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Introduction and summary

In this paper we study some properties of the scattering matrix for the

Schrodinger operators Hy= —%—A:——%jgj 8*fox% and H=H,+V in LXR¥), Nz2,

where the potential V(z) is a real-valued function. Let us begin with the
short-range case, i.e., we assume V(x)=0(|z|*~*) as |z| — co for some &>0. In
this case, it is well-known that the wave operators

0.1 We=s-lim etfg~iHo

E~eckoo
exist and are complete. The scattering operator S is defined by
0.2) S=WiWw.,

which is unitary on L¥R¥). Because of the conservation law of energy, it is
convenient to consider the Fourier transform S of S, ie.,

0.3) S=gSg-!,

where & denotes the Fourier transformation,
F1(©)=F @)= e a)da.

S is known to be decomposable: for a.e. 2>0 there exists a unitary opefator
S(2) on LAS¥-1) such that for a.e. 2>0 and weS¥-!,

0.4) (S V2i0)=(S(D)f(v22-))w) for any feLXRM).

S(2) is called the scattering matrvix or S-matviz, The transition matrix T(R) is
defined through the relation
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0.5 ' S=1-22i2A¥-D1(2),

which is known to be compact on L3(SV-!) (Agmon [2], Kuroda [14]). If g(2)
has an integral kernel (1, w, '), it is called the scattering amplitude and
T4, o, o) is called the differential cross section, which is the most important
quantity in scattering theory in the sense that it is the only one which can be
observed through the physical experiment. Thus our first subject should be
the existence of the scattering amplitude. Let us assume that

(S) V(z) is a real-valued smooth function on R¥ such that for all multi-indices

« and some >0

]BZV(.’E)] :—<“Ca<-'l;>—l“["1"€u,
where (zd=+1+z.

TaeoreM 0.1. Under the assumption (S), () is an integral operator with
a kernel G(, o, o) which is smooth for 2>0, o, o’ ¢ S¥-! if w+ao'.

We should remark here that this result has already been announced by
Agmon (1] without proof. Amrein and Pearson [3] have also shown the existence
of the scattering amplitude, but did not treat the regularity off the diagonal.

Our next concern is the behavior of the scattering amplitude at the diagonal.
If V(=) decays sufficiently rapidly as |z| — oo, T(1, @, ') is known to be regular
at the diagonal. More precisely, it is known that if ¢>N-1, T, w, ') is
continuous on S¥-'XSV-1 Our second result asserts that if V(x) decays more
slowly, 4, w, o’) does have singularities at the diagonal.

THEOREM 0.2. Lef 0<ee<N—1. Then:
i) II@, @, o)|SClo—a'|7F 10,
where the constant C is independent of 2 varying in a compact set of (0, <o),
ii) T @ ) =@ VT (VEP@—a)|
=Cllo—o/Po—u'| V4w,
where V is the Fourier transform af V, P(x);x~(a:-cu)a) and C‘(,'o)-—AFO as pv.—; 0.

Two remarks should be added here concerning “Theorem 0.2-ii). First,
under the assumption (S), ¥(§) is smooth for &=0. Secondly, if V(z)=|x|~'~o
for |z|>1, (&) behaves like J&|~¥ 1+ as €] — 0. "Since lP(w-—w’)l ¥ilra hag the
singularity appearing on the right hand side (RHS) of Theorem 0.2-i), Theorem
0.2-ii) shows that the estimate i) is the best possible. ern the above theorem,
we can derive the followmg

COROLLARY. Let V(a) be a non trivial smooth homogeneous function of
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degree —1—¢g, for |2|>R for some constant R>0. Then the total cross section

1T, 0, o)dede’

SN"leN—l

is finite if and only if &>(N—1)/2, and is infinite if and only if 0<e,(N—1)/2.
Next we turn to the long-range potential. - We assume that

(L) Wi(x) is a real-valued C* function on R¥ such that for some 0<e<l and
all multi-indices «

|38 V()| =Colay™1ot-.

In this case, we have to modify the definition of wave opefators. In [8] we
have introduced the modified wave operators

(0.6) : W§=st:1iig1 @i Jg-itio,

where J is a Fourier integralyoperator

0.7) T/ () =SS@“‘"”“' O=V0 f(y)dyds (d&=(2m)~VdE)
with a phase function ¢(z, £) solving the ‘eikonal equation

: 1 & =L
0.8 Elew(m, EFF+ Viw)= 5 €12

Our construction of the modified wave operators W# is slightly different from
the usual one. The usual modified wave operators W, are defined through

(0.9) We £ =S Iirn e“”e"‘“’t
where
(0.10) e f (g)= Sgei[w-ﬂl)'e—wc&. mf(y)dy(i&

with W(e, 1) soiving the Hamilton-Jacobi equation
(0.11) aW/at=-§—|5l”+ V(oW/a8).
It seems that, in general, W% do not coincide with Wi :

0.12) Wh+W..

(Our first remark in [8, § 4] seems to be wrong. We are mdebted to Pl()f K.
Yajima for his indication of this point.) :
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Using these wave operators W%, we can define the S-matrix S(2) as in the
short-range case. In the long-range case, however, it cannot be expected that
S(2) is equal to the identity plus a compact operator on L(S¥-1). Alternatively,
regarding S(2) as a distribution on S¥-'xS¥-!, we shall show the following

TureoreM 0.3. The singular support of S(2) is contained in the diagonal of
S¥-1SN-1 Thus SQ) has an integral kernel SQ, w, o) if w==a’. This is smooth
Jor 2>0, w, o' ¢ S¥! if o+, and

(0.13) ISQ, o, ") =Clo—ao' |-V~
where the constant C is independent of A in a compact set in (0, co).

Agmon also announced in [1] this theorem for the usual modified S-matrices
So(4) constructed from W, in (0.9). However, owing to (0.12), his announcement
[1, Theorem 2] might not hold. It is an interesting problem to determine to
what extent W3 and W, are different. An elementary consideration shows
that S(A)=U ()*Sp(AHTU_(2) for some unitary operators U.(2) in LS¥-Y). This
is quite an interesting open problem.

It is also an interesting problem to calculate the singularities of S, o, ')
at the diagonal. For the Coulomb potential V(z)=--¢/|z|, this has been done by
Herbst [6] and Soffer [17]. For general long-range potentials, it is still an open
problem.

Our final result is the reconstruction of the potential from the asymptotic
behavior as 2—co of the scattering amplitude, which is a long-range version
of the results obtained by Fadeev [5], Mochizuki [15] and Sait6 [16]. This solves
the inverse problem for the long-range potentials.

THEOREM 0.4. Let 1>e¢>1/2 and &+0 be fixed. Then

0.14) lxim —(2r)"F-DHANF-D2G0 w, o)=V(E).

VB (w—at)=¢

Since V(&)eL*(R¥) by our assumption (L) and the above convergence is
locally uniform for £+0, we can uniquely reconstruct the potential V(z) from
the scattering amplitude. This result has been announced in [11], and we shall
give a detailed proof in this paper.

All of our results except for Theorem 0.4 can be extended to potentials
with local singularities. Namely, if V is split into two parts: V=V+ Vs,
where V) satisfies (S) or (L) and V., is a compactly supported function belonging
to the Stummel class, the above theorems 0.1~0.3 remain valid. For the sake
of simplicity, we do not enter into such an argument here, however.

Our plan in this paper is as follows. We postpone the analysis of short-
range S-matrices till the final section 6, where Theorem 0.2 will be proved.
Theorem 0.1 is included in Theorem 0.3. The fundamental results concerning
the eikonal and transport equations will be reviewed from [8] and [10] in section
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2. In section 3, we derive a representation formula for the S-matrix S(2). The
proof of Theorems 0.3 and 0.4 will be given in sections 4 and 5, respectively.
In these sections, the micro-local estimates for two-body resolvents proved in
[9], (10] and [13] will play fundamental roles.

Acknowledgements. The authors are indebted to Professors M. Murata and
F. Asakura for stimulating conversations concerning Lemma 4.1, which led us
to the present form of the lemma.

§1. Micro-local estimates for resolvents.

Let H =—-%A+ W(z), where V satisfies the assumption (L), and let R(z)=
(H—2)"'. We denote by L¥seR") the weighted L* space:

1.1 LE=LXRY ; {xd¥dx),

and denote its norm |[<z)*fIl by ||flls. Then by the limiting absorption principle
(see e.g. Theorem 1.2 in [9]), R(z) (Im z+0) has a bhoundary value on (0, co)

belonging to B(L?; L%,) for any r>—;—:
(1.2) R(lii0)=s-lﬂiﬁl R(2xipw),  a>0.

Let A,, A. be the Fourier integral operators (F.I. Op.’s) (cf. [13]):
) A= fesere 20 e, &) fduds

satisfying the following assumptions (1.4) and (1.5).

(1.4) @iz, & is a real-valued C=(R*¥)-function such that for some constant
g >0, for |y|+|6|=#o(n>N) and for some 0<7r«1,

05080 (m, &)—x-&)| ZCopapi-rmlel,

o

o (5 ot )]

Sip OxnEn,

a,eeplV

<,

where I is the NX N identity matrix.
(1.5)  ax=z, &eC>(R*¥), and there exists a constant ¢>0 such that
a(z, &) =ay(x, £)=0 if |&]<d or |z|<d.

Moreover, there exist constants —1</ < <1, 0=6<p=1 and m=0 such that
for any L=0
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la;‘ag dl(x: S)i

[Coprad=* if cos(e, &=t S,
= ] - |€]
lcgﬁ<x>m-ﬂa|+ilﬂl if cos(z, &)=,
]a; ag aﬁ(w) E)!
<{CaaL<w>“L if cos(z, &<,
~ |Cutmpmosieen if cos(z, Oz pm.

The following estimate is our basic tool in the study of the scattering matrix.

TueoreMm 1.1. Let A, A. be as above. Let 2,>0 be arbilrarily fixed. Then
Jor any s, k=0, there exists a constant C>0 such that for any 1> 2

k
(L.6) 14:( L) R i0Auflh=Cr e v L,

Proof. Since the case k=1 can be proved similarly to !ezO‘by the use of
Theorem 1.8 in [7], we here prove the case £=0 only. ’
We define I; by '

1.7 ij<(1;)zSSei(saf(m.f)—?/‘-’;‘)f(y)(lydé’ j=1,2.

Then we can easily see (cf. [13], Theorem 3.2) that Bf=IA¥ and B.=A,I¥ are
the pseudodifferential operators with symbols b; (j=1,2) which satisfies (1.5)
with g, p. replaced by some constants /i, A such that g <7 <fl<g. Further,
by virtue of (1.4), I; and [} have bounded inverses (cf. [13], Theorem 3.3).

Choose constants p. such that 4 <p-<p.<f and split B¥=(B¥).,-+(B¥.-
and B,=(B;)++(B:)- so that ‘

the symbol of (B¥)-=0  for cos(z, &)>pu-,

the symbol of (B.);=0 for cos(x, &)<p.
Since the symbols of (BF), and (B)- are rapidly decreasing in x, we see that
(BF).+ R(2+410)(B,)- verifies (1.6) with £=0 by [9], Theorem 1.2. We apply Theo-
rems 3.5 and 3.12 in [9] to see that (BF)_-R(A+i0)(B:)- and (B¥),R(2+10)(B).

have the same property. For (BF)-R(A+i0)(B:)., we apply Theorem 2 in [10].
Thus we have )

(.8 ‘ 1B¥ R(A+10)Boflls =Ca2| f]-s

for ény A>2, and s=0. Thus (1.6) follows from this and
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(1.9) AFR(A+i0) Ay =I7' BF R(2+i0)By(IF)-". Q.E.D.

In the next section, we construct the above mentioned F.I1.Op.’s by solving
the eikonal and transport equations.

§2. FEikonal and transport equations.

In this section, we review some of the results of [8] and [10] concerning
the classical orbits which we shall need later.
Let U(z)eC~(RY) satisfy %(x)=1 for |#|=2 and =0 for |z|=1. Let

(2.1) V¢, )= V{z)x(px)x(<log &p>x[<Ey), 0<p<1,

and let (g, p)¢, s; =, & be the classical orbits which satisfy the integrated form
of the Hamilton’s canonical equation

gt =y+ g‘ pe, $)ie,
2.9) :

t
2t 9=¢={' T Vtz, gtz, ).
Then there exist the inverse diffeomorphisms @ — y(s, ¢; z, &) and & -5, s;
a2, &) of the mappings v — w=¢(s, ¢; v, &) and y— £=p(, $; x, 7), respectively:

time s time ¢

( © ) (q, D), St @ n) ('z/(s, t: a, 5))
77(7’17 S; 2, E) E °

The estimates of the mappings ¢, p, v and 5 are summarized in Propositions
2.1 and 2.2 in [8]. Let

(2.3)

@.4) ot @, E)=ult; =, ¢, 0; 2, €),
where
u(t; ©, )

=+ [ 1 —2 - PG 05 3, 9) 2(e, 0 3, ),
Ht, , e>=—§—|s;-12+ Vit ).
Then dup(t; =, s)=él$[2+v,,(t, Vet w, £), ¢(0; », §)==-& and

Vad(t; », E)=y9, 0; x, &),
2.6) {qﬁ( z, &)=y z, §)

V€¢(t; Z, S)——-y(O, t; x, E)
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Using these, we have proved in [8] the existence of the limits
@.7) ps(e, H=Im (9(¢; @, ©—¢(t; 0, &)

for (z, &)el'«(R, d, o)={(x, £)eR*™| |z|=R, |&|=d, +cos(z, &)= —a} with d,
0,€(0,1), and sufficiently large R>1. These ¢, satisfy the eikonal equation

1 2 __l-_ 2
2.8 ‘é’lyxﬁ'&(xy O+ Viz)= D) €]

and the estimates
2.9 105 08(p(, €)—2-6)| SC0plé]~ (D11

for (=, &)el«(R, d, o) (see Proposition 2.4 in [8]), if R»1 and 0<p«d. Choose
constants o, ¢; such that —1<eo<e; <1, and let ¢.(c)eC*([~—1, 1)) satisfy

0=¢:(0)=1,
1 for o,=0=1,
¢+(0)={
(2.10) 0 for —1=0=(0o+a,)2,
for (oo+0)2=0=1,
¢—(0)={
1 for —1=o¢=o0,.
Set
2.10) oz, E)={(p+(z, £)—2-E)p(cos(x, £))

+(p-(x, &)~z -E)p-(cos(z, ENUL/AA(4z/R)+2-&.

Then ¢ satisfies the eikonal equation (2.8) for (z, £)e"(R, d/2, —a)UL'-(R, d/2,
¢o), and the estimate (2.9) for all (z, §)e R*¥,
We next consider the transport equation

2.12) Vzngxa—!-—%— Ax;a-a—%idzaz() (mod B).

Here by feB we mean that for any L=1
(2.13) 05 08 f (=, &)

{CapL<w>'L<E>"‘ for cos(z, £)e[—1, 6—01U[o1+0, 1], |§|2d, |z|Z=R
C x> 1=I{g) otherwise,

<

where §>0 is a sufficiently small constant. We construct « in the form of an

asymptotic series: azia“"’, a®=1. Formally (2.12) is equivalent to
m=0
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(2.14) Vzgwlf"wa"”)—l-% Ax¢«a(m“’—}iidma(m")50 (mod B)

for m=1,2,.... By virtue of (2.9) and the classical theory of first order partial
differential equations, this equation can be solved for (z, &el'=I"(R, d, —a)U
I' (R, d, g;). The solution a satisfies the estimate

(2.15) |05 08 @™ (2, )| ECopl&~ )™, m=1,2, ...,

for (z, £)el. For a suitable choice of a sequence {eml5-, tending to 0, &(z, £)=
i X(emz)a™ (z, £) is absolutely convergent for (z, &)e/’. We then define o(x, &)
by

(2.16) a(m, §)=b(z, &)(f(cos(z, &))-+F-(cos(w, ENX(2E/DX(2z(R),

where ¢.(0)=1 for o=¢,+d, =0 for ¢=o and 0=¢.=1, and ¢-(o) is defined
similarly. The properties of ¢(x, & and a(z, &) constructed above are sum-
marized in the following

Theorem 2.1. Lot —1<0,<o.<1, d>0 and 0<é<1. Then:

i) For sufficiently large R>2 and small 0<p<d, ¢ solves the eikonal
equation

@.17) -,}m-gn(w, e+ V<m>=-§—|s|ﬂ

Jor |&|=d[2, cos(z, &)e[—1, ao]Ulay, 1] and |z|zR/2.

ii) For any (x, &£)eR*™ and «, B, ¢ satisfies the estimale

(2.18) |35 08 (pl, &)—2-&)| SCoplad ™V KEY.
Fuythermore
2.19) olw, §)=x-&  for |z|=R[4 or |§|=d/4.

iil) For any (z, E)eR™ and w, B, @ satisfies the estimate
|05 0 a(z, &) £ Cepla>™",
|05 0(a(@, &)= 1) ECaplad™7 >
for cos(z, & e[—1, o,—0]Ule1 49, 1], |&|=d, x|z R,
alz, €)=0 for cos(z, &)elon, 0,] or |z|SR/2 or |E]=d/2.
iv) Set
(2.21) iz, O)=e-i*e f>(—-—§«a+ V(x)—é—]&]”)e“’”' oa(z, 8).

(2.20)
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Then for any L=1

(2.22) las 0t t(x, &)
Cuprmy=<E>

= for cos(x, £)e[—1, ao—dUlo+4d, 1], |&]=d, |2I= R,
Copad™~19KE>  otherwise.
For the proof, see Theorem 2.5 in [8] and Theorem 2.3 in [10].
We next set

(2.23) Valz)= V(z)Lo(x[n),

where 7,eC(RY) with Zy(2)=1 for |z|=1 and =0 for |z|=2. Let ¢", ¢" and ¢"
be defined as in Theorem 2.1 with V=7V,. They satisfy the estimates in
Theorem 2.1 uniformly in 7. Moreover, we have

TueOrREM 2.2. 1) There exist a real-valued function w™(€) and a constant
An>n such that

(2.24) o™z, E)=x-E—w™(&)

Sfor x|z Aq, (Elz2d and cos(z, §)e[—1, a]Ulay, 11
il) There exist constants C.z such that for any n and L=1

05 04 (2, &) —p™(@, )= Cagn™e(ayt 14,
|95 98(a(z, &)—a"(m, E)=Copn =)0,
|95 08(H(, £)—t"(w, £)]
Caprn™te{ad "I
= for cos(z, &el[—1, ao—alU[o:+48, 1), |&l=d, |2|=R,

(2.25)

Copn~ =gy 70" 19E>~1  otherwise,
where 0<e—e €1 and 0<e,<&.
Proof. i) Omitting the subscript », we have only to show

(2.26) Vag(x, §)=£

for ||z A, |&=d and cos(z, £)e[—1, e]U[oy, 1]. By the construction of ¢, it
suffices to show Fag.(z, &)=¢ for |@|=A4a, [El=d and cos(x, &)elo, 1], since ¢_
can be treated similarly. By (2.3) and (2.7), we have

(2'27) Vz¢+($, £)=§};§1 77(1', 01 Z, E)



Scattering Matrices for Two-body Schridinger Operators 91
=lim p0, ¢; O, ¢; =, &), &)
[

=+ [ Ve a, 05 0, gfe0, 03 1, D).

Since |g(z, 0; x, y(oo, 0; &, E)|=C(x|+<|&)) for cos(x, &elr, 1] and |x| large
enough (see e.g. (2.23) in [8]), (2.24) follows from the assumption that V(«)=0
for |z|=n.

iil) We show the first estimate in (2.25). The others follow from this by
careful re-examination of our construction of ¢ and . We denote the quantities
corresponding to V., by adding the sub- or superscript ». Then using the ab-
breviation g(r, #)=q(z, 0; Oz, y(co, O; Oz, &) and Fuls, N=gulz, 0; Oz, pu(co, 0;
0z, £), we have in view of (2.27) and (2.23).

(2.28) {61z, ©=0:0, D —{gile, O30, O
R AR A S S CAACH A
::n-g;dofdr[{1~xa(q(:, GRS R )

+1o(G(z, DM FV )z, glz, 1))
"XO(KYn(T, ())/71)(F17Lr;z)(7» (77L(T: ()))
—Viulz, Gulz, O (Fedo)Gulz, O)[n)].

The RHS is seen to satisfy the first estimate in (2.25) for cos(z, &)ela, 1]. But
by (2.7), ¢:(0, §)=¢1(0, £)=0, which implies (2.25) with gp=¢, and ¢"=¢p%. ¢-
can be treated similarly, and the desired estimate for ¢—¢" follows from (2.11)
and interpolation. Q. E. D

For our later purposes (section 6), we consider the short-range potentials
satisfying the assumption (S) in the introduction. In this case, letting ¢(x, &)=
z-&, we solve the transport equation

(2.29) E-TaatiV a—ide=0  (mod B).

If we assume that ¢ has the form mi a™, q®=1, (2.29) is equivalent to
(2.30)> | | $~Va“’”—FiTr"-(l‘"“”-ém i:l(z("""‘)EO (mod B)

for m=1, 2, ---. We then have for cos(a?, 5)}—1+6, O<5<w}i~, |&l=d,
(2.31) Az, &)= “E%%Tr{ Viz+Ea™=(a+E, &)
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~——é—Aa"’“”(m+§z‘, endt,  (E=gfjg)),
and
(2.32) 65 98 ™ (@, £)] SCupl€] -1 (ayIet-m0,

In particular,

(2.23) 2Dz, &)= —ﬂ—lﬂg:oV(x-i-Et)dt.

Taking a suitable sequence {en} tending to 0, we define
(2.34) o, £)= 3 Uena)a™(z, UEIANU(=|R)

for cos(z, £)>—1+4, |§|=d. Taking g, €C*([—1, 1]) such that px(o)=1 for
0>28, =0 for 6«4, and p,(c)=1 for 6>—1424, =0 for o< ~1+4, we define

{Xl(x, &)=p (cos(z, &),

(2.35)

X (2, £)=ps(xcos(x, §)),

(2.36) a(z, §)=alx, E)(z, &),

(2.37) ay(z, E)=a(z, &0 (x, E)+a(x, —E);(x, &),

2.38) iz, s>=e—w-f(--;-d+ V<x>-%!5|2)ewa<x, 9,

(2.39) t(x, 6)=e”“"f<—%-d+ V(m)——%—l&lz)em'eaj(x, &), j=1, 2.

Then we easily have

ProrosiTION 2.3. fo(z, &) car be written as
(2.40) iz, §)=1(z, £)—1(z, &)
=iz, £z, &)+ (a, O, =)
—{@&- V1 (2, E)alz, O+(E-T1i (2, £)alz, =)
+V 5 (2, §)-Va(x, &)+ V5 (w, &) -Vals, —§)

+~§—<Ax:<w, alz, 5>+§(Ax;<x, &)alz, —B).

Further we have for any L=1
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(2.41) |05 081 (2, &)

{Ca,aL<x>‘L<§>“'ﬁ‘ for cos(z, &)e[—1, —1+d]U[—1+26, 1],
Caglad™1-1LEV-IR othewise,

=

and
(2.42) |05 08 £o(, €)|

{c,,ﬁ,,@)w(ey—fﬂ' for cos(z, &)e[—1, —261U[26, 1],
<7

- Caplad= -1 EXI1B otherwise.

§3. A representation formula of the scattering matrix.

In this section we shall prove a representation formula for the scattering
matrix SQ).

In Theorem 2.1, os and o, are arbitrary as far as —1 <<, <1. We choose
o} and of (j=1, 2) such that —1<a—i<n<ai<n+0<0<ot—d<ai< i<t +6<1,
and denote the corresponding ¢, @ and ¢ by ¢, ay and ¢;. We then define the
Fourier integral operators /, and J; by

3.1 fjf(m)=gge“*"1“”' O-1Dg(x, &) f(y)dydé, 7=1, 2,
for feS=S(RY), the space of rapidly decreasing functions. We further set

(32) Tj=[?[jj“‘fjf.‘[0.

A simple calculation shows

3.9) Tyf(a)= e o-rot o, &)7w)dnde.

We define Fo(R)e B(LE, LY(SH-1)), 7~>~§-, 1>0, by

3.9 (F (DS )= @DV-D G )V 2da),

where & denotes the Fourier transformation. Then as is well-known (see e.g.
12D,

LeMmmA 3.1. Lot R(z)=(H,—z)"', Im z+0. Then for any fel?, 7*>~12-,
>0
(3.5) (Ro(2+10)— Ro(2—10)) f = 2ai F o(A)*Fo(A) f .

We prepare one more lemma.
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LenvMa 3.2. For any s>0, k=0, there exists a constant C such that for
2>dM2
k
3.6) KDy T#(5)” RGHOTHDY A =CE 4 f e
Proof. Theorem 2.1 implies that T XDy (j=1, 2) are the F.1.Op. s satisfy-
ing (1.4) and (1.5). Thus the lemma follows from Theorem 1.1. Q.E.D.
Our main theorem in this section is the following

TuroreM 3.3, For a. e. 1>d¥2, the scattering matviz S(0) can be re-
presented as '

3.7) S —T= =2zt F (AT ¥ToF o 1)
+ 27 F ()T R(A+10) T F o A)*.

Here d is the constant in Theovem 2.1,

Proof. We first note that the second term on the RHS of (3.7) is a well-
defined bounded operator in L*S¥-') by Lemma 3.2. Thus if (3.7) is proved
in some weak topology of L*S¥-'), the first term on the RHS of (3.7) turns
out to be a bounded operator in LXS¥-'), hence the expression (3.7) has a de-
finite meaning.

Take I'c[d?/2, co) and let

3.8) Wil)=s-lim e Je By (0. j=1, 2,

where Ey,(/’) is the resolution of the identity for #,. By Theorem 1.1 in [8],
(2.20), and the stationary phase method, W3%(/")'s exist; are partial isometries on
4 5 satisfy the intertwining property; and are identical. Thus we have, letting
SUIN=En(I)SEn (1),

(3.9) S(M=W (I WiD=WHH*W).

Since WH(IV*Wi(lN=Eu(l),
(3.10) SUN=DEg1)=W W ()—- WD),

Taking note of the relation
(3.11) WiImH—-Wi;{)=i r e"H Toe=“Hodt By (I)

and the intertwining property of Wi(I"), we have for f, ge@D=SRY)N
En(IMLHRY), '

(3.12) (SUN—-DEa)f, 9)
=((WZ)—-Wi NS Wil
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==i | (Tamemg, Wi gy,

Here we have used the fact that ||Tje~"Tofl|<Cy, &>F for fe, te R and any
k=1, which follows from Lemma 1.1 of [10] and (2.22). By a similar reason-
ing, we have

(3.13) (SIY—=DEr IS, @)

Fon (28]
=i§ ) g (Toe Vo f, U T e " T~ oy drda
0 o

—i|” (R, Le-engac
R

(a5] [:a]
= lim [zg (,e“"”ig gt (i k= 1T o P F N
! 10 0 -Ca

i Sw em,u(r](eir]lof;k'[‘ge-«irl!gf’ g])d’l’} .
-0

We now pass to the spectral representation for F,. Let 4 be the Hilbert
space L¥(0, co); L¥SY-1) and define Foe B(L}(RY); J0) by

(8.14) (SN2, 0)=(F oD W) Tor feCP(RY),

Then &, is uniquely extended to a unitary operator and for f, yeCy(&Y)
(3.15) (F, 0)=(Fof, Fa)se={ (Fol)f, FeDduscsr-d.

(See (3.5).) Therefore we have

(3.16) (et Tkl Ty #0f )

= [ Trer e T £12,), D Masear=id.
o
Hence we have using Lemma 3.2 and igme‘"""e““""”‘““dazR(Z+i/¢)
O

o)
(3.17) lim zg (@t Iy The=iH Tyo~is o f | 4\ ]
nlo 0

=~ | (F T RO+ T2 1100, ), Fo Dol Vascsv-ndi.

Again calculating lim S e~ .. dr, we see that the first term on the RHS of

wio

(3.13) is equal to

-

(3.18) i S:’([%T;kze(z FIOVTEUDFIA, ), Fo( DD eesv-1dR,
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where Ey(2)=(2x1)~ (Ro(2+i0)— Ro(1—10)) = F(A)*Fo(1). Lemma 3.2 implies that
(3.18) is equal to

(3.19) 2ni Sj(g ADTERQA+ YT Fo(*F o) S, Fo(D@)2s8-1,dA.
Similarly, the second term on the RHS of (3.13) can be rewritten as
(3.20) — 2 | (G TG (D F DS, FoR)sesv-15d2.

We have thus completed the proof of the theorem. Q. E.D.

§4. Proof of Theorem 0.3.

We first note that the C* function ¢(x; 1, @)={Dyye!v?»= satisfies
(4.1) [05 00 (5 2, @) S Cpad =22 grbbil,
Lemma 3.2 then implies that the function
4.2) Alx; 2, o, o)

=iz 4, O){DY'T¥RQA+I0)TLKDY™'(- 5 2, @)](®)

satisfies for any L=1
(4.3) 0% 05 05, Az ; 2, o, @) SCAQ-FHHE2 AL,
Since for ¢eL*S¥-1)
4.4 FoDTFRAA0)ToF o(2)*p(w)

:(27:)“”(22)‘”"’”"’“A(JU; 2 o, )p(e)do'ds,

(4.8) implies that the second term on the RHS of (3.7) has a C~ integral kernel.
The first term in (3.7) has the kernel K(4, w, o’) such that

4.5) 2r) N2 2K(A w, o)
:—-_Se—i(ﬁ(x,Jﬁm)—m(a‘.s/ﬁaﬂ))q(x, 2, w, (U’)d&’}

where

(4.6) gz, A, @, 0)=gltea@ =@, /Eu)

Xai(z, V2wkt(T, v/2w’).

By Theorem 2.1, ¢ satisfies
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(4'7> Ia;Q(w: X, @, w’)I§Ca<m>—l_llal'\/K
Set
(4.8) D=0z, A, w, @")=p(z, V2I0)—(z, +/220').

In Theorem 2.1, taking R large enough, we have
*.9 PeFepe, @, —11<5

where [ is the NXN identity matrix and

(4.10) Feoe, @, )= (P, 7-+0(&—n)dd.
Noting
(4.11) O=~2w—w")-Veps(V 210, z, V2i0')

and using (4.9), we make a change of variable y="rp(v/220, z, v/20’) in (4.5).
Then

(4.12) KQ, o, w')—_—cge—wmw—w-wq(y, 2 o, o)y
for some function § which satisfies (4.7) by Theorem 2.1. Thus by integration
by parts it follows that K(4, o, ') is C*® when o+o’.

In order to estimate the behavior of K(1, w, o) near w=w’, it now suffices
to prove the following

Lemma 4.1, Let f(x, £)eC*(RY X RY) satisfy

(4.13) 05/ (z, )] =Calap™""!

Jor some 0<v<N and 0<051, and set

(4.14) #(@)= [ (o, .

Then

(4.15) |o(&)| =C|g|- -7 as |&|—0.

In fact Theorem 0.3 follows from (4.7) with ¢g=¢ and (4.12) by virtue of
Lemma 4.1 with f=§, v=1 and d=-c¢.

Proof of Lemma 4.1. Choose X(f), %.@#)eC(R") such that %()=1 for =1,
=0 for £=2 and
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(4.16) Xo(®) +2t)=1.

Set for ¢>0

on@)= et (IallE1)f(a, Oda,
4.17)
pul®)= {e = L2l (a, o,

Then ¢(&)=¢o€) +pu(E). @o(&) is estimated as

(4.18 @l=C| _A+la)do

_gcgzm—“ (L7 ¥y

__<=C(E|—"(N_")

near [&l=0. For ¢., by integration by parts, we have

(4.19) lsom(f)léCIEI““'SI%(Xm(IwIIEI")f(w, ldz.
Since
(4.20) [05(Heo( | 2] | €] ] = CoCmd~?,

we have for any «
@.21) 105001 81°) f(, €D ZCuary™"1.

Inserting this into (4.19), we have

(4.22) l%(&)léClEl"“'S . (>l dy

lzlz1el™

éC]E‘—lul—a(N—v—-alﬂl)
for £ near |&]=0, if —y—dja]+N—1<—1. Choosing ¢=4"!, we obtain (4.15).
Q.E.D.
§5. An approximation by short-range S-matrices.
In this section, we assume 1/2<e<e<1l. We set as in section 2, (2.23)
(5.1) V)= V{x)Xo(z/n)

and Hn=Ho+ Va(z). We define J? and T%(j=1,2, #»=1,2,.-+) by (3.1) and
(3.3) with ¢;=¢}, @;=a} and #;=t7, where ¢}, o} and # are constructed as in
Theorem 2.1 with V=V,. Then we can construct the scattering amplitude



Scattering Matrices for Two-body Schrédinger Operators 99

Su(, @, ') for H, as in sections 3 and 4. Our purpose in this section is to
show that Sa(4, w, »’) approximates S$(2, w, »’) as # — oo and to prove Theorem

0.4.

ProrosiTioN 5.1. Let the assumption (L) be satisfied. Then for any a>0
and 2,>0 there are constants Ca,y,>0 and 0<e<e such that

(5.2) @A Y-BSQ, @, @) =Sa(A, 0, )| =Cqp
for |\ 22w—a")|Za and 1= 2,.

Proof. By Theorem 3.3
(5.3) S = SuD=2ri 33 Fo(DAIDG D,
where
AYQ)y=—(JFTo—(UD*TD),
AQ)=(TF—~(TH)"RQA+i0)T,
AFQ) =TT R(A+10)— Ra(2+10))T,
AFD)=(TT*Ru(2+i0)(T2—T3).

5.4

By Theorem 3 of [10] and a simple variant of the proof of Theorem 1.1, we
see that for any s>0

(5.5) (KDY AFQKDY fIls=Ca ' | fll.s,  AZAP[2,

which implies similarly to the first part of section 4 that F(Q)A)F()* has
a C™ integral kernel B}, o, w’) such that

(5.6) |BY(2, o, o)|=Cnaj@-2,
Next we consider A2(2). By a simple manipulation we have

(5.7) Tof (@)= T f (%)

=(Zn)"N"*Se“’"”'“{bu(x, &)+ealw, OV (E)dE,

where

{bn(m7 $>:t1<xa 5)'—3‘11("”1 E)I
(5.8) n

eala, &)=ti(z, E1—colEOmE),
Since

(5 . 9) ,a; ag(l — ei(w;"(-’t.é)—wl(w.f)))l gC&pn—ea<§>-1<$>~lu|¢|+(l~—¢g)ﬂﬂl+1) ,
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which follows from Theorem 2.2-ii), we see that the symbol bu(z, &)+calz, &)
satisfies (1.5). Thus we have in view of Theorem 1.1 and 1>¢>1/2

(5.10) IAFXDY flls=Cn=27 2| f|-s

for s>0 and 1=d?2. This shows that F(DAR(DF()* has a C kernel Bj(3,
w, o) such that

(5.11) |B2A, o, )| SCuaav-»re,

Similarly, F(A)*A()F(A)* has a C= integral kernel B7(1, o, w’) which satisfies
(5.11) with B? replaced by B?.
We finally consider A%?(2). Since

(5.12) A= —F - T— DN T~ T,

and the symbols of J¥—(J?)* and T,—T% are seen to satisfy (1.5) similarly to
A7), we have using Theorem 2.1-(2.18)

(5.13) AN f ()

=(eerata, or@avde,
where the symbol af(x, &) satisfies
(5.14) |05 88 al(z, &)| = Copn et IR rlalrr,
Thus Fo(D)AX)F(A)* has a kernel
(5.15) A2, w, @)

=(2ﬂ)~N(2x)<N-2)fﬂSewm—w'Ma:’(m, i)z

Taking notice of [+/24(w—w’)|Za, integrating by parts with respect to x in
(5.15) and using (5.14), we get
(5.16) |A2Q, o, 0)]| SCon~1(22)N-D72,

This completes the proof of the proposition. Q. E.D.

We denote by S®(4, w, ) the short-range type scattering amplitude for
the compactly supported potential Va(z), ie., the scattering amplitude defined
as in sections 3 and 4 with Ji=I.

LeMMA 5.2. There is a real-valued function P(2, o, ') such that
(5.17) Su(2, @, @)= Fn SO v, o),

(5.18) [Pa(2, @, 0")|=Calv/2.
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Proof. Let Wi=s-lim ¢'t¥#re~*#o, By Theorem 2.2-i) and the stationary

b koo
phase method, we see that JPe ##of is asymptotically equal to e % Heg ®nDa) f ag
t— oo for feP=F Y CH(RY—{0}). Thus, denoting the short-range type scat-
tering operator for V, by S¥©, we have

(5.19) Suf = EPnDSO gD £

Passing to the Fourier transform, from this we obtain (5.17) with Pu(4, o, ')
=wn(/220) —wn(+/2i0’). (5.18) follows from (2.24) and (2.18). Q.E.D.

‘We prepare one more lemma.

LemMA 5.3. The following estimate holds uniformily in A=2(>0) and o,
' eSSV

(5.20) @)~ -2USEQ, 0, 0)~dw—0")=cr(F Vi) V2 0—ao")|
=CnV¥[A/2,

where cy=Qa) ¥ +27%,

Proof. In a way similar to section 3, we have
(5.21) SP—1
= =2 G o(A) Va T o(2)* + 211 F o(2) Vo Ru(A410) Vo T o()* .
Therefore we have using Theorem 1.2 in [9]

(5.22) |SED(2, @, @)—d(w—a')

—en(22)N -1 ”ge“i B Vo () dm|
<A | V@) RalA+10) Valy)et B 5) @)

= m(gwm LV Ra(A4-10)( Vuly)et ”m"”)(w)lzdx;)uﬁ
SO N Ry G4 0) Vet ),

SCIW-D N9 /2|| Vn“Lf/'\/zg CAWN~D/2pyN+3 [/ T Q.E.D.

Now we can prove Theorem 0.4. Using Proposition 5.1 and Lemmas 5.2,
5.3, we have for £=+/2w—ao"), |&|Za(>0), 1= 2,(>0),

(5.23) IR~ F-2252, @, o)—ex(FV)EI
,~<:|(21)—(N'2)/2(S(2, @, Q)’)"’Sn(l, , CU’))‘
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+[6P2((22)~ W22 S, w, o) —cx(F Va)E))
+ 1@ —D)en(F Va I +enF(Va— VXE)I
SCqa 11+ a3 A/ 24 Conl A/ A+Co, e

This clearly implies (0.14). Using Lemma 4.1, we can easily see that & Vel
Q.E.D.

Finally, as a simple corollary of Proposition 5.1 and Lemma 5.2, we record
a theorem, which gives a calculation procedure of the differential cross section
[SQ, o, @}, e+’

THEOREM 5.4. Let the assumption (L) with 1>¢>1/2 be satisfied. Then for
wFw' and 1>0

(5.24) lim |S8(, o, o)*=]SQ, o, o).

§6. Proof of Theorem 0.2.

We use the phase function ¢(z, £&)=x-¢ and the amplitude functions a;(x, &),
7=1,2, defined by (2.36)—(2.37). We define

6.1 Jif@={{eeras, eraands
and

6.2) Ty=HJ;~J;H.

Then

6.3 Tuf(@)={[e=m it o, 7)dude,

where #4(z, §) are defined by (2.39). Arguing quite similarly to the proof of
Theorem 3.3, we have

6.4) SQ) =~ I=—2miF o D] ¥ ToF o R)*
+2miF oA TFRA+10) T2 F o )*.

The second term on the RHS has a C* integral kernel by Proposition 2.3 and
Lemma 3.2. Furthermore by an argument similar to section 4, the first term
on the RHS of (6.4) has a C= integral kernel K(o, o) when w#w’. Ko, o)
can be written down as follows:

(6.5) @) K, m')=§ e

R
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where
6.6) gz, o, o)=a,(z, Voin)lz, V2iw').

Since by (2.34), (2.35) and (2.38), {(x, &) in (2.40) decays rapidly with respect
to z, the singularity of K(w, ©’) comes from g.(x, o, 0’)= —ay(x, V2P (x, v 2iw’).
In the following, we always assume |w—e’| is sufficiently small but w+#w’. By
(2.32) and (2.35), on the support of 45X (=z, '), a0, we have

6.7 a(z, V2w)y=1+a®(z, V2iw)+1(z, V2iw),
where
©.8) |03 8 #(z, €)= Copday™~2,

Using (2.40), we compute

(6.9) @z, 0, 0)=—1+a(x, V2iw)+riz, V2P, VIie')
= { (z 2k’ F—!——%A) (e, o) +27 (2, @)

— (V20’1 (z, o)) @V (x, V2w )+aD(z, V2w))

— (V2 Ty (2, @) aP(x, —V2w')+a®P(z, V2i))
—riz, o, )
==V —Va—Vy—7,,

where 7, satisfies

(6.10) 074, @, )] S Culay=120mlel,
We write
6.11) Ko, w’)=—-ge“im(wm’)'rrj(w, o, )iz,  j=1,2,3,4.

By Lemma 4.1 and (6.10), we have
(6.12) | K, @) =0(ja—a|~N 1)
as |w—ao’| =0 but w+w’, where we have used ¢, < N—1. When w+e/, we can

integrate by parts in the following integrals by the use of L=|w—o'|" o—ae’) Py .
and we have

(6.13) Ki(w, m’)=~—Se*i~’27(“~"")'mr,(x, o, o")dz
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=iV [emi et of)- Pl @, W) 415, @)

= ZS gmiviu—ara(g—w')- (0 + o' )% (2, o')+1 (2, o’))dz
=0.

By (2.33), 2™z, v/22w) is pure imaginary, hence ¢ (2, v/2iw)+a®(z, V2iw)=0.
Thus we have

(6.14) Koo, 0")=0(lo—a"|~N+1+a),

By a straightforward calculation

(6.15) Ky, o)=—~ g eidTw-a 2ol P (xz, o)A, w)dz,

(6.16) Q(z, w):SlV(x%—wz‘)dt.

Therefore we have for |w—«’| near 0 and w+w’
(6.17) I@RYI (A, @, @) —Kslw, o) =0(lo—ao'|¥*+),

It remains to compute Ky(w, ’). First take notice that Q(z, @) is transla-
tion invariant with respect to xz:

(6.18) Qz+ws, w)=Q(z, w).

We set without loss of generality o=(0,---,0,1) and z=(2’, 2»). Then we
have

6.19) Qa, w)={" V', sx)day=Q("),
"and
(6.20) Ky(w, o)

=— Se“i Alo-o)z 59— (o — 23N )dz,  Ex=azy/|x]|.
N

We set
(6.21) L(w, o’)

9
aa:N

(oo — 23))Q(x Yz,

= — Se-—z‘. Sl w—w?)- (27 ,0)

and estimate Kiy(w, o’)—L(w, ') for |o—o’| near 0 but o+#e’. We make a
change of variable: y={w—o/|z and d=(0—0o’)/lo—w’|. Then
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(6.22) Kyw, o)=— S lo—o'|"Ne-ivmvfly o—o)dy,
where
d
(6.23) Fly, =) =5 (po(— 2x))QU(") :
oxn P

Since P=(V22]0»)~'i0-F, is well-defined for w+a’, by integration by parts we
have for £=0,1,2--.

(6.24) Ko, o’)=— X |o—a@|~Ne=ivaed f (y w—w)dy,

where f,(y, o—o')=("P)f(y, o—w'). By the definition of p» in section 2, 2i=

—xy=0 on the support of 5‘2‘”“(‘02("‘(2'1\7)). Thus by (6.16) and the assumption
AN

(S),

6.12) 55 (o= 2@ | ZCtap=,

hence

(6.26) 195 (v, o—a)| =Colo—o’ |7 (1+|w—ao'|Hyl) -0,
Therefore

(6.27) |the integrand of Ky(w, o)

Clo—a'|"Fttadyy=t=n=t  for |y|z1,
Colw— @' |~ N +itea)y|~1-« for |yl=1.

The RHS is integrable on R} since Nz2 and 0<e<N—1. Similarly we have
(6.28) Lo, o')=—|o—a'|¥ Xe‘”ﬁ‘”"“"”fg(if/, (@—w'y, 0)dy,

and (6.27) with K, replaced by L. Therefore
(6.29) | Ko, o)— Lo, o)

s{lo—o|Me-tmas g, 0—a)

om0 Af (g, (0=, O)ldy.

Since the integrand satisfies (6.27) with K, replaced by K;—L, we have by
Lebesgue’s dominated convergence theorem

(6.30) |Ks(w, o)—Llw, @)|=o(|o—ao’|~¥++d),
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Noting
- a A 7y —
(6.31) ~| gt = andzy=1,
we have
(6.32) Lo, 0)={ we-trmemsren Va)da

=@2r) Y AF VY V2IP(0—w").

This together with (6.17) and (6.30) proves Theorem 0.2-ii). Theorem 0.2~i)

follows from Theorem 0.2-ii) and Lemma 4.1. Q. E.D.
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