let

∇b′ and ∇(2)′ be the connections defined by ω + Bθ and ω̇ + Bσ, then, by

repeating almost the same argument as above, we can find a primitive of

ϕ(∇b,∇(2))− ϕ(∇b′,∇(2)′). Suppose that σ is replaced by σ′ by (3.11). By

the same argument in the proof of Lemma 3.14, we see that g does not affect

ϕ(∇b,∇(2)). By considering σt = σ + d(tf) + ω (tf) and by repeating again

the same argument as above, we see that ϕ(∇b,∇(2)) and ϕ(∇b,∇(2)′) are

cohomologous. If we replace θ by (Dζ)θ, then ϕ(∇b,∇(2)) does not change

by (3.13), because invariant polynomial are considered. Finally, if we replace
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h by another metric, then we can form a 1-parameter family of metrics and

connections, and show by similar arguments as above that the cohomology

class remains the same. �

Remark 5.24. A related but different construction can be found in [8].

Characteristic classes for deformations of foliations are also studied in [6]

from another viewpoint. We also remark that Theorem 5.19 is shown by

more combinatorial arguments in [13] and [4].

Remark 5.25. The differential forms b1 and c1 can be obtained from

K(2)(F)−1 and ∇(2) appeared in §4.

Definition 5.26. The elements in the image of δ in H∗(DWOq) (resp.

H∗(DWUq)) are said to be infinitesimal derivatives of secondary classes. If

σ ∈ H1(M ; ΘF ), then the image of infinitesimal derivatives under

DχR(σ, δ( · )) (resp. Dχ(σ, δ( · ))) are called the infinitesimal derivatives

with respect to σ.

Example 5.27. We have DW1 = DWO1. Consequently,

H∗(DW1) = H∗(DWO1) = 〈1, h1c1, ḣ1c1, ḣ1h1c1〉.

Example 5.28. The class h1c
q
1 ∈ H2q+1(DWOq) is the Godbillon-Vey

class. The class (q + 1)ḣ1c
q
1 ∈ H2q+1(DWOq) is the infinitesimal deriva-

tive of the Godbillon-Vey class. Note that (q + 1)ḣ1c
q
1 = δ(h1c

q
1) holds in

H2q+1(DWOq). There is another class which involves ḣ1, h1 and c1. Indeed,

d(ḣ1h1c
q
1) = ċ1h1c

q
1 − ḣ1c

q+1
1 = 0

in DWOq because cq+1
1 , ċ1c

q
1 ∈ DIq. The class (q+1)ḣ1h1c

q
1 ∈ H2q+1(DWOq)

is introduced by Fuks [10], Lodder [18] and Kotschick [17], and called the

Fuks-Lodder-Kotschick class in [4].

In the transversely holomorphic case, the Bott class is defined by u1c
q
1

if the complex normal bundle is trivial. In general, the imaginary part of

the Bott class is given by
√
−1ũ1(c

q
1 + cq−1

1 c̄1 + · · · + c̄q1) ∈ H2q+1(DWUq)

if we choose R or C as coefficients of cohomology. On the other hand,

the infinitesimal derivative of the Bott class is defined as an element of
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H2q+1(DWUq) or H2q+1(M ; C) even if the complex normal bundle is non-

trivial. Indeed, the infinitesimal derivative of the Bott class is given by

(q + 1)u̇1c
q
1 ∈ H2q+1(DWUq).

Therefore, the infinitesimal derivative of the imaginary part of the Bott

class will be represented by two cocycles in DWUq, namely,

λ1 = (q + 1)
√
−1(u̇1c

q
1 − ˙̄u1c̄

q
1),

λ2 =
√
−1(u̇1 − ˙̄u1)(c

q
1 + · · · + c̄q1)

+
√
−1

q∑
k=0

(
(q − k)ċ1c

q−k−1
1 c̄k1 + k ˙̄c1c

q−k
1 c̄k−1

1

)
.

We have the following

Lemma 5.29. The above cocycles λ1 and λ2 are cohomologous.

Proof. Let

µ = ũ1(qu̇1c
q−1
1 + (q − 1)u̇1c

q−2
1 c̄1 + ˙̄u1c

q−1
1 + · · · + q ˙̄u1c

q−1
1 )

=

q∑
i=0

ũ1((q − i)u̇1c
q−i−1
1 c̄i + i ˙̄u1c

q−i
1 c̄i−1

1 ).

Since

dµ = qu̇1c
q
1 −

q∑
i=1

u̇1c
q−i
1 c̄i1 +

q−1∑
j=0

˙̄u1c
q−j
1 c̄j1 − q ˙̄u1c̄

q
1

− ũ1(qċ1c
q−1
1 + (q − 1)ċ1c

q−2
1 c̄1 + ˙̄c1c

q−1
1 + · · · + q ˙̄c1c̄

q−1
1 ),

we have λ2 +
√
−1dµ = λ1. �

If we assume that normal bundles of foliations are trivial, then we can

modify the construction as follows.

Definition 5.30. We set deg ci = deg ċi = deg ˙̄ci = 2i, deg hi =

deg ui = deg ūi = deg ḣi = deg u̇i = deg ˙̄ui = 2i − 1. Let

Wq =
∧

[h1, h2, . . . , hq] ⊗ Rq[c1, . . . , cq],

DWq =
∧

[ḣ1, ḣ2, . . . , ḣq] ∧
∧

[h1, h2, . . . , hq] ⊗ Rq,q[c1, . . . , cq, ċ1, . . . , ċq].
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We set

dhi = ci, dḣi = ċi.

When we consider Wq ⊗C and DWq ⊗C, we denote by hi and ḣi by ui and

u̇i. We set

dui = ci, dūi = c̄i, du̇i = ċi, d ˙̄ui = ˙̄ci, dci = dc̄i = dċi = d ˙̄ci = 0.

Then, Wq ⊗ C =
∧

[u1, u2, . . . , uq] ⊗ Cq[c1, . . . , cq]. We set

Wq ⊗ C =
∧

[ū1, ū2, . . . , ūq] ⊗ Cq[c̄1, . . . , c̄q].

We define DWq ⊗ C in an obvious way, and set WC
q = (Wq⊗C)∧ (Wq ⊗ C)

and DWC
q = (DWq ⊗ C) ∧ (DWq ⊗ C).

Proposition 5.31. The natural homomorphisms H∗(Wq) →
H∗(DWq) and H∗(Wq ⊗ C) → H∗(DWq ⊗ C) are injective.

The proof is almost identical to that of Proposition 5.15.

Let δFR : Wq → DWq be the (commutative) derivation which satisfies

δFRcj = ċj and δFRhi = ḣi. We denote the complexification of δFR by δF . It is

easy to see that δFR and δF are well-defined and commute with d. We have

the following

Proposition 5.32. There are well-defined derivations δFR : H∗(Wq) →
H∗(DWq) and δF : H∗(Wq ⊗ C) → H∗(DWq ⊗ C) such that

δFRhi = ḣi, δFRci = ċi,

δFui = u̇i, δF ci = ċi.

Note that a derivation on H∗(WC
q ) with values in H∗(DWC

q ) is naturally

defined.

Theorem 5.33. Once a homotopy type of trivialization of the normal

bundle of F is fixed, there is a well-defined bilinear pairing

DχFR : H1(M ; ΘF ) × H∗(DWq) → H∗(M ; R)
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for real codimension-q foliations , and

DχF : H1(M ; ΘF ) × H∗(DWq ⊗ C) → H∗(M ; C)

for complex codimension-q transversely holomorphic foliations with trivial-

ized complex normal bundles. If σ ∈ H1(M ; ΘF ) is an infinitesimal defor-

mation and if α ∈ H∗(Wq), then DχFR(σ, δFR(α)) or DχF (σ, δF (β)) is the

infinitesimal derivative of α with respect to σ.

Proof. The theorem is proven in an almost the same way as that

of Theorem 5.19. Let s be a trivialization of the normal bundle in the

homotopy type we have chosen. Let ∇b be a Bott connection on Q(F), ∇s
the flat connection with respect to s, θ the trivialization of Q∗(F) dual to s,

and an infinitesimal deformation {σ} of θ which represents an infinitesimal

deformation of F . Let ωb and ωs be connection forms of ∇b and ∇s with

respect to s, and ω̇ an infinitesimal deformation of ωb with respect to σ.

We set ω(2) =

(
ωb O

ω̇ ωb

)
, ω

(2)
0 =

(
ωb O

O ωb

)
, R = dωb + ωb ∧ ωb and R(2) =

dω(2) + ω(2) ∧ω(2). Let D̃χF be the algebra homomorphism from (E(F)∗ ⊗
Q(F)) × (DWq ⊗ C) to Ω∗(M) determined by the conditions that

D̃χF (ci) = ci(R),

D̃χF (ui) = ∆ci(ω
b, ωs),

D̃χF (ċi) = bi(R
(2)),

D̃χF (u̇i) = ∆bi(ω
(2), ω

(2)
0 ).

In the real case, we define D̃χFR by the conditions that

D̃χFR(ci) = ci(R),

D̃χFR(hi) = ∆ci(ω
b, ωs),

D̃χFR(ċi) = bi(R
(2)),

D̃χFR(ḣi) = ∆bi(ω
(2), ω

(2)
0 ).

Then, by repeating arguments of the same kind of as in the proof of The-

orem 5.19, we can show that the mappings induced on the cohomology are

independent of choices. �
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Note that a homomorphism from H∗(DWC
q ) to H∗(M ; C) is induced

by DχF .

Remark 5.34. Example 5.11 of [4] shows that DχF indeed depends on

the homotopy type of s. It is shown by examining u̇1u1c
q
1 of a transversely

holomorphic foliation of which the complex normal bundle is trivial. It is

also shown that the effect of the change of trivialization is indeed valued in C,

which suggests that there are no direct analogue of Fuks-Lodder-Kotschick

class in the category of transversely holomorphic foliations unless the trivi-

ality of normal bundles is assumed, because this fact implies that the imag-

inary part of the Fuks-Lodder-Kotschick class hardly makes sense. There is

indeed no direct analogue in H∗(DWU1) calculated in Example 5.17. On

the other hand, it seems unknown in the real case if there is a family or

infinitesimal deformation of a foliation of which ḣ1h1c
q
1 is non-trivial even

if q = 1. Similarly, it is unknown if the classes u̇1 ˙̄u1c1c̄1, ũ1u̇1c1c̄1, ũ1 ˙̄u1c1c̄1

and ũ1u̇1 ˙̄u1c1c̄1 ∈ H∗(DWU1) in Example 5.17 can be non-trivial for some

infinitesimal deformation or not (the above-mentioned example in [4] does

not work).

6. Determination of H∗(DWO2) and Comparison with H∗(DWU1)

We will first compute H∗(DWO2). This is again done by means of

spectral sequences. We have

I2 = I(c3
1, c1c2, c

2
2),

I2,2 = I(c3
1, c1c2, c

2
2, c

2
1ċ2, c2ċ2, c1ċ

2
2, c2ċ

2
2, ċ

3
2),

DIq = I(c3
1, c1c2, c

2
2, c

2
1ċ2, c2ċ2, c1ċ

2
2, c2ċ

2
2, ċ

3
2, c

2
1ċ1, c1ċ2 + c2ċ1, c2ċ2)

= I(c3
1, c1c2, c

2
2, c

2
1ċ2, c2ċ2, c1ċ

2
2, c2ċ

2
2, ċ

3
2, c

2
1ċ1, c1ċ2 + c2ċ1),

where I(f1, . . . , fr) denotes the ideal generated by f1, . . . , fr.

Let

A = {f ∈ DWO2 | f does not involve h1},

B0 = {f ∈ A | f does not involve ḣ1 or ḣ2},

B1 = {f ∈ A | f does not involve ḣ2}.
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Then, A, B0 and B1 are closed under d. As vector spaces, we have

B0 = 〈1, c1, c
2
1, c2, ċ

k
1, ċ2, ċ

2
2, ċ

k
1 ċ2, ċ

k
1 ċ2

2, c1ċ
k
1, c2ċ

k
1(= −c1ċ

k
1 ċ2) | k > 0〉,

B1 = B0 ⊕ ḣ1B0.

By examining the long exact sequence associated with 0 → B0 → B1 →
B1/B0 → 0, we see that

Hr(B1) = 〈1, c1, c
2
1, c2, ċ2, ċ

2
2〉 ⊕ 〈ḣ1c

2
1〉.

Next, we examine the long exact sequence associated with 0 → B1 → A →
A/B1 → 0. Note that H∗(A/B1) ∼= ḣ2H

∗(B1). The result is

H∗(A) = 〈1, c1, c
2
1, c2, ḣ1c

2
1〉 ⊕ 〈ḣ2c1 + ḣ1c2, ḣ2c

2
1, ḣ2c2, ḣ2ċ

2
2, ḣ1ḣ2c

2
1〉.

Finally, we consider the long exact sequence associated with 0 → A →
DWO2 → DWO2/A → 0, where H∗(DWO2/A) ∼= h1H

∗(A). We obtain

Hr(DWO2) =



〈1〉, r = 0,

〈c2〉, r = 4,

〈h1c
2
1, h1c2, ḣ1c

2
1, ḣ1c2 + ḣ2c1〉, r = 5,

〈ḣ1h1c
2
1〉, r = 6,

〈ḣ2c2〉, r = 7,

〈ḣ2h1c
2
1, ḣ2h1c2, ḣ1ḣ2c

2
1〉, r = 8,

〈ḣ1ḣ2h1c
2
1〉, r = 9,

〈ḣ2ċ
2
2〉, r = 11,

〈ḣ2h1ċ
2
2〉, r = 12,

0, otherwise.

Up to multiplications of constants, the class c2 is the first Pontrjagin class,

h1c
2
1 and ḣ1c

2
1 are the Godbillon-Vey class and its infinitesimal derivative,

h1c2 is one of the ‘classical’ secondary classes in H5(WO2), and ḣ1h1c
2 is

the Fuks-Lodder-Kotschick class. In general, we can compute H∗(DWOq)

etc., by means of spectral sequences as above. It seems however difficult to

obtain a set of basis as a vector space such as the Vey basis for H∗(WOq)

or H∗(Wq).
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In what follows, we denote ci, c̄i ∈ WUq ⊂ WC
q by vi, v̄i in order to avoid

confusions. Given a transversely holomorphic foliation, we can forget the

transverse holomorphic structure [1], [2]. This corresponds to the natural

maps BΓC
q → BΓ2q and BΓ

C

q → BΓ 2q. Accordingly, we have homomor-

phisms

λ : H∗(WO2q) → H∗(WUq),

λ̂ : H∗(W2q) → H∗(Wq ⊗ C).

The same can be done for H∗(DWUq) and H∗(DWO2q). The relevant maps

are

Dλ : H∗(DWO2q) → H∗(DWUq),

Dλ̂ : H∗(DW2q) → H∗(DWC
q ).

They are defined by DGA-homomorphisms D̃λ : DWO2q → DWUq and

D̃λ̂ : DW2q → DWC
q such that

D̃λ(ci) = (
√
−1)i

i∑
k=0

(−1)kvi−kv̄k,

D̃λ(h2i+1) =
(−1)i

2

√
−1

2i+1∑
k=0

(−1)kũ2i−k+1(vk + v̄k),

D̃λ(ċi) = (
√
−1)i

i∑
k=0

(−1)k(v̇i−kv̄k + vi−k ˙̄vk),

D̃λ(ḣ2i+1) =
(−1)i

2

√
−1

2i∑
k=0

(−1)k( ˙̃u2i−k+1(vk + v̄k) + ũ2i−k+1(v̇k + ˙̄vk)),

where v0 = v̄0 = 1, v̇0 = ¯̇v = 0, and

D̃λ̂(ci) = (
√
−1)i

i∑
k=0

(−1)kvi−kv̄k,

D̃λ̂(h2i+1) =
(−1)i

2

√
−1

2i+1∑
k=0

(−1)kũ2i−k+1(vk + v̄k),
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D̃λ̂(h2i) =
(−1)i

2

2i∑
k=0

(−1)k(u2i−kv̄k + ūkv2i−k),

D̃λ̂(ċi) = (
√
−1)i

i∑
k=0

(−1)k(v̇i−kv̄k + vi−k ˙̄vk),

D̃λ̂(ḣ2i+1) =
(−1)i

2

√
−1

2i+1∑
k=0

(−1)k( ˙̃u2i−k+1(vk + v̄k) + ũ2i−k+1(v̇k + ˙̄vk)),

D̃λ̂(ḣ2i) =
(−1)i

2

2i∑
k=0

(−1)k(u̇2i−kv̄k + ˙̄ukv2i−k + u2i−k ˙̄vk + ūkv̇2i−k).

We have the following version of Lemma 3.1 of [1].

Lemma 6.1.

1) If F is a transversely holomorphic foliation, then there is a natural

homomorphism λΘ : H∗(M ; ΘF ) → H∗(M ; ΘFR
), where FR is the fo-

liation F but the transverse holomorphic structure forgotten.

2) The homomorphisms D̃λ and D̃λ̂ induce on the cohomology the ho-

momorphisms Dλ and Dλ̂ such that DχR(λΘ(σ), α) = Dχ(σ, Dλ(α))

and DχFR(λΘ(σ), α) = Dχ(σ, Dλ̂(α)).

Proof. Let ∇b be a Bott connection on Q(F). Let θ be a local triv-

ialization of Q∗(F) and ω be the connection form of ∇b with respect to

the dual of θ. A section σ = (σj) of
∧iE(F)∗ ⊗ Q(F) is a representative

of a class in H i(M ; ΘF ) if and only if there is a glq(C)-valued 1-form µ

such that dσ + ω ∧ σ + µ ∧ θ = 0. If we choose θR = θ ⊕ θ̄ as a trivi-

alization of Q(FR) ⊗ C ∼= Q(F) ⊕ Q(F), then ∇bR = ∇b ⊕ ∇b is a Bott

connection on Q(FR)⊗C and ωR = ω⊕ ω̄ is its connection form. Therefore,

σR = σ ⊕ σ̄ gives a d∇b
R
-closed form in

∧i(E(FR)∗ ⊗ C) ⊗ (Q(F) ⊗ C).

Note that E(FR) ⊗ C = E(F) ∩ E(F). If we set µR = µ ⊕ µ̄, then

dσR + ωR ∧ σR + µR ∧ θR = 0. Similarly we can show that if σ is d∇b-

exact, then σ ⊕ σ̄ is d∇b
R
-exact. Therefore, if we set λΘ(σ) = σR, then λΘ

induces a homomorphism on the cohomology. Thus the part 1) is shown.

The proof of the part 2) is essentially parallel to that of [1, Lemma 3.1] so
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that we give only the sketch. First we note that ci and ċi calculated by

using ∇bR are equal to the right hand sides of defining relation of D̃λ(ci)

and D̃λ(ċi) calculated by using ∇b⊕∇b. Then, by integrating the relation,

we see that D̃λ gives a desired homomorphism. The proof for D̃λ̂ can be

done in a parallel way. �

The following is a corollary to Proposition 5.15.

Lemma 6.2. We have Ker λ = Ker Dλ̂ ∩ H∗(WO2q) and Im λ =

Im Dλ ∩ H∗(WUq).

If q = 1, then the mapping Dλ is given by the conditions that

h1 
→
√
−1ũ1,

c1 
→
√
−1(v1 − v̄1),

c2 
→ v1v̄1,

ḣ1 
→
√
−1(u̇1 − ˙̄u1),

ḣ2 
→ u̇1v̄1 + ˙̄u1v1,

ċ1 
→
√
−1(v̇1 − ˙̄v1),

ċ2 
→ v̇1v̄1 + ˙̄v1v1.

Therefore, we have

Ker Dλ = 〈c2, h1(c
2
1 − 2c2), ḣ1c

2
1, ḣ1c2 + ḣ2c1, ḣ2c2, ḣ2h1c

2
1, ḣ2h1c2,

ḣ1ḣ2h1c
2
1, ḣ2ċ

2
2, ḣ1ḣ2c

2
1, ḣ2h1ċ

2
2〉,

Im Dλ = 〈1, ũ1v1v̄1, (u̇1 − ˙̄u1)ũ1v1v̄1〉.

We have c2, h1(c
2
1 − 2c2) ∈ Ker λ and 1, ũ1v1v̄1 ∈ Im λ. Note that

2
√
−1ũ1v1v̄1 is the Godbillon-Vey class and that

(u̇1 − ˙̄u1)v1v̄1 + ũ1v̇1v̄1 + ũ1v1 ˙̄v1

= −d(ũ1(u̇1(2v1 + v̄1) + ˙̄u1(2v̄1 + v1))).

In general, the Godbillon-Vey class is equal to (2q)!
q!q!

√
−1ũ1v

q
1v̄q1, and

(u̇1 − ˙̄u1)v
q
1v̄q1 + qũ1v

q−1
1 v̇1v̄

q
1 + qũ1v

q
1v̄q−1

1
˙̄v1

= −d(ũ1v
q−1
1 v̄q−1

1 (u̇1((q + 1)v1 + qv̄1) + ˙̄u1((q + 1)v̄1 + qv1))).
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This gives another proof of the rigidity of the Godbillon-Vey class in the

category of transversely holomorphic foliations.

We next study the mapping Dλ̂ : H∗(DW2) → H∗(DW1 ⊗ C). We can

show by similar arguments as above that

Hr(DW2) =



〈1〉, r = 0,

〈h1c
2
1, h1c2, ḣ1c

2
1, ḣ1c2 + ḣ2c1〉, r = 5,

〈ḣ1h1c
2
1〉, r = 6,

〈h2c2, ḣ2c2〉, r = 7,

〈ḣ2h1c
2
1, ḣ2h1c2, ḣ1ḣ2c

2
1,

h1h2c
2
1, h1h2c2, ḣ1h2c

2
1, h2(ḣ1c2 + ḣ2c1)〉, r = 8,

〈ḣ1ḣ2h1c
2
1, ḣ1h1h2c

2
1〉, r = 9,

〈ḣ2h2c2〉, r = 10,

〈ḣ2ċ
2
2, ḣ2h1h2c

2
1, ḣ2h1h2c2, ḣ1ḣ2h2c

2
1〉, r = 11,

〈ḣ2h1ċ
2
2, ḣ1ḣ2h1h2c

2
1〉, r = 12,

〈ḣ2h2ċ
2
2〉, r = 14,

〈ḣ2h1h2ċ
2
2〉, r = 15,

0, otherwise.

The mapping Dλ̂ is given by the conditions that

h1 
→
√
−1(u1 − ū1),

h2 
→ 1

2
(u1v̄1 + ū1v1),

c1 
→
√
−1(v1 − v̄1),

c2 
→ v1v̄1,

ḣ1 
→
√
−1(u̇1 − ˙̄u1),

ḣ2 
→ u̇1v̄1 + ˙̄u1v1,

ċ1 
→
√
−1(v̇1 − ˙̄v1),

ċ2 
→ v̇1v̄1 + ˙̄v1v1.
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Therefore,

Ker Dλ̂

= 〈h1(c
2
1 − 2c2), ḣ1c

2
1, ḣ1c2 + ḣ2c1, h2c2, ḣ2c2, ḣ2h1c

2
1, ḣ2h1c2, ḣ1ḣ2c

2
1,

h1h2c
2
1, h1h2c2, ḣ1h2c

2
1, h2(ḣ1c2 + ḣ2c1), ḣ1ḣ2h1c

2
1, ḣ1h1h2c

2
1,

ḣ2h2c2, ḣ2ċ
2
2, ḣ2h1h2c

2
1, ḣ2h1h2c2, ḣ1ḣ2h2c

2
1,

ḣ2h1ċ
2
2, ḣ1ḣ2h1h2c

2
1, ḣ2h2ċ

2
2, ḣ2h1h2ċ

2
2〉,

Im Dλ̂

= 〈1, (u1 − ū1)v1v̄1, (u̇1 − ˙̄u1)(u1 − ū1)v1v̄1〉.

As we mentioned in Remark 5.34, we know that the class u̇1u1v1 can be

non-trivial. The class does not belong to Im Dλ̂, which implies that the

non-triviality is not derived from deformations of real foliations. On the

other hand, the image of the Fuks-Lodder-Kotschick class 3ḣ1h1c
2
1 is equal

to −6(u̇1 − ˙̄u1)(u1 − ū1)v1v̄1 which is non-trivial in H∗(DW1 ⊗ C) and

H∗(DWU1). However, we do not know any example of which (u̇1− ˙̄u1)(u1−
ū1)v1v̄1 is non-trivial.
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