論文の内容の要旨

論文題目 Hom complexes and chromatic numbers of graphs (グラフの Hom 複体と彩色数について)

氏 名 松下尚弘

本論文でグラフというときは集合 V(G) と V(G) × V(G) の対称部分集合 E(G) の組 G=(V(G),E(G)) のことをいう。グラフ準同型とは写像 $f:V(G)\to V(H)$ で $(f\times f)(E(G))\subset E(H)$ が成り立つものである。n-頂点完備グラフとは $V(K_n)=\{0,1,\cdots,n-1\}$, $E(K_n)=\{(x,y)\mid x\neq y\}$ によって定義されるグラフ K_n のことである。グラフ G から K_n へのグラフ準同型を G の n-彩色という。グラフ G に対し,G の n-彩色が存在するような最小の n を G の彩色数といい, $\chi(G)$ で表す。グラフ G の彩色数 $\chi(G)$ を決定する問題 を,グラフの彩色問題という。

Hom 複体とは,二つのグラフ T と G に対して定まるポセット $\operatorname{Hom}(T,G)$ である.以下ポセットはその分類空間を対応させることで,位相空間とみなす.グラフ T に群 Γ の作用が与えられると, $\operatorname{Hom}(T,G)$ にも群 Γ の作用が与えられ,グラフ準同型 $f:G_1\to G_2$ は Γ -同変写像 $f_*:\operatorname{Hom}(T,G_1)\to\operatorname{Hom}(T,G_2)$ を誘導する.特に $T=K_2$ のとき, K_2 の二つの頂点を交換する \mathbb{Z}_2 -作用を考え,そのときの \mathbb{Z}_2 -ポセット $\operatorname{Hom}(K_2,G)$ を,G の箱複体といい B(G) で表す.B(G) の \mathbb{Z}_2 -指数という不変量が,G の彩色数 $\chi(G)$ の下界を与えることが知られている.また T が後述するホモトピーテストグラフのとき, Hom 複体 $\operatorname{Hom}(T,G)$ の連結度が $\chi(G)$ の下界を与えることが知られている.本博士論文では S(G) や S(G) や S(G) の構造,すなわちホモトピー型やポセットとしての構造が,グラフ S(G) の彩色数に対して,どの程度の制限を与えるのかについて論ずる.

まずホモトピーテストグラフに関する Kozlov の予想について述べる. T がホモトピーテストグラフであるとは、任意のグラフGに対し、

$$\chi(G) > \operatorname{conn}(\operatorname{Hom}(T,G)) + \chi(T)$$

が成り立つことをいう.ここで空間 X に対し, $\operatorname{conn}(X)$ は X が n-連結となるような n のうち最大のものである. K_m $(m \geq 3)$ や奇数次のサイクル C_{2r+1} $(r \geq 1)$ などはホモトピーテストグラフの例である.したがってどのようなグラフがホモトピーテストグラフになるのかということが問題になる. Kozlov は $\chi(T)=2$ のとき T がホモトピーテストグラフになることを予想したが,これを解決した.

定理 1.
$$\chi(T)=2$$
 なるグラフ T はホモトピーテストグラフである.

次に $\operatorname{Hom}(T,G)$ のホモトピー型と $\chi(G)$ との関係について論ずる. T への \mathbb{Z}_2 -作用 α がフリッピングであるとは, $(v,\alpha(v))\in E(T)$ となる $v\in V(T)$ が存在することである. T への \mathbb{Z}_2 -作用がフリッピングで G がループを持たないならば, $\operatorname{Hom}(T,G)$ が自由な \mathbb{Z}_2 -作用になることが知られている. このような T に対して $\operatorname{Hom}(T,G)$ の \mathbb{Z}_2 -ホモトピー不変量と $\chi(G)$ との関係についてよく研究されている. 以下の定理は, $\chi(G)\geq 3$ ならば $\operatorname{Hom}(T,G)$ のホモトピー型が $\chi(G)$ を決定し得ないことを示している.

定理 2. T を有限グラフ,G を $\chi(G)>2$ なるグラフとする。このとき任意の整数 n に対し,G を部分グラフとして含むグラフ H で,包含 $\operatorname{Hom}(T,G)\to\operatorname{Hom}(T,H)$ がホモトピー同値でかつ $\chi(H)>n$ なるものが存在する。もし G が有限グラフかつ連結ならば,H も有限グラフかつ連結にとることができる。さらに T が \mathbb{Z}_2 -グラフであって,作用がフリッピングならば,包含 $\operatorname{Hom}(T,G)\to\operatorname{Hom}(T,H)$ は \mathbb{Z}_2 -ホモトピー同値であ

る.

 $\operatorname{Hom}(T,G)$ のホモトピー不変量が G の彩色数の下界を与えることがあることは既に述べたが、上の定理は $\operatorname{Hom}(T,G)$ のホモトピー不変量が、G の彩色数の上界を与えないことも示している.

したがって $\chi(G)$ の正確な評価を与えるには、 $\operatorname{Hom}(T,G)$ のより細かい構造に着目する必要がある.ここでは $T=K_2$ のときに、 $\operatorname{Hom}(K_2,G)=B(G)$ の半順序集合としての構造に関して、次の定理を示した.

定理3. $G \ge H$ を孤立点を持たないグラフとせよ. このとき次が成り立つ.

- (1) $K_2 \times G$ と $K_2 \times H$ が同型なことと,B(G) と B(H) が半順序集合として同型なことは同値である.
- (2) G と H が同型なことと,B(G) と B(H) が \mathbb{Z}_2 -半順序集合として同型なことは同値である.

ここで $K_2 \times G$ は G の Kronecker 二重被覆と呼ばれ,グラフ二重被覆の分類において表れてきた概念である.G が連結でかつ彩色数が 3 以上ならば, $K_2 \times G$ は二部グラフとなる G 上の二重被覆として特徴づけられる.この幾何学的な考察から,任意の整数 m,n>2 に対し,連結グラフ G, H で $\chi(G)=m$ かつ $\chi(H)=n$ であり,さらに $K_2 \times G \cong K_2 \times H$ なるものを構成した.このことは箱複体が半順序集合として同型であっても,彩色数が異なる例として重要である.

一方,上記の定理 (2) により B(G) の \mathbb{Z}_2 -半順序集合としての構造は孤立点を除いて G を定めることがわかる.したがって B(G) の \mathbb{Z}_2 -半順序集合としての構造は $\chi(G)$ を (0 か 1 かを除いて) 定める.

最後に Hom 複体とホモトピー同値な単体的集合 $\mathrm{Sing}(T,G)$ について述べる. グラフ T, G に対し、単体的集合 $\mathrm{Sing}(T,G)$ を、その n 単体が $T\times\Sigma_n$ から G へのグラフ準同型であるものとする. ここで Σ_n は $V(\Sigma_n)=\{0,1,\cdots,n\}$ および $E(\Sigma_n)=V(\Sigma_n)\times V(\Sigma_n)$ により定まるグラフである.

定理4. 任意のグラフTとGに対し、自然なホモトピー同値

$$|\operatorname{Sing}(T,G)| \xrightarrow{\simeq} |\operatorname{Hom}(T,G)|$$

が存在する.

ここで $T=K_2$ のとき, $\mathrm{Sing}(K_2,G)=\mathcal{B}(G)$ とかく. K_2 の \mathbb{Z}_2 -作用により $\mathcal{B}(G)$ も \mathbb{Z}_2 -単体的集合となるが,このとき上記のホモトピー同値写像は, \mathbb{Z}_2 -ホモトピー同値写像 $|\mathcal{B}(G)| \to |\mathcal{B}(G)|$ を誘導する.この \mathcal{B} を特異箱複体と呼ぶことにする.特異箱複体は通常の箱複体と違い右随伴関手であり,圏論的に扱いやすい.その応用として,次のことを示した.

グラフ準同型 $f:G\to H$ が与えられると, \mathbb{Z}_2 -同変写像 $f_*:B(G)\to B(H)$ が誘導される.したがってグラフの圏と \mathbb{Z}_2 -空間の圏を比べることが重要になる.理想としては,連続な \mathbb{Z}_2 -同変写像 $f:B(G)\to B(H)$ に対して,G から H へのグラフ準同型が存在すればよいが,これは定理 3 に見られるように全く成り立たない性質である.しかし以下の定理は,グラフ準同型 $f:G\to H$ で, $f_*:B(G)\to B(H)$ が \mathbb{Z}_2 -ホモトピー同値になるようなものでグラフの圏を局所化すると,それは \mathbb{Z}_2 -空間の圏に同値になることを示している.

定理5. G をグラフの圏を表す. G には次のようなモデル構造が存在する.

- (1) グラフ準同型 $f:G\to H$ で f の誘導する $f_*:B(G)\to B(H)$ が \mathbb{Z}_2 -ホモトピー同値になるものを弱同値とする.
- (2) コファイブレーションのクラスは、 $\mathcal{A} \circ \mathrm{Sd}^3(\partial \Delta[n]) \hookrightarrow \mathcal{A} \circ \mathrm{Sd}^3(\Delta[n])$ および $\mathcal{A} \circ \mathrm{Sd}^3(\mathbb{Z}_2 \times \partial \Delta[n]) \hookrightarrow \mathcal{A} \circ \mathrm{Sd}^3(\mathbb{Z}_2 \times \Delta[n])$ の和集合で生成される.

X	らにこ	のモデル構造に対し	.) 确坐関手

$$\mathcal{A}\circ\operatorname{Sd}^3:\mathbf{SSet}^{\mathbb{Z}_2}\to\mathcal{G}:\operatorname{Ex}^3\circ\mathcal{B}$$

は Quillen 同値である.