
論文の内容の要旨

論文題目 A Study of Degenerate Two-Body and Three-Body
Coupled-Channels Scatterings -A New Formalism,
Near-Thresholds Resonances and Its Implications For
Exotic Hadrons

（縮退した 2体-3体チャネル結合散乱の解析 -新たな定式化、閾値近傍での
共鳴状態そしてエキゾチックハドロンとの関連について）

氏名　　小西　篤業

Since the monumental discovery of the X(3872) in 2003 by the Belle collaboration group,
a lot of candidates for the exotic hadron have been observed especially in the energy regions
above the double open charm and bottom thresholds and it seems a new era for studies of exotic
hadron spectroscopy had opened.

Those observed resonances which nowadays aggregately called the X families are embedded
in various hadronic scattering states coupling to it. Some of those candidates for the exotic
hadron lie very close to hadronic two-body as well as three-body thresholds. For example, the
mass of X(3872), 3871.69±0.17 MeV is very close to D̄∗0D0 two-body threshold ≃ 3871.8 MeV
and is also close to D±D̄0π∓ three-body threshold ≃ 3874.0 MeV. Besides the X families that
recently observed, some of other candidates for the exotic hadron such as the possible dibaryon
state near ∆N threshold or possible strange dibaryon lying near K̄NN threshold seem to have
the same circumstances. They lie in the energy regions where hadronic two-body and three-body
(and more-body) thresholds reside close to each other.

This is due to the fact characteristic in QCD, that is, the typical QCD scale ≃ 200 [MeV]
is comparable to pseudo scalar meson, especially pion whose mass is ≃ 140 [MeV]. The on-
mass-shell pions and kaons are therefore easily created which results in multi-body hadronic
thresholds lie close to each other. This is in contrast to, such as, electromagnetic interaction.
In that case, typical energy differences between discrete energy eigenstates are of order ∼ 1 [eV]
or less while the lightest particle which interact electromagnetically is electron whose mass is
≃ 0.5 [MeV] which is far heavier compared to energy differences and this fact prevents generating
on-mass-shell electrons. We therefore expect two-body and three-body coupled-channels system
whose thresholds lie close to each other might contain interesting physics that is characteristic
in QCD. It might also contribute for generating those exotics lying near hadronic two-body and
three-body thresholds residing close to each other.
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In this thesis, motivated by such current status of hadron spectroscopy, we consider two-
body and three-body coupled-channels systems from a general perspective. To be more specific,
we mainly focus on two-body and three-body coupled-channels system whose thresholds are
degenerate and examine how poles of the S-matrix near the thresholds behaves since the observed
resonances lie in such energy regions.

To achieve that, we adopt the so-called Feshbach projection procedure. It is a method
applied to coupled-channels systems and effects induced by couplings to each channels are taken
into account as effective interactions in the channel we focus on which is often referred to as
P -channel. The channel whose effects are embedded as effective interactions in the P -channel is
usually referred to as Q-channel. The effective interactions in the P -channel which are induced
by the coupling to the Q-channel can be intuitively understood as a sum of interactions which
make transition once to the Q-channel. More precisely, the effective interactions are a sum of
processes that particles in the P -channel make transition to the Q-channel, then particles in
the Q-channel fully interact with each other with elementary interactions then comes back to
the P -channel in addition to elementary interactions in the P -channel. Here by elementary
interactions, we mean the interactions which still remain even if the channels are decoupled.

The coupled-channels system we are interested in is that two-body and three-body channels
are coupled. We regard three-body channel as the P -channel and two-body channel as the Q-
channel. This is due to some cumbersomeness we encounter if we regard the two-body channel as
P -channel and embed the effects induced by the coupling to the three-body channel as effective
interactions in the two-body channel. If we do so, we need to deal with the fully interacting
three-body Green function which is cumbersome to calculate. We therefore regard the three-
body channel as P -channel and effects due to coupling to the two-body channel which we regard
as Q-channel are embedded as effective interactions in the three-body channel. We then need to
calculate the fully interacting two-body Green function whose interactions are the elementary
one. The fully interacting two-body Green function is however, easier to calculate than the fully
interacting three-body Green function. If we assume the elementary interactions are of the form
represented in figure 1, the effective interactions in the three-body channel are represented as
shown in figure 2. We can see that even in the absence of elementary three-body interactions

Figure 1: Elementary interactions
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Figure 2: Effective interactions

in the three-body channel, coupling to the two-body channel induces the effective three-body
interaction.

We have now reformulated the two-body and three-body coupled-channels problem as an
effective three-body problem by leveraging the Feshbach projection procedure. Our next task
is to solve the three-body coupled-channels scattering equations to search for the S-matrix
poles. The scattering equations which three-body transition amplitudes satisfy are known as
the (Faddeev-)AGS equations. In the absence of the three-body interactions, the (Faddeev-)AGS
equations are represented in a diagrammatic form shown in figure 3. Written in a diagrammatic
form, a rule how it sums up each interactions is obvious. It first sums each two-body interactions
to give two-body T -matrices we denote as tk (E) and then sum those T -matrices up mixing with
each other. The first term in figure 3 is a matrix which prevents the same two-body T -matrices to
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Figure 3: The (Faddeev-)AGS equations

appear in a row. The analogue (Faddeev-)AGS equations which contain three-body interactions
have the same structure. It sums up two-body as well as three-body interactions to give two-
body and three-body T -matrices and sums them up mixing with each other taking care of
overcounting the two-body T -matrices.

We can now search poles of the S-matrix by solving the (Faddeev-)AGS equations whose
two-body and three-body interactions are replaced by the effective one. To that end, we solve
the eigenvalue equation of the kernel of the (Faddeev-)AGS equations instead of solving the
equation itself. In the following, we show how it is done. The (Faddeev-)AGS equations are
formally written as follows

X (E) = Z (E) + Z (E)T (E)X (E) (1)

The eigenvalue equation of the kernel of it is,

Z (E)T (E) |n⟩ = ηn (E) |n⟩ (2)

The formal solution of the (Faddeev-)AGS equation (1) is then written as

X (E) =
1

1− Z (E)T (E)
Z (E) =

∑
n

|n⟩⟨n|
1− ηn (E)

Z (E) (3)

Obviously, the S-matrix poles Ep are obtained as energies that satisfy ηn (Ep) = 1.
Throughout the thesis, we denote three particles in the three-body channel as ϕ1ϕ2ϕ3 and

two-particles in the two-body channel as ψ3ϕ3 and assume that ψ3 couples ϕ1ϕ2. The physical
mass of ψ3 is then shifted from the bare one due to the self-energy correction. The transition
amplitudes we obtain by solving the (Faddeev-)AGS equations of course have physical singular-
ities, that is, they have branch cut starting from physical ψ3ϕ3 two-body threshold in addition
to branch cut starting from ϕ1ϕ2ϕ3 three-body threshold. However, the kernel of the equations
and so the eigenvalue ηn (E) does not if we náıvely write down the eigenvalue equations. We
then face the problem of unphysical singularities. We often encounter such situations in quan-
tum field theory and we usually treat it by the mass and the field renormalization. Once the
renormalization is done, no unphysical quantities appear in the theory. It is however, necessary
to add counterterms every time the self-energies appear as a result. We proceed in the same
manner, that is, we decompose the mass term in the Hamiltonian into the physical one and the
counterterm and regard it as constant interaction.

Adding the counterterm when the self-energy appears is straightforward in case of per-
turbative calculations. However, we solve the eigenvalue equation and so the (Faddeev-)AGS
equations numerically, that is, non-perturbatively and not perturbatively. The problem is, the
self-energies appear when the (Faddeev-)AGS equations are iterated in addition to those in the
kernel of the equations. The program that we add counterterm when the self-energy appears is
therefore no longer applicable in our case. We rather need to find a way to incorporate those
counterterms which should be added to the iteratively appearing self-energies into what we can
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feed to the (Faddeev-)AGS equations, namely the kernel of the equations. We have invented
the trick to actually do that by an appropriate reorganization of each terms that appear in
the (Faddeev-)AGS equations and discuss it in detail in our thesis. The key point is, that the
self-energies always appear as a set shown in figure 4 and we reorganize them accordingly so as
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Figure 4: A set of self-energies

to keep the structure of the (Faddeev-)AGS equations the same.
We perform numerical analysis on how the S-matrix pole behaves near the threshold in case

of two-body and three-body thresholds are degenerate specifying the model interactions. As we
gradually increase the coupling constant in an attractive way, the S-matrix pole approaches the
thresholds from the fourth quadrant of the unphysical complex energy sheet which might become
a resonance if it lies close enough to the physical energy region. This behavior is in contrast to
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Figure 5: The S-matrix pole trajectories near the threshold

degenerate coupled-channels two-body system which contains two-body s-wave state. In that
case, the pole approaches from the negative axis on the unphysical energy sheet and resonance
does not appear. We can also see from figure 5 that poles lying very close to thresholds reside
on an identical curve, that is, pole behaves universally near the thresholds.

To summarize, we formulated two-body and three-body coupled-channels problem as an
effective three-body scattering problem in which effects induced by the coupling to the two-body
channel is taken into account as effective interactions in the three-body channel. We then face
the problem of unphysical singularities which can be resolved by an appropriate reorganization
of the scattering processes. We showed that in contrast to degenerate multi-channel two-body
system, a resonance might appear if the interactions are set to an appropriate values and if the
pole lies very close to the thresholds, it behaves universally just like single-channel two-body
scattering.

4


