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Chapter 1

Overview

1.1 Introduction

Cournot, Bertrand, and Stackelberg models have occupied important positions among mod­

els of oligopoly. These models have been used in many situations and subjected to intensive

discussion.

The familiar Cournot (resp. Bertrand) equilibrium is the Nash equilibrium of the stan­

dard Cournot (resp. Bertrand) game where each firm chooses output (resp. price) simul­

taneously and independently, and the well known Stackelberg equilibrium is the subgame

perfect Nash equilibrium of the Stackelberg duopoly game where each firm chooses out­

put or price sequentially. Since both Nash and subgame perfect Nash equilibria are very

natural solution concepts, the Cournot, Bertrand, and Stackelberg equilibria are also very

natural solutions for each model. This is one of the main reasons why many other stories

of oligopoly lacking rigorous game-theoretic foundations, such as the story of conjectural

variations in static models, or a symmetric 'leader-leader' equilibrium in Stackelberg-type

competition, rapidly lost their influence in the modern theory of industrial organization,'

1 For the story of conjectural variations, see, e.g., Bowley [9) and Frisch [27]. For the story of the 'Ieader­
leader' equilibrium, see Stackelberg (79] and Leontief [42]. For criticism of these stories, see, among others,
Fellner [28), Dowrick [24], and Lindh [43]. Regarding conjectural variations, there have been attempts to
justify the story through the use of dynamic models. See e.g., Dockner [23] and Cabral [15].



while the Cournot, Bertrand and Stackelberg models are still used as standard models of

oligopoly.

Obviously, each of the three models produces a different equilibrium outcome. The

equilibrium outcome crucially depends on the sequence of each firm's choice and on strategic

variables in the model. This suggests the following question: which model among the three

is most appropriate for the analysis of oligopolistic markets? There are two problems.

The first problem concerns the strategic valuables (price of output). The second problem

concerns the timing (simultaneous-move or sequential-move). This dissertation focuses on

the second problem. 2

Needless to say, the answer depends heavily on the situation under investigation. For

example, considering competition between an incumbent firm and a potential new entrant.

it is natural to use Stackelberg-type models.3 The famous model of competition between

fishermen (see, e.g., Friedman [30]) is a good example of Cournot-type competition. How-

ever, there are many situations where it is not obvious which of the simultaneous-move

or sequential-move models is appropriate. In many economic situations, it is more rea-

sonable to assume that firms choose not only what actions to take, but also when to take

them. In such situations we must consider whether a simultaneous-move model such as the

Cournot model or a sequential-move model such as the Stackelberg model is more suitable

for analysis of oligopoly markets.

This problem is not confined to the problem of oligopoly. For example, consider the

problem of voluntary provisions of international pu blic goods by each country. This problem

was discussed intensively following the Gulf- War in 1991. In most models it is assumed that

each country chooses its contributions simultaneously and independently. In fact, each

2Many papers discussed the first problem. See e.g., Kreps and Scheinkman [40]. See also Ono [6]) and
Boyer and Moreaux [10].

'See, e.g., Spence [i6] and Dixit [20, 21)



country can choose either to announce its contribution as soon as possible, or to wait and

observe others' decisions. The same problem arises within a number of situations, such as

competition between political parties, or judicial disputes between plaintiffs and defendants

in civil affairs· In such situations we should also consider whether a simultaneous-move or

a sequential-move model is more appropriate.

A number of economists have investigated this problem of endogenous timingS Most

existing models emphasize that Stackelberg outcomes (equilibrium outcomes in a sequential­

move game) appear in endogenous timing games but a Cournot or Bertrand outcome (an

equilibrium outcome in a simultaneous-move game) does not [See, e.g., Hamilton and Slut-

sky [37],6 Robson [66], Anderson and Engers [4], AJb",k [2], and Mailath [44]]. These papers

suggest that the Stackelberg model is plausible if firms can choose their actions over more

than one period, and that the Cournot (or the Bertrand) model is not viable if we consider

endogenous tilIling in duopoly.7

Here we take a close look at the model of Hamilton and Slutsky [37J, which they call

an 'extended game with action commitment'. This model is considered a standard model

with endogenous sequencing. The game runs as follows.

In period 1, each duopolist chooses whether to take its action in this period or to wait

until the next period. At the beginning of period 2, each firm knows its rival's action. A

firm acts in period 2 if it elected to wait in period 1. The payoff for each firm depends on

.. For judicial dispute, see, among others, Priest [64] and Rubin {69].
5 von Stackelberg [79] considered this problem in the context of quantity-setting duopoly. He stated that

each duopolist wants to be a leader and "cut-throat" competition breaks out where each tries to behave
as a leaderj thus the Stackelberg equilibrium may be unstable. Leontief [42] formulated the concept of the
'leader_leader' equilibrium by using the above discussion of Stackelberg. Dowrick [24] formally showed that
such competition never appears in equilibrium.

6We note pa.rticularly the extended game with action commitment, which is considered a standard game
with endogenous sequencing.

1 Except for the endogenous timing approach, there are some approaches insisting on the advantage of the
Stackelberg over the Cournot. See, among others, Boyer and Moreaux [10], Robson [65] and Basu [5]. Boyer
and Moreaux [10] and Robson [65] emphasized that the sequential-move game always has a pure strategy
equilibrium while the simultaneous-move game does not.



its and its rival's actions only. (From here on we call this model the H-S model.)

In the H-S model there are four possible outcomes. These are as follows:

(1) firm 1 acts in period 1 and firm 2 acts in period 2 (Stackelberg type);

(2) firm 2 acts in period 1 and firm 1 acts in period 2 (Stackelberg type);

(3) both firms act in period 1 (Cournot or Bertrand type); and

(4) both firms act in period 2 (Cournot or Bertrand type).

They found that three cases ((1)-(3» are supported as subgame perfect equilibria (The­

orem VII). They also found that the outcome of case (3) is weak in the sense that it is

supported by weakly dominated strategies, while the outcomes of cases (1) and (2) are

not. The Cournot-type (resp. Bertrand-type) outcome is supported only if both firms take

Cournot-type (Bertrand-type) actions in period 1, and taking a Cournot-type action in

period 1 is weakly dominated by the strategy of waiting until period 2. Thus, the Cournot

(Bertrand) outcome is supported by weakly dominated strategies (Theorem VIII).

Since the simultaneous-move outcome is weak, it is not surprising that slight modi-

fications of the H-S model eliminate the Cournot-type or the Bertrand-type equilibrium.

Alb<ek [2] extended the H-S model to an incomplete information game and found that

Stackelberg-type outcomes appear in equilibrium but a Cournot-type does not. Robson [66]

and Matsumura [48] showed that if small inventory costs are introduced, the equilibrium

outcome is of Stackelberg-type only. Anderson and Engers [4] and Mailath [44] discussed

models in which only firm 1 has the choice between moving in period 1 or in period 2, and

firm 2 is forced to move in period 2.8 They also found that the Stackelberg-type outcome

appears."

8Remember that in the H-S model the case (4) never becomes an equilibrium outcome. In their models
the case (3) never appears because firm 2 cannot act in period 1

9Here we must emphasize that the models discussed here are not simple extensions of the H-S model.
For example, Robson [66] formulated a model with infinite earlier periods, Anderson and Engers [4] and
Matsumura [48) formulated n-firm models rather than duopoly models, Mailath (44] formulated an incom­
plete information game allowing us to consider signaUing effects of the Stackelberg leader's action. All we



Existing works have emphasized that the Stackelberg model is more plausible than the

Cournot or Bertrand models. The exception is Saloner [71]. The above models permitted

firms to choose their actions in one of two or more periods only. On the other hand, Saloner

discussed a two-player. two-period model in which duopolists choose their actions over two

periods and can take actions in both periods. He modified the Cournot model by allowing

for two production periods before the market clears. His model is as follows:

In period 1, each duopolist simultaneously chooses a non-negative output level. At the

beginning of period 1 each firm observes its rival's output. In period 2. each firm produces

additional (non-negative) output. At the end of period 2, the market opens and the firms

sell the total output produced in periods 1 and 2. The payoff for each firm depends on its

and its rival's total outputs only.

He showed that many outcomes including both Cournot and Stackelberg outcomes, are

found as subgame perfect equilibrium outcomes. His model is different from others discussed

above in the sense that he allows a firm taking its action in period 1 to also act in period 2.

m his model each firm can increase but not decrease its total output in period 2, while in

the H-S model each firm producing in period 1 can neither increase nor decrease its output

in period 2. In the H-S model a firm which takes its action in period 1 can completely

commit itself to not changing its action. On the other hand, in the Saloner model each

firm can commit itself to not decreasing its output, but cannot commit to not increasing

its output. In this sense Saloner explicitly considered the incompleteness of commitment.

The incompleteness of commitment is more important in the context of price-setting

competition. In the price-setting Stackelberg model as well as the H-S model, the leader

can commit to the price which is determined before the follower chooses the price. Consider

the following situation: in period I firm 1 names its price PI and after observing PI, firm

want to slate here is that a special case of each model above becomes an extension of the H-S model.



2 names its price P2. At the end of period 2 the market opens. This formulation invokes a

question: how can firm I commit to its price PI before the market opens? Is it impossible

for firm I to change PI in period 2? Why is the leader unable to change their actions in

period 2 despite the fact that it has enough time to change its price before the market

opens? In fact it is an everyday occurrence for firms to change their price. This question

makes us doubt the applicability of the Stackelberg model in the context of price-setting

competition.

Needless to say, in some situations, the firm may be able to commit itself to its action.

so the H-S model and other models discussed above remain important. However, in many

economic situations each firm can change its action over periods (e.g., can increase its

output). Therefore, the Saloner model is also quite realistic in many situations, and is at

least as important as the H·S model.

The Saloner model, however, seems restrictive. First. his model is limited to quantity­

setting competition. It is difficult to apply rus results to price-setting competition. For

example, it is very difficult to rationalize the assumption that each firm can raise its price

but cannot discount it. More importantly, he considered the case of strategic substitutes

and his result is crucially dependent on this assumption. 1O This assumption is not natural

in the context of price-competition ll

Second. in his model output produced in periods I and 2 is perfectly substitutable for

the firm and no inventory costs are incurred. As discussed above, the H-S model as well

as the Saloner model has a COufllot-type equilibrium. In the H-S model, however, the

IOFor the concept of strategic substitutes and complements, see Bulow, Geanakoplos and Klemperer (13].
See also Fudenberg and Tirole (31).

II Strategic complementality plays a crucial role in many situations. Typical examples are technological
switch and industrialization. See, among others, David [l9], Katz and Shapiro [39], Farrell and Saloner [25,
26], Murphy, Shleifer, and Vishny [56]. See also Rosenstein-Radan (67], Okuno-Fujiwara [60], Matsumura
and Veda [53], and Matsumura and Ryser {52]' In particular Farrell and SaJoner [25] and Matsumura and
Veda [53] discussed endogenous timing games in the context of technological switch.



equilibrium is weak and easily eliminated if small inventory costs are introduced. Thus,

it is important to examine the robustness of the Cournot-type equilibrium in the Saloner

model.

Furthermore, both the H-S and the Saloner models seem quite restrictive because both

discuss two-period, two-player models only. Here we consider the H-S model. If we con­

sider quantity-setting duopoly, the outcome is either Stackelberg-type or Cournot-type. If

we consider a model involving more than two firms, we can analyze more varied situations:

a pure simultaneous-move model in which all firms choose their actions at the same time

(Cournot model), a pure sequential-move outcome in which all firms choose their actions at

different times (generalized Stackelberg outcome), and mixed-type models in which there

exists a sequence of periods, in each of which some players may choose their actions simul­

taneously. A two-period two-player model like the H-S model excludes the possibility of

mixed-type outcomes.

1.2 Motivation

This dissertation investigates whether a simultaneous-move model (Cournot or Bertrand)

or a sequential-move model (Stackelberg model) is more suitable for analysis of oligopoly

markets by introducing endogenous timing into the standard quantity-setting and price­

setting oligopoly. As discussed in the previous section, most existing works have emphasized

that the Stackelberg model is more plausible than the Cournot or Bertrand models. They

suggest that the Cournot and the Bertrand models are adequate only if firms are forced to

play simultaneously.

This result is quite surprising because the Cournot and Bertrand models, rather than

the Stackelberg model, are standard in oligopoly models. In fact, they are introduced

in many models, while the Stackelberg model is usually discussed in relatively limited



situations (e.g., in the context of entry-deterrence where the incumbent is determined by

historical events). If the result derived in most existing works (i.e., equilibrium outcomes

are Stackelberg-type only) is quite robust and does not depend on minor specifications of

the models, then we must doubt the applicability of the models based on Cournot-type or

Bertrand-type competition.

The main purpose of this dissertation is to investigate under what conditions the

Cournot-type or the Bertrand-type outcomes appear in equilibrium.

In Chapters 2 and 3, we take a close look at the Saloner model which explicitly incor­

porates the incompleteness of the Stackelberg leader's commitment. We wiJl show that the

results found in existing works (except for the Saloner model) are crucially dependent on

the assumption of complete commitment. We find that under some natural situations, the

Cournot or the Bertrand outcome appears in equilibrium.

In Chapter 4, we elaborate the H-S model by formulating a model with more than two

firms and more than two periods. We show that Stackelberg-type outcomes never appear

in equilibrium if the number of firms is more than two.

In Chapter 5, we investigate endogenous timing in a standard multi-stage commitment

game where firms choose two variables over two periods.

1.3 Organization

The remainder of the dissertation is as follows. Chapter 2 analyses the Cournot duopoly

model which has more than one production period before the market clears. We introduce

small inventory costs in order to check the robustness of Saloner's result, and find that

such costs change the result completely. Two Stackelberg outcomes are the only outcomes

found in the Cournot model with two production periods when inventory costs are small

and positive. In other words, small inventory costs eliminate the Cournot-type equilibrium

10



in a model with two production periods. This result is the same as the results produced by

most existing works.

This result, however, depends crucially on the number of production periods. If there

are more than two production periods, the Coumot-type outcome appears in equilibrium;

therefore, the Cournot-type equilibrium is not so vulnerable in endogenous timing games

as it appears at first glance.

Chapter 3 investigates endogenous timing in price-setting duopoly with differentiated

goods. First, each firm announces its price; second, it chooses its actual price; and finally

the market opens. Once a firm announces a price, it is able to discount it but not raise

it. As opposed to other existing endogenous timing models, whether a Bertrand-type or

a Stackelberg-type outcome appears depends crucially on the properties of the demand

functions. We find three patterns for equilibrium outcomes: one case has the Bertrand­

type equilibrium only, another has the Stackelberg-type only, and the third has both types

of equilibria. In the most natural case, where the goods are substitutes and strategies are

strategic complements, the unique equilibrium outcome is of Bertrand-type.

Chapters 2 and 3 are closely related. Both models discuss the incompleteness of com­

mitment. Although the strategic variables involved in the two models are different, the

structures of the models are very similar. Chapter 3 can be seen to extend the Saloner [71]

by allowing the case of strategic complements. We discuss this in Chapter 3.

Chapter 4 investigates endogenous sequencing of a quantity-setting oligopoly model.

Chapter 4 is the main part of the dissertation and clearly shows the advantage of simultaneous­

move models over sequential-move models. We formulate an n-firm, m-period model where

each firm chooses both how much to produce and when to produce it. We show that the

Stackelberg-type outcome, where each firm produces sequentially, never appears in equilib­

rium except for two-period duopoly cases.

11



We investigate two models, with the first model excluding inventory costs and the second

allowing for small inventory costs. We find that in the case without inventory costs, at least

n - 1 firms produce simultaneously in the first period. In the case with small inventory

costs, pure strategy equilibria exist if and only if m is 2, and in every equilibrium exactly n­

1 firms produce simultaneously in the first period. The former result shows the advantage of

the Cournot model rather than the Stackelberg model. The latter suggests that two-period

duopoly models are restrictive to investigate games with endogenous sequencing.

In Chapter 5 we introduce endogenous timing into multi-stage duopoly games in which

duopolists choose two variables over two periods. We elaborate the two-stage strategic

commitment game discussed by Brander and Spencer [12]. Duopolists decide upon their

capacity investments and cost-reducing investments. They are allowed to choose which

action to take first.

We discuss two types of games; one is a three-stage game in which each duopolist can

commit to the order of choices before it chooses its output or cost-reducing investments,

and the other is a two-stage game in which it cannot. We find that the outcome discussed

by Brander and Spencer [12) never appears in equilibrium. We find that at least one

firm chooses its output first. Furthermore, the three-stage game has a unique equilibrium

outcome in which both firms choose their outputs first.

The result derived from the former model is quite similar to that of Chapter 4. In fact

the model discussed here may be viewed as a variant of the model formulated in Section 2

of Chapter 4. The driving force discussed in Chapter 4 also eliminates the Brander-Spencer

type equilibrium. The former model indicates the wide applicability of the result derived

in Chapter 4.

12



Chapter 2

Cournot Duopoly with Three
Production Periods

Abstract

This chapter analyses the Cournot duopoly model which has more than one production

period before the market clears. Small inventory costs are introduced. When there are more

than two periods, the Cournot-type outcome is supported as a subgame perfect equilibrium

where production takes place in the first period. However, there is no such an equilibrium

with two production periods, and equilibrium outcomes are of Stackelberg-type only. It

suggests that investigating only two-stage game is too restrictive for analyzing games with

endogenous timing.

This chapter is based on Matsumura [47, 46]. J am grateful to Shinshuke Kambe, Yoshitsugu Kanemoto,
Murdoch MacPhee, Hajime Miyazaki, Masahiro Okuno-Fujiwara, Tadashi Sekiguchi and anonymous referees
of the Japane$e Economic Review and Proceeding of APORS. Needless to say, I am responsible for any
remaining defects

13



2.1 Introduction

There are two famous duopoly models which formulate competition over output quantities:

Cournot and Stackelberg models. In particular, Cournot-type competition has been intro­

duced in many models and it is considered a standard type of competition in oligopolistic

markets.

In the standard Cournot duopoly model. duopolists are assumed to choose output si­

multaneously, while in the standard Stackelberg duopoly model, they are assumed to do

so sequentially. In both models, the timing is given exogenously. In many economic situ­

ations, however, it is more reasonable to assume that firms choose not only what actions

to take, but also when to take them. Some economists have investigated this problem.

Existing models emphasized that Stackelberg-type outcomes (equilibrium outcomes in a

sequential-move game) appear in endogenous timing games but the Cournot-type outcome

(an equilibrium outcome in a simultaneous-move game) does not [See, e.g., Hamilton and

Slutsky [37], Robson [66], Anderson and Engers [4J, Alb",k [1, 2J, and Mailath [44]]. These

papers suggested that the Stackelberg model is more plausible if firms can choose their

actions over more than one period.

The exception is the Saloner [71) model. The above models except the Saloner model

permitted firms to choose their actions in one of two or more periods only. Saloner discussed

a two-player, two-period model in which duopolists choose their actions over two periods

and can take actions in both periods. He modified the Cournot model by allowing for two

production periods before the market clears. He showed that many outcomes including both

Cournot and Stackelberg outcomes, are subgame perfect equilibrium outcomes. In many

economic situations, duopolists can choose outcomes over periods; therefore, the Saloner

model is more realistic. The Saloner model, however, seems restrictive because output

produced in periods 1 and 2 is perfectly substitutable for the firm and no inventory costs

14



are incurred.

In this chapter, we introduce small inventory costs. We find that small inventory costs

change the result completely. Equilibrium outcomes other than two Stackelberg outcomes

do not exist in the Cournot model with two production periods when inventory costs are

small and positive. In other words, small inventory costs eliminate the Cournot-type equi­

librium in a model with two production periods. This result is the same as the results

produced by other existing works discussed above.

With small inventory costs, a firm chooses to become a Stackelberg leader in order to

enjoy the first-mover advantage if the rival produces nothing in the first stage. Therefore,

the Cournot-type outcome reaches to an equilibrium only if both firms produce the Cournot

outputs in the first period. In the model with two production periods, once the first­

period production decisions are made, no strategic moves are left for either firm because no

firm chooses its action after observing the second-stage moves. Therefore, the firm which

produces the Cournot output in period 1 has no incentive to increase its output in period

2. Given a firm chooses the Cournot output in period 1, the rival chooses to produce

nothjng in period 1 in order to reduce the inventory cost. Given that the rival produces

nothing in period 1, the firm becomes the Stackelberg leader by producing the Stackelberg

leader's output in period 1 in order to enjoy the first-mover advantage. Accordingly, the

Cournot-type outcome is never attainable as a subgame perfect equilibrium.

This result, however, depends crucially on the number of production periods. If there

are more than two production periods, the Cournot-type outcome appears in equilibrium;

therefore, the Cournot-type equilibrium is not so vulnerable as it appears at first glance in

endogenous timing games. In the model with more than two production periods. once the

first-period production decisions are made, two production periods remain. The production

decisions made in period 2 have strategic value because each firm chooses its third-stage

15



production after observing the rival's production in period 2. Therefore each firm has an

incentive to increase its production in period 2 for the strategic purpose. Accordingly, in

order to prevent the firm from making the strategic behavior in period 2, each firm dares

to produce the Cournot output in period 1. As a result, the Cournot-type outcome is

attainable as a subgame perfect equilibrium outcome in the case of more than two pro-

duction periods. This result suggests that investigating three-stage games is important for

analyzing endogenous timing games.!

The remainder of this chapter is organized as follows. In Section 2.2, we formulate a basic

model. In Section 2.3, in order to present some benchmarks, we investigate models in which

firms are restricted to a specified timing. Section 2.4 discusses the Cournot model with two

production periods. We show that small inventory costs eliminate a Cournot outcome

from the set of equilibrium outcomes. Section 2.5 investigates the Cournot model with

three production periods. We show that the Cournot-type outcome appears in equilibrium.

Section 2.6 concludes this chapter.

2.2 The model

In this section, we formulate a three-stage duopoly game. The two firms are denoted as 1

and 2. 'We often use i or j to refer to a firm. and it is understood that if i denotes 1 in one

expression, then j represents 2 and vice versa.

The game runs as follows. In the first stage, each firm i (i = 1,2) chooses its first-period

production x i (1) E [0,00). At the end of the first stage, each firm knows x'(l) and x2(1).

In the second stage, each firm i chooses its second-period production x i(2) E [0,00). At the

lSimilar principles can apply to COUTRot duopoly with more than three production periods. However,
we must emphasize that our results are crucially dependent on the assumption that the model has a first
period. If we constructs a model with infinite earlier periods, our results do noL hold true. \Ve think that a
model with infinite earlier periods is Quite important, but a model with finite period is also important and
well worth discussing. For an important model with infinite earlier periods, see Robson [66].

16



end of the second stage, each firm knows x'(2) and x2 (2). In the third stage, each firm i

chooses the last-period production x;(3) E [0,00). At the end of the third stage, the market

opens2 and each firm i sells its total output x; == x;(1) + x;(2) + x;(3).3 Firm i's payoff U;

is given by

where VI is firm i's revenue function, ci is firm i's marginal cost, and Ii is firm i's inventory

cost. Here we make the following assumptions about the revenue function of v;:

Assumption 2.1 (Differentiability). V' is twice continuously differentiable (i = 1,2) ;

Assumption 2.2 (Concavity). vii < 0 ( i = 1,2) ;

Assumption 2.3 (Substitutability). V~ < 0 (i = 1,2);

Assumption 2.4 (Strategic Substitutes). Vi2 < 0 (i = 1. 2) ; and

Assumption 2.5 (Stability). Wid> Wi21 (i = 1,2)

where we use subscripts to denote partial derivatives.

In order to neglect the production-smoothing effect of inventory holding, we assume a

constant marginal production cost.4 We consider a case of fixed inventory costs. Similar

cost is discussed in Robson [66]. too. s

2In this model the market opens once. \Ve can easily extend to the model where the market opens at
each period. See Matsumura [45].

3Some readers may think that each firm can dispose its output at the end of third stage. If we allow it,
we must formulate a four-stage game rather than a three-stage game. However, if the production cost c' is
positive, we obtain the similar results in rour-stage game, so the extension is not productive. I thank this
point for Professor Miyazaki.

"For empirical results on the rela.tive importa.nce of the production smoothing effect of inventory holding,
see Blanchard [6] and Blinder [7).

~It is quite difficult to derive the set of equilibrium outcomes under more general inventory costs functions
in the three-period case. But it is relatively easy in the two-period case. We explicitly consider more general
costs in two-period in Proposition 2.3.

17
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Assumption 2.6 (Fixed-type Inventory Costs). Ii is given as follows:

{

6(~ E) if x;(I) > 0
I;(x;(I), x;(2)) = E(> 0) if xi(l) = 0 and xi (2) > 0

o if x'(I) = x'(2) = o.

Throughout Chapter 2 we use a subgame perfect Nash equilibrium as an equilibrium

concept. We restrict our attention to pure strategy equilibria.

2.3 Some benchmarks

In this section we examine the standard Cournot game, which has a single production

period. We also examine the standard Stackelberg game.

2.3.1 Cournot game

Each firm i chooses output simultaneously and independently. Given xi, firm i maximizes

its payoff Vi(x i, xi) - cixi with respect to xi. For firm i we define

i.e., Ri(xi ) is firm i's reaction function.

(2.1)

Definition 2.1 (Cournot outcome). A pair (C', C2) of output levels is a Cournot outcome

if and only if C' E R'(C2) and C2 E R2(C').

The stability condition (Assumption 2.5) ensures that -1 < R;'(xi ) < 0 and it also ensures

the uniqueness of the Cournot equilibrium. nder this condition, (C', C2) is stable for the

standard adjustment mechanism: that is,

ifx' < C'
ifx' > C'.

Assumption 2.7 (Interior solution). Ci > 0 (i = 1,2).
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2.3.2 Stackelberg game

Firm i chooses xi and firm j chooses xi after observing xi. Given xi, firm j maximizes its

payoffVi(xi, xi) - cixi with respect to xi. Firm i maximizes its payoff Vi(X i , R(x i )) - cix i

with respect to xi. The first order condition of this optimality is Vi +VjRl'(x i ) - ci = o.

Definition 2.2 (Stackelberg leader's payoff). Define the Stackelberg leader's payoff Si(x i ) :;

Ui(xi,Ri(x i )).

Assumption 2.8 (Concavity of Stackelberg leader's payoff). {j2Sij8(x i j2 < a (i = 1,2).

Definition 2.3 (Stackelberg outcome). Let a pair (Li, Fi) (i = 1,2) denote a Stackelberg

outcome, which is defined by

L i :; arg max Si(xi ) and Fi :; Ri(Li) (i = 1,2),
{x'~o}

where Li is the Stackelberg leader's output and Fi is the Stackelberg follower·s.

As is well known,

where Ui is firm i's payoff.6

2.4 Cournot duopoly with two production periods

In this section we examine the subgame which begins at the second stage given that

x 1(1) = x 2(1) = O. This is a subgame of the game with three production periods for­

mulated in Section 2.2.

Definition 2.4 (Cumulative production until period 2). Define qi(2) :; x i(1) + x i(2).

To compute a subgame perfect Nash equilibrium, the game is solved by backward in-

duction.

'See Gal-Or [33J and Dowrick [24J
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First we discuss the equilibrium outcome in the third stage given qi(2) and qi(2). Let

Bi(xi : qi(2)) denote firm i's reaction function after committing to qi(2). Since Vi, < 0

and xi ~ qi(2), Bi(xJ : qi(2)) = max(Ri(xJ ), qi(2)). The following three lemmas state the

equilibrium outcome in the third stage. Lemma 2.1 states that the firm which chooses

qi(2) ~ C i never increases its output in period 3. Lemma 2.2 states that if both firms'

cumulative productions until period 2 are smaller than the Cournot output, a Coumot

outcome is realized.

Since firm j determines its output before observing xi (3), firm i's last-period produc­

tion x'(3) has no strategic value. Therefore, firm i has no incentive to produce more than

the Coumot output Ci in the last period. Accordingly, firm i does not increase its output

provided that qi(2) ~ Ci (Lemma 2.1). Given that qi(2) ~ Ci, firm j predicts that firm

i's total output xi equals qi(2). Therefore firm j chooses its total output xi = Ri(qi(2))

as long as Ri(qi(2)) $ qi(2) (Lemma 2.3). On the other hand, if (qi(2), qi(2)) < (Ci, Ci),

xi ~ qi(2) and xi ~ qi(2) are not binding constraints. In this case, the unique equilibrium

is a Coumot one (Lemma 2.2).

Lemma 2.1: If qi(2) ~ Ci, then x'(3) = o.

Proof: See Appendix A.

Proof: See Appendix A.

Lemma 2.3: If q'(2) < Ci, and qi(2) > Ci, then xi(3) = max(Ri(qi(2)) - qi(2), 0).

Proof: See Appendix A.

From Lemmas 2.1-2.3, we know the equilibrium outcome in the last stage given qi(2)

and qi(2). Next, we investigate the second-stage production given that x l (l) = x2(1) = O.

We assume that the inventory cost [ is positive but sufficiently small, namely;
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Assumption 2.9 (Small Inventory costs). Inventory cost E is small such that 0 < E <

VilLi, Fi) - Vi(Gi, Gl) - ci(Li - G i) (j f- i, i = 1,2).

Proposition 2.1 states that at least one firm produces nothing in period 2 and chooses to

wait until the last period.

Proposition 2.1: Suppose that Assumptions 2.1 - 2.9 are satisfied. Suppose that Xl (1) =

x Z(I) = O. Then there is no equilibrium in which both x l (2) and xZ(2) are positiue.

Proof: See Appendix A.

A positive inventory cost is essential. If other things are equal, firm i strictly prefers

waiting until period 3 to producing x i(2) :<:: Gi, while if the inventory cost is zero, whether

production is made in period 2 or in period 3 is a matter of indifference to the firm.

Next we consider the equilibria in the two-stage game. Proposition 2.2, which is de­

rived straightforwardly from Proposition 2.1, states that the equilibrium outcomes are of

Stackelberg-type only. Proposition 2.1 states that one firm chooses to wait until period

3. Given this, the rival chooses to become a Stackelberg leader because the Stackelberg

leader's profit is larger than the Cournot's as long as inventory costs are small. The strict

proof is presented in the Appendix A.

Proposition 2.2: Suppose that Assumptions 2.1-2.9 are satisfied. Suppose that x'(l) =

xZ(I) = o. Then (Xl>. x z<) is a subgame perfect equilibrium outcome if and only if(x'>. x z<) E

{(LI, FZ), (F', LZ)}.

Proof: See Appendix A.

The existence of small inventory costs eliminates the Cournot-type equilibrium. This

result is quite different from Saloner [711, in which the inventory cost is zero. Why do

small inventory costs eliminate the Cournot-type equilibrium? Given that firm j chooses

a smaller output than the Cournot output Gl, firm i produces more than G' in the first
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period and enjoys the first-mover advantage. Therefore. the Cournot-type equilibrium is

realized ollly if both firms choose the Cournot output in the first period. Suppose that there

is no illventory cost. As Lemma 2.1 states, firm i never produces any additional output

in the second period if it chooses C; in the first period. Firm j weakly prefers waiting

until the last period over producing the Cournot output CJ in the first period because

waiting enables firm j to respond optimally when firm i chooses x;(l) > C;. In other words,

xi (l) = CJ is weakly dominated by xi (l) = O. U we introduce positive inventory costs,

x i (l) = Ci is strictly dominated by x i (l) = 0; therefore, small inventory costs eliminate

the Cournot-type equilibrium.

Some readers may thillk that the inventory cost discussed here is too restrictive. the

Cournot-type outcome fails to become equilibrium one under more general inventory cost

functions. Propositioll 2.3 states that the Cournot-type outcome does not appear in equi­

librium under more general situations.

Assumption 2.10 (Positive inventory costs). [;(0,0) = 0 and [;(0, x;(2)) > 0 Vx;(2) >

O. (i = 1,2).

Assumption 2.11 (Small inventory costs). Suppose that firm i is a Stackelberg leader

producillg in period 2 only and firm j is a follower producing in period 3 only. Then the

inventory costs is small such that firm i's payoff is larger than its Cournot counterpart

Proposition 2.3: Suppose that x' (l) = x 2(1) = O. Suppose that Assumptions 2.1-2.5,

2.7-2.8, an,l 2.10-2.11 are satisfied. Then (i) in equilibrium one firm produces in period

1 only and the other produces in pe"iod 2 only, and (ii) there is no equilibrium where

Proof: See Appendix A.
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This result is quite similar to those produced by other endogenous timing models [See,

e.g., Hamilton and Slutsky [37], Robson [66], Anderson and Engers [4], and Alb;ek [2]]. This

resuJt makes us doubt whether the Cournot model, which permits simultaneous-moves only.

is adequate for analyzing behaviors of oligopolistic firms in the real world. 7

2.5 Cournot duopoly with three production periods

In this section we show that the Cournot outcome is one of equilibrium outcomes if there

are more than two production periods. We assume that the first-stage inventory cost Ii is

small enough that the following two inequalities are satisfied:

Assumption 2.12 (Small Inventory Costs). The inventory cost Ii is positive and small

such that

(2.3)

(2.4)

Definition 2.6 We denote the outer envelope of R I and R2 by R.

Here we describe the set of equilibrium outcomes in the three-period case.

Proposition 2.4: Suppose that Assumptions 2.1-2.8 and 2.11 m'e satisfied. Then (x l ·,X2.)

is a subgame perfect equilibrium outcome in the game with three production periods if and

only if (x l·,X2.) E E U {(LI,F2),(FI.L2)} where E = {(x l ,X2) I (x l ,X2) E R, Xl ::;

0:\ and x2 ::; ;2}.

Proof: See Appendix A.

Corollary: Suppose that Assumptions 2.1-2.8 and 2.11 are satisfied. Then there is a sub­

game perfect equilibrium where (xl, x2) = (C', C2).

7There are many models in which firms are assumed to be faced with Cournol-lype competition. See,
among others, Brander and Spencer [12], Brander and Lewis [11], and Fershtman and Judd [29].
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Proof: See Appendix A.

The above results state that many outcomes including Cournot and Stackelberg outcomes

appear in equilibrium if we allow three production periods rather than two periods. Propo­

sition 2.4 also states that if we choose 8 ---> 0, the set of equilibrium outcome converges to

that of Saloner [71]. Note that ;; ---> L; if we choose 8 ---> O.

Here we make a rough sketch why the Cournot-type outcome appears in equilibrium if

we allow three production periods. As discussed in the previous section, the Cournot-type

outcome is realized only if both firms choose the Cournot output in the first period. In the

model with three production periods, once the first-period production decisions are made,

two production periods remain. Firm i's second-period production x;(2) has strategic value

because firm j chooses its last-period production xi (3) after observing firm i's second-stage

production x;(2). Suppose that firm i chooses the Cournot output C; in the first period but

firm j chooses to produces nothing in order to reduce the inventory cost. If firm i infers that

firm j waits until period 3, it increases its total output x; by choosing x;(2) = L; - C; in

order to reduce the last-period production of firm j. To avoid the above strategic behavior

in the second period by firm i, firm j also chooses the Cournot output CJ in the first

period.s Accordingly, the Cournot-type outcome is supported in the models with three or

more production periods.

Firm j dares to produce its Cournot output CJ in order to prevent the rival (firm i) from

being a Stackelberg leader. If two periods remain after the first period, the Cournot-type

outcome appears in equilibrium. Therefore, in a model with more than three production

periods, the Cournot outcome becomes an equilibrium one.

If we consider other kinds of inventory cost function, the set of equilibrium outcomes

8Strategic value of inventory-holding discussed in many situations. See, e.g., Saloner PO], Rotemberg
and Saloner (68), and Matsumura (45].
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changes. However, the Cournot-type outcome appears in equilibrium if the marginal in­

ventory cost is small enough. Reducing first-period production from the Cournot output

by firm j increases firm i's output. If the marginal inventory cost is sufficiently small. the

inventory cost reduced by a small first-period production is negligible, while expansion of

the second-stage output by firm i reduces firm j's payoff significantly. Therefore, firm j

chooses its Cournot output in the first production period in order to prevent the rival from

adding the output strategically.

2.6 Concluding remarks

As Saloner [71] showed. if there are two production periods before the market clears, many

equilibria, including Cournot and Stackelberg equilibria. are realized. Equilibria other than

two Stackelberg equilibria are vulnerable, however, in the sense that these arc supported

by weakly dominated strategy. This is why small inventory costs eliminate these equilibria

as is shown in Section 2.4. The result that equilibrium outcomes are of Stackelberg-type is

the same as the results produced by other endogenous timing models.

This chapter showed that the Cournot-type equilibrium is not so vulnerable as it appears

at first glance because this equilibrium exists and is supported by undominated strategies ill

a more than two production periods counterpart. Three production periods are important

because they allow firms to take a strategic action in the subgame after the first period.

If there are more than two production periods, each firm produces the Cournot output in

the first period in order to prevent the rival from making the strategic moves. Therefore,

the Cournot-type outcome fails to be equilibrium outcome in a model with two production

periods only.

Cournot model is quite natural, especially when firms are faced with perfectly symmetric

situations. The Cournot-type outcome is the unique symmetric equilibrium outcome among
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the pure strategy equilibrium outcomes in the Cournot duopoly with three production

periods. Thus, it may be natural that the Cournot-type outcome becomes the focal point

in endogenous timing games. [See, e.g., 1yerson [571 pp. 111-112. See also Schelling [72].J

However, we cannot deny the importance of the Stackelberg model. We should consider

the refinement of these equilibria. The question remains for future research.
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Chapter 3

A Two-Stage Price-Setting
Duopoly: Bertrand or Stackelberg

Abstract

This chapter investigates endogenous timing in price-setting duopoly with differentiated

goods. First, each firm announces its price; second, it chooses its actual price; and finally

the market opens. Once a firm announces a price, it is able to discount it but not raise

it. As opposed to existing works emphasizing the advantage of the Stackelberg model over

the Bertrand, in our model whether the Bertrand-type or the Stackelberg-type outcomes

appear in equilibrium depends crucially on the properties of the demand functions. We find

three patterns of equilibrium outcomes; one case has the Bertrand-type equilibrium only,

another has the Stackelberg-type only, and the other has both types of equilibria. In the

most natural case where the goods are substitutes and strategies are strategic complements,

the unique equilibrium outcome is of Bertrand-type.

This chapter is based on Matsumura [49]. I am grateful to Harua Imai, 5hiogo Ishiguro, Hideshi Itoh,
Yashushi Iwamoto, Tatsuaki Kuroda, Murdoch ~·tacPhee, Akita Okada, Yoshiyasu Ono, Tetsuya Shinkai
and participants of the seminar at Institute of Economic Research of Kyoto University and Annual Meeting
of Western Department of Japan Association of Economics and Economics at Fukuoka University for their
helpful comments and suggestions. Needless to say, I am responsible for any remaining defects.
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3.1 Introduction

Without any doubt. the Bertrand model is one of the most important models of oligopoly. In

the standard Bertrand duopoly model. each firm simultaneously and independently chooses

its price. The Stackelberg model has also received much attention in the context of price­

competition l In the price-setting Stackelberg duopoly model, one firm (the Stackelberg

leader) chooses its price before the other firm (the Stackelberg follower) chooses its price.

The Bertrand model formulated a simultaneous-move game and the Stackelberg model

formulated a sequential-move game. Both models have been intensively discussed in many

economic situations. In particular, Bertrand-type competition has been introduced in many

models and is considered one of the representative types of competition in oligopolistic

markets.

In both Bertrand and Stackelberg models, the timing is given exogenously. In many

economic situations, however, it is more reasonable to assume that firms choose not only

what actions to take, but also when to take them. Some economists have investigated this

problem. Existing models emphasized that Stackelberg type outcomes (equilibrium out-

comes in a sequential-move game) appear in endogenous timing games but a Bertrand type

outcome (an equilibrium outcome in a simultaneous-move game) does not [See Hamilton

and Slutsky [37], Robson[66], Anderson and Engers [4], Alb<ek[2], Mailath [44], and Mat­

sumura [47J).2 These papers suggested that a sequential-move game like the Stackelberg

model is more plausible than a simultaneous-move game like the Bertrand model if firms

are able to choose when to take their actions. In particular, Robson [66J explicitly for-

1Usually Stackelberg model is discussed in the context of quantity-setting competition rather than price­
setting competition. However, price-setting Stackelberg model has also been investigated in various situa­
tions. See, among others, Ono [61, 62], Ito and Ono (38), and Robson [66).

2There are some exceptions. See Saloner [71] and Matsumura. [46], which emphasized that both
simultaneous-move and sequential-move outcomes appear in equilibria. However these models analyze
quantity-setting competition rather than price-setting, and a straightforward adjustment to price com­
petition is not possible.
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mulated a model discussing endogenous timing in Bertrand competition and finds that a

Bertrand-type outcome never appears in equilibrium.

In Hamilton and Slutsky [37], which is one of the most important works in this field,

each firm chooses whether or not to take its action in period 1. The firm which took its

action in period 1 can choose no action in period 2. In order to take some actions in period

2, the firm must not take its action in period 1. In other words, once a firm chose its

action in period 1. it never changes its choice in period 2. This assumption is also made in

Robson [66], Anderson and Engers [4], and Alb""k [21.

In the price-setting Stackelberg model, as well as Hamilton and Slutsky [37] and Rob­

son [66], the leader can commit to the price determined before the follower chooses the

price. Consider the following situation: in period 1 firm 1 names its price PI and after

observing PI, firm 2 names its price P2. At the end of period 2 the market opens. This

formulation invokes a question: how can firm 1 commit to its price PI before the market

opens? Is it impossible for firm 1 to change PI in period 21 Why the leader cannot change

their actions in period 2 even if it has enough time to change its price before the market

opens? This question makes us doubt the applicability of the Stackelberg model in the

context of price-setting competition.

Firm 1 may be able to commit to its price by advertising or contracting. Firm 1 can

announce its price by advertising. For example. in Japan if a firm raises its announced

price just before the market opens without any rational reason, the firm may be prosecuted

because such devious strategy is against anti-monopoly regulation. A firm can make con­

tracts with potential clients, through which they are granted the option of purchasing firm

1's goods at the price Pl' Firm 1 can offer the following contract to all potential consumers;

"I will sell you my products at price PI if you accept this contract until the end of period

2." The clients who receive this contract can refuse to buy at any price larger than PI.
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Thus, firm 1 cannot choose a price larger than PI.

However, in the examples above, the firm can easily cut the price named in the previous

period.3 Usually consumers prefer a lower price. so there is no reason for them to reject the

discount. The rival (firm 2) may not welcome the price-cutting of firm 1, but it is difficult

to prevent firm 1 from cutting its price because such a action is against anti-monopoly

regulations.

Under these conditions, it is natural to assume that the price commitment is incomplete:

each firm can commit to an upper-bound of its price but not to a lower-bound. In other

words, each firm can discount its stated price but cannot raise it.4 In this chapter we

incorporate the above incompleteness of price commitment into a two-period price-setting

duopoly gameS We formulate the foUowing model: in the first stage each firm announces

its price, in the second stage each firm chooses its price, and finaUy the market opens.

Neither firm raises its announced price in the second stage.

We find that the equilibrium outcomes depend on the properties of each firm's demand

function. In some cases the equilibrium outcome is of Bertrand-type only, in some cases

the equilibrium outcomes are of Stackelberg-type only, and in other cases both Stackelberg

and Bertrand outcomes are found in equilibrium. In the most natural cases, where goods

of firms are substitutes and strategies are strategic complements, the unique equilibrium

outcome is of Bertrand-type. As opposed to other existing endogenous timing games like

Robson [66], this result suggests that the Bertrand model is never less plausible than the

3 For example, Matsushita Electric Industrial discounted the announced price of a computer game, whose
name is 'real', before the market opened .

• Note that our discussion is quite different from those of price-rigidity. The theories of price-rigidity
emphasized that firms seldom cut the prices. However, these theories discuss the firms' price policies after
the market opens, not the commitment before the market opens. Furthermore, they never say that a firm
cannot cut its price. See, among others, Carlton[14], Nishimura [59], and Blinder (8)

sSimilar incompleteness of commitment in the context of Quantity-setting duopoly was discussed. in
saloner [71]. Robson [65], Pal [63], and Matsumura [47). All of Ihem considered strategic substitutes case
only. See also Spence [77J and Fudenberg and Tirole [32].
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Stackelberg model in realistic situations.

The remainder of this chapter is organized as follows. In Section 3.2, we formulate the

model. In Section 3.3, in order to present some benchmarks, we investigate models in which

firms are restricted to a specified timing. Section 3.4 discusses the equilibrium of the model

formulated in Section 3.2. Section 3.5 concludes this chapter. All proofs of propositions are

presented in the Appendix B.

3.2 The model

In this section, we formulate a two-stage duopoly game.6 The two firms are denoted as I

and 2. We often use i or j to refer to a firm, and it is understood that if i denotes 1 in an

expression. then j represents 2 and vice versa.

The game runs as follows. In the first stage, each firm i (i = 1,2) independently

announces its price Pill) E [0,00]. If firm i chooses Pill) = 00, it implies that firm i does

not announce a price in the first stage.

At the end of the first stage, each firm knows Pl(l) and P2(1). In the second stage, each

firm i independently chooses its actual price Pi E [0, Pill)]. At the end of the second stage,

the market opens and each firm i sells its output at the price Pi. In our model, Pi is never

larger than Pill). This formulation reflects the assumption that each firm cannot raise its

announced price, but can discount it. 7 For simplicity, we neglect production costs.s Firm

6We can easily extend it Lo a model with more than two periods like Robson [66] and similar principles
can apply to this model.

7Some readers may think that each firm can easily raise its announced price. Instead of considering the
announcement of the price, we can formulate a model where each firm commits by contracts, as is discussed
in the Introduction.

81£ we consider production costs explicitly, all propositions hold true under the following condition: the
marginal costs are constant, or firm i's payoff is given by the following instead of (3.1):

U,(p"p,) '" max (p,x, - c.(x,))
(PI~O, z,:::;,r.(p"PJ)}

where c, is firm i's cost function and c:' :2: o.
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i's payoff Ui is given by

Ui(Pi.Pj) == PiXi(Pi.Pj) (i = 1,2) (3.1)

where Xi : R~ ---> R+ is firm i's demand function. We make the following assumptions

about the demand functions:

Assumption 3.1 (Differentiability). Xi is twice continuously differentiable (i = 1,2);

Assumption 3.2 (Downward-sloping demand). fJx;jfJPi < 0 (i = 1,2); and

Assumption 3.3 (Concavity of payoff functions). fJ2U;jfJp; < 0 (i = 1,2).

Assumption 3.1 ensures a smooth demand function. 9 Assumption 3.2 excludes Giffen's

paradox.

3.3 Some benchmarks

In this section we investigate models in which firms are restricted to a specified timing by

way of establishing benchmarks. We examine the Bertrand and Stackelberg models.

3.3.1 Bertrand game

Each firm i (i = 1,2) chooses its price simultaneously and independently in period 2 only.

Given Pj, firm i maximizes its payoff Ui(Pi,Pj) with respect to Pi. The first order condition

of this optimality is

fJXi
Xi+Pi

fJPi
=0 (i=I,2). (3.2)

Definition 3.1 (Reaction function). Let Ri(Pj) (i = 1,2) denote firm i's reaction function,

which is defined by Ri(Pj) == argma.x{p,?;Oj(PiXi(Pi,Pj)).

Definition 3.2 (Bertrand equilibrium). Let a pair (B I , B2 ) of price levels denote a Bertrand

equilibrium (Bertrand outcome), where B, E R,(B2 ) and B2 E R2(BIl.

9 Assumption 3.] seems innocuous, but it is restrictive. This assumption excludes a case of homogeneous
goods. We discuss a case of homogeneous goods in Example 2 of Section 3.4.
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From (3.2), we have

(i = 1,2) (3.3)

From (3.3) and Assumption 3.3, we have that sign(RD = sign(fJx;jfJpj +Pi(fJ2x;jfJPifJpJ))'

If fJR;jfJpj is positive (negative), firm i's reaction curve has upward-sloping (downward­

sloping); thus strategies are strategic complements (substitutes). Here we make the follow-

ing assumption:

Assumption 3.4 (Stability condition). If (Ri(PJ).Pj) E Rt+, then 0 <I R;(pj) 1< 1.

Assumption 3.4 is a well known stability condition. Under this condition, it is known that

(B" B2 ) is stable for the standard adjustment mechanism: that is,

{

> Pi if Pi < Bi
Ri(Rj(Pi)) = Pi if P~ = B,

< P, if P, > B,.
(i = 1,2) (3.4)

(3.5)

This stability condition guarantees the uniqueness of the Bertrand equilibrium.

3.3.2 Stackelberg game

Firm i chooses Pi in period 1 and firm j chooses PJ after observing Pi in period 2. Given Pi,

firm j maximizes its payoff with respect to Pj. Firm i maximizes its payoff Ui(Pi, Rj(Pi))

with respect to Pi. The first order condition of this optimality is

+ (ox i + OX; R') 0
Xi Pi OPi OPj j = .

Definition 3.3 (Stackelberg leader's payoff). Define the Stackelberg leader's payoff U,L(Pi) ==

Assumption 3.5 (Concavity of Stackelberg leader's payoff). 02UiL lop? < 0 (i = 1. 2)

Definition 3.4 (Stackelberg equilibrium). Let a pair (Li' FJ ) (i = 1,2) denote a Stackelberg
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equilibrium (Stackelberg outcome), which is defined by

L; == arg max uF(p;) and Fi == Ri(L;) (i = 1. 2),
{P.~O}

where L; is the Stackelberg leader's price and Fi is the Stackelberg foUowers.

Here we note a result concerning L; and B;.

Result 3.1: B; > L; if and only if (8x;/8Pi) Rj < 0 (i = 1. 2)

This is straightforwardly derived from (3.5). Assumption 3.5, and the definition of B;.

3.4 Equilibrium outcomes

In this section we discuss equilibrium outcomes of the endogenous timing game formulated

in Section 3.2. At the end of the section we present three examples. We use a subgame

perfect Nash equilibrium as our equilibrium concept. We restrict our attention to pure

strategy equilibria.

Definition 3.5 (The set of equilibrium outcomes). Let E denote the set of equilibrium

outcomes. A pair (PI, P2) E E if and only if there is a subgame perfect equilibrium in which

firm 1 chooses PI and fi rm 2 chooses P2'

Here we classify demand functions into the foUowing four cases:

case (1): 8x;/8Pi> 0 and 8R;/8Pi > 0 (i = 1,2)

case (2): 8x;/8Pi > 0 and 8R;/8Pi < 0 (i = 1,2)

case (3): 8x;/8Pi < 0 and 8R;/8Pi > 0 (i = 1,2)

case (4): 8x;/8Pi < 0 and 8R;/8Pi < 0 (i = 1,2)

Case (I) is the most natural case. In cases (1) and (2) the goods of firms are substitutes.

In cases (I) and (3) each firm has an upward-sloping reaction curve and in cases (2) and (4)
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each firm has a downward-sloping reaction curve. Case (1) is considered a standard case of

price-setting competition.

In cases (3) and (4) the firms' goods are complements. There are some important

examples of complementary goods in price-setting competition. For example, consider the

following situation: firm 1 and firm 2 are retailers located at the same district. If firm

1 raises its price, the number of consumers visiting the district decreases, resulting in a

reduction in firm 2's demand [See. e.g., Krugman [41], and Matsuyama [54]].

3.4.1 Cases (1) and (4)

In this subsection, we discuss the case of strategic complements in which goods are substi­

tutes (case (1)) and the case of strategic substitutes in which goods are complements (case

(4)). We find that the equilibrium outcome is of Bertrand-type only.

Proposition 3.1: Suppose that Assumptions 3.1-3.5 are satisfied. Suppose that sign(fJx;jfJpj) =

sign(fJR;jfJpj) (i = 1,2). Then the set of equilibrium outcomes E is {(B 1, B2 )}.

Proof: See Appendix B.

The intuition behind Proposition 3.1 is quite clear. In case (1), since the demand of

each firm is increasing in the rival's price, the Stackelberg leader has an incentive to raise

the rival's price. Since the rival's reaction curve has a positive slope, the leader wants

to commit a higher price in order to induce a higher price from the rival. Therefore, if

firm i commit to a price in the first stage, it chooses L; > B;. However. the rival (firm j)

knows that L; > R;(Fj) and that firm i can cut its price in the second stage. Thus the

price announced by firm i is never credible and the price announcement never serves as a

commitment device. As a result, the unique equilibrium outcome is of Bertrand-type.

In case (4), since the demand of each firm is decreasing in the rival's price, the Stack­

elberg leader has incentive to cut the rival's price. Since the rival's reaction curve has a
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negative slope, the leader wants to commit to a higher price in order to induce a lower price

from the rival, but as above this commitment is not credible.

In case (1), there is a second-mover advantage and in case (4), there is a first-mover

advantage. IO Proposition 3.1 states that there are cases in which the Bertrand equilibrium

appears whether or not the first-mover has advantage.

3.4.2 Case (2)

In this subsection, we discuss the case of strategic substitutes in which the goods are sub­

stitutes (case (2)). We find that there are many eqnilibrium outcomes including Bertrand

and Stackelberg outcomes.

Proposition 3.2: Suppose that Assumptions 3.1-3.5 are satisfied. Suppose that {)x;j{)p] >

o and () R;j{)p] < 0 (i = 1,2). Then the set of equilibrium outcomes E = {(Ph R2(p!l) I

PI E [L1,Btl} u {(R I(P2),P2) I P2 E [L2,B2] }

Proof: See Appendix B.

The reason why the Stackelberg outcome (L I , F2 ) appears in equilibrium is as follows:

in case (2), since firm l's demand is increasing in P2, firm 1 has an incentive to increase P2.

Since firm 2 has a reaction curve with a negative slope, firm 1 wants to commit to a lower

price in order to induce a higher price from the rival; thus L I < BI • In our model firm 1

is able to commit to a lower price. Therefore, the announcement of the price by firm 1 is

credible, and thus the Stackelberg outcome appears.

However, Bertrand equilibrium outcome (B I , B2) is also one of the equilibrium out­

comes. Suppose that firm 2 chooses P2(1) = B2. Then firm 1 cannot induce a lower price

than B 2 from firm 2, so firm 1 loses the incentive to become a leader by announcing a low

price like L,. A rigorous proof of Proposition 3.2 is given in the Appendix B.

'·See Gal-Or [33] and Dowrick [24J.
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3.4.3 Case (3)

In this subsection, we discuss the case of strategic complements in which the goods are

complements (case (3)). We find that the equilibrium outcome is of Stackelberg-type only.

Proposition 3.3: Suppose that Assumptions 3.1-3.5 are satisfied. Suppose that 8x;/8pj <

oand 8R;/8pj > 0 (i = 1,2). Then the set of equilibrium outcomes E = {(L I , F2 ), (Flo L2 )}.

Proof: See Appendix B.

The reason why the Stackelberg outcome (L" F2 ) becomes an equilibrium one is almost

the same as in case (2). As opposed to other cases, the Bertrand outcome (B I , B2 ) is

not found in equilibrium. Since the goods are complements, firm 1 has an incentive to

decrease P2' Since firm 2 has a reaction curve with a positive slope, firm I wants to commit

a lower price in order to induce a lower price from the rival; thus L I < B I • As we will

prove in Lemma 3.3 in the Appendix B, the Bertrand outcome can appear only when

induce the price-cutting of firm 2; thus, by contradiction the Bertrand outcome is never

found in equilibrium. A rigorous proof is given in the Appendix B.

3.4.4 Examples

Finally, we present some examples, which are discussed in many works.

Example 1 (additively separable demand function)

Suppose that the demand is additively separable, i.e., Xi can be denoted as Xi = Yi(Pi) +
Zi(Pj). This example was discussed by Robson [65]. In this case, we have that sign(RD =

sign(8x;/8p,). From Proposition 3.1, the equilibrium outcome is of Bertrand-type only.

Example 2 (homogeneous goods)

Consider a Bertrand duopoly in which firm I's (firm 2's) unit cost is CI (C2), respectively.
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Without loss of generality we assume that c\ 2: C2 2: O. The duopolists produce perfectly

substitutable commodities for which the market demand function is given by X(p) (quantity

as a function of price). The demand of firm i is given as follows:

{

X(p;) if Pi < Pj
X; = (1/2)X(p;) if Pi = Pj

o ifp; > Pj

where the market demand X is decreasing in the equilibrium price P == min(pIoP2).

In this example, the goods are substitutes, and the strategies are strategic complements.

This example does not satisfy Assumption 3.1, so we cannot directly apply the result of

Proposition 3.1 to this case. We find that any price lies in the interval [min(C\, p~), C2]

becomes one of the equilibrium prices where p~1 is the monopoly price of firm 2. Further-

more. if we eliminate the equilibria which are supported by weakly dominated strategies,

the equilibrium price becomes unique and is equal to min(clop~1). This is exactly the same

as the Bertrand equilibrium price."

Example 3 (entry-deterrence)

Consider a model with fixed entry costs. Suppose that the goods are substitutes. In tbe

first stage, each firm simultaneously and independently decides whether or not to enter the

market. When firm i decides to enter, it chooses Pi(l) E [0, (0). At the end of the first

stage, each firm i knows whether or not firm j entered the market, and observe Pj(1). In

the second stage, if firm i has already entered the market, then it chooses the actual price

P; E [O,Pi(I)]. If firm i has not entered the market yet, it decides whether or not to enter

the market and chooses the actual price P; E [0, (0) after entering the market.

It is assumed that due to the entry costs firm i's profit (payoff) never becomes positive

if p) $ Pj. In other words, firm j is able to deter the entry of firm i if firm j names a price

111£ we use the contingent demand function defined by Shubik (75] instead the demand function discussed
above, we can derive the Bertrand equilibrium as the unique equilibrium price without using equilibrium
refinement discussed above. See also Kreps and Scheinkman [40] and Boyer and Moreaux [10].
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which is smaller than or equal to Pj before firm i enters the market. We assume that

0< IT;(Bi. Bj) < ITi(p;)

where (Bi' B)) is a Bertrand equilibrium, and IT;(Pi) is firm i's payoff when firm i names

the limit price P; and deters the entry of firm j. We also assume that P; $ pf1 where pf1 is

firm i's monopoly price.

If firm i chooses an aggressive price policy like limit pricing, the rival becomes less

aggressive (giving up the entry.). So this example is closely related to the case (2). Needless

to say, we cannot directly apply the result of Proposition 3.2 to this example. However,

we can easily derive the result similar to Proposition 3.2 from this example. The fol.lowing

outcomes are supported as subgame perfect equilibria: (1) the Bertrand-type outcome

where both firms enter the market in the first stage; and (2) the Stackelberg-type outcome

where firm i deters the entry of firm j by choosing the limit price p;.

Example 3 above can be used in the context of entry-deterrence. In most entry­

deterrence models there is an incumbent before the game. Our example 3 states that

even if there is no incumbent and some potential new entrants are faced with competition,

one firm succeeds in deterring the rival's entry.

3.5 Concluding remarks

One of the main messages of existing works on endogenous timing games is that we

should pay more attention to sequential-move models (Stackelberg models) rather than

simultaneous-move models (Coumot or Bertrarld models), because only the Stackelberg­

type outcomes are found in equilibrium in endogenous timing games [See Hamilton and

Slutsky [37], Robson [66], Anderson and Engers [4], and Alb;:ek [2]].

However, existing works pay little attention to the fol.lowing problem: how the leader

commit to its action before the market opens. In reality, there is a considerable possibility
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that the leader deviate from its stated price before the market opens. In this chapter we

introduce incompleteness of price-commitment. We find that the Bertrand-type outcome is

the unique equilibrium outcome in the most natural case where the strategies are strategic

complements and goods are substitutes. From this result, as opposed to other works, we

should emphasize that the Bertrand model is more plausible than the Stackelberg one in

the context of price-setting competition.

In this chapter we examine a one-shot game. In reality, firms are faced with long­

run competition. If we consider a repeated game with endogenous timing, each firm may

strongly attach to the price it announced because a discount of the price may cause price

war in the near future. 12 We should consider the effectiveness of price-commitment by a

leader under long-run competition. This remains for future research.

12See, e.g., Green and Porter {35].
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Chapter 4

Quantity-Setting Oligopoly with
Endogenous Sequencing

Abstract

This chapter investigates endogenous sequencing of a quantity-setting oligopoly model.

We formulate an n-firm, m-period model where each firm chooses both how much to produce

and when to produce it. We investigate two models, the first does not include any inventory

costs and the second includes small inventory costs. We find that in the cases without

inventory costs, at least n - 1 firms simultaneously produce in the first period. In the

cases with small inventory costs, pure strategy equilibria exist only if m is 2, and in every

equilibrium exactly n - 1 firms simultaneously produce in the first period. As opposed to

existing works emphasizing the advantage of the Stackelberg over the Coumot, these results

show that the generalized Stackelberg equilibrium where each firm produces sequentially

never appears in equilibrium except for duopoly cases.

This chapler is based on Matsumura [48, 50]. I am grateful to Murdoch MacPhee, Masuyuki tishijima,
and Makola Okamura

for their helpful discussions. Needless to say, I am responsible for any remaining defects.
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4.1 Introduction

Cournot and Stackelberg models have occupied important positions among the models

of oligopoly. These models have been introduced in many models and subjected to in-

tensive discussion. The Cournot model formulated a simultaneous-move game, while the

Stackelberg model formulated a sequential-move game. If we consider a simple quantity­

setting duopoly game, the game is either a sequential-move game (Stackelberg game) or a

simultaneous-move game (Cournot game).

If we consider a model involving more than two firms, we can analyze more varied

situations: a pure simultaneous-move model in which aU firms choose their actions at

the same time (Cournot model), a pure sequential-move model in which aU firms choose

their actions at different times (generalized Stackelberg model).! and mixed-type models

in which there is a sequence of periods in each of which some players choose their actions

simultaneously.

Each of the models above has been intensively discussed in various contexts. Obviously,

each model produces a different equilibrium outcome, i.e., the equilibrium outcome cruciaUy

depends on the sequence of each firm's choice in the model. This suggests the foUowing

question: which of the models is natural for analysis of oligopolistic markets? The aim of

this chapter is to find an answer to the problem by introducing endogenous sequencing into

a standard quantity-setting oligopoly model.

In many economic situations, it is more reasonable to assume that firms choose not only

what actions to take, but also when to take them. A number of economists have inves-

tigated tlus problem. Hamilton and Slutsky, Robson [66], Alb",k [1, 21, Mailath [44] and

Matsumura [47) discussed duopoly games with endogenous sequencing and emphasized that

Stackelberg-type outcomes appear in endogenous timing games but a Cournot-type outcome

I For the concept of generalized Stackelberg model, see Robson (65] and Anderson and Engers [4).
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does not. Although in some duopoly models, both Stackelberg-type and Cournot-type out-

comes appear in eq\lilibria,2 it is known that the existence of Cournot-type equilibrium

is heavily dependent on minor model specifications while Stackelberg-type equilibria are

robust.3 However, these are restrictive in the sense that they investigated duopoly rather

than n-firm oligopoly'

In this chapter, we formulate n-firm, m-period, quantity-setting oligopoly models in

which each firm can choose when to take its action as well as what action to take. First,

we formulate a basic model where each firm's payoff depends only on its own output level

and that of other firms. We find that there are two types of equilibria: either all firms

simultaneously produce, or n - 1 firms simultaneously produce first and thereafter one firm

produces, and that no other equilibrium exists. In other words, most firms (all or aU

but one) produce simultaneously in every equilibrium. We think that this result shows the

advantage of the simultaneous-move model (the Cournot model) rather than the sequeutial­

move model (the generalized Stackelberg model).

Next, we allow each firm's payoff to depend on when it produces as well as how much

it and others produce. In reality, each firm's profit depends on the timing of production.

For example, production in an earlier stage may increase inventory or interest costs (see,

e.g., Robson [66] and Matsumura [47]), or the firm produces first may lose the opportunity

to obtain a better production technology or useful information about the demand or rivals'

cost conditions (see, e.g., Gal-Or [34], Alb<ek [21. Charnley and Gale [16], and Matsumura

and Veda [53]). We introduce small inventory costs, as typical costs of producing in earlier

'See, e.g., Saloner [71].
31n the game with action commitment formulated by Hamilton and Slutsky [37], the Cournot-type

equilibrium exists but is supported by weakly dominated strategies. Thus the Cournot-lype equilibrium is
unstable with resect to even small perturbations for the model, See also Albcek [2), and Matsumura (47) .

.. Anderson and Engees [4] formulated an n-player game with endogenous timing and found that the
equilibrium outcome is of generalized Stackelberg-type (i.e., perfectly sequential-move outcome). Their
model differs from our model, however, in that not all firms can choose their timing.
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periods, into the basic model. We find that pure strategy equilibria ex.ist only if m is 2, and

in every equilibrium exactly n - 1 firms simultaneously produce in the first period. In case of

duopoly, the equjlibrium outcomes is of Stackelberg-type only. Thus. in duopoly this result

is quite similar to that of existing works emphasizing the advantage of the Stackelberg over

the Cournot. However, as opposed to existing works, this result states that generalized

Stackelberg equilibrium never appears in equilibrium except for duopoly.s

The remainder of this chapter is organized as follows. In Section 4.2. we form ulate a basic

model. In Section 4.3, we discuss two-stage oligopoly models with exogenous sequencing as

a benchmark. Section 4.4 discusses the equilibria of the basic model. Section 4.5 modifies

the basic model by introducing inventory costs. Section 4.6 concludes the chapter. All

proofs are presented in the Appendix C.

4.2 The basic model

In this section, we formulate a (m+l)-stage, n-firm oligopoly game. Both m and n are

larger than one. The set of firms is denoted by N where N = {1,2, ... ,n}. Throughout

Chapter 4 we use a perfect Bayesian equilibrium as our equilibrium concept.

In the first stage (period 0), each firm i E N chooses the timing e; E {I, 2, .. , m} where

e; = t implies that firm i chooses period t. The set of firms choosing period t is denoted by

N'. At this time. each firm j l' i does not observe e;.6 Each firm i E Nt independently

!JWe must emphasize that our results are crucially dependent on the assumption that each of our models
has a first period. If we constructs a model with infinite earlier periods, most of our propositions do not
hold true. We think that a model with infinite earlier periods is quite important, but a model with finite
period is also important and well worth discussing. For an important model with infinite ea.rlier periods,
see Robson [66J.

61{ we assume that all firms observe it, the game becomes an extension of the extended game with
observable dela.y formulaled by Hamilton and Slutsky [37]. On the other hand, if we assume that it is
unobservable, the game becomes an extension of the extended game with action commitment formulated in
the same paper. As we state in the Introduction of Chapter 1, we note particularly the result derived from
the latter game of Hamilton and Slutsky. This is why we assume that it is unobservable. If we assume that
it is observable to all firms, as weIl as in Hamilton and Slutsky the Cournot-type outcome is supported by
a subgame perfect equilibrium under the assumptions made in Sections 4.2 and 4.3.
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chooses the output quantity Xi E [0, x] in period l.

At the beginning of period t(? 2), each firm observes actions taken in period t - 1;

as a result, each firm knows which firms belong to N'-I. In period t, each firm j E N'

independently chooses the output quantity Xj E [0, xl.
At the end of period m, the market opens and each firm sells its own output. Firm i's

payoff Ui : R~ ~ R is given by Ui(Xi, X_Ii}) where X -Ii} := LjEN\i Xj.7 We now make the

following assumptions about the payoff function:

Assumption 4.1 (Symmetric players)8 Ui(a,b) = Uj(a,b) "Ii,j E N, and (a,b) E R~ ;

Assumption 4.2 (Differentiability). Ui is twice continuously differentiable;

Assumption 4.3 (Substitutability). [)U;/[)X_{i} < a ;
Assumption 4.4 (Strategic substitutability) [)2U;/8xi[)X-Ii} < a:

Assumption 4.5 (Concavity). [)2U;/[)X? < 0; and

Assumption 4.6 (Interior solution).9 [)Ui(O, .)/[)Xi > 0, and [)Ui(X, .)/[)Xi < O.

Definition 4.1 (leader, follower, intermediate, and the last intermediate). We call firms

producing in period 1 leaders, call firms followers if they produce in period t' > 1 and no

firm produces in period t > t', and call other firms intermediates. 'We call firms the last

intermediates if they are intermediates and no intermediate produces after them.

Before investigating the equilibrium outcomes of the game, we discuss the standard

Coumot game where all firms simultaneously produce.

In the Coumot game, given the outputs of other firms, each firm i E N chooses its

output quantity. Each firm maximize its payoff Ui(Xi, X -{ill with respect to Xi. For firm i

7We can easily extend the model to differentiated goods model.
8This assumption is not essential but greatly economizes the space.
9Some readers may think that this assumption is too strong to derive general results. However, we can

derive results similar to our propositions without this assumption. For example, instead of Proposition 4.3
discussed in Section 4.3, we can derive the following result without Assumption 4.6: "In equilibrium the
number of firms producing positive output in period t> ) is at most one:'
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we define

(4.1)

i.e., R;(X_{i)) is firm i's reaction function. Here we make an assumption about Ri.

Assumption 4.7 (Stability condition). 18R;/8X_{i)1 :0; 1/2).

Assumption 4.7 is more restrictive than the standard stability condition (18R;/8X_{;)1 < 1).

As shown the following Lemma 4.1, this assumption ensures the disadvantage of a follower.

4.3 Two-period games with exogenous sequencing

Before investigating the equilibrium outcomes of the game with endogenous sequencing, we

discuss s-firm, 2-stage games with exogenous sequencing as a benchmark. Discussion here

is an extension of Dowrick [24] duopoly models to oligopoly models. JO We will show that

leaders have advantage in cases of strategic substitutes. The following results are used for

the proof of our main results discussed in the following two sections. From here on, we

restrict our attention to pure strategy equilibria.

We consider the following two-stage games with exogenous timing. The set of players

is S ~ N. Each firm h if: S has already produced before the game. Let X denote the total

output of firms which do not belong to S, and X is given exogenously.

In the first stage. after observing X each firm i E S" ~ S simultaneously chooses its

output. In the second stage, after observing X and the outputs of firms which belong to

So, each firm j E S\S" simultaneously chooses its output.

(1): the Cournot game

Suppose that IS"I ~ 1 and S" = S, i.e., all firms produce in the first stage.

IOStrictly speaking, Dowrick formula.ted duopoly models under more general situations. For example, he
discussed strategic complements cases as well as strategic substitutes cases, while we restrict our attention
to strategic substitutes cases.
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Definition 4.2 (Cournot output). Let C(S,X) denote the equilibrium output of the

Cournot game above, where X ;: L{;EN\Sj X;. It is given by C = R((ISI - I)C + X),

where R is the reaction function defined in Section 4.2.

The existence and the uniqueness of the equilibrium is guaranteed by the stability

condition (Assumption 4.7).

(2): the game with followers

Suppose that S" c Sand S" ~ 0.

Definition 4.3 (the outputs of leaders and folJowers). Let L(S, So, X) denote each firm i's

(i E So) equilibrium output and F(S, 5", X) denote each firm j's (j E 5\5*) equilibrium

output. In cases of one folJower (i.e., 15\5"1 = 1), they are given by

F = R(lS"IL + X), and L E argm;xU(x,(I5"I-l)L+ R«I5"I- I)L+ X + x)+X).

In cases of more than one follower (i.e., 15\5*1 > 1), they are given by

F = C(S\S*.X + 15"1£), and £ E argm:xU(x,X + (15"1- 1)£ + IS\S"IC)

where C;: C(S\S",X + (lS*I-l)L + x).

Assumption 4.8 (The existence and the uniqueness of the equilibrium).ll For any S" <:;;

5 <:;; N, and X E R+. there exists a pure strategy equilibrium and the equilibrium is unique

in each two-stage game with exogenous sequencing formulated above.

Here we show that each follower strictly prefers the Cournot outcome to the follower's

outcome if the number of followers is one. 12

liThe assumption of uniqueness is for simplicity, but the assumption of existence is essentiaL Obviously,
if no pure strategy equilibrium exists in the games with exogenous sequencing above, then no pure strategy
equilibrium exists in the game with endogenous sequencing.

12 10 cases of duopoly, this result, as well as Lemma 4.2, is shown by Gal-Or [33] and Dowrick (24].
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Lemma 4.1: Suppose that Assumptions 4.1-4.8 are satisfied. Suppose that lSI ~ 2. Then

U;(C(S,X), (ISI- l)C(5..X) +X) > U;(F(S, S\{i},X),(ISI- l)L(S,S\{i},.X) + X)

ViE N,X E R+, and S <:;; N.

Proof: See Appendix C.

Next we show that if the number of leaders is one, the leader strictly prefers the leader's

outcome to the Coumot outcome.

Lemma 4.2: Suppose that Assumptions 4.1-4.8 are satisfied. Suppose that lSI ~ 2. Then

U;(C(S,X),(ISI- l)C(S,X) + X) < Ui(L(S,{i},X),(ISI- l)F(S,{i},X) + X) ViE

N, X E R+, and S <:;; N.

Proof: See Appendix C.

4.4 Equilibrium outcome

[n this section we discuss the equilibrium outcomes of the basic model formulated in Section

4.2. We restrict our attention to pure strategy equilibria.

Proposition 4.1: Suppose that Assumptions 4.1-4.8 are satisfied. Then the number of

followers is at most one in every equilibrium.

Proof: See Appendix C.

Proposition 4.2: Suppose that Assumptions 4.1-4.8 are satisfied. Then no intermediate

exists in equilibrium.

Proof: See Appendix C.

From Proposition 4.2, we have that each firm is either a leader or a follower in equi-

librium; thus pure sequential-move outcomes (generalized Stackelberg outcomes) where no

firms simultaneously produces in the same period never appear in equilibrium. The follow-
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ing Proposition 4.3 states that the number of leaders is n or n - 1 in every equilibrium. and

that such equilibria exist l3 Proposition 4.3 states that the number of leaders rather than

followers increases when the number of players increases.

Proposition 4.3: Suppose that Assumptions 4.1-4.8 are satisfied. Then, (i) there exist an

equilibrium whe"e all firms become leaders, (ii) there exist equilibria where all but one firm

become leaders, and (iii) no other pur'e strategy equilibrium exists.

Proof: See Appendix C.

4.5 A model with inventory costs

In our basic model, as well as in Hamilton and Slutsky [37], each firm's payoff depends

on its own production level and that of others but does not directly depend on the timing

of production. In reality, each firm's profit depends on the timing of production as well

as on its own and others' level of production. For example, production in an earlier stage

may increase the inventory costs or interest costs, or the firm producing first may miss the

opportunity to obtain a better production technology or useful information about demand

or rivals' cost conditions.

In this section, we allow each firm's payoff to depend on when it produces as well as the

level of production by introducing small inventory costs into the basic modeI.l4

Here we define the new payoff function of each firm i, Vi, as follows:

Vi(Xi,X_{i},ei) == Ui(Xi,X_{i}) - £Ji(ei,Xi)

13Some readers may think that a refinement of the equilibria discussed by Hamilton and Slutsky [37]
(elimination of weakly dominated strategies) can be applied to this model. If the number of firms is two, we
can eliminate the Cournot-type equilibrium by this refinement. In cases of more than two firms, however,
we cannot eliminate it I i.e., the Cournol-lype equilibrium is supported by undominated strategies,

14 If the inventory costs are sufficiently large, no firm wants to become a 5tackelberg leader. Hence the
unique equilibrium outcome is of Cournot-type, where firms produce in the last period only. In order to
eliminate such an obvious case, we consider the case of small costs.
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where [is a constant and J;: {1,2, ..m} x [O,x] ~ R+.1s We call [J; inventory costs of firm

i. Here we make the following assumptions:

Assumption 4.9. Assumptions 4.1-4.8 hold true when we replace U; with 1/;; and

Assumption 4.10. J; is bounded and strictly decreasing in e;.

The following Propositions 4.4 and 4.5 state that, if [ is positive and small, the equi­

librium outcomes in two-period duopoly are of Stackelberg type only, while no such an

equilibrium exists in oligopoly involving more than two firms.

Proposition 4.4: Suppose that Assumptions 4.9 and 4.10 are satisfied. Suppose that

m = 2. Then there exists t such that for every 0 < [ < t, the"e exist pure strate9Y equilibria

and the number of leaders is n - 1 in every equilibrium.

Proof: See Appendix C.

Proposition 4.5: Suppose that Assumptions 4.9 and 4.10 are satisfied. Suppose that

m > 2. Then there exists t such that for every 0 < [ < t, no pure strategy equilibrium

exists.

Proof: See Appendix C.

We should not emphasize the non-existence of pure strategy equilibrium. In our model

we allow each firm to produce in one of m periods only. If we allow firms produces over m

periods (like Saloner [71]), Proposition 4.5 does not hold true. For example if we allow each

firm to produce additional output in every period and restrict our attention to fixed-type

inventory costs discussed in Chapter 2, we can show that in cases where m are larger than

2, :

(1) Cournot-type equilibrium where all firms produce in period 1 only exists;

(2) semi-Coumot-type equilibria where only one firm produces in the last period and the

l~Similar costs are discussed by Robson [65, 66] and Matsumura [47].
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others produce in period 1 only exist; and

(3) the generalized Stackelberg-type equilibria never appears in equilibrium except for

duopoly.

Anyway, we cannot rationaljze the generalized Stackelberg model.

Finally, we note the case of negative inventory costs. Although this may be unrealistic,

we present a result as a benchmark l6 Proposition 4.6 states that the equilibrium outcome

is of Cournot-type only in cases of negative c. I7

Proposition 4.6: Suppose that Assumptions 4.Y and 4.10 m'e satisfied. Suppose that c is

neyative. Then a unique equilib"ium exists, in which all firms become leaders.

Proof: See Appendix C.

4.6 Concluding remarks

In many economic situations, it is more reasonable to assume that firms choose not only

what actions to take. but also when to take them. Some economists have investigated

this problem. Hamilton and Slutsky [371, Robson [66], Alb",k [2], Mailath [44] and Mat-

sumura [47] discussed duopoly games with endogenous sequencing and emphasized that

Stackelberg-type outcomes appear but a Cournot-type outcome does not. These papers

suggested that the Stackelberg model is more plausible than the Cournot model if firms

can choose when to take their actions. It is also well known that in duopoly cases the

Stackelberg equilibrium outcomes are quite robust for small perturbations such as tbe in-

troduction of small inventory costs, or informational advantage of waiting.

In this chapter we stress that the above result is misleading. We find that, without

16The assumption of negative ~ implies that an earlier production economizes on the costs. It is possible
if production costs increase over time. See Pal [63].

HIn the duopoly case, Pal [63] derives the results similar to OUf Propositions 4.4 and 4.6 by extending
the Saloner [71] model.

51



inventory costs, most firms (all or all but one) take their actions in the first period and the

number of followers is at most one. If the number of firms is large, the number of leaders

acting simultaneously also becomes large; thus the equilibrium outcome becomes very close

to that of Cournot-type. This result shows the advantage of the simultaneous-move model

(the Cournot model) rather than the sequential-move model (the generalized Stackelberg

model).

We also find that, with small and positive inventory costs, the result is crucially de-

pendent on n (the number of players) and m (the number of periods). In the cases with

small inventory costs, pure strategy equilibria exist only if m is 2, and in every equilibrium

exactly n - 1 firms simultaneously produce in the first period. This result shows that the

generalized Stackelberg-type equilibrium where each firm produces sequentially never ap­

pears in equilibrium except for duopoly. This also implies that two-period duopoly models

are restrictive to investigate games with endogenous sequencing.

Independently, Nishijima [58J formulated a different oligopoly model with endogenous

sequencing and derives a result similar to our Proposition 4.3. In addition to our assump­

tions (except for the stability condition (Assumption 4.7)), he requires three conditions

which imply that the first-mover enjoys an advantage in various situations. In order to

derive our Proposition 4.3, we use two of Nishijima's three conditions, but we derive them

from other standard assumptions rather than assuming. More importantly, we do not need

the first condition of him, which is the most restrictive condition among the three in the

sense that it is not satisfied in a broad class of standard quantity-setting oligopoly models. '8

Our model can easily be extend to a quantity-setting oligopoly with differentiated goods,

but we find it difficult to apply our results to a price-setting oligopoly. It is natural to

consider strategic complements cases in the context of price-setting competition, but our

aFar example, it is not always satisfied even in linear-demand, linear-cost cases
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results are heavily dependent on the assumption of strategic substitutes (Assumption 4.4).19

In the context of price-setting oligopoly there is a famous model investigating the sequences

of firms' choices, a price-leadership model.2o We should extend our oligopoly model in order

to analyze more general situations such as these covered by the Hamilton and Slutsky [37J

duopoly model, and this remains for future research 21

19For example, Proposition 4.3 (i) and (ii), hold true for strategic complements but (iii) does not. In some
cases of strategic complements, pure sequential-move outcomes are found in equilibrium.

"See, e.g., Ono [61, 62] and Ito and Ono [38J.
21 If we restrict OUf attention to two-period cases, we obtain more general results. See Matsumura [48].
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Chapter 5

Endogenous Timing in a
Two-Stage Strategic Commitment
Game

Abstract

This chapter presents an investigation of the endogenous timing in multi-stage duopoly

games in which duopolists choose two variables over two periods. We elaborate the two-

stage strategic commitment game discussed by Brander and Spencer [12). Duopolists decide

their capacity investments and cost-reducing investments and they are allowed to choose

which action to take first. We discuss two types of games; one is a three-stage game in which

each duopolist can commit to the order of choices before it chooses its capacity investment

or cost-reducing investments, and the other is a two-stage game in which it cannot. We find

that at least one firm chooses its capacity investment first. Furthermore, the three-stage

game has the unique equilibrium outcome in which both firms choose their outputs first.

This chapter is based on Matsumura [51]. I am grateful to Lim Chin, Yoshitsugu Kanemoto, Kazuharu
Kiyono, and Yuval ShiJony for their helpful comments on the early draft. I am also indebted to an anonymous
referee for detailed and precious suggestions. Needless to say, I am responsible for any remaining defects.
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5.1 Introduction

Many economists have investigated models in which firms compete in terms of more than

one variable over multi-period.! Strategic commitments in the upstream stage. which dis-

tort their actions in the downstream stage, have been intensively discussed. Brander and

Spencer [12] developed a two-stage duopoly game in which duopolists chose cost-reducing

investment in the first stage and chose output in the second stage. They found that the

first-stage investment serves as a commitment device. The strategic value of cost-reducing

investment induces firms to make very aggressive investment if the strategies in the sec-

ond stage are strategic substitutes. Such aggressive investment by both firms, however,

accelerates competition in the second stage resulting in reducing their profits.

Many devices other than cost-reducing investment are known to serve as commitment

devices, and these have the same kind of strategic values. The strategic values of these

devices are, however, crucially dependent on the time structure of the game. Brander

and Spencer also showed that the strategic value of cost-reducing investment disappears if

duopolists choose both cost-reducing and output at the same time: therefore the equilibrium

investment is smaller than that in the two-stage counterpart. 2 If we restrict our attention to

the two-stage competition, the equilibrium cost-reducing investment level may drastically

change if cost-reducing investment are determined after output.

If we regard cost-reducing investment as R&D investment, it is natural to assume,

as they did, that the cost-reducing investment is chosen before output. In many actual

situations, however, duopolists can choose which action to take first between more than one

action rather than choosing actions by an exogenously fixed order. For example, consider

the following situation: a firm chooses capacity investment for production and cost-saving

ISee, e.g., Spence [78), Shaked and Sulton [74], Brander and Lewis [11], Fershtman and Judd [29], and
Chu and Nishimura [17]

2See also Dasgupta and Stiglitz [18].
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investment for distribution. The firm's output capacity depends on its investment for

production and per-output distribution cost depends on its investment for distribution. In

this case, it is natural to assume that the firm can control which investment to make first.

In this chapter, we investigate two-player, multi-stage games in which duopolists choose

two kinds of actions (cost-reducing investment and output) over two periods. If they choose

cost-reducing investment first, they choose output in the next stage and vice versa3 We

discuss two games; one is a three-stage game in which firms can commit to the order of their

choices before they choose its output or investments, and the other is a two-stage game in

which they cannot commit. We find that in both games there is no equilibrium in which

both firms choose cost-reducing investment first, while there is an equilibrium in which both

firms choose output first. In the two-stage game, there are asymmetric equilibria in which

one firm chooses output first and the other chooses cost-reducing investment first. On the

other hand the three-stage game has a unique equilibrium, in which each firm commits to

choosing output first. By making a larger cost-reducing investment, each firm reduces its

marginal cost and commit to a larger output. However, this commitment is indirect. A firm

can make a direct commitment by choosing its output first. If its rival chooses cost-reducing

investment first, the firm can reduces its rival's output more effectively by producing output

first. This is why there is no equilibrium in which both firms choose cost-reducing first in

both games.

In the two-stage game, given that the firm chooses output first, its output is decided

before the rival's action; therefore, there is no room for the rival to make a strategic behavior.

Hence, given that the firm chooses output in the first stage, it is a matter of indifference

for the rival whether or not it chooses output in the first stage. Therefore, both symmetric

3We implicitly assume that production level of each firm is equal to its capacity. Strictly speaking, it
is possible that each firm chooses output which is strictly smaller than its capacity. Even if we allow this
possibility, we obtain the same results derived in this chapter. I thank Professor Shilony for this point.
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and asymmetric equilibria exist.

On the other hand, in the three-stage game each firm can choose which action to take

first before choosing its output quantity. By committing to choosing output before cost­

reducing investment, each firm shows that it never becomes a Stackelberg follower; as a

result, it can reduce the output of its rival and increase its profit. This is why both firms

choose output first in the three-stage game.

This chapter is organized as follows. In Section 5.2, we formulate the model of the

two-stage game in which duopolists cannot commit to the order of the choice. In Section

5.3, in order to present some benchmarks, we discuss the games in which the timing is

exogenously given. Section 5.4 analyzes the equilibrium outcomes in the endogenous timing

game. Section 5.5 considers the three-stage game in which duopolists can commit to the

order of decision. Section 5.6 concludes this chapter.

5.2 The model

In this section we formulate a two-stage game. Throughout this chapter, we consider two

symmetric firms which choose two variables over two periods. The two firms are denoted as

1 and 2. We often use i or j to refer to a firm, and it is understood that if i denotes 1 in one

expression, then j represents 2 and vice versa. Firm i (i = 1,2) chooses the two variables

a; and b; over two periods. For concreteness. we take a; and b' to be firm i's output and

cost-saving distribution investment, respectively. Firm i's payoff U; is given by

where V;(a;,aJ ) is firm i's gross profit, which does not include the distribution cost. Firm

i's distribution cost is c;(a;, bt which includes distribution investment cost. Duopolists

have identical gross profit functions and distribution cost functions. We assume that

V{ < 0, V1'z < O,cj > 0, and cjz < 0 (i = 1,2)
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where we use subscripts to denote partial derivatives. The inequality cb < 0 implies

that the increase of distribution investment reduces both average and marginal distribution

costs: that is, bi is cost-reducing investment. The inequalities Vj < 0 and V;2 < 0 imply

that a i and a) are substitutes in the sense that increasing the output of good j decreases

the total and marginal profit of firm i. 4 We assume the second order conditions and the

stability condition; namely, we assume the following inequalities:

These assumptions are standard in the field of industrial organization.

The game runs as follows. In the first stage, each firm i simultaneously and indepen-

dently chooses its first stage action ei(l) E S = R+ x {a,b}. ei(l) = (x,a) implies that firm

i chooses ai in the first period and sets ai = x. After this first stage, each firm knows e1(1)

and e2(1). In the second stage, each firm i simultaneously and independently chooses its

second stage action e'(2) E R+. ei (2) = y implies that firm i chooses

ai = y if e'(l) = ( .b)
bi = y if e'(l) = ( .a) .

Throughout Chapter 5, we use a subgame perfect !\ash equilibrium as an equilibrium

concept. We restrict our attention to pure strategy equilibria.

5.3 Some benchmarks

Before discussing the endogenous timing game, we examine equilibrium outcomes in the

games in which the timing is exogenously given. For simplicity, we assume that there is a

unique equjlibrium and it is an interior solution in the following three games.

4Some readers may think that the assumption of strategic substitutes (VI'2 < 0) is too restrictive, but
Proposition 5.1, which is one of our main results, hold true in the case of strategic complements (Vt'2 > 0).
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5.3.1 Output first game

We define (aO,bO) as the equilibrium outcome in the game where output is determined in

the first stage and cost-reducing investment is determined in the second stage. The first

order condition for firm i is given by the following equation:

c;=0(i=1,2). (5.1)

We define Bi(ai) as firm i's optimal cost-reducing investment bi given its output ai. Bi(ai)

is given by c~(ai,Bi(ai)) = O. In the first stage, firm i maximizes Vi with respect to ai . The

first order condition for firm i in the first stage is given by

(5.2)

where we use (5.1). We assume that the second order conditions are satisfied.

Note that (aO. be) coincides with the Kash equilibrium outcome of the single-stage game

in which each firm i chooses ai and b' at the same time.

5.3.2 Cost-reducing investment first game

We consider the game in which cost-reducing investment is determined in the first stage and

output is determined in the second stage. We define (aB,b B) as the equilibrium outcome

in this game. [n the second stage, firm i maximizes V' with respect to a' given b' and bJ •

The first order condition for firm i is given by the following equation:

Vi- ci=0(i=1,2). (5.3)

We define Ri(ai : bi) = argmax{a.}(Vi(ai,ai)-ci(ai , bill, i.e.. Ri is firm i's reaction function

and given by V/(Ri(ai : bi),ai ) - c\(Ri(ai : bi),bi ) = O. We define (ai'W,bi),aJ'(bJ,bi))

as the equilibrium outcome in the subgame given bi and bJ. By definition, ai'(bi,bi) =
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In the first stage, firm i max.imizes Ui with respect to b;. The first order condition for

firm i is given by

Vjda'_c~=_Vj .. C\2 V!Z .-c~=0(i=I,2) (5.4)
db' (V,\ - c;\)(V{\ - c{,) - VizV{z

where we use (5.3). Here we compare be with bB

Proof: See Propositions 2 and 3 in Brander and Spencer [12).

5.3.3 Asymmetric game

Consider the game in which firm i chooses output a' and firm j chooses cost-reducing

investment bi in the first stage. We define (ai, ai . bi, bi) = (a L , aF , bL , bF ) as the equilibrium

outcome in this game. In the second stage. the first order conditions for firm i and firm j

are given by the following equations, respectively:

c~ = 0 and V{ - c{ = 0 (i = 1,2). (5.5)

In the first stage, firm i's and firm j's first order conditions are given by the following

equations, respectively:

v'
(Vi - ci)- V2V{, ~ZCil = 0 and c~ = 0 (i = 1,2).

aL , aF , bL and bF satisfy the following four equations:

aL = arg{a~} Vi(ai,Ri(ai : bF )) _ ci(ai : bL )

aF = Ri(aL : bF )

bL = Bi(aL )

bF = Bi(aF ).

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

In this game firm i is a Stackelberg leader and firm j is a Stackelberg follower for output.
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5.4 Endogenous timing game

In this section we investigate the endogenous timing game formulated in Section 5.2. There

are four possible pure strategy equilibria; two are symmetric equilibria in which both firms

choose the same variables in the first stage. and two are asymmetric equilibria in which one

firm chooses a first and the other chooses b first. In tlUs section we show that there is no

equilibrium in wlUch both firms choose b first.

Proposition 5.1: (i) There is an equilibrium in which e1(1) = e2(1) = (aC,a), (ii) the1'e

is an equilibr'ium in which (ai,bi,ai,bi ) = (aL,bL,aF,b F) (i = 1,2), and (iii) no other pure

strategy equilibrium outcome exists.

Proof: (i) Suppose that firm i's strategy as follows:

{

Bi(ai) if ei (l) = (ai . a)
ei(l) = (ac ,a). ei(2) = Ri(aJ : bi) if ei(l) = W, b) and eJ(I) = (aJ. a)

a'"(b'.bJ) if e'(I) = (b'.b) and eJ(I) = (bJ.b).

We show that firm j's best response is to do the same as firm i. To compute a subgame

perfect ash equilibrium, the game is solved by backward induction. First, consider the

second stage action. By definitions of BJ(aJ),RJ(ai : bi) and ai"(bi,bi), firm j's best

response in the second stages is

{

Bi(ai) if ei (l) = (ai, a)
ei (2) = Ri(ai,: bi ) if ei (l) = (bi,b) and ei(1) = (ai,a)

aJ"(bJ,b') if ei (l) = (bi,b) and ei(l) = (bi,b).

ext, consider the first stage action. Given that ei = (aC , a), firm i chooses bi =

Bi(aC) = bC in the next stage and bi is not affected by ei (I). Thus. firm j maximizes

Ui with respect to ai and bJ given that ai = aC and bi = be Optimal aJ and bJ are

given by (5.1) and (5.2). Since ai = aC and bi = bC satisfy (5.1) and (5.2), we have that

ei (l) = (aC,a) is one of firm j's best responses.

(ii) We construct a particular profile of strategies which yields a subgame perfect equilib-
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rium. We show that following firm j's strategy is its best response to the following firm

i's strategy in all subgames and vice versa. Suppose that firm i's and j's strategies are as

follows:

{

Bi(ai) if ei(l) = (a',a)
ei(l) = (a L,a), ei(2) = Ri(ai : bi) if ei(l) = W, b) and ei(l) = (ai . a)

a'·(b'.bJ) if ei(l) = W,b) and ei(l) = (bi,b)

{

Bi(aJ) if eJ(l) = (ai,a)
ei(l) = (b F,b),ei (2) = Ri(ai : bJ) if eJ(l) = (bi,b) and ei(l) = (ai,a)

aJ'(bJ,b') if ei(l) = (bi,b) and ei(l) = (b',b).

In the proof of Proposition 5.1 (i), we have already shown that the above strategies in the

second stage are best responses for both firms. Thus we consider the first stage actions.

First, we show that the above strategy of firm j is its best response. Given that e'(l) =
(aL,a), ei(2) = Bi(aL). Thus ei(l) and ei (2) do not affect firm i's actions. Given that

ai = aL and bi = bL. (5.S) and (5.10) ensure that the optimal action of firm j is (ai, bi) =

(aF,b F). Since firm i's actions do not depend on firm j"s actions. both eJ(l) = (aF.a) and

ei(l) = (bF,b) are firm j's best responses in the first stage. Therefore, firm j's strategy

above is one of its best responses.

Next, we show that firm i's strategy above is its best response. Suppose that firm i

chooses a first. (5.7) and (5.9) ensure that ai = aL is the optimal level of ai given that

ei(l) = (bF,b). Thus, all we have to show is that firm i cannot increase its payoff by

choosing b first. We prove it by contradiction.

Suppose that given ei(l) = (b F, b), ei(l) = (b i, b) is firm i's best response, while

ei(l) = (aL,a) is not. If ei(l) = W.b) and ei(l) = (bF,b), then ei(2) = ai*W,bF)

and eJ(2) = ai*(bF,bi). Given firm j's strategy above, firm i takes the following strat­

egy: ei(l) = (ai'(bi,bF), a) and ei(2) = Bi(ai ). In the second stage, firm j chooses

ai = Ri(ai*(bi,bF): bF) = ai*(bF,bi). Accordingly, this deviation by firm i does not affect

ai and ai ; thus this deviation does not decrease firm i's payoff. Since Ui(aL,aF,Bi(a L))::::
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(aL,a) is one of firm i's best responses, a contradiction.

(iii) Suppose that both firms choose a first. In this case the unique equilibrium outcome is

the one described in Proposition 5.1 (i) because the output first game has a unique equi­

librium. Suppose that firm i chooses a first and firm j chooses b first. In this case the

unique equilibrium is the one described in Proposition 5.1 (ii). Under these conditions, all

we have to show is that there is no equilibrium in which both firms choose b first. Suppose

that e1(1) = e2(1) = (bB,b) and e1(2) = e2(2) = aB on the equilibrium path. Given firm

j's strategy, firm i takes the following strategy: e;(l) = (aB, a), and e;(2) = B;(aB). In the

second stage, firm j chooses ai = Ri(aB : bB) = aB Accordingly, this deviation from the

equilibrium strategy by firm i does not affect ai . From (5.4), we have that bB i B;(aB).

Therefore, U;(aB,aB,B;(aB)) > UJ(aB,aB,b B). Under these conditions, the above devi­

ation from the equilibrium strategy by firm i increases firm i's payoff, a contradiction.

Q.E.D.

In the strategic substitutes cases. the profits in the Brander and Spencer model (b is

decided before a) are smaller than in the Cournot counterpart (a is decided before b).

Thus, firms' profits in the endogenous timing game are larger than in the Brander and

Spencer counterpart if we restrict our attention to symmetric pure strategy equilibrium.

If strategies are strategic complements, however, the profits in the Brander and Spencer

model are larger than in the Cournot counterpart, but (a 1,bt,a2 ,b2 ) = (aB,bB,aB,b B)

never arises in the endogenous timing game; i.e., there is no equilibrium in whjch both

firms choose cost-reducing investment first. s Thus, we should note that a Cournot outcome

arises in the endogenous timing game not because the Cournot outcome is more favorable

for duopolists than the Brander and Spencer outcome, but because djrect commjtment by

!lNote that we do not use the condition that \li2 < 0 in the proof of Proposition 5.1.
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output is more effective than indirect commitment by cost-reducing investment.

As with other endogenous timing games.6 however, this game also has asymmetric

equilibria. Suppose that firm i chooses a first. Since firm j cannot affect the output of firm

i, firm j loses an incentive to make strategic commitment; thus choosing a first or not is

a matter of indifference for firm j. Therefore, given that firm i chooses a first, choosing b

first is one of best responses for firm j. Accordingly, asymmetric equilibria exist.

5.5 Preplay commitment game

In the previous section, we showed that there are three pure strategy equilibria (one sym-

metric and two asymmetric equilibria). We can compare the payoffs of firms in the three

equilibrium outcomes. As Gal-Or [33] and Dowrick [24] showed, if strategies are strategic

substitutes (i.e., Vi2 < 0). the Stackelberg leader has the first mover advantage and the

following Result 5.2 is satisfied:

In this section we discuss a three-stage game in which firms can commit to the order

of choices before they choose the amounts of outputs and investments. The game runs as

follows. In the first stage, each firm i simultaneously and independently chooses the timing

e' E {a,b}. e' = a implies that firm i chooses output a' before cost-reducing investment

b' and e' = b implies vice versa.7 After this first stage, both firms know e' and e2 . In the

second stage, firm i chooses a' if e' = a and b' otherwise. In the third stage, each firm

chooses the one which is not chosen in the previous stage.

Consider the subgame which follows from the end of the first stage. The equilibrium

'See, e.g., Robson [66], Anderson and Engers [4]. See also Hamilton and SlulSky [37J, and Alb",k [J, 2].
7Some readers may think that this Cormation is too restrictive. We can modify the alternatives in the

first stage as follows: e' E {a,b,ab,e,n} in which e' = ab implies that firm i choose both a' and b' in the
second stage, e' = e implies that firm i choose both a' and b' in the third stage, and e' = n implies that
firm i does not commit to the order of decision. Proposition 5.2 holds true in this case.
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outcome in the subgame depends on e
'

and e2 • Discussions in Section 5.3 stated that firm

i's equilibrium payoff in the subgames after the first stage commitments is as follows:

if ei = a and ej = b
if e' = band eJ = a
if el = e} = a
if ei = ej = b.

Proposition 5.2 states that both firms choose output first if they can commit to a timing.

Proposition 5.2: There is a unique equilibrium, in which (a i ,bi,aj ,b3) = (aC,bC,aC,bC).

Proof: If we solve the game by backward induction, we have that duopolists are virtually

faced with the game given by the following payoff matrix:

Firm 2

Firm 1 e' = a

e' = b

where TIc =0 Ui(aC,aC,bC), TIL =0 Ui(aL,aF,b L), TIF =0 Ui(aF,aL,b F), and

TIB =0 Ui(aB,aB,b B).

Recall that TIc> TIB by Result 5,1, and TIL > TIc > TIF by Result 5.2. Hence TIc> TI F

and TIL > TIB, so that the unique subgame perfect equilibrium entails (e ' ,e2 ) = (a,a).

Q.E.D.

5.6 Concluding remarks

In many economic situations, it is reasonable to assume that each firm has something say

not only over its choice of action, but also over the timing of that choice. Therefore, it

is important to check the robustness of results derived from models in which firms are
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restricted to a specified timing. In this chapter, we consider the endogenous timing in the

two-stage game discussed in Brander and Spencer. We find that there is no equilibrium in

which both firms choose cost-reducing investment before output in the endogenous timing

game, while there is an equilibrium where both firms choose output first. Each firm has

a strong incentive to choose output first and commit to a large output if it is possible.

Hence it tries to increases its capacity first. A retailer has an incentive to buy a whole

product line out in order to commit itself to large sales; thereafter reduces distribution

costs. Furthermore, firms may try to change the time structure even with additional costs

since committing to deciding output before cost-reducing investment increases their profits

in the strategic substitutes cases. These cases remain to be considered in more detail in

future research.
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Appendix A

Appendix of Chapter 2

In Appendix A, we will prove all lemmas and propositions presented in Chapter 2. First, we

will prove Lemmas 2.1-2.3 which state the equilibrium outcome in the third-stage subgames

given qi(2) and qi(2). Let Bi(xi : qi(2)) denote firm i's reaction function after committing

to qi(2). i.e.,

Bi(Xl : q'(2)) = arg max (V'(x', Xl) - c'x').
(x'~q'(2)}

Since Vi, < a and xi 2': qi(2), we have that Bi(xi : qi(2)) = max(Ri(xi ). qi(2)), i.e., in

equilibrium,

(A.l)

Proof of Lemma 2.1

(By contradiction) Suppose that qi(2) 2': Ci and xi(3) > O. Suppose that ql(2)+xi(3) = xi

on the equilibrium path. From (A.l), we have that xi = Ri(xi ) because Xi > qi(2). In this

case, we have that xi < Ci because xi = R'(xi ) > Ci = Ri(Ci) and Ri(xl ) is decreasing.

Since xi < Ci, the stability condition ensures that Ri(Ri(xi )) > xi, but this contradicts

(A.l). Q.E.D.

Proof of Lemma 2.2

First, consider the case in which qi(2) = Ci or qi(2) = Ci. Suppose that q'(2) = C· and
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qi(2) :$ Ci. Lemma 2.1 states that x'(3) = O. Given that xi = Ci, firm j's unique best

response is xi (3) = Ci - qJ(2).

Next consider the case in which (q'(2),ql(2)) < (Ci,CJ). Suppose that Xi < Ci on the

equilibrium path. Since xJ = max(qJ(2), RJ(xi)) and Ri(xi) is decreasing, we have that

xi 2: Ri(xi) > Ri(Ci) = Ci 2: qJ(2). Hence, xi = RJ(xi). Since Xi < Ci, the stability

condition ensures that Ri(Ri(xi)) > x', but this contradicts (A.l).

Suppose that xi > Ci on the equilibrium path. From (A.l), we have that xi = Ri(xi)

because xi > qi(2). Since xi 2: Ri(xi) and Ri is decreasing, we have that

Ci < xi = Ri(xi ) :$ Ri(Ri(xi)), but this contradicts the stability condition. Q.E.D.

Proof of Lemma 2.3

Lemma 2.1 states that xJ = qi(2). Therefore, firm i chooses its total output x' equal to

max(qi(2), Ri(xi )). Q.E.D.

Proof of Proposition 2.1

(By contradiction) Suppose that both x'(2) and x 2 (2) are positive. First, we show that in

equilibrium xi(2) > Ci or xJ(2) > Ci (or both). Suppose that xi(2) :$ C' and xJ(2) :$ CJ.

Lemma 2.2 states that xJ = Cl if xi(2) :$ Ci. Thus, if firm i deviates from the equilibrium

strategy and chooses x i (2) = 0, the deviation reduces the inventory cost E without increasing

xi. Accordingly, choosing Ci 2: xi(2) > 0 is not firm i's best response, a contradiction.

Hence we can assume that xi(2) > Ci.

From Lemma 2.1, we have that xi equals xi(2) regardless of xi (2). If firm j deviates

from the equilibrium strategy and chooses xi (2) = 0, the deviation reduces the inventory

cost E without increasing x'. Thus, choosing xi (2) > 0 is not firm j's equilibrium strategy,

a contradiction. Q.E.D.

Proof of Proposition 2.2

If part: First we show that there is a subgame perfect equilibrium which entails (L1, F2).
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We construct a particular profile of strategies which yields a subgame perfect equilibrium.

We show that firm l's strategy below is its best response given firm 2's strategy below and

vice versa. Su ppose that the strategies of firm 1 and firm 2 are as follows:

{

0 if x l (2) ~ CI
x l (2) = Ll,x l (3) = max(R'(x2(2)) - x l (2),0) if x l(2) < CI and x2(2) ~ C2

CI - x l (2) otherwise.

To compute a subgame perfect Nash equilibrium, the game is solved by backward induc­

tion. First we consider the last-stage strategies. Concerning x
'
(3) and x 2 (3), from Lemmas

2.1-2.3 we have that the above strategies of both firms become equilibria in all subgames.

Next we consider the first-stage action x l (2) and x2(2). Given that x l (2) = LI, we have

that xl = LI regardless of x 2(2) from Lemma 2.1. In order to reduce the inventory cost,

Given that x 2 (2) = O. firm i's payoff is as follows:

{

V'(xl(2), R2(x l(2))) - Cl x l (2) - 0 if Xl (2) ~ CI
Ul = V'(CI,C2) - CICI -0 if 0 < x l (2) < CI

VI(CI,C2) - CICI if x l (2) = O.

Since LI = argmaX{xl~O}(Vi(xl, R2(x l )) - clx l ), firm l's best response is x l(2) = LI if

and only if Assumption 2.9 is satisfied.

Only if part: Next we show that there is no other equjlibrium outcomes than two Stack­

elberg outcomes. Proposition 2.1 states that x l (2) = 0 or x 2(2) = O. The proof of (i) in

Proposition 2.2 shows that given that x j (2) = 0, firm i's best response is xi (2) = L'. Q.E.D.

Here we prove one supplementary lemma in order to prove Proposition 2.3.

Lemma 2.4: Suppose that Assumptions 2.1-2.4, 2.6 and 2.9-2.10 are satisfied. Consider
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the game where firm i is a Stackelberg leader producillg ill period 2 ollty alld firm j is a

follower producillg ill period :1 ollly. Theil the Stacke/berg leader's output is larger thall the

Cournot output C'.

Proof. The proof is by contradiction. We denote the output of the Stackelberg leader

(firm i) by Xi and Rj(X i) by XJ. Without loss of generality, let i = 1 and j = 2.

We prove Lemma 2.4 by contradiction. Suppose that Xl SCI. Since CI = RI(C2), we

have U1(Ct, C2, 0, 0) 2: UI(X!, C2, 0, 0). Since R2 is decreasing and Xl SCI, we have X2 =

R2(XI) 2: R2(CI) = C2. Since VI is decreasing in x2 given x!, we have U' (X!, C2, 0, 0) 2:

Ul(Xl, X2, 0, 0). From Assumption 2.10, we have that U1(X 1 , X2, 0, 0) 2: Ul(Xt, X2, 0, XI).

Thus, Ui (Cl,C2,0,0) 2: U(X!,C2,0,0) > U(Xt,X2,o,O) > U(X',X2,0,X'), so that

Ul (Cl,C2,0,0) 2: U1(XI,X2,0,XI). This contradicts Assumption 2.11. Q.E.D.

Proof of Proposition 2.3

(i) Proposition 2.1 holds true in this case. (The proof is essentially the same as of Propo.

sition 2.1.) Thus without loss of generality we can assume that q2(2) = 0 in equilibrium.

Given that q2(2) = O. we have that firm l's best response is choosing x l (2) = Xl under

Assumption 2.10. From Lemmas 2.1 and 2.4, we have that firm 1 never produces in period

3.

(ii) In equilibrium Xl = XI> CI or x2 = X2 > C2, thus. (x l ,X2) = (Cl,C2) never becomes

an equilibrium outcome. Q.E.D.

Proof of Proposition 2.4

if part Suppose that (Xl', x2.) E E. Without loss of generality we assume that Xl. 2: CI

We construct a particnlar profile of strategies which yields a subgame perfect equilibrium.

This is only one example; other strategies also yield the same equilibrium outcome (x", x2.).

We show that firm l's strategy below is its best response given firm 2's strategy below and
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vice versa. Suppose that firm l's and firm 2's strategies are as follows:

x'(I) = Xl.,

1

0 if Xl (1) ~ LI
o if LI > xl(l) ~ C' and x2(1) ~ R2(x'(I))

Xl 2 = min(R2-I(x2(1)),LI) - Xl (I) if L' > xl(l) ~ C' and x2(1) < R2(x l (1))
( ) m~ in(R2-I(x2(1)), L') - xl(l) if 0 < xl(l) < CI and x2(1) < C2

if 0 < xl(l) < CI and x 2(1) ~ C2
if xl(l) = O.

{
o ifql(2)~CI

x'(3) = max(RI(q2(2)) - q'(2),0) if ql(2) < C' and q2(2) ~ C2
CI - q'(2) otherwise

where R2-
1 (x 2) is an inverse function of R2(xl ).

x2(2) = 1~aX(RI-l(XI(I)) - x2(1),0)
max(L2 - x2(1), 0)
max(L2 - x 2(1), 0)

x2(3) = { ~ax(R2(ql(2)) - q2(2),0)
C2 _ q2(2)

ifxl(l) ~ C'
if 0 < x'(I) < CI and x 2(1) < C2
if FI < x'(I) < CI and x2(1) ~ C2
if 0 < x'(I) ::; FI and x2(1) ~ C2
if x' = o.

if q2(2) ~ C2
if q2(2) < C2 and q'(2) ~ C'
otherwise

where R'-'(x l ) is an inverse function of R'(x2).

To compute a subgame perfect Nash equilibrium. the game is solved by backward induc­

tion. Concerning the third-period strategies, Lemmas 2.1-2.3 show that the above strategies

of both firms become equilibria in all subgames.

Consider the second-period strategies. We show that given Xl (I), x 2(1), firm I's second-

period strategy above is its best response to the firm j's strategy above and vice versa.

Suppose that x'(I) ~ LI. Given firm 2's strategy above, x2(2) = o. By definition of

L', firm 1 has no incentive to increase its output. Therefore, firm 1'5 best response is
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x l(2) = O. Given the above strategy of firm 1, x1(2) and x1(3) equal zero regardless of

x 2(2). Therefore firm 2's second-period production has no strategic value. Under these

conditions, x 2(2) = 0 is one of firm 2's best responses. The same principles apply to the

case where L I > xl (l) ?: CI and x2(1) ?: R2(x l (1)).

Suppose that L I > x l (l) ?: CI and x2 (1) < R2(x l (1)). Given firm 2's strategy above,

x2(2) = O. Since Xl (1) > 0, we have that II does not depend on x 1(2). Given firm 2's

strategy above, firm 2's total output x 2 is max(R2(ql(2)), x 2(1)). Under these conditions,

firm l's payoff VI becomes V I (ql(2),max(R2(ql(2)),x2(1))) - Cl ql(2) - O. This payoff is

increasing in ql(2) if and only if ql(2) ~ min(Lt, R2-' (x2(1))). Hence, firm l's best response

is choosing ql(2) = min(Ll, R2-
1 (x 2(1))). This strategy of firm 1 is the same as described

above. Given this strategy of firm 1, x 1(3) equals 0 regardless of x2(2). Therefore, x2(2) = 0

is one offirm 2's best responses. The same principles apply to the case where 0 < x l (l) < C1

and x2 (1) < C2
•

Suppose that 0 < x l (l) < CI and x 2(1) ?: C2 From Lemma 2.1 we have that x 2(3)

equals 0 regardless of x l (2) and x 2(2). Accordingly, firm l's second-stage production Xl (2)

has no strategic value; thus Xl (2) = 0 is one of firm l's best responses. Since x 2 (1) > O.

we have that J2 does not depend on x2(2). Given that x l (2) = 0, firm 2 can enjoy the

first, mover advantage and its best response is

x2 2 = { max(L2 - x2(1), 0)
( ) max(RI- 1 (x l (l)) - x2 (1), 0)

ifx l (l) < FI

ifx1 (1)?: Fl.

This strategy of firm 2 is the same as descri bed above.

Suppose that x l (l) = O. Given firm l's strategy above, Xl is min(RI(q2(2)), CI). If

x2(1) ?: L2, firm 2's dominant strategy is x2(1) = O. Suppose that 0 < x2(1) < L2.

In this case 12 does not depend on x2(2). By definition of L2, firm 2's best response is

x2(2) = L2 - x2(1). Suppose that x2(1) = O. In this case, choosing x2(2) such that 0 <

x2(2) < L2 - x2(1) is inferior to x2(2) = L2 - x2(1) because a smalJ x2(2) increases

72



x ' (3) while positive x2(2) does not reduce the inventory cost. If x2(2) = 0, its payoff is

V2(C2, C' ) - C
2C2 and if x2(2) = L2, its payoff is V2(L2, Fl) - c2L2 - E:. Under (2.3), firm

2's best response is x 2(2) = L2 since E: :::; 6. Given firm 2's strategy above, we have that

x2 = max(L2,x2(1)) and x2 does not depend on x ' (2). Therefore, firm l's best response is

x ' (2) = O.

Finally, consider the first-period action. Given firm 2's strategy above, x2 = x2
< :::; C2 if

x ' (1) > O. In this case, firm i's payoff is Vl(X ' <, x2<) - c
'
x l<- 6. If firm 1 chooses x l(l) = 0,

its payoff is V'(FI, L') - c ' Fl. Since (x l <, x2<) E E c Rand L l ~ x l < ~ Cl, we have that

V'(Xl-,X 2<) - c'x l < ~ VI(Cl,C2) - CICI Therefore, (2.4) ensures that x'(I) = 0 is not

firm l's best response. If x' (I) > 0 and ql(2) = x l
<, then we have that x2 = x2< regardless

of x l (I). Therefore, x'(I) = xl- is one of firm l's best responses.'

Given firm l's strategy above,

if x2(1) ~ R2(x l <) = x2<
if F2 < x 2(1) < R2(x l <) = x2<
ifx 2(1):::; F2

Choosing F2 < x 2(1) < x2• is not firm 2's best response because it increases Xl resulting

in reducing firm 2's payoff. Choosing 0 < x2(1) :::; F2 is inferior to choosing x2(1) = 0

because it does not decrease Xl and increases its inventory cost. By definition of x. choosing

x 2(1) = 0 is inferior to choosing x2(1) = x2<. Since x2• = R2(x l <), we have that choosing

x2(1) > x2
< is not firm 2's best response to x l (1) = x l

<.

Next, we show that (x'. x2) = (L ' , F2) is a subgame perfect equilibrium outcome.

Suppose that the strategies of both firms are the same as described above except that

x l(l) = Ll and x2(1) = O. Firm l's total output x' = Ll regardless of firm 2's behavior.

Therefore, firm 2's best response is x2(1) = O. Given that x 2(1) = 0, firm 1 chooses Xl (1) =
IWe can construct equilibrium strategies which make x l (1) = Xl. to be firm J'S unique best response.

Suppose that firm 2 expands its output if :tl(l) < xt- and x2 (1) = x2 -, This strategy of firm 2 is optimal if
x l (2) = 0, which is firm j's best response given this strategy of firm 2. Under these conditions, xl(l) = Xl.

becomes firm] 's unique best response.
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LI to enjoy the first-mover advantage.

only if part l'iext, we show that (x l <. x2<) is a subgame perfect equilibrium only if

(X I',x2-) E E U {(LI.F2).(FI,L2)}. First we show that if (x l ,X2) is a subgame perfect

equilibrium, then (x l ,X2 ) E R. We prove it by contradiction.

Suppose otherwise. Suppose that R I(X2) > xl or R2(xl ) > x2 in equilibrium. If

R;(xi ) > x;, firm i could increase its payoff by expanding x'(3), a contradiction. Therefore,

(xl, x2 ) is never below R.

Suppose that (X I ,x2) is above R, i.e., R'(x2) < Xl and R2(X I) < x2 Without loss of

generality, we assume that Xl > C'. From (A.1), we have that xl = q' (2) > C' and x 2 =

q2(1). From Lemma 2.1, we have that x'(3) = 0 regardless of q2(2). Therefore q2(2) must

be x 2 (1), because otherwise firm 2 would increase its payoff by decreasing x 2 (2). Given that

x2(1) = x2,firm 2's output does not depend on x l (l)aslongasx l (l) 2 R2-'(x2). Thus, firm

l's best response is Xl =xl (l) = min(R2- ' (x 2), LI). Here we suppose that R2- I (X2) :::: LI,

i.e., x2 2 F2 Then Xl equals R2- ' (x 2). By definition of R2-' , we have that x2 equals

R2(x l ), a contradiction. Suppose that R2-' (x2) > LI. i.e., x2 < F2 Then Xl equals LI

Since F2 equals R2(LI). we have x2 < R2(x l ). This contradicts (A.1). Accordingly. x2

equals R2(x l ). Under these conditions. we have that (Xl, x2 ) E R.

Finally, we show that Xl :::: ;1 or Xl = L I • We prove it by contradiction. Suppose that

Xl > LI. Since (x l ,X2) E R, we have x2 = R2(xl ) < F2 Given that x2(1) < £2. if firm 1

chooses x l (l) = LI then firm 2 chooses x2 = R2(LI) = F2 By definition of LI, the above

deviation from the equilibrium strategy by firm 1 increases firm l's payoff. a contradiction.

Suppose that Xl E (x-I,Ll). Then x2(l) equals R2- I(X I) because otherwise, firm 1 would

increase its output in the first stage in order to enjoy the first-mover advantage. If firm 2

deviates from the equilibrium strategy and chooses x2(l) = x 2(2) = 0, its payoff becomes

at worst V 2(F2, LI) - c2F2 By definition of X-I (Definition 2.5), the above deviation from
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the equilibrium strategy by firm 2 increases firm 2's payoff, a contradiction. Q.E.D.

Proof of Corollary

Since V.] < 0, we have that Vi(Ri(;;).;;) - c;Ri(;;) is decreasing in ;;, Therefore, from

Definition 2.5, we have that ;i is decreasing in 8. Under these conditions. (2.4) ensures that

Xi> C; (i = 1,2); thus we have that (C t ,C2 ) E E. Q.E.D.
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Appendix B

Appendix of Chapter 3

In this Appendix B, we will prove aU propositions presented in Chapter 3. In order to prove

them, we prove some supplementary lemmas.

To compute a subgame perfect Nash equilibrium, the game is solved by backward in­

duction. We discuss the equilibrium outcomes in the second-stage subgames given p;(l)

and Pj(1), and thereafter we discuss the equilibrium outcome in the full game.

Let Si(Xj : Pi(l)) denote firm i's reaction function after committing to Pi(l). Since

{j2U;/8p~ < 0 (Assumption 3.3) and P, $ Pi(l), we have

Si(Pj : Pi(l)) = min(Ri(pj)'Pi(l)) (i = 1,2). (B.l)

The foUowing Lemmas 3.3-3.5 describe the equilibrium outcome in the second stage sub­

games. First, we prove Lemmas 3.1 and 3.2_ and then use these to prove Lemmas 3.3-3.5.

Lemma 3.1: Suppose that A sumptions 3.1-3.4 are satisfied. Suppose that (P"P2) oF

(B" B2). Then PI < R,(P2) and/or P2 < R2(PI).

Proof: The proof is by contradiction. From (B. 1), we have Pi $ Ri(Pj). Suppose that

(PI,P2) oF (B"B2), and (PI,P2) = (R I(P2),R2(PI)). Then (P"P2) is one of equilibrium

outcomes in the original Bertrand game discussed in Section 3.1. This contradicts the as­

sumption of the uniqueness of Bertrand equilibrium, which is ensured by Assumption 3.4.
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Q.E.D.

Lemma 3.2: Suppose that Assumptions 3.1-3.4 are satisfied. Suppose that (PI,P2) oF

(Bt,B2). Then PI = PI(I) < R I(P2) and/or P2 = P2(1) < R2(PI)'

Proof: We can derive straightforwardly from Lemma 3.1 and (B. I). Q.E.D.

ext, we discuss the equilibrium outcomes in the second stage subgames given PI (I)

and P2(1).

Lemma 3.3: Suppose that Assumptions 3.1-3.4 are satisfied. If(PI(I),P2(1)) ~ (Bt,B2),

then (PI,PI) = (B t ,B2).

Proof: The proof is by contradiction. Suppose that (Pi,Pj) oF (Bi,Bj). From Lemmas 3.1

and 3.2, we have Pi = Pi(l) < Ri(Pj) and/or Pj = pj(l) < Rj(Pi). Without loss of generality,

we can assume that PI = PI(I) < RI(p,). From (B.I), we have P2 = min(R2(p,(I)),P2(1)).

case (1) and case (3): strategic complements cases:

Suppose that Ri (i = 1,2) is increasing. From (B.I), we have P2 ::; R2(PI(I)). Since R I

is increasing, we have R I(P2) ::; R I(R2(PI(I))). Since PI(I) < R I(P2), we have PI(I) <

RI(R2(PI(I))). From the stability condition (3.4), we have PI(I) ~ R I(R2(PI(I))) because

PI = PI (I) ~ Bt, a contradiction.

case (2) and case (4): strategic substitutes cases:

Suppose that Ri (i = 1. 2) is decreasing. Since R2 is decreasing and PI = PI(I) > B I .

we have R2(PI(I)) < R2(Bil = B2 < P2(1). From (B.I), we have P2 = R2(PI(I)). Since

PI = Pt(1) < Rt (P2) and P2 = R2(PI(I)), we havepI(I) < R I(R2(PI(I))). From the stability

condition (3.4), we have PI(I) ~ RI (R2(PI(I))) because PI = PI(I) ~ B I , a contradiction.

Q.E.D.

Lemma 3.4: Suppose that Assumptions 3.1-3.4 are satisfied. Ifpi(l) < Bi and pj(l) ~ Bj,

then P, = Pi(l) and pj(l) = min(Rj(Pi(I)), pj(I)). Furthermore, if in addition Rj > 0, then
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Pj = Rj(Pi(l)).

Proof: First, we prove that if Pi(l) < Bi and pj(l) ~ Bj , then Pi = Pi(l). The proof is

by contradiction. Suppose that Pi of Pi(l). Then. from (B.l) we have Pi = Ri(p,) < Pi(l).

In this case, from Lemma 3.2 we have Pj = pj(l) < Rj(Pi)' Since Pi = Ri(Pj) and Pj =

pj(l) < Rj(Pi), we have pj(l) < Rj(Ri(pj(l))). From the stability condition (3.4), we have

pj(l) ~ Rj(Ri(pj(l))) because pj(l) ~ Bj , a contradiction.

Next, we show that if in addition Rj > 0, then Pj = Rj(Pi(l)). Since Rj is increas­

ing and Pi = Pi(l) < Bi, we have Rj(pj) < Rj(Bi ) = Bj . Since pj(l) ~ Bj , we have

min(Rj(Pi),pj(l)) = Rj(Pi). From (B.l), we have Pj = Rj(Pi(l)). Q.E.D.

Lemma 3.5: Suppose that Assumptions 3.1-3.4 are satisfied. /f(Pi(l),pj(1)) < (Bi,Bj ),

then Pi = Pi(1) and/or Pi = Pi(l). Fu,·thel'more if in addition Ri < 0, then Pi = Pi(l).

Proof: First, we prove that Pi =Pi(l) and/or Pi =Pi(l). Since Pi ~ Pi(l) < Bi , we have

Pi of Bi· So from Lemma 3.2, we have Pi = Pi(l) and/or Pi = Pi(l).

Next, we consider the case of negative Ri. We show that Pi = Pi(l). The proof is by

contradiction. Suppose that Pi of Pi(1). Then, from (B.l) we have Pi = Ri(p,) < Pi(l).

Since Ri(p,) = Pi < Pi(l) < Bi, we have Ri(Pj) = Pi < Bi. Since Ri is decreasing, the

inequality R;(pj) ~ Ri(Bj) = Bi is satisfied only if Pj ~ Bj, but it is impossible because

Pj < pj(l) < Bj. Q.E.D.

Finally, we prove our main results, Propositions 3.1-3.3.

Proof of Proposition 3.1

case (1):

existence: We show that there is an equilibrium in which (PhP2) = (B], B2).
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From Lemmas 3.3-3.5, we have

1
Bj

. _ Rj(Pi(l))
P, - pj(l)

min(Rj(Pi(l)),p,(l))

if Pi(l) ~ Bi and pj(l) ~ B,
if Pi(l) < Bi and p,(l) ~ B,
if Pi(l) ~ Bi and pj(l) < B,
if Pi(l) < Bi and pj(l) < B,

(B.2)

"Ve prove that choosing Pi(l) ~ Bi is one of firm i's best responses to pj(l) ~ B j . Lemma

3.3 then ensures that (BI , B2 ) E E.

Suppose that pj(l) ~ Bj. If firm i also chooses Pi(l) ~ Bi , firm 2 chooses Pj = Bj.

Otherwise firm 2 chooses Pj < Bj. Since firm i's payoff is increasing in Pj, its best response

is choosing Pi(l) ~ Bi.

uniqueness: Next, we show the uniqueness of the equilibrium outcome. The proof is by

contradiction. Suppose that there is an equilibrium which entails (PI,P2) t (B"B2). We

have already shown that given pj(l) ~ Bj, firm i's best response is Pi(l) ~ Bi and the equi­

librium outcome is of Bertrand-type. Therefore, (PI, P2) t (B1, B2) only if (p,(l), P2(1)) <

(B I ,B2). Suppose that there is an equilibrium in which (Pl(1),P2(1)) < (B],B2). Then

choosing Pi(l) < Bi must be one of firm i's best responses to pj(l) < Bj .

From Lemma 3.1, we can assume that PI < R I (P2) without loss of generality. From

(B.2), we know that P2 is non-decreasing in Pl(l). Since PI < RI (P2) and firm l·s payoffis

increasing in P2, firm 1 can improve its payoff by raising PI(1), a contradiction.

case (4):

existence: We show that there is an equilibrium in which (p], P2) = (B" B2). From Lem-

mas 3.3-3.5 we get

{

B. if Pi(l) ~ Bi and pj(l) ~ B,
Pj = mln(Rj(pi(l)),pj(l)) ifpi(l) < Bi and pj(l) ~ B,

pj(l) ifpj(l) < B j
(B.3)

We prove that choosing Pi(l) ~ Bi is one of firm i's best responses to pj(l) ~ B j . Lemma

3.3 then ensures that (B" B 2 ) E E.
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Suppose that Pj(1) ~ Bj. If firm i also chooses p;(I) ~ B;, firm j chooses p} = Bj . If

firm i chooses p;(I) < B;, firm j chooses p} = min(Rj(Pi(I)),p}(I)). Since Rj is decreasing.

ifp;(1) < Bj, then Rj(p;(I)) ~ R}(B;) = Bj, so Pj ~ Bj . Since firm i's payoff is decreasing

in Pi> its best response is choosing p;(I) ~ B;.

uniqueness: Next, we show the uniqueness of the eqwlibrium outcome. The proof is by

contradiction. Suppose that there is an equilibrium which entails (P"P2) # (B I,B2).

We have already shown that given Pj(1) ~ B j , firm i's best response is p;(I) ~

B; and equilibrium outcome is of Bertrand-type. Therefore, (PI,P2) # (B" B2) only if

(PI(I),P2(1)) < (B I ,B2). Suppose that there is an equilibrium in which (Pl(I),P2(1)) <

(B I, B2). Then choosing Pi(l) < B; must be one of firm i's best responses to Pj(i) < Bj.

From Lemma 3.1, we can assume that P, < R I (P2) without loss of generality. From

(B.3), we know that P2 is non-increasing in PI(1). Since PI < R,(P2) and firm I's payoff is

decreasing in P2, firm I can improve its payoff by raising PI(1), a contradiction. Q.E.D.

Before proving Propositions 3.2 and 3.3. we present another supplementary Lemma.

Lemma 3.6: Suppose that Assumptions 3.1-3.4 are satisfied. If (PI,P2) E E. then PI =

R I (P2) and/or P2 = R2(pd·

Proof: The proof is by contradiction. Suppose that PI # R , (P2) and P2 # R2(pd. Since

P; = min(p;(I), R;(pj)) , we have p;(I) = P; < R;(pj) (i = I. 2). Then (P"P2) lies below the

inner envelope of reaction curves, so PI < BI and/or P2 < B2. Without loss of generality

we assume PI(l) = PI < B I. From (B.I), we have P2 = P2(1) < R2(PI(I)). Since R2 is

continuous, there exists c such that P2(1) < R2(PI(I) + c). If firm I increases PI(1) by c, PI

becomes closer to R I(P2) without changing P2, so firm I's payoff can be improved. Thus,

the above deviation from the equilibrium strategy increases firm I's payoff, a contradiction.

Q.E.D.
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Proof of Proposition 3.2

existence: We show that (PI,R2(PI)) E E if P, E [L I , Btl. We show that (pi,pi) is a

subgame perfect equiIjbrium outcome if pi = R2(pi) and pi E [L I , Btl.

Suppose that pi = R2(Pi) and pi E [L I . Btl. Note that R2(pi) E [B2, F2J because

pi E [L I ,Btl and R2 is decreasing. We construct a particular profile of strategies which

entails pi E [L\,Btl and pi = R2(pi)· We show that firm l's strategy below is its best

response given firm 2's strategy below and vice versa. Suppose that firm l's and firm 2's

strategies are as follows:

if PI(l) 2: B, and P2(1) 2: B2
if PI(l) 2: B, and P2(1) < B2
if P, (1) < B,

{

B2 if P2(1) 2: B2 and P, (1) 2: B I

P2(1) = pi = R2(pj), P2 = min(R2(PI(1)),P2(1)) if P2(1) 2: B2 and p,(l) < BI
P2(1) ifp2(1) < B2

To compute a subgame perfect Nash equilibrium, the game is solved by backward in­

duction. Concerning the second-stage strategies, from Lemmas 3.3-3.5 we obtain that the

above strategies of both firms construct 'ash equilibria in all subgames.

Next, we consider the first-stage actions. Since PI(1) = pi ::; BI . from Lemmas 3.4 and

3.5, we have PI = pi regardless of P2(1). Therefore. by definition of R2, the above strategy

is one of firm 2's best responses.

Given the above strategy of firm 2, from Lemmas 3.3 and 3.4 we get that P2 becomes

as follows:

From result 1, we have L I < B,. From the definition of L I and from Assumption 3.5, we

obtain that firm 1's best response is choosing PI = R2'I(pi) = pi, where R2'I(P2) is the

inverse function of R2(PI). Thus, (pi, pi) E E.
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non-existence of other equilibrium outcomes: Here we prove that, if (PI,P,)

From Lemma 3.6, without loss of generality we assume P, = R,(PI) in equilibrium. We

prove that P, E IB" F,]. The proof is by contradiction.

Suppose that P, < B,. Since P, = R,(ptl, we have RI(p,) = R,(R,(ptl). Since P, =

R,(PI) < B, = R,(Btl and R, is decreasing, PI must be larger than BI . From the stability

condition (3.4), we have that RI(R,(PI)) < PI when PI > B I . This contradicts (B. I).

Suppose that P, > F,. Note that in this case p,(I) ~ P, > F, > B,. Since P, # B, and

P, = R,(PI), from Lemma 3.2 we have PI(I) = PI' Since P, = R,(PI) > F, > B, = R,(BI )

and R, is decreasing, PI(I) must be smaller than LI . Suppose that firm I deviates from

the equilibrium strategy and chooses PI(I) = LI. From Lemma 3.4 and 3.5, we have that

PI(I) = PI regardless of p,(l). If firm I chooses PI(I) = L" firm 2 chooses P, = R,(L I ) =

F, because p,(I) > F,. From the definition of L I and from Assumption 3-5, we have

VI (L I , F,) > VI(PI, R,(pJl) IIpI # L I· Therefore the above deviation from the equilibrium

strategy increases firm I's payoff. a contradiction. Q.E.D.

Proof of Proposition 3.3

existence: We show that (LI . F,) E E. We construct a particular profile of strategies which

yields a subgame perfect equilibrium in which (PI, p,) = (LI , F,). The following strategies

construct a subgame perfect equilibrium.

if P, (1) ~ B I and p,(1) ~ 8,
if PI(I) < BI and p,(I) ~ B,
if PI(I) ~ B I and p,(I) < B,
if PI (I) < B I and p,(I) < 8,

if p,(I) ~ B, and P, (I) ~ BI
ifp,(I) < B, and PI(I) ~ BI
if p,(I) ~ B, and p,(l) < BI
ifp,(I) < B, and PI (1) < BI

Since the proof is essentially the same as of Proposition 3.2, we omit it here.
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non-existence of other equilibrium outcomes: "Ve show that, if (PI,PZ) i- (LI.Fz)

and (PI,PZ) i- (Ft,L z), then (p"Pz) ¢ E. From Lemma 3.6, without loss of generality we

assume pz = Rz(pIl in equilibrium. First, we show that (BI.Bz) ¢ E. Since (PI,PZ) :::

(PI(1),P2(1)), (B1 , Bz) is an equilibrium outcome only if (PI(1).pz(l)) ~ (Bt, Bz). Suppose

that pz(l) ~ Bz· In this equilibrium firm l's payoff is U1(PI,PZ) = U(B I, Bz). Given the

above strategy of firm 2, if firm 1 chooses PI(l) = LI, its payoff becomes Uz(LI,Fz). Note

that LI < B1 and Fz < Bz. From the definition of L I, it is larger than U,(BI,Bz), a

contradiction. Under these conditions, from Lemmas 3.1 and 3.2, we have PI = PI(l) on

the equilibrium path.

Next, we show that in equilibrium P2 = F2. The proof is by contradiction. Suppose that

P2 > F2· Then P2(1) must be larger than F2. Given the above strategy of firm 2, if firm 1

chooses PI (1) = L I , its payoff becomes U2( LI, Fz). From the definition of L" it is larger

than UI(Pl,PZ) since P2 = R2(pt} i- Fz, a contradiction. Therefore, P2 must be smaller

than or equal to Fz.

Suppose that pz i- F2· Then we have that pz < F2 in equilibrium. Since P2 = R2(pt},

U,(p"P2) = UI(PI,R2(pIl)· From the definition of LI, we have UI(PI.PZ)::: UI(L I,F2).

Suppose that pz(l) ~ F2. Then if firm 1 deviates from the equilibrium strategy and

chooses PI (1) = L" its payoff becomes UI(LI. Fz), so the above deviation from the equi­

librium strategy increases firm l's payoff. a contradiction. Therefore pz(l) must be smaller

than Fz. Since pz = R2(pIl < Fz = Rz(Lt} and R2 is increasing, PI must be smaller than

L I· Since PI(l) = PI, we obtain that PI(l) < L, in the equilibrium. Suppose that firm

1 deviates the equilibrium strategy and chooses Pl(l) = L,. We denote the equilibrium

outcome in the subgame after the above deviation by (pj,pi). Since the goods are com­

plements, UI is decreasing in P2· Since pi::: P2(1) < F2, we have UI(LI,pi) > UI(L I,F2).

Since pj is R1(pi) or L I, we have U,(pj,pi) ~ UI(Lt,pi). Under these conditions, we have
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U1(pj,pi) ~ U,(Ll,pi) > U,(L 1,F2 ) ~ U,(PI,P2). Therefore. firm 1 can increase its payoff

by the above deviation, a contradiction. Q.E.D.
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Appendix C

Appendix of Chapter 4

In this Appendix C, we will prove Lemmas and Propositions presented in Chapter 4. As

part of the proofs, we will present some supplementary lemmas.

Lemma C.l: Suppose that Assumptions 4.2-4.6 are satisfied. Then Ri is decreasing.

Proof: From simple calculations we have that Ri = 82U;j8xi8X{_ij' Under Assumption

4.3, we have that R; is decreasing Q.E.D.

)lext, we consider the two-stage games with exogenous sequencing formulated in Section

4.3.

Lemma C.2: Suppose that Assumptions 4.1-4.8 are satisfied. Suppose that lSI> 1. Then

C(S,X) > C(S\{i},X + x) 'Ix> C(S, X), i E N, X E R+. and S ~ N.

Proof: Denote C(S. X) by C" and C(S\{i}, X + x) by C"". From the definition of C, we

have that

C = R(X +(ISI- l)C) and C" = R(X + x +(lSI- 2)C""). (C.l)

The proof is by contradiction. Suppose that x > C" and

C" ~ C".
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From Lemma C.I and (C.I), we have that (C.2) is satisfied only if

(151- I)C* :::- x +(151- 2)C".

Since x > C*, (C.2) contradicts (C.3). Q.E.D.

Here we prove Lemmas 4.1 and 4.2 presented in Section 4.3.

Proof of Lemma 4.1:

(C.3)

In cases of duopoly, Dowrick [24] proved Lemma 2. Thus, we show that Lemma 2 holds

true when 151 :::- 3.

Let us denote C(5,X) by Co, F(5,5\{i},X) by F*, and L(5,5\{i},X) by L*. By

definitions of C*, F*, and L *, we have that

po = R((151- I)L* + X), and (CA)

(C.5)

From Assumption 4.3, we have that U(R(X), X) is decreasing in X. Therefore. from (CA)

and (C.5) we have that Lemma 4.1 holds true if and only if L* > Co. Now we prove that

L* > Co.

We prove it by contradiction. Suppose that L* :S Co. From Lemma C.l. (CA) and

(C.5), we have that L* :S C* implies F" :::- Co. From the stability condition (Assumption

4.7) we have that

IR(y) - R(y')1 :S ~IY - y'l·

Substituting y = (151- I)C* + X and y' = (151- I)L* + X into (C.6), we have that

r - C":S 1
5

1
2
- I(C* - r):s (G" - L*),

(C.6)

(C.7)

where we use (CA) and (C.5), and the last inequality derived from that 151- 1/2 :::- I for

any 151:::- 3. Note that F* - C',C' - L' > 0 and 151:S n.
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(C.IO)

From (C.I) we have that

(151- 2)(C" - L") ~ F" - C",i.e., (151- I)C" ~ (151- 2)L" + F". (C.S)

From the definition of L", we have that

L" E arg"1~x U(x" X + (15"1- IlL" +R(X + (15"1- IlL" + Xj)). (C.9)

By differentiating the payoff function of firm j E 5", we have that

dUj = 8Uj +~R~
dXj 8xj 8X_{j} ,.

From the definition of Co, we have that 8Uj/8xj =0 at (Xj, X _{j}) = (C", X + (151­

I)C"). From Assumption 4.4 and the inequality (C.8), we have that 8Uj/8xj ~ 0 at

(Xj, X_{j)) = (C", X +(151- 2)L" +F"). Since we assume that L" $ C", from Assumption

4.5 we have that 8Uj/8x, > 0 at (x"X_{j)) = (L",X + (151- 2)L" +F").

From Assumption 4.3. we have that 8U,/8X_{j) < O. From Lemma C.I, we have that

8R;j8xj < 0, thus we have that dU,/dxj > 0 at (Xj,X_{j}) = (L",X + (151- 2)£" +F").

This contradicts (C.9). Q.E.D.

Proof of Lemma 4.2:

From the definition of L, we have that the foUowing inequality is always satisfied:

U;(C(L\"),(151- I)C(5,X) + X) $ U;(L(5, {i},X),(151-1)F(5. {i}.X) + X).

The strict inequality is guaranteed by the strategic effect shown in Lemma C.2. Q.E.D.

We now prove the propositions presented in Section 4.4.

Proof of Proposition 4.1

We prove it by contradiction. Suppose that there is more than one foUower in an equi­

librium. Without loss of generality, we assume that foUowers produce in period t' > 1.
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Suppose that one of the followers unilaterally deviates from the equilibrium strategy and

produces in period t' - 1. From the definition of followers, all players other than followers

produce before observing this deviation, so the deviation never affects the actions of lead­

ers and intermediates. From Lemma 4.2, we have that the deviation strictly increases the

deviator's payoff. a contradiction. Q.E.D.

Proof of Proposition 4.2

By definition of intermediate, intermediate never exists if m (the number of periods) is two.

Thus we can restrict our attention to the cases where m is larger than two.

We prove the proposition by contradiction. Suppose that there is at least one interme­

diate in an equilibrium. From the definitions of intermediate, we have that at least one

follower exists. From Proposition 4.1, we have that exactly one follower exists. Without

loss of generality. we assume that the last intermediates produce in period t' (m > t' > 1).

Suppose that the follower unilaterally deviates from the equilibrium strategy and produces

in period t' - 1. From the definition of the last intermediates and followers. all players other

than followers and the last intermediates produce before observing this deviation, so this

deviation affects the actions of last intermedjates only. From Lemmas 4.1 and 4.2, we have

that the deviation strictly increases the deviator's payoff, a contradiction. Q.E.D.

Proof of Proposition 4.3

(i) Suppose that each firm i E N produces C(N,O) in period 1. Obviously. the above

strategies construct an equilibrium.

(ii) We show that there is an equilibrium in which firms 2,3, ..n produce in period 1 and

firm 1 produces in period t > 1. The deviation of firm 1 never affects the actions of other

firms, so firm 1 has no incentive to deviate from the equilibrium strategy.

Suppose that firm i oil deviates from the equilibrium strategy. Note that the deviation

never affects the actions of leaders. Suppose that firm i chooses period t'(l < t' < t.) Then



the deviation gives it the same payoff as before the deviation. Suppose that firm i chooses

period t 2: t'. Then firm I and i are faced with Cournot-type competition, or the Stackel­

berg duopoly where firm i is a follower. From Lemmas 4.1 and 4.2 (considering the case of

S = {I,i} ), we have that the deviation decreases firm i's payoff. Therefore no deviation by

firm 2 strictly improves its payoff.

(iii) This is straightforwardly derived from Propositions 4.1 and 4.2. Q.E.D.

From here on we prove the propositions presented in Section 4.5. The following three

lemmas are used to prove the remaining propositions.

Lemma C.3: Suppose that Assumptions 4.9 and 4.10 ar'e satisfied. If there is a pure strat­

egy equilibrium. then there exists t such that for every 0 < e < t, the number' of follower's

is one and the follower p7'Oduces in period m in the equilibrium.

Proof: In cases of positive and sufficiently small c. Proposition 4.1 holds true (the proof

is almost the same, as for Proposition 4.1). We now prove that at least one firm produces

in the last period (period m). Suppose that no follower exists in an equilibrium. Then all

firms are leaders. Suppose that one firm unilaterally deviates from the equilibrium strat·

egy. The deviation never affects the others' actions, so it improves the deviator's payoff by

decreasing inventory costs, a contradiction. Thus exactly one follower exists. Obviously,

the follower chooses the last period in order to economize on costs eJ(e). Q.E.D.

Lemma C.4: Suppose that Assumptions 4.9 and 4.10 are satisfied. If there is a pure strat­

egy equilibrium, then there exists t such that for every 0 < e < t, the number of leaders is

n - 1 in the equilibrium.

Proof: In cases of sufficiently small lei, Proposition 4.2 holds true (the proof is virtually

the same as for Proposition 4.2). Thus, the number of intermediates is zero. From Lemma

C.3, we have that the number of followers is one for positive and sufficiently small e. Thus,
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if there is an equilibrium, the number of leaders is n - 1 in the equilibrium. Q.E.D.

Lemma C.5: Suppose that Assumptions 4.9 and 4.10 are satisfied. Suppose that < is neg­

ative. If there is an equilibrium, then no follower exists in the equilibrium.

Proof: The proof is by contradiction. In cases of negative <, Proposition 4.1 holds true

(the proof is virtually the same as for Proposition 4.1). So we show that there is no equi­

librium in which one follower exists. Suppose that in an equilibrium one follower exists.

Without loss of generality, we assume that the follower produces in period t' > 1. Suppose

that the follower deviates from the equilibrium strategy and produces in period t' -1. From

the definition of follower, all other firms produce before observing the deviation; thus the

deviation never affects the actions of others. Under these conditions, the deviation increases

the deviator's payoff. a contradiction. Q.E.D.

Finally we prove remaining propositions. They are derived straightforwardly from re­

sults proved above.

Proof of Proposition 4.4

First, we show that there is no equilibrium in which all firms produces in period 1. The

proof is by contradiction. Suppose that there exists an equilibrium without followers. Given

others' strategies, suppose that firm 1 deviates from the equilibrium strategy and produces

in period 2. Since other firms produce their output before observing the deviation, this

deviation never affects the actions of others. Thus, the deviation increases firm 1's payoff

because of positive inventory costs. a contradiction.

ext, we prove that the number of leaders is at least n - 1 if inventory costs are suf­

ficiently small. III the proof of Proposition 4.1, we show that a follower strictly increases

its payoff by deviating if more than one follower exists. The same principle applies to the

cases of small inventory costs.
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Finally, we show the existence of equilibrium. Suppose that firm 1 produces in period 2

and the others produce in period 1. Because of positive inventory costs, the above strategy

of firm 1 is is its best response. If one of leaders, firm 2, deviates from the equilibrium

strategy and wait until period 2. Then firms 1 and 2 are faced with Cournot competition.

From Lemma 4.2 we have that firm 2's payoff decreases by this deviation if inventory costs

are sufficiently small. Q.E.D.

Proof of Proposition 4.5

From Lemmas C.3 and CA, we have that if there is an equilibrium, the number of leaders

is n . 1 and that one follower produces in the last period in the equilibrium. We show the

non-existence of the equilibria with n - 1 leaders. We prove it by contradiction.

Suppose that there exists an equilibrium. In the equilibrium n . 1 firms choose period

1 and one firm chooses the last period. Suppose that one of the leaders deviates from the

equilibrium strategy and produces the same level of output in period 2. The deviation never

affects the actions of other leaders. Since the deviator chooses the same level of output, the

follower who produces in period m(2: 3) also chooses the same level of output. Under these

conditions, the above deviation never changes the actions of other firms; thus improves the

payoff of the deviator by decreasing inventory costs, a contradiction. Q.E.D.

Proof of Proposition 4.6

From Lemma C.S, we have that if there is an equilibrium, in the equilibrium the number

of leaders is n. We show the existence of the equilibria with n leaders. Suppose that aU

firms produces the Cournot output in period 1. Obviously, the strategies construct an

equilibrium. Q.E.D.
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