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ABSTRACT 

Vascular adhesion protein-1 (VAP-1) is an adhesion molecule expressed in endothelial 

cells. This molecule is unique because it also acts as an ectoenzyme, catalyzing 

oxidative deamination of primary amines. While inhibition of VAP-1 enzyme activity 

ameliorated several inflammatory disease models in various organs, no report has been 

published on the effect of VAP-1 inhibition in acute kidney injury (AKI) models. Thus, 

I examined the effect of a specific VAP-1 inhibitor in a rat model of renal ischemia–

reperfusion (IR) injury. Immunofluorescence and immunoblotting analysis suggested 

that VAP-1 is expressed predominantly in pericytes of rodent kidneys. A specific VAP-1 

inhibitor significantly reduced renal/plasma VAP-1 enzyme activity 48 h after surgery. 

VAP-1 inhibition significantly ameliorated renal IR injury 48 h after surgery (as 

determined by BUN and plasma creatinine levels, histological tubular injury, and 

KIM-1 mRNA expression in the whole kidney). The improvement of renal injury was 

significantly associated with a decreased number of neutrophils, but not macrophages, 

infiltrating into the corticomedullary junction. Notably, none of other adhesion 

molecules (VCAM-1, ICAM-1, E-selectin, and P-selectin) exhibited altered expression 

levels with VAP-1 inhibition. In conclusion, the present study suggests that VAP-1, 

which is expressed in pericytes of the kidney, controls neutrophil infiltration in renal IR 
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injury, potentially offering a promising view that VAP-1 inhibition might be used as a 

novel therapeutic strategy in ischemic AKI. 
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INTRODUCTION 

Acute kidney injury (AKI) has attracted attention as a primary clinical concern; AKI has 

a much greater impact on clinical outcomes than previously believed. For example, AKI 

occurring after cardiac surgery has been strongly associated with elevated mortality [1], 

with greater AKI severity directly associated with higher mortality rates [2]. 

Additionally, some AKI episodes can result in transition to chronic kidney disease 

(CKD) [3, 4]. Thus, there is an urgent need to develop a novel therapeutic strategy 

against AKI. 

 Although the etiology of AKI is variable, ischemia and sepsis constitute the 

clinically most important causes, which account for two thirds of all cases [5]. In 

addition, ischemia is regarded as an important player in septic AKI considering the 

correlation between episodes of hypotension and the incidence of AKI. Based on these, 

the renal ischemia–reperfusion (IR) injury model has frequently been used in studies of 

AKI [6]. 

 In renal IR injury, inflammation caused by infiltration of leukocytes, especially 

neutrophils, into the kidney plays a critical role in pathogenesis [7]. Leukocyte 

infiltration initiates with rolling and adhesion of leukocytes on activated endothelial 

cells. Expression levels of adhesion molecules, such as intercellular adhesion molecule 



5 

 

(ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and selectins on endothelial 

cells are upregulated in ischemia, and blocking these molecules were shown to 

successfully ameliorate renal IR injury in a number of studies [8-12]. However, no drug 

has been approved for the treatment of AKI in humans. For example, an anti-ICAM-1 

antibody in recipients of renal transplants failed to demonstrate decreased rates of 

delayed graft function or acute rejection in a randomized controlled trial [13]. Thus, it is 

valuable to seek other strategies to block leukocyte infiltration into injured kidneys. 

Vascular adhesion protein-1 (VAP-1) is another adhesion molecule expressed in 

endothelial cells [14, 15]. This molecule is unique because it also acts as an ectoenzyme, 

catalyzing oxidative deamination of primary amines (R-CH2-NH2 + O2 + H2O → 

R-CHO + NH3 + H2O2). Although several primary amines such as benzylamine are 

known as efficient substrates, the entire spectrum of substrates in vivo remains 

incompletely understood. 

 VAP-1 is a homodimeric transmembrane glycoprotein with a molecular weight 

of 170–180 kDa [16, 17]. In addition to the transmembrane form, a soluble form of 

VAP-1 (sVAP-1) is detected in circulation. sVAP-1 is thought to be produced through 

shedding of the transmembrane form; however, the function and the regulation of this 

shedding is yet to be determined. In various organs, VAP-1 expression has been 
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confirmed in smooth muscle cells, pericytes, and adipocytes, as well as in endothelial 

cells [18-21]. However, little is known about the functional roles of VAP-1 attached to 

non-endothelial cells. 

 To date, VAP-1 upregulation enhances leukocyte infiltration in inflammatory 

tissues, and its enzymatic activity has been reported to play a pivotal role in some 

studies [22]. While inhibition of VAP-1 enzyme activity ameliorated several 

inflammatory disease models in various organs such as the intestine [23, 24], liver [25], 

lung [23, 26, 27], eye [28], and brain [29-32], no study has addressed the effect of 

VAP-1 inhibition in AKI models. 

 Based on the background discussed above, I hypothesized that inhibition of 

VAP-1 enzyme activity would ameliorate renal IR injury, via suppression of leukocyte 

infiltration. To address this hypothesis, I examined the effect of a specific VAP-1 

inhibitor in a rat model of renal IR injury. 

 

 

 

 

 



7 

 

METHODS 

Animal Models 

Eight-week-old male Sprague–Dawley rats (Nippon Seibutsu Zairyo Center, Tokyo, 

Japan) were housed in an air-conditioned room under a 12-h light/dark cycle with free 

access to food and water. Rats were randomly divided into vehicle and drug (VAP-1 

inhibitor, RTU-1096) groups. A specific VAP-1 inhibitor, RTU-1096, was generously 

provided by R-Tech Ueno (Tokyo, Japan). RTU-1096 has a high specificity for VAP-1 

against other monoamine oxidases (MAOs); IC50 for rat VAP-1, human VAP-1, human 

MAO-A, human MAO-B are 0.4 nM, 0.9 nM, >100 μM, >100 μM, respectively (data 

provided by R-Tech Ueno). In the initial pilot study, RTU-1096 was administered by 

oral gavage (50 mg/kg/day) at -12, 0, 12, 24, 36 h. However, this protocol failed to 

show protective effects against renal IR injury (data not shown). Thus, RTU-1096 was 

mixed in feed (0.05%) considering the possibility that VAP-1 enzyme activity could 

recover during the gavage interval. These doses were decided based on pharmacokinetic 

data of this inhibitor in rats (data not shown). The actual dose of RTU-1096 was about 

40 mg/kg/day (intake, 24 g/day; body weight, 300 g). RTU-1096 or vehicle was 

administered to rats from 7 days before IR surgery until sacrifice. Rats were subjected 

to left renal ischemia for 45 min following right nephrectomy and sacrificed at 6 h (n = 



8 

 

5 each) or 48 h (n = 10 each) after IR operation. In the sham groups (n = 3 each), rats 

underwent similar procedures except for left renal ischemia. 

All animal experiments were approved by the ethical committee of the 

Graduate School of Medicine, the University of Tokyo (P15-073), and performed in 

accordance with the guidelines established by the Committee on Ethical Animal Care 

and Use at the University of Tokyo. 

Determination of VAP-1 Enzyme Activity 

For radioenzymatic determination of VAP-1 enzyme activity, the original procedure 

described by Yu PH et al [33] was modified. In brief, samples (plasma or kidney 

homogenates) and reaction buffer including a monoamine oxidase inhibitor were 

pre-incubated at room temperature for 20 min. Following this, samples were incubated 

in the presence of 
14

C-labeled benzylamine at 37°C for 2 h. Enzyme reactions were 

terminated with addition of 2M citric acid. The oxidized products were extracted into 

toluene/ethyl acetate (1:1 vol/vol). Radioactivity
 
of 

14
C-labeled benzaldehyde, a 

metabolite of the 
14

C-labeled benzylamine, was assessed using a liquid scintillation 

counter (LSC-6100, Aloka, Tokyo, Japan). Total protein was calculated with the 

Bradford method (Quick Start™ Bradford Protein Assay, Bio-rad, Hercules, CA, USA), 

using a microplate reader (Varioskan, Thermo Electron, Vantaa, Finland). 
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Biochemical Measurement 

Concentrations of blood urea nitrogen (BUN) and plasma creatinine (Cr) were measured 

with commercial kits (Wako, Osaka, Japan). 

Histological Evaluation 

Formalin-fixed, paraffin-embedded tissue was sectioned (3 μm thick), dewaxed with 

Histoclear
®
 (National Diagenostics, Atlanta, GA, USA), and rehydrated through graded 

ethanols. Periodic acid-Schiff (PAS) staining was used in semiquantitative evaluation of 

tubular injury. Tubular injury scores were graded (0–4) according to the following 

criteria [34]: 

0. No change. 

1. Mitosis and necrosis of individual cells. 

2. Necrosis of all cells in adjacent proximal convoluted tubules, with survival of 

surrounding tubules. 

3. Necrosis confined to the distal third of the proximal convoluted tubule, with a band 

of necrosis extending across the inner cortex. 

4. Necrosis affecting all three segments of the proximal convoluted tubule. 

Randomly selected 10 fields (×200) were scored and the highest score was adopted. 

All evaluations were performed in a blinded manner. 
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Immunohistochemistry 

For detection of neutrophils, naphthol AS-D chloroacetate (Specific Esterase) kit 

(Sigma-Aldrich, St. Louis, MO, USA) was used according to manufacturer’s 

recommendations. For detection of macrophages, indirect immunoperoxidase staining 

was performed on methyl Carnoy’s-fixed, paraffin-embedded tissue sections (3 μm 

thick). After dewaxing and rehydration, blocking of pseudoperoxidase with 3% 

hydrogen peroxide and nonspecific protein binding was performed. Following 

incubation overnight at 4°C with mouse monoclonal anti-rat macrophage antibody 

(ED-1, Chemicon, Temecula, CA, USA), sections were incubated for 40 min at room 

temperature with biotinylated horse anti-mouse IgG antibody (Vector, Burlingame, CA, 

USA). Then, the sections were incubated with avidin D, horseradish peroxidase (Vector) 

for 30 min at room temperature. Color was developed via incubation with 

diaminobenzidine (DAB, Wako) and hydrogen peroxide. Neutrophil and macrophage 

numbers were counted in 10 randomly selected fields (×400) of corticomedullary 

junction in a blinded manner. 

Immunofluorescence Study 

Periodate-Lysine-Paraformaldehyde-fixed kidneys were embedded in O.C.T. compound 

(Sakura Finetek Japan, Tokyo, Japan) and frozen on dry ice. The block was cut into 4 
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μm sections and incubated overnight at 4
o
C with mixed primary antibodies (rabbit 

polyclonal anti-VAP-1 antibody (Abcam, Tokyo, Japan) and mouse monoclonal anti-rat 

RECA-1 antibody (AbD Serotec, Oxford, UK)/mouse monoclonal anti-PDGFRβ 

antibody (Novus, Littleton, CO, USA)). Subsequently, sections were incubated with a 

mixture of FITC-conjugated goat anti-mouse IgG (Southern Biotechnology Associates, 

Birmingham, AL, USA) and TRITC-conjugated donkey anti-rabbit IgG (Jackson 

ImmunoResearch, West Grove, PA, USA) for 60 min at room temperature in dark 

conditions. A TCS-SP5 confocal fluorescence microscope (Leica Microsystems, Tokyo, 

Japan) was used for evaluation. 

Total RNA Isolation and Real-time Quantitative PCR 

Mechanically homogenized whole-kidney samples were used in RNA quantification. 

Total RNA was isolated with RNAiso
®
 (TAKARA BIO, Shiga, Japan), and 

reverse-transcribed with RT Master Mix
®
 (TAKARA BIO). Following this, cDNA was 

subjected to real-time quantitative PCR using THUNDERBIRD qPCR Mix
®
 (Toyobo, 

Tokyo, Japan) and a CFX96 Real Time System
®
 (Bio-Rad), according to manufacturer’s 

protocols. Primer sequences are listed in Table 1. 
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Table 1: A list of primers used in this study. 

Gene Species F/R Sequence (5’→3’) 

Vcam-1 Rat Forward TTGTTCAAGAGAAACCATTTACTGT 

  Reverse GCTCATCCTCAACACCCACA 

Icam-1 Rat Forward CGGTGCTCAGGTATCCATCC 

  Reverse CTCGCTCTGGGAACGAATACA 

Kim-1 Rat Forward ATGGCTGCCCTCAGTTTTCTC 

  Reverse AATCTACAGAGCCTGGAAGAAGC 

E-selectin Rat Forward TGCAGGGGTACAGTGTTCAA 

  Reverse GGCAGCTACTAGCAGGAACG 

P-selectin Rat Forward GACGGGTCAAGAGAGGACA 

  Reverse TCGATTTACAAGCTCAGAGATCA 

Cxcl1 Rat Forward ATGCTAAAGGGTGTCCCCAA 

  Reverse TTGTCAGAAGCCAGCGTTCA 

Cxcl2 Rat Forward AACCATCAGGGTACAGGGGT 

  Reverse CAACCCTTGGTAGGGTCGTC 

Mcp-1 Rat Forward GACAGAGGCCAGCCCAGAAACC 

  Reverse CAACAGGCCCAGAAGCGTGACA 
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β-actin Rat Forward CTTTCTACAATGAGCTGCGTG 

  Reverse TCATGAGGTAGTCTGTCAGG 

Aoc3 (VAP-1) Mouse Forward TTGTGGGGACGGTGCTTGTG 

  Reverse GTTCTTCAGCCCTGCCACATC 

Cell Culture  

Isolated mouse kidney pericytes were gifted from Dr. Jeremy Duffield (University of 

Washington). Cells were cultured in DMEM/F12 (Sigma-Aldrich) with 10% fetal 

bovine serum (Thermo Fisher Scientific, Waltham, MA, USA), 1% 

penicillin/streptomycin, and 1% insulin-transferrin-selenium (Invitrogen, Carlsbad, CA, 

USA), in plates precoated with 0.2% gelatin. 

Immunoblotting 

Cell pellets of cultured mouse kidney pericytes were resuspended in RIPA buffer (50 

mmol/l Tris-HCl (pH8.0), 150 mmol/l sodium chloride, 0.5% sodium deoxycholate, 

0.1% sodium dodecyl sulfate, 1.0% Triton X-100) with a proteinase inhibitor cocktail 

(cOmplete Mini
®
, Nippon-Roche, Tokyo, Japan), and denatured with incubation in 

sample buffer (2% sodium dodecyl sulfate, 10% glycerol, 60 mM Tris (pH 6.8), 10 mM 

dithiothreitol, and 0.01% bromophenol blue) for 5 min at 96°C. Proteins were separated 

with 10% SDS polyacrylamide gel electrophoresis and transferred onto a 
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polyvinylidene fluoride membrane. Nonspecific protein binding was blocked with 5% 

skim milk in Tris-buffered saline (pH 7.4), containing 0.5% Tween 20. Membranes were 

incubated with the primary antibody (rabbit polyclonal anti-VAP-1 antibody (Abcam)) 

at 4°C overnight, and then incubated at room temperature for 45 min with 

HRP-conjugated goat anti rabbit IgG antibody (Bio-Rad). Bands were observed with an 

enhanced chemiluminescence system (ECL Plus
®

 and Image Quant LAS 4000
®
, GE 

Healthcare, Tokyo, Japan). 

Statistical Analysis 

All values are expressed as mean ± SEM. Data for two groups were analyzed using 

Mann–Whitney U test in semiquantitative evaluation of tubular injury, or a Student’s 

two-tailed t-test in other data. P-values < 0.05 were regarded as statistically significant. 

All analyses were performed with JMP
®
 11 software (SAS Institute Inc., Cary, NC, 

USA). 
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RESULTS 

VAP-1 Expression of the Kidney Pericytes 

Immunofluorescence analysis using sham-operated rat kidneys suggested that VAP-1 is 

expressed predominantly in pericytes rather than in endothelial cells (Figure 1A, 1B). In 

addition, the existence of VAP-1 mRNA and protein was confirmed in cultured pericytes 

isolated from mouse kidneys (Figure 1C). Although I tried to confirm the localization of 

VAP-1 also in IR-injured kidneys with immunofluorescence analysis, it was difficult to 

obtain clear images due to nonspecific signals from injured tubules and casts. 

A
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Figure 1. Predominant VAP-1 expression in pericytes of the kidney. 

(A, B) Immunofluorescence analysis for detection of VAP-1, RECA-1 (endothelial 

marker), and PDGFRβ (pericyte marker) in the sham-treated rat kidney. Staining for 

VAP-1, RECA-1, PDGFRβ, and their corresponding merged images are shown. Scale 

bar, 100 μm. (C) Immunoblotting of VAP-1 in whole-cell extract of cultured mouse 

kidney pericytes. 

 

Renal and Plasma VAP-1 Enzyme Activity following IR Surgery and the Effect of 

VAP-1 Inhibitor 

First, renal/plasma VAP-1 enzyme activity was examined at 0 h (sham), 6 h, and 48 h 

after surgery, to determine whether enzymatic activity had been altered. IR surgery 

significantly increased plasma VAP-1 activity at 6 h, which returned to the baseline at 

48 h. In contrast, renal VAP-1 activity did not significantly change at time points I 

studied (Figure 2). A specific inhibitor, RTU-1096, significantly reduced renal/plasma 

VAP-1 enzyme activity at each time point. 
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Figure 2. Comparison of renal/plasma VAP-1 enzyme activity at 0 h (sham), 6 h, 

and 48 h after surgery among test groups. 

(A, B) Whole kidney (A) or plasma (B) VAP-1 enzyme activity in experimental rats at 0 

h (sham), 6 h, and 48 h after surgery. (Sham Vehicle, n = 3; Sham Drug, n = 3; 6h 

Vehicle, n = 5; 6h Drug, n = 5; 48h Vehicle, n = 10; 48h Drug, n = 10; ** p < 0.01, *** 

p < 0.001) 

 

Amelioration of Renal IR Injury by VAP-1 Inhibition 

In the vehicle groups, IR surgery resulted in marked elevations of BUN and plasma Cr 

levels both at day 1 and day 2, suggesting that IR injury in this study was robust (Figure 

3A, 3B). In IR groups, VAP-1 inhibition was associated with significantly lowered BUN 

and plasma Cr levels both at day 1 and day 2. Semiquantitative analysis of histological 
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tubular injury also demonstrated that the animals in the IR/Vehicle group exhibited 

significant degrees of tubular injury, which became less prominent in the IR/Drug group 

at 48 h (Figure 3C, 3D). In accordance with these biochemical and histological 

observations, kidney injury molecule (KIM)-1 (a representative tubular injury marker 

[35, 36]) was also significantly downregulated with VAP-1 inhibition (Figure 3E). 
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Figure 3. VAP-1 inhibition ameliorated renal IR injury. 

(A-E) Rats were subjected to left renal ischemia for 45 min following right 

nephrectomy and sacrificed 48 h after IR operation. In the sham groups, rats underwent 

similar procedures except for left renal ischemia. (A, B) Time course of BUN (A) and 

plasma Cr (B). (C) Histological analysis with PAS staining. Scale bars, 100 μm. (D) 

Semiquantitative analysis of histological tubular injury. (E) Quantitative PCR of KIM-1 

mRNA in the whole kidney. (Sham/Vehicle, n = 3; IR/Vehicle, n = 10; Sham/Drug, n = 

3; IR/Drug, n = 10; * p < 0.05, ** p < 0.01, *** p < 0.001) 

 

VAP-1 Inhibition was Associated with Suppressed Neutrophil Infiltration at 48 h 

after Renal IR 

VAP-1 has been reported to play an important role in leukocyte trafficking in 

inflammatory tissue. Therefore, I investigated whether neutrophil/macrophage 

infiltration into IR-injured kidneys was influenced by VAP-1 inhibition, because these 

cells are critical contributors in the pathogenesis of renal IR injury. The number of 
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neutrophils infiltrating into the corticomedullary junction, where leukocyte infiltration 

was most pronounced, was significantly increased at 48 h after IR injury, which was 

suppressed by VAP-1 inhibition (Figure 4A, 4B). The number of macrophages 

infiltrating into the corticomedullary junction was also significantly increased at 48 h 

after IR injury. In contrast, however, the number of macrophages did not differ between 

the IR/Vehicle and IR/Drug groups (Figure 4C, 4D). 

***
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Figure 4. VAP-1 inhibition suppressed neutrophil, but not macrophage, infiltration 

into the IR-injured kidney at 48 h. 

(A, B) Infiltrating neutrophils (stained by naphthol AS-D chloroacetate) in the 

corticomedullary junction at 48 h after IR injury. (C, D) Infiltrating macrophages (ED-1 

positive cells) in the corticomedullary junction at 48 h after IR injury. Scale bars, 30 μm. 

(Sham/Vehicle, n = 3; IR/Vehicle, n = 10; Sham/Drug, n = 3; IR/Drug, n = 10; * p < 

0.05, ** p < 0.01) 

 

Changes in Neutrophil Chemokines and Other Adhesion Molecules by VAP-1 

Inhibition 

To gain insight into the mechanism of decreased neutrophil infiltration with VAP-1 

inhibition, I investigated the time course of neutrophil infiltration, chemokines, and 
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other adhesion molecules. The number of infiltrating neutrophils was not reduced by 

VAP-1 inhibition at 6 h after IR (Figure 5A). Consistently, whole-kidney expression 

levels of CXCL-1 and CXCL-2, key neutrophil chemokines significantly upregulated in 

renal IR injury, were not altered by VAP-1 inhibition at 6 h, but again remarkably 

suppressed at 48 h (Figure 5B, upper panels). In contrast, the expression level of MCP-1, 

a representative macrophage chemokine, was not affected by VAP-1 inhibition either at 

6 h or at 48 h (Figure 5B, lower panel). These results are in accordance with the 

observed changes in numbers of infiltrating neutrophils/macrophages.  

***
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Figure 5. The time-course changes of neutrophil infiltration and its associated 

chemokines in IR-injured kidneys. 

(A) The number of infiltrating neutrophils at 6 h after IR injury. (B) Quantitative PCR 

of CXCL-1 and CXCL-2 (neutrophil chemokines) and MCP-1 (a macrophage 

chemokine) in the whole kidneys at 0 h (sham), 6 h, and 48 h after IR. (Sham Vehicle, n 

= 3; Sham Drug, n = 3; 6h Vehicle, n = 5; 6h Drug, n = 5; 48h Vehicle, n = 10; 48h Drug, 

n = 10; * p < 0.05, ** p < 0.01, *** p < 0.001) 
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Finally, I tested the possibility that VAP-1 inhibition also influenced the 

expression of alternative adhesion molecules which possibly suppress neutrophil 

infiltration into IR-injured kidneys. To this end, expression levels of VCAM-1, ICAM-1, 

E-selectin, and P-selectin in the whole kidney (Figure 6) were quantified; however, 

none of these molecules were affected by VAP-1 inhibition either at 6 h or at 48 h after 

IR. 

NS NS NS NS
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Figure 6. Other adhesion molecules were not affected by VAP-1 inhibition. 

Quantitative PCR of VCAM-1, ICAM-1, E-selectin, and P-selectin in the entire kidney 

at 0 h (sham), 6 h, and 48 h after IR. (Sham Vehicle, n = 3; Sham Drug, n = 3; 6h 

Vehicle, n = 5; 6h Drug, n = 5; 48h Vehicle, n = 10; 48h Drug, n = 10) 
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DISCUSSION 

In this study, I investigated a pathogenic role of VAP-1 and tested a therapeutic impact 

of VAP-1 inhibition, using a specific inhibitor, RTU-1096, in a rat model of renal IR 

injury. VAP-1 is expressed in pericytes of rodent kidneys, and RTU-1096 successfully 

inhibited VAP-1 enzyme activity in rat kidneys and plasma. While VAP-1 enzyme 

activity in the kidney was not significantly altered by IR injury, inhibition of its enzyme 

activity significantly ameliorated renal IR injury. BUN/plasma Cr levels, histological 

tubular injury, and renal KIM-1 mRNA levels were significantly decreased in the 

IR/Drug group, as compared with the IR/Vehicle group. Amelioration of kidney injury 

was associated with decreased neutrophil infiltration into the kidney, and suppressed 

mRNA levels of neutrophil chemokines (CXCL-1 and CXCL-2) at 48 h after IR surgery. 

However, macrophage infiltration and MCP-1 expression levels were unchanged with 

VAP-1 inhibition. Furthermore, VAP-1 inhibition did not alter expression of other major 

adhesion molecules (VCAM-1, ICAM-1, E-selectin, P-selectin) in the kidney. In 

summary, VAP-1 inhibition ameliorated renal IR injury, most likely via suppression of 

kidney neutrophil infiltration. 

 One novel finding of this study is that VAP-1 is expressed in the pericytes of 

rodent kidneys. However, the use of one polyclonal antibody available in the market 
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may hamper interpretation of immunodetection. Further experiments including 

preincubation of the antibody with epitope peptide and siRNA knockdown of VAP-1 

gene in cultured mouse kidney pericytes would raise specificity of findings and further 

support our view on pericyte expression of VAP-1. To date, many studies on VAP-1 

focus on its functional role in endothelial cells, whereas only a few have investigated 

functions of VAP-1 in cells of non-endothelial lineage, such as pericytes. Recently, 

Weston et al [25] demonstrated that VAP-1 was expressed in stellate cells of the liver 

and enhanced recruitment of various types of leukocytes, resulting in inflammation and 

fibrosis. 

 Results of the present study suggest that VAP-1 inhibition ameliorates rat renal 

IR injury via suppression of neutrophil infiltration. In other disease models of distinct 

organs, VAP-1 has been reported to be involved in the recruitment of lymphocytes and 

macrophages as well as neutrophils into inflamed tissues [14, 25]. However, it may 

depend on disease models which type of leukocytes is most affected by VAP-1 

inhibition. Indeed, amelioration of inflammation with VAP-1 inhibition has been 

associated with decreased neutrophil infiltration in various lung injury models [26] and 

in subarachnoid hemorrhage-associated cerebrovascular dilating dysfunction [29]. One 

may argue that decreased neutrophil infiltration is secondary to amelioration of injury; 
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however, milder injury is not necessarily accompanied with decreased leukocyte 

infiltration in this model [37]. Findings that infiltration of macrophages was not blocked 

by VAP-1 inhibition, also indicate that VAP-1 inhibition directly suppresses neutrophil 

infiltration, resulting in amelioration of IR injury. Investigating the effect of VAP-1 

inhibition in neutrophil-depleted rats would help to understand more deeply the 

association between VAP-1 inhibition and suppressed neutrophil infiltration. 

 Then, by which mechanism does VAP-1 enzyme activity enhance neutrophil 

recruitment in this model? There are some possibilities. (1) VAP-1 in pericytes may 

function as an adhesion molecule. Recently, pericytes have emerged as a key player in 

leukocyte migration in inflamed tissues [38, 39]. For example, in response to 

inflammatory stimuli, pericytes upregulate ICAM-1 expression, promoting interaction 

with activated leukocytes [40]. (2) VAP-1 in pericytes may act as a potent neutrophil 

chemotactic factor. Weston et al [25] demonstrated that stellate cells in the liver secreted 

enzymatically active VAP-1 (sVAP-1), which exhibited a chemotactic effect to 

lymphocytes in migration assay. They also showed that this property was dependent, at 

least in part, on the generation of H2O2, an end product of the VAP-1 enzyme reaction. A 

local gradient of sVAP-1/H2O2 may be generated in inflamed tissues, which would, in 

turn, stimulate neutrophil recruitment. To investigate this possibility, migration assays 
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using neutrophils and VAP-1 protein with appropriate substrates would be needed. (3) In 

the present study, expression levels of CXCL-1 and CXCL-2 were significantly lower in 

the IR/Drug group at 48 h after IR surgery, when compared to those of the IR/Vehicle 

group. These chemokines are known to be important for neutrophil recruitment in the 

renal IR injury model [41-43]. Considering that these chemokines are produced in 

various kidney cells, including pericytes, VAP-1 inhibition may directly inhibit the 

production of these chemokines, resulting in mitigation of neutrophil infiltration. 

However, considering that VAP-1 inhibition did not affect CXCL-1 and CXCL-2 levels 

in the kidney at 6 h after IR, decreased levels of CXCL-1 and CXCL-2 are probably 

secondary to mitigation in IR injury and neutrophil infiltration. Indeed, an infiltrated 

neutrophil itself was reported to produce a large amount of IL-17A, thereby inducing 

CXCL-1 and CXCL-2 expression [44]. (4) Lastly, in the present study, VAP-1 (sVAP-1) 

enzyme activity in plasma was inhibited by RTU-1096. This might lead to suppression 

of neutrophil infiltration although little is known about the function of sVAP-1 in this 

model. Experiments using a pericyte-specific VAP-1 knockout mouse should provide 

more detailed information; however, a truly specific marker for pericytes has not yet 

been found. 

 There are some limitations in the present study. I cannot exclude off-target 
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effects related to the use of RTU-1096. The most plausible off-targets are MAO-A and 

MAO-B, which belong to the same enzyme class (monoamine oxidase) as VAP-1. 

Considering the very high specificity of this drug as shown above, however, it is 

unlikely that suppressed renal IR injury was through these off-targets. Moreover, the 

precise mechanism with which VAP-1 inhibition ameliorates renal IR injury is still 

unclear. Further in vitro and in vivo studies are clearly warranted. 

In conclusion, despite several limitations, the present study suggests that 

VAP-1, which is expressed in pericytes of the kidney, controls neutrophil infiltration in 

renal IR injury, potentially allowing VAP-1 inhibition to be used as a novel therapeutic 

target in ischemic AKI. 
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