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“To be yourself in a world that is constantly trying to make you something else is the greatest
accomplishment.”

Ralph Waldo Emerson
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Route choice analysis predicts which route a given traveler take to go from a location
to another, and it evaluates the flow pattern on a transportation network. It is one of
the most important issues of urban and transport planning; however, the evaluation
of path choice probabilities is not a trivial task due to the requirement of the path set
generation.

Markovian route choice model is an approach that avoids to enumerate the path
set by evaluating path choice probabilities as the products of link transition proba-
bilities. Because of its consistency with the logit-type route choice model, recently, it
is gathering much attention again. In addition to its high operability, this thesis fo-
cuses on that the Markovian route choice model describes the sequence of decision-
making process, which becomes important for the future urban planning, and we
aim at developing a framework of Markovian route choice analysis.

The Markovian route choice model mainly retains the following challenges: 1)
it includes the biases in observing route choice behavior and in estimating param-
eters of route choice model, which are caused from the initial parameter settings,
2) it is based on the assumption of global optimal decision, that is, travelers are as-
sumed to have knowledge of the entire network and evaluate utilities of all links
with the equivalent weight, and 3) there is the computational instability of the ex-
pected maximum utilities, which are the core idea of the Markovian route choice
model, dependently on the network structure. Therefore, 4) the application of the
model is restricted into the description of vehicle route choice behavior.

This thesis presents the following several new methods for solving the above
challenges and develops an integrated framework of the Markovian route choice
analysis.

1) For reducing the biases in estimating parameters caused from the initial pa-
rameter settings, we propose a novel route measurement model and an estimation
method. The link-based route measurement model identifies link-specific variance of
GPS measurement error, which has been assumed as the given and constant value
over the network. The structural estimation method removes the bias that is included
in the prior information, which is used for correcting the measurement probability
in the case that the measurement error is large. We have some numerical experi-
ments and validate the effectiveness of the proposed methods. We also apply them
to a real pedestrian network of the city center in Matsuyama city, Japan. This study
is addressed in Chapter 3.
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2) We propose a dynamic sequential route choice model with the discount fac-
tor to describe sequential and somewhat forward-looking decisions of travelers. It
models the myopic route choice behavior, which is dependent on only link utility
that is directly connected with the current state link of a traveler, and it also includes
the previous Markovian route choice model referred to as the recursive logit model
as a special case. We show the model properties through illustrative examples. We
also apply it to a case study using taxi probe data collected in the Tokyo network on
the day of the Great East Japan Earthquake and clarify drivers’ myopic decisions in
the gridlock network. This study is shown in Chapter 4.

3) Focusing on that the computational problems of the Markovian route choice
model are caused from the consideration of paths with infinite cycles, we propose
several methods to solve the problems. The time-structured network is a state network
that consists of decomposed networks by decision-making timing, and a route is de-
scribed as a sequence of states in the time-structured network in this study. More-
over, we propose a method of restricting path set based on the time-space prism, that
is, only paths included in the time-space prism are considered in the route choice
model. Thanks to these methods, infinite cyclic paths are removed, and it is possible
to calculate the expected maximum utilities regardless of network structures, using
the backward induction algorithm. We present some illustrative examples to show
that the computational challenges of the Markovian route choice model are solved.
This work is shown in Chapter 5.

4) Using the proposed framework of a Markovian route choice analysis, we pro-
pose an activity path choice model, which describes a route choice behavior in time-
space networks. The activity assignment with the activity path choice model eval-
uate not only the spatial flow pattern but also the use of time at each node. We
apply the activity assignment model to a pedestrian network design problem and
investigate the Pareto front solutions of widening the sidewalk width, based on a
framework of multi-level and multi-objective programming.
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ā initial value, average value
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Chapter 1

Introduction

Transport planning has mainly dealt with the alleviation of traffic congestions as the
primary problem, and a number of models for demand forecasting have been de-
veloped. Route choice analysis identifies which route a give traveler takes to go a
place to another, and it has played a great role in transport planning. Recently, sev-
eral paradigm shifts are appearing in the background of transport planning, and the
relationship among transport planning, urban planning and information technolo-
gies is more and more closely connected. For this reason, a more flexible and more
operable framework of route choice analysis is required.

In this thesis, we define the sequence of decision makings as trajectory and aim
at developing a method for urban planning based on modeling trajectories, which
is referred to as trajectory-based urban planning. Toward it, we focus on Markovian
route choice models, which are powerful tools for describing trajectories in urban
networks. The studies in this thesis present extended methods for more flexible
Markovian route choice analysis.

In this chapter, we first introduce our background and also define the trajectory-
based urban planning in Section 1.1. We then present an overview of route choice
analysis and discuss its challenges in Section 1.2. In Section 1.3, we present our
contributions, and finally, we show the outline of the thesis.

1.1 Trajectory-based urban planning

1.1.1 Background

Needless to say, the transformation of urban spaces are closely related to the devel-
opment of transport technologies. The construction of Via Appia has developed cities
along it, and the appearance of steamships and the sailing routes have simulated the
development of port towns. The installation of railroads has changed the land-use
in old towns, and automobiles has widely and continuously extended urban spaces.
The progress of the motorization has affected not only the aspect of the macroscopic
development, but also mechanisms of the allocation of urban spaces inside of cities.
The greater part of the current urban spaces has already designed for cars, such as
roads, parkings, roadside shops, and express ways, etc.

Transport studies have been developed for dealing with the increasing transport
demand, and in the cradle, the transportation equilibrium theory was developed by
Wardrop, 1952 and Beckmann, McGuire, and Winsten, 1956. In 1970s, the discrete
choice model that is based on the random utility theory of McFadden, 1973 has been
exploited, and the foundation of the transportation planning theory has been built.
Thereafter, the theories have been applied to the four step model and the activity-
based approach, which are the typical demand forecasting models in the transport
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FIGURE 1.1: Data shift. (a) Trip data from conventional questionnaire
survey. (b) Trajectory data from passive monitoring equipped with

GPS sensors.

planning context. In this way, transport planning studies have mainly dealt with de-
mand forecasting, and the alleviation of traffic congestions has been assumed to be
the primary problem. For this reason, route choice analysis, which identifies which
route a given traveler takes when he goes from a place to another, is one of the most
important topic in transport planning.

Recently, three big paradigm shifts in the background of transport studies are ap-
pearing. Firstly, social needs are changing. The negative effects of transportation on
the environment have been mentioned so far, but recently, the global warming and
the atmospheric pollution are making it gather much attention. In many areas over
the world, the population is aging rapidly, and people are becoming more conscious
of their health. For these reasons, the values of slow mobilities, such as walking and
public transports, come to be reconsidered positively.

Secondly, new transportation systems are appearing. In cities, after the appear-
ance of automobiles, any big shifts of the transportation mode have not been oc-
curred. However, in recent years, the new technologies such as sharing mobilities
and autonomous cars are appearing, and the concept of the ownership and urban
space uses are changing.

Thirdly, the evolution of information technologies has been occurring. In this
decades, mobile sensors that are equipped with Global Positioning System (GPS) or
Wi-Fi, such as smartphones, are facilitating real-time observations of transport be-
havior. Using these technologies, we can observe e.g., pedestrian behavior inner city
centers or buildings, and the behavior at the time of emergency events or disasters,
which have been difficult to observe. New transportation modes are also based on
the development of these technologies.

These developments are transforming urban spaces again. In recent years, in real
cases, the urban planning for making more human spaces have been developing,
such as parking space re-locations for making pedestrian areas, which is referred
to as fringe parking and seen in some European cities (e.g., Freiburg and Strasbourg,
Germany), conversions of the parking space for other purposes (e.g., Park(ing) day in
San Fransisco, the United States), and street space re allocations from for cars to for
pedestrians (e.g., Matsuyama, Japan). In Japan, many cities focus on making better
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places for pedestrians, especially in city centers, in response to the aging society and
the trend of urban residence. These trends are accelerated if shared autonomous
vehicles are installed and the traffic flows inner cities are decreased or controlled by
the emerging systems. As the result, urban spaces that are designed for cars are re-
allocated for other urban activities. Recently, some reports that illustrate the future
urban spaces after the installation of autonomous cars are presented1.

1.1.2 Designing trajectories

As discussed above, in the future urban planning, reallocation of urban spaces from
cars to other transportation modes or human activities is becoming more and more
important and main topic. In previous transport planning, only the negative aspects
of travels have been focused on, such as travel time and travel cost. Most of trans-
port studies have assumed that travelers minimize their travel costs based on the
global optimal decisions, in modeling travel behavior. However, since designs for
making better places and changing the time use patterns in cities are gathering much
attentions, it is getting more important to describe behavior different from previous
assumptions, for instance, people react attractive spaces on the way of trips and
change their scheduling.

Focusing on the requirement of modeling these continuous decision makings
and availability of high-resolution behavioral data, we introduce the concept of tra-
jectory as the planning unit into the urban planning field. We define a trajectory as
the sequence of decision-making process and refer to the way of urban planning
based on trajectories as trajectory-based urban planning. For this reason, in this thesis,
we aim at developing a modeling framework for analyzing trajectories.

1.2 Focus of the study

For analyzing the sequence of decision-making process, we focus on the Markovian
route choice model. Markovian models describe the sequential decision makings
based on state transition probabilities, and the Markovian route choice model ap-
plies it to the context of the route choice model. The Markovian route choice model
is important not only because it is suitable to describe sequential decisions but also
because it can avoid the path set generation for the route choice analysis. In this sec-
tion, we first present the framework of the general route choice analysis and after-
ward introduce the that of Markovian route choice analysis. In the end, we address
the objectives of the thesis.

1.2.1 Route choice analysis

Consider a transport network with nodes and links. Generally, a node denotes an
intersection, and a link denotes a road between two intersections. Route choice anal-
ysis deals with identifying route, which is a sequence of links (or nodes) and is taken
by a given traveler who goes from a location to another. The most typical type of
route choice model is the multinomial logit (MNL) model, which is based on the
random utility maximization (RUM) theory (McFadden, 1973), and it is described as

1"Making better places: Autonomous vehicles and future opportunities", 2016 by WSP | Parsons
Brinckerhoff, Farrells.

http://www.wsp-pb.com/Globaln/UK/WSPPB-Farrells-AV-whitepaper.pdf
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follows:

r = arg max
r∈Cn

{ũnr}, (1.1)

where

ũnr = unr + εnr (1.2)

is the random utility function when a traveler n chooses a route r from the choice set
Cn. unr is the deterministic component of the utility and εnr is the error term, which
expresses model uncertainties, such as attributes that the modeler cannot observe
and the heterogeneity of travelers, etc. In the MNL model, the error term is assumed
as i.i.d extreme value type I, and the choice probability of r is formulated as follows:

Pnr =
exp(µunr)

∑r′∈R exp(µunr)
, (1.3)

where µ is the scale parameter of the distribution and strictly positive. This is the
fundamental model of route choice analysis. We show the framework of route choice
analysis in Figure 1.2. For calculating route choice probabilities, rout choice models
require the information of choice set, correlation structure, decision rule, and route
choice preference. Using route choice probabilities, the network flow pattern is eval-
uated by assignment models. Route choice preferences are unknown, but they are
estimated using route choice data. It is usually difficult to observe route choice be-
havior, and recently, passive monitoring with Global Positioning System (GPS) has
been used in these decades. However, GPS data has measurement uncertainties, and
probabilistic route measurement models have been developed. In this paper, we de-
fine the integrated framework of modeling route choices, evaluating network flow
patterns, observing and estimating route choice models as the route choice analysis.

Route choice model is one of the most powerful framework of demand forecast-
ing, because it can describe the sequence of choice behavior. It can identify not only
a route between an origin-destination pair in a transportation network, but also mul-
timodal routes including parking choice and activity paths in a time-space network,
if we apply it to extended networks. However, since a route is a combination of links
on a network, the number of alternative is often huge. For evaluating route choice
probabilities based on route choice models, as is seen in Figure 1.2, the definition of
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TABLE 1.1: The number of simple paths in n-grid networks

n simple paths
1 2
2 12
3 184
4 8,512
5 1,262,816
6 575,780,564
7 789,360,053,252
8 3,266,598,486,981,640
9 41,044,208,702,632,496,804
10 1,568,758,030,464,750,013,214,100
11 182,413,291,514,248,049,241,470,885,236
12 64,528,039,343,270,018,963,357,185,158,482,118
13 69,450,664,761,521,361,664,274,701,548,907,358,996,488
14 227,449,714,676,812,739,631,826,459,327,989,863,387,613,323,440
15 2,266,745,568,862,672,746,374,567,396,713,098,934,866,324,885,408,319,028

the choice set Cn is required, but it is a not trivial task. Consider simple grid networks
with n links on each edge, the number of feasible paths of each network is shown
in Table 1.1. Even in small networks, such as n = 3 or n = 4, the numbers of feasi-
ble paths are already 184 and 8, 512. If n becomes larger, the number exponentially
increases and becomes uncountable soon. A number of algorithms for generating
the choice set have been proposed, and some method of sampling alternatives have
been presented. However, they are not applicable to prediction yet, and moreover,
the correct choice set is unknown especially in the case that cyclic paths or detour
paths are considered, e.g., in pedestrian networks.

1.2.2 Markovian route choice analysis

For dealing with the problem that is discussed above, this thesis focuses on Marko-
vian route choice analysis, which is based on Markovian route choice model. Marko-
vian model is one of the most representative probability process models and has
high operability. It was first applied to the traffic assignment model, and recently, it
is linked to the framework of discrete choice model. The detailed review of Marko-
vian route choice models is presented in Chapter 2. We show the framework of the
current Markovian route choice analysis in Figure 1.3. The key point of the frame-
work is that Markovian route choice models calculate node transition probabilities
instead of route choice probabilities. Then, they do not require the choice set gener-
ation and can consider the set of all feasible paths, which is referred to as universal
set U , without path enumeration.

1.2.3 Scopes of the thesis

Markovian route choice analysis is high operable and gathers much attention re-
cently; however, there are three main limitations that are addressed, which are shown
as (a), (b) and (c) in Figure 1.3.

(a) Biases in estimating route choice model
First limitation is regarding data and estimation of route choice models. Despite

the fact that Markovian route choice models do not require path enumeration for
calculating route choice probabilities, most probabilistic route measurement models
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are still based on path-based and require the definition of the path set to evaluate
the measurement probabilities of path candidates to observed data. For defining
the path candidate set, the variance of GPS measurement error is often given as a
constant value over network. However, in real cases, the value of the variance is
unknown and heterogeneous over network. Since the measurement probabilities
are dependent on the value of the variance, the variance that is given as arbitrary
and constant over network can cause the biased measurement probabilities. As the
result, the estimation of route choice model can be biased.

(b) Global optimal decision over network
Most of route choice models describe the global decision of a traveler, which

means that he/she chooses the route between an origin-destination pair before de-
parting from the origin (pre-trip). This is based on the assumption that travelers have
information of the entire network and evaluate utilities of all links with the equiv-
alent weight. Markovian route choice models that have been proposed so far are
also based on this assumption, as the output of the models are proved to be equiva-
lent to that of the path-based MNL model. However, this assumption may be strong
in real cases, and it may be more realistic that travelers evaluate utilities of links
close to them with larger weight than those of links distant from them. For instance,
gridlock networks and pedestrian networks are typical cases. In high-congested
networks, such as gridlock networks, travelers try to avoid congestions and make
decisions at each intersection based on visible information. Pedestrians can also be-
have myopically, e.g., they react spacial attributes of walking space and unplanned
activities are generated on the way of trips. For describing these behavior, existing
models do not suit.

(c) Computational challenges regarding cyclic paths
Markovian route choice models use the expected maximum utility to the des-

tination of each node to calculate transition probabilities that are equivalent to the
MNL model with the universal set. However, in the case that networks have cyclic
structures, the expected maximum utilities cannot always be solved. The condition
of the solution is dependent on the balance between the network structure and the
size of link utilities uij. More theoretically, the following equation has to be satisfied
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so that the Markovian route choice models has the solution:

ρ(W) ≡ max
h

{|λh|} < 1, (1.4)

where λh is the h-th eigenvalue of the incidence matrix W defining link utilities,
i.e., wij = uij, and ρ(W) is known as the spectral radius. If the spectral radius is
larger or equal to one, the expected maximum utilities diverge and the transition
probabilities of Markovian route choice models cannot be evaluated. As mentioned,
this problem arises from the cyclic structures of the network. For example, if there is
a cycle with positive utility, the expected utility of a route that passes the cycle again
and again becomes large and finally diverges. Previous studies assume that the link
utilities are always negative, uij < 0, ∀(i, j); however, in the estimation process the
computational instability remains, because parameters of route choice preferences
vibrate and the link utilities can be larger or equal to zero. Moreover, uij < 0 means
that we cannot consider link attributes that are possible to have positive effects to
route choice behavior, such as the number of lanes, the attractiveness of shops along
the street, the width of sidewalk, etc. In order to make Markovian route choice
analysis more flexible and powerful tool, we have to deal with these computational
challenges.

1.3 Contributions

We show the entire of contribution of the thesis in Figure 1.4. Our contributions
can be divided into the main four topics: Data and Estimation, Model formulation,
Assignment algorithm, and Applications, which are described as follows.

Data and Estimation
Our first contribution is regarding data and estimation of route choice models,

which responds to problem (a) in the previous section. We propose an estimation
framework for obtaining parameters of route choice models with less biases, us-
ing GPS data with measurement uncertainties. We focus on that the variance of
GPS measurement errors is not uniform in high-resolution networks, and propose
a link-based route measurement model based on the Bayesian approach. It enable us to
estimate the variance as the specific value of each link, while the value is assumed
as given and uniform over a network in previous works. Moreover, we introduce a
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structural estimation method in order to reduce the biases included in the uncertainty
of prior information. We examine this approach through twins experiments, and
apply to a real pedestrian network of Matsuyama-city, Japan.

Model
Secondly, we focus on that the sequential and somewhat forward-looking de-

cisions in route choice behavior. This work is corresponding to the problem (b) in
Section 1.2.3. We use the concept of time discount rate in the dynamic discrete choice
models (e.g., Rust, 1987), and interpret it as a parameter describing a mechanism of
route choice behavior. We propose a β-scaled recursive logit model as a generalized
framework of the recursive logit (RL) model (Fosgerau, Frejinger, and Karlstrom,
2013) by incorporating the sequential discount rate into the RL model. We present il-
lustrative examples which indicate the effect of the sequential discount rate on eval-
uating path probabilities, network patterns, and cyclic path selectivity. Moreover,
we estimate the β-scaled RL model using taxi probe data in a disaster network of the
Tokyo Metropolitan area.

Assignment algorithm
The third contribution is regarding the path set restriction. We focus on the fact

that in real cases, it is very improbable that paths including infinite cycles are cho-
sen by travelers. In order to describe this mechanism, we present a time-structured
network, where travelers’ states are decomposed by decision-making time period,
and propose a method for restricting path sets based on the time-constraint. On this
network, we model sequential link choice behavior of travelers based on Markovian
route choice models. This idea is a solution of the three computational challenges of
the assignment based on Markovian route choice model: unreasonable cyclic flows,
computational instability (discussed in Section 1.2.3), and amplification of the IIA
property, in reasonable time. We present several numerical examples to examine the
model properties, and apply it to a stochastic user equilibrium (SUE) problem and a
network-GEV based model.

Application
Finally, we apply the model and the algorithm to the description of pedestrian

activity path choice behavior in city centers, for evaluating the continuity of moving
and staying behavior of pedestrians in time-space networks. The activity assign-
ment model can evaluate not only link flows but also duration time at each node
integrally. The sequential discount rate and the time-constraint are important pa-
rameters for describing pedestrian activities. Moreover, we present a network de-
sign problem based on the activity assignment model. The problem is a multi-level
and multi-objective programming, and the Pareto front solutions are investigated by
a neighborhood search algorithm.

1.4 Outline of the thesis

This thesis consists of four topics where each topic is corresponding to one or two
papers. The outline is as follows.

• Chapter 2 reviews the literature. We present the state-of the-art of Markovian
route choice analysis and discuss its challenges with some illustrative exam-
ples.
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• Chapter 3 focuses on estimating route choice models using uncertain GPS data.
We present a novel route measurement model and a estimation method to re-
duce biases in parameter estimation of route choice models. These methods
are referred to as link-based route measurement model and structural estimation
method. This chapter has been presented as: Oyama, Y. and Hato, E., 2016. A
link-based map matching algorithm with structural estimation method, hEART 2016,
Delft.

• Chapter 4 focuses on modeling route choice behavior and deals with the prob-
lem regarding decision-making dynamics. We focus on that the utility eval-
uation is heterogeneous dependently on spatial relation, and propose a β-
scaled recursive logit model. The content of this chapter has been submitted to
Transportation Research Part C and Journal of Japan Society of Traffic Engineers (in
Japanese).

• Chapter 5 focuses on the computational challenges of Markovian route choice
models and the selectivity of cyclic paths. We introduce a novel network de-
scription referred to as time-structured network, and based on the network, we
propose a method of the path set restriction. The content of this chapter has
been submitted to Journal of JSCE Series D3: Infrastructure Planning and Manage-
ment (in Japanese).

• Chapter 6 applies the methods proposed in previous sections to pedestrian
activities in time-space networks and extends it to the network design prob-
lem. A part of the content of this chapter has been published as Oyama, Y. and
Hato, E., 2016. Pedestrian activity assignment based on time-space constraint and
path correlation, Journal of City Planning, Vol.51-3, 680-687 (in Japanese), and has
been presented as Oyama, Y. and Hato, E., 2016. Pedestrian activity model based on
implicit path enumeration, Proceedings of the 21st International Conference of Hong
Kong for Transportation Studies (HKSTS), 331-338.

• Chapter 7 presents conclusions and future works.
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Chapter 2

Literature review

In this chapter, we introduce the state-of-the-art studies of the route choice analysis.
We focus on the route choice analysis in static and deterministic networks, not in
dynamic and stochastic networks, where the link attributes are time-dependent and
follow probability distributions (see Chapter 4 for this discussion). We first men-
tion that Ben-Akiva and Lerman, 1985 introduced a comprehensive methodology of
discrete choice analysis, and Bovy and Stern, 1990 presented an overview of route
choice modeling through entire book. Ramming, 2001 and Frejinger, 2008 also pre-
sented comprehensive reviews of the route choice analysis. Regarding Markovian
route choice models, which are discussed in Section 2.2, Mai, 2015 is also a helpful
reference.

2.1 Route choice analysis

Consider a directed connected graph G = (N ,A) as a transportation network,
where N is the set of nodes and A is the set of links. The route choice analysis
deals with identifying which route a traveler takes to go from a node to another in
the transportation network, and predicts the flows on the network. The route choice
preferences are investigated using observed route choice data in real networks. In
route choice analysis, a route is a combination of links; therefore, the route choice
problem is often characterized by a large number of candidates in real road net-
works, and routes are spatially correlated with each other. These are the reason why
the problem is complicated and is generally difficult to solve, and a number of stud-
ies have been presented in the transportation field.

2.1.1 Shortest path problem

The simplest description of a route choice model is the shortest path problem which
assumes that a given traveler take a route with the minimum variable such as travel
time or travel cost in a transport network. The problem is formulated as follows:

r = arg min
r
{cr}, (2.1)

where r is a route in the network, which is described as a sequence of links

r = (a1, ..., aj, ..., aJ), (2.2)

and cr is the cost of route r. Naively, the number of paths is |A| × |A| × · · · × |A| =
|A|J , which is often uncountable. Dijkstra’s algorithm (Dijkstra, 1959) is a repre-
sentative algorithm for solving shortest path problems in the case of single-source
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problems with positive link costs. A shortest path problem is a simple and rea-
sonable description; however, it is difficult to assume that the problem reflects the
decisions of travelers, because travelers cannot necessarily get perfect information of
a network and are heterogeneous with each other. Actually, shortest path problems
are used in the process of evaluating network flows as all-or-nothing loading proce-
dure, which is one of steps of the user equilibrium (UE) model. Therefore, in order
to reflect individual decision making, the route choice problem is often described as
a stochastic one based on the framework of the discrete choice analysis. In the fol-
lowing sections, we focus on the probabilistic route choice models and present their
review.

2.1.2 Multinomial logit model

The (probabilistic) route choice model uses the framework of the discrete choice
analysis, which is based on the random utility maximization (RUM) framework (Mc-
Fadden, 1978; Ben-Akiva and Lerman, 1985), and it can be described as follows:

r = arg max
r∈Cn

{ũnr}, (2.3)

where ũnr is the utility when individual n chooses route r, which is a stochastic
variable, and it includes the unobserved attributes from the researchers. Cn is the
choice set of routes that individual n considers, and it is defined by the modeler. It
is assumed that the utility of route r can be divided into the deterministic term unr
and the error term εnr as

ũnr = unr + εnr. (2.4)

The error term εnr captures the uncertainty of the model. The deterministic term
includes attributes of the route such as the travel time, the distance and the number
of crossings, as well as the socio-economic characteristics of the traveler. It is often
described as a linear formulation unr = unr(xnr; θ) = ∑k θkxnr,k, where xnr is a vector
of the attributes and θ is a vector of unknown coefficients to be estimated.

Route choice models evaluate the probability of paths that is included in the
choice set. Equation 2.3 indicates that travelers are assumed to maximize their ran-
dom utilities by choosing routes. That is, the probability that a traveler n chooses
route r is formulated as follows:

P(r|Cn) = P [unr > uns; r ̸= s, ∀s ∈ Cn] = P[unr + εnr > vns + εns; r ̸= s, ∀s ∈ Cn],
(2.5)

then,

P(r|Cn) = P[εnr > uns − unr + εns; r ̸= s, ∀s ∈ Cn]. (2.6)

Defining the joint probability distribution function of the all error terms, f (εnr; r ∈
Cn), Equation (2.6) can be re-formulated as:

P(r|Cn) =
∫ +∞

εn1=−∞

∫ un1−un2+εn1

εn1=−∞
· · ·

∫ un1−un|Cn |+εn1

εn1=−∞
f (εnr; r ∈ Cn)dεn|Cn| · · · dεn2dεn1.

(2.7)
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The joint distribution function F(εnr; r ∈ Cn) is given by the partial differential of
Equation (2.7) by εnr:

Fr(εnr; r ∈ Cn) =
∂F(εnr; r ∈ Cn)

∂εnr
(2.8)

The most representative model for describing the route choice probabilities is the
multinomial logit (MNL) model. The MNL model assumes that the error term of
the utility is independent and identically distributed (i.i.d) extreme value type I, and
then the CDF and PDF are formulated as follows:

F(εnr) = exp[− exp(−µεnr − η)] (2.9)
f (εnr) = µ exp[− exp(−µεnr − η)] · exp(−µεnr − η) (2.10)

where, µ is the positive scale parameter that means the degree of variation of εnr. η
is the location parameter which means the mode of the distribution. In this case, the
mean is η + γ/µ, where γ is the Euler’s constant, and the variance is π2/6µ2. The
MNL model is obtained by substituting Equation (2.9)(2.10) for Equation (2.7),

P(r|Cn) =
exp(µunr)

∑s∈Cn
exp(µuns)

. (2.11)

The MNL model introduce a fundamental framework for modeling route choice
behavior; however, the MNL model cannot describe correlation structure among
path alternatives due to its independence of irrelevant alternatives (IIA) property.

2.1.3 Description of correlation structures

Since routes in transportation networks are spatially correlated with each other, a
number of route choice models for describing the correlation structures have been
proposed.

The C-logit model (Cascetta et al., 1996) and the Path-Size logit (PSL) model (Ben-
Akiva and Bierlaire, 1999) are the extended MNL models, which incorporate the
commonality factors into the utility function of paths and describe the overlapping
effect as the additional dis-utilities. Ramming, 2001 and Frejinger and Bierlaire, 2007
presented the alternatives of the Path Size correlation factors.

Another approach is developing the generalized extreme value (GEV) model,
which is proposed by McFadden, 1978 and can describe the correlation structures
among alternatives in the framework of the closed form expression. The cross nested
logit (CNL) model (Vovsha and Bekhor, 1998), which is referred to as the link-nested
logit (LNL) model, the paired combinatorial logit (PCL) model, and the generalized
nested logit (GNL) model Bekhor and Prashker, 2001 have been proposed.

The multinomial probit (MNP) model, and the mixed logit (MXL) model, which
is also referred to as the error component (EC) model, are also used for directly cap-
turing the structure of variance-covariance among path alternatives by e.g., Bolduc
and Ben-Akiva, 1991, Yai, Iwakura, and Morichi, 1997, Bekhor, Ben-Akiva, and Scott
Ramming, 2002, and Frejinger and Bierlaire, 2007.

2.1.4 Path set generation algorithms

For the evaluation of the route choice probabilities using the route choice model, the
choice set that traveler n considers, Cn should be defined. However, as mentioned
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in Chapter 1, the choice set of paths by traveler is unknown to the analyst. Also, the
set of all possible paths, which is referred to as the universal choice set U , cannot be
enumerated, because paths are the combinations of links in transportation networks.
For this reason, a number of algorithms for generating path set have been proposed
so far. Regarding the comprehensive discussion of this topic, Bekhor, Ben-Akiva,
and Ramming, 2006 reviews the path set generation algorithms and compares the
estimation results of route choice models in large-scale urban networks from the
view points of the selectivity of routes and computational times. Bovy, 2009 points
out the difference of the choice set generation of route choice models from that of
other discrete choice models and summarizes its characteristics.

In the context of route choice models, the master choice set by origin-destination
pair M ⊆ U is often first generated. Moreover, since the choice set is assumed to be
individual-specific, the choice set defined by traveler Cn ⊆ M should be generated.
For the generation of M and Cn, the path generation algorithms are used. The k-
shortest path algorithm (Eppstein, 1998), which enumerates the first k shortest paths
from the origin to the destination, is one of the most well-known methods for gen-
erating the master choice set M. The link penalty method (Barra, Perez, and Anez,
1993) and the link elimination method (Azevedo et al., 1993) are popular heuristics
approaches, and they update the path set following their rules after identifying the
shortest path. The labeling method (Ben-Akiva, Cyna, and Palma, 1984) extracts the
optimal path for each link attribute, such as travel time, distance and generalized
cost, and constructs the set of the optimal paths, which are labeled as "minimize
time", "minimize distance", and so on. The branch-and-bound method (Friedrich, Hof-
säß, and Wekeck, 2001; Prato and Bekhor, 2006) enumerates a tree, which consists
of links, and restricts it by several constraints in terms of direction, travel time, de-
tour, similarity, and turns. The elimination by aspect method (Tversky, 1972) restricts
the master set M into the choice set by traveler Cn using several aspects of the al-
ternatives. Frejinger, Bierlaire, and Ben-Akiva, 2009 propose a method for sampling
alternatives, where the choice set by traveler Cn is generated without the definition
of the master set M. Using the sampling probabilities of the alternatives, which are
calculated based on a weighted random work algorithm, the path probabilities are
corrected.

2.1.5 Route choice observation

The more precious prediction of the route choice behavior requires the its obser-
vation in real networks for investigating the route choice preferences of travelers.
However, it is usually difficult to observe the route choice behavior by both con-
ventional questionnaire surveys using mail or telephone and passive data collection
from travelers who are equipped with the sensors with Global Positioning System
(GPS). Since a route is a sequence of links in transportation networks, travelers often
cannot answer the correct route that they take. Passive data based on GPS technol-
ogy has several advantages over conventional surveys, because trip data is collected
automatically. Moreover, in recent years, emerging technologies, such as probe vehi-
cles and connected vehicles, contribute to facilitating a number of and real-time data
collection. They are expected to develop extremely transportation studies. However,
collected GPS data is usually characterized by coordinates in the two-dimensional
surface; therefore, it is not corresponding in format to a network that the modeler
uses for the route choice analysis. Moreover, GPS data often has localization error.
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To deal with these problem, a number of methods for matching GPS dat to trans-
portation networks, which are often referred to as map matching (MM) algorithms,
have been proposed in these last few decades.

MM algorithms can be categorized into three groups: geometric (e.g., White,
Bernstein, and Kornhauser, 2000), topological (e.g., Greenfeld, 2002; Quddus et al.,
2003; Velaga, Quddus, and Bristow, 2009), and probabilistic (e.g., Ochieng, Quddus,
and Noland, 2003; Quddus, Ochieng, and Noland, 2006; Hunter, Abbeel, and Bayen,
2014). Quddus, Ochieng, and Noland, 2007 comprehensively reviewed MM meth-
ods presented before early 2000s. Most of the algorithms are based on sequential link
inferences, where the true location is inferred for each location data in chronological
order, because they are aimed at applying on-line navigation systems. On the other
hand, in transportation studies, researchers require the actual path as a sequence of
links rather than on-line identification of the traveler locations (Bierlaire, Chen, and
Newman, 2013).

Pyo, Shin, and Sung, 2001 and Bierlaire, Chen, and Newman, 2013 propose path-
based and probabilistic MM algorithms, which evaluate the likelihoods of path can-
didates regarding all GPS data in a trip and do not identify to a specific path. Chen
and Bierlaire, 2015 presents a MM algorithm that includes the transportation mode
detection, for applying in multi-modal networks.

Recently, some studies proposed advanced methods based on bayesian approaches
(Fuse and Nakanishi, 2012; Danalet, Farooq, and Bierlaire, 2014; Chen and Bierlaire,
2015). In bayesian approaches, the path likelihoods are evaluated by both measure-
ment probabilities calculated by probabilistic MM algorithms and the path choice
probabilities as the prior given by route choice models. Based on the path likeli-
hoods, the paths are identified. The correction of the path likelihood using the path
choice probabilities of route choice model is helpful of inferring paths in the case
that the measurements have large uncertainties, e.g., when the localization is weak
and the network is dense (Danalet, Farooq, and Bierlaire, 2014).

2.1.6 Maximum likelihood estimation

The parameter estimation of route choice models is generally implemented by the
maximum likelihood estimation (MLE). The problem of estimating parameters is
defined to maximize the following log-likelihood function:

max
θ

LL(θ) = log

(
N

∏
n=1

∏
r∈Cn

Pn(r|Cn; θ)δn
r

)

=
N

∑
n=1

∑
r∈Cn

δn
r log Pn(r|Cn; θ) (2.12)

where δn
r equals one if an individual n chooses route r, which is defined from the

route choice observation discussed in Section 2.1.5, and equals zero, otherwise. By
solving this problem defined by Equation (2.12), we can investigate the route choice
preferences of travelers.
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2.1.7 Joint estimation of route choice models

Bierlaire and Frejinger, 2008 proposed a framework to estimate route choice models
as the ambiguity of observations remains. In the framework, the following probabil-
ity of reproducing the vector of observations m̂ is maximized to estimate parameters:

p(m̂) = ∑
r∈R

p(m̂|r; σ)p(r|R; θ), (2.13)

where r is a route in choice set R. p(m̂|r; σ) is the measurement equation, which
gives the probability that m̂ is observed if r is the actual path, where σ is the pa-
rameter and often assumed as the variance of GPS measurement error. p(r|R; θ) is
the route choice model, which gives the probability that path r is selected within
the choice set R, where θ is the unknown parameters to be estimated. As is seen in
Equation (2.13), the paths are regarded as latent variables, and a specific path is not
identified. The measurement probabilities are calculated by e.g., path-based proba-
bilistic MM algorithms. In evaluating the probabilities in Equation (2.13), similarly
to route choice models, probabilistic models for route choice observations also suffer
from the problem of the path set generation. Bierlaire and Frejinger, 2008 propose
the concept of domain of data relevance (DDR) for restricting the set of observed path
based on GPS localization errors. A path is included in the set of path candidates
only if it is associated with the area of the sequence of data.

2.2 Markovian route choice analysis

Markovian model is one of the most fundamental and the most important stochastic
processes, which has the Markov property. Consider a stochastic process {Xn; n =
0, 1, 2, ...} on a discrete state space S , the Markov property can be expressed as fol-
lows:

P(Xn+1 = j|Xn = i, Xn−1 = in−1, ..., X0 = i0) = P(Xn+1 = j|Xn = i) (2.14)

where j, i, in−1, ..., i0 ∈ S are the state variables. This means that the distribution of
the future state is dependent on only the current state. If the stochastic process is
time homogeneous, it is described using the transition probability matrix P (|S| ×
|S|), and Equation (2.14) is equal to an entry

P(Xn+1 = j|Xn = i) = p(j|i) ∀n. (2.15)

The transition probability satisfy

p(j|i) ≥ 0, ∑j∈S p(j|i) = 1. (2.16)

Also, by the Chapman-Kolmogorov equation

pm+n(j|i) = ∑
k∈S

pm(k|i)pn(j|k), (2.17)

where pm(j|i) is the m-step transition probability, the following equation is estab-
lished:

Pn = {pn(j|i)|∀i, j ∈ S} . (2.18)
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Therefore, if the transition probability matrix P is obtained, the transition probabili-
ties of any step can be calculated.

1 4

2

3

FIGURE 2.1: An example network defining transition probabilities

Markovian route choice models focus on that a path, which is a route in trans-
portation network graphs, can be decomposed into the sequence of nodes (links),
and they describe the flows or path choice probability using the state transition prob-
abilities, where states correspond to nodes (links). For example, in the network with
transition probabilities of Figure 2.1, the traffic flow departing from node 1, Q is as-
signed to the connecting links following the transition probabilities: Q/2 to link 12,
and Q/2 to link 13. In the same way, the link flows xij are calculated as x12 = Q/2,
x13 = Q/2, x23 = Q/10, x24 = 2Q/5, and x34 = 3Q/5. When we assume that
the flow pattern has the Markov property, the flow conservation principle is hold at
every node:

∑
h

xhi − ∑
j

xij = 0 ∀i ∈ N , (2.19)

where we use Q instead of ∑h xhi at the origin and instead of ∑j xij at the destination.
As the result, the relationship between the transition probabilities and the link flows
can be expressed as follows,

p(j|i) =
xij

∑j′ xij′
∀(i, j) ∈ A, (2.20)

and using Equation (2.18), the path probability is given as the product of the transi-
tion probabilities:

P(r = [i0, ..., iJ ]) =
J−1

∏
j=0

p(ij+1|ij). (2.21)

With the advantage of this property, Markovian approaches have been devel-
oped as a alternative of Dial’s algorithm for the logit-type network assignment,
which can consider all possible paths including cyclic ones. It also has a high op-
erability, because it is based on matrix representations, and recently, many models
have been presented in the context of route choice analysis. We present an overview
of the Markovian models in the route choice problem, which is summarized in Fig-
ure 2.2. In this section, we review the Markovian models for route choice analysis.
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(Sasaki, 1965)

MCA

(Dial, 1971)

Dial’ s algorithm

(Van Vliet, 1981)

Dial-Logit
MCA-Logit

n-GEV-based

Link-based SUE

DP - SUE

RL

NRL GRL

(Bell, 1995; Akamatsu, 1996)

(Baillon and Cominetti, 2008)

（Fosgerau et al., 2013)

(Papola and Marzano, 2013; 
Hara and Akamatsu, 2014)

(Akamatsu, 1997)

<Cyclic graph>

<Sequential link choice>

<Econometric model>

(Mai et al., 2015)  (Mai, 2016)

FIGURE 2.2: Overview of Markovian models in the route choice con-
text

2.2.1 Dial’s algorithm

We start to review the Dial’s algorithm (Dial, 1971), which is one of the most pop-
ular procedures for the calculation of a logit-type route choice model in the traffic
assignment context. Dial’s algorithm is described as follows:

Step 1: Preliminaries. Calculating the shortest path cost from nodes o to i, r(i),
∀i ∈ N and that from nodes i to d, s(i), ∀i ∈ N . Defining the link likelihood
lij for each link as follows:

lij =
{

exp[µ{r(j)− r(i)− cij}], if r(i) < r(j), s(i) > s(j)
0, otherwise

(2.22)

where cij is the cost of link (i, j). The link likelihood always takes the value
between zero and one.

Step 2: Forward pass. Calculating link weight wij for each link in ascending se-
quence with respect to r(i),

wij =

{
lij, if i = o

lij ∑h whi, otherwise.
(2.23)

When the destination node d is reached, go to Step 3.

Step 3: Backward pass. Assigning a flow xij in descending sequence with respect
to r(i), which is starting with the destination node d,

xij =

{
qod

wij

∑h whj
, if j = d(

∑k xjk
) wij

∑h whj
, otherwise.

(2.24)
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Equation (2.22) means that Dial’s algorithm considers only paths that never include
any move which goes away from the destination in terms of travel time, which are
referred to efficient paths.

This algorithm is proven to be equivalent to the logit-type assignment model by
Van Vliet, 1981.

Proof. In Dial’s algorithm, based on the procedure of Equation (2.24), the choice
probability of route r = [o, i1, i2, ..., iJ , d] can be given as

Pr =
wiJ d

∑h whd

wiJ−1iJ

∑h whiJ

· · · · · wi1i2

∑h whi2

woi1

∑h whi1
. (2.25)

By the definition of the link weights, wij = lij ∑h whi, Equation (2.25) is transformed
as

Pr = liJ dliJ−1iJ · · · · · li1i2 loi1

/
∑
h

whd, (2.26)

and, moreover, by the definition of the link likelihood, the numerator of the right
side of Equation (2.26) is

liJ dliJ−1iJ · · · · · li1i2 loi1

= eµ{r(d)−r(iJ)−ciJ d}eµ{r(iJ)−r(iJ−1)−ciJ−1 iJ } · · · · · eµ{r(i2)−r(i1)−ci1 i2}eµ{r(i1)−r(o)−coi1}

= eµ{r(d)−∑ij∈r cij}

= eµ{r(d)−cr}, (2.27)

where cr is the cost of path r. By the flow conservation principle,

∑
r

Pr = ∑
r

eµ{r(d)−cr}

∑h whd
= ∑

r

eµ{r(d)−cr}

∑h whd
=

eµ{r(d)}

∑h whd
∑

r
e−µcr = 1, (2.28)

finally, we obtain the following expression by substituting Equation (2.27) and (2.29)
for Equation (2.26),

Pr =
e−µcr

∑r′ e−µcr′
. (2.29)

This is the probability of the logit-type route choice model. ■

Dial’s algorithm is equivalent to the Logit-type assignment model without re-
quirement of the path enumeration, and it has an advantage in that it can be easily
applied to a large scale network. However, the algorithm sometimes produces an
unrealistic flow pattern due to restricting the path set to the set of efficient paths, e.g.,
no flow is loaded on paths that are often used by travelers in reality. Moreover, the
stochastic user equilibrium using Dial’s algorithm does not converge to the exact so-
lution because the set of efficient paths can change dependently on link flows at each
iteration. Leurent, 1997 proposed a solution of the latter problem; however, it also
can generate unreasonable flow patterns and cannot consider cyclic paths.

2.2.2 Markov chain assignment

Sasaki, 1965 is the first to propose a method for traffic assignment based on a Marko-
vian model, which is described as follows. Consider a directed connected graph
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G = (N ,A), where N is the set of nodes and A is the set of links. N contains the set
of origins O ⊆ N and the set of destinations D ⊆ N . The number of nodes included
in each set is |N | = n, |O| = no and |D| = nd. We assume that the nodes correspond
to the states in Markovian model, and travelers repeat the transition from one node
to another until they arrive at their destinations. The MCA uses the matrix of tran-
sition probabilities as follows:

P =

 I 0 0
 nd

0 0 Q1 no
R 0 Q2 n − no − nd
nd no n − no − nd

(2.30)

where I (nd × nd) is the identity matrix, Q1 and Q2 are the matrices of transition prob-
abilities to nodes that are not included in O or D (transient nodes), from origins and
from transient nodes, respectively. R is the matrix of transition probabilities from
transient nodes to destinations. In Markovian model, the probability that a traveler
at the initial state i takes the state j through k-step is given as the (i, j) element of the
matrix Qn. Considering all number of steps, the total probability of the transition
transition probabilities from i to j is given as follows (assuming both of two nodes
are the transient nodes):

I + Q2 + Q2
2 + · · · = (I − Q2)

−1, (2.31)

where (I−Q2)−1 is the inverse matrix of (I−Q2), and we can get this inverse matrix
only if the matrix Q2 is a convergence matrix. Because the first step of transition is
necessarily from origin, the matrix of node choice probabilities by origin is given as
Q1(I − Q2)−1. Using this node choice probability P(i) and the transition probability
p(j|i), which is the element of P, the link choice probability by origin is given as,

po
ij = Po(i) · p(j|i) ∀(i, j) ∈ A, ∀o ∈ O. (2.32)

Therefore, the flow of link (i, j) xij is:

xij = ∑o∈O po
ijqo = ∑o∈O (Po(i)p(j|i)∑d∈D qod) ∀(i, j) ∈ A. (2.33)

where qod is the OD flow and qo is the total flow that departs from the origin o.

2.2.3 Proof of equivalence to the logit model

In MCA of Sasaki, 1965, it is difficult to define the transition probabilities, and they
have been assumed to be estimated based on observed link flows. In that case, MCA
does not based on any behavioral mechanism. Akamatsu, 1996 is the first to give
MCA the behavioral interpretation theoretically by proving that MCA is equivalent
to the Logit-type assignment model.

Proof. Akamatsu, 1996 defines the transition probability from nodes i to j p(j|i) as
follows:

pd(j|i) ≡ exp[−µ(cij + φjd − φid)] = exp(−µcij)
vjd

vid
∀(i, j) ∈ A, ∀d ∈ D. (2.34)
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where,

vid ≡ ∑r∈Rid exp(−µcid
r ) ∀i ∈ N , ∀d ∈ D, (2.35)

φid ≡ − 1
µ log ∑r∈Rid exp(−µcid

r ) = − 1
µ log vid ∀i ∈ N , ∀d ∈ D, (2.36)

µ is the scale parameter of i.i.d. extreme value type I, cij is the cost of link (i, j), and
cid

r is the cost of route r from nodes i to d. In MCA, a path is a sequence of nodes;
therefore, the path choice probability is formulated as the product of transition prob-
abilities as follows:

Pod
r = ∏

(i,j)∈r
p(j|i) ∀r ∈ Rod, ∀o ∈ O, ∀d ∈ D, (2.37)

where Pod
r is the probability that one chooses the route r in order to travel from nodes

o to d. By substituting Equation (2.34) and (2.35), Equation (2.50) can be re-expressed
as follows:

Pod
r = ∏

ij∈r
exp(−µcij)

vjd

vid

= exp(∑
ij∈r

−µcij) · exp(∑
ij∈r

log
vjd

vid
)

= exp(−µcod
r ) · exp(log vdd − log vod)

=
exp(−µcod

r )

∑r∈Rod exp(−µcod
r )

(2.38)

where cod
r is the cost of route r that travels from nodes o to d. This is the formulation

of multinomial logit model. ■

Note that we have to calculate vid by solving Equation (2.35) in order to eval-
uate the transition probabilities; however, since the equation contains the sum of
variables related to infinite paths, it is impossible to calculate it naively. Bell, 1995
and Akamatsu, 1996 proposed efficient methods for the evaluation, and Akamatsu,
1996’s method is described here as follows. Consider a matrix W (n× n) with entries

wij =

{
exp(−µcij), (i, j) ∈ A,

1, otherwise.
(2.39)

Based on this matrix, the element of the matrix Wm (n × n) is given as follows:

w[m]
ij = ∑

k∈Kij
m

exp(−µcij
k,m) (2.40)

where Kij
m is the set of paths that connect nodes i and j by passing through m links

and cij
k,m is the cost of the k-th path belonging to Kij

m. Therefore, the matrix V (n × n),

which has entries vi j = ∑r∈Rij exp(−µcij
r ), is given as

V = W + W2 + W3 + · · · = (I − W)−1 − I. (2.41)

If the matrix W is a convergence matrix, Equation (2.41) has the solution and the
transition probabilities in Equation (2.34) can be evaluated.
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2.2.4 Stochastic user equilibrium based on Markovian model

The Markovian models are based on link choice probabilities p(j|i), while the tradi-
tional traffic assignment models deal with path choice probabilities. One of the most
popular frameworks for the stochastic traffic assignment is Fisk’s formulation (Fisk,
1980), which is the optimization model equivalent to the Logit-type stochastic user
equilibrium of Daganzo and Sheffi, 1977, and it is formulated as follows:

min .Z(x(f)) = ∑
a∈A

∫ xa

0
ta(ω)dω − 1

µ ∑
o∈O

∑
d∈D

HP(fod), (2.42)

where,

HP(fod) = − ∑
r∈Rod

f od
r log

f od
r

qod
(2.43)

subject to,

xa = ∑o∈O ∑d∈D ∑r∈Rod δod
a,r f od

r , ∀a ∈ A, (2.44)

∑r∈Rod f od
r = qod, ∀o ∈ O, ∀d ∈ D, (2.45)

f od
r ,≥ 0 ∀o ∈ O, ∀d ∈ D, ∀r ∈ Rod, (2.46)

xa ≥ 0, ∀a ∈ A. (2.47)

This is a formulation that adds the entropy term to the Beckman’s formulation Beck-
mann, McGuire, and Winsten, 1956. As seen in Equation (2.42), the entropy term is
calculated based on the path flows. Akamatsu, 1997 proposed a method of decom-
posing the entropy term into the function defined by link flows, which is consistent
with the Logit-type Markovian route choice models, such as Dial, 1971 and Aka-
matsu, 1996. The entropy function based on link flows is developed as follows. The
relationship between path probabilities and path flows is

Pod
r =

f od
r

qod
, ∀o ∈ O, ∀d ∈ D, ∀r ∈ Rod, (2.48)

and that between path flows and link flows is

xod
ij = ∑

r∈Rod

f od
r , ∀o ∈ O, ∀d ∈ D, ∀(i, j) ∈ A. (2.49)

Moreover, the path choice probabilities that satisfy the Markov property can be de-
composed into the link choice probabilities p(j|i),

Pod
r = ∏

ij∈A
pod(j|i)δod

ij,r ∀o ∈ O, ∀d ∈ D, ∀r ∈ R. (2.50)

where,

pod(j|i) =
xod

ij

∑h xod
hj

∀o ∈ O, ∀d ∈ D, ∀(i, j) ∈ A. (2.51)
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Using these relationships, the entropy term HP(fod), which is defined by the path
flow in Equation (2.42), can be decomposed into as follows:

HP(fod) = − ∑
r∈Rod

f od
r log

f od
r

qod

= − ∑
r∈Rod

f od
r log Pod

r

= − ∑
r∈Rod

f od
r log

[
∏

ij∈A
p(j|i)δij,r

]
= − ∑

r∈Rod

f od
r ∑

ij∈A
δij,r log p(j|i)

= − ∑
ij∈A

(
∑

r∈Rod

f od
r δij,r

)
log p(j|i)

= − ∑
ij∈A

xod
ij log

xod
ij

∑h xod
hj

= − ∑
ij∈A

xod
ij log xod

ij + ∑
j

(
∑

i
xod

ij

)
log

(
∑

i
xod

ij

)
(2.52)

Furthermore, Akamatsu, 1997 showed that it can be replaced to a more compact
one, where the unknown variables are not the link flows by OD pair, xod, but the
link flows by origin, xo. As shown in Dial, 1971, the proportion of flows at each is
replaced as follows:

xod
ij

∑h xod
hj

=
xo

ij

∑h xo
hj

, ∀o ∈ O, ∀d ∈ D, i ̸= d (2.53)

where,

xo
ij = ∑

d∈D
xod

ij , ∀o ∈ O, ∀(i, j) ∈ A (2.54)

Using Equation (2.53) and (2.55), the entropy function can be replaced to one defined
by the link flows by origin,

∑
o∈O

∑
d∈D

HP(fod) = − ∑
o∈O

∑
d∈D

∑
ij∈A

xod
ij log

xod
ij

∑h xod
hj

= − ∑
o∈O

{
∑

ij∈A
xo

ij log
xo

ij

∑h xo
hj

}

= − ∑
o∈O

{
∑

ij∈A
xo

ij log xo
ij + ∑

j

(
∑

i
xod

ij

)
log

(
∑

i
xo

ij

)}
.(2.55)

Therefore, the SUE formulation (Equation 2.42) can be replaced into one defined by
only the link flows as follows:

min .Z(x) = ∑
a∈A

∫ xij

0
tij(ω)dω − 1

µ ∑
o∈O

{HL(xo)− HN(xo)} , (2.56)
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where,

HL(xo) ≡ − ∑
ij∈A

xo
ij log xo

ij (2.57)

HN(xo) ≡ −∑
j

(
∑

i
xod

ij

)
log

(
∑

i
xo

ij

)
(2.58)

subject to,

∑h xo
hi − ∑j xij + ∑d qodδoi − qodδdi = 0 ∀o ∈ O, ∀i ∈ N , (2.59)

xij = ∑o∈O xo
ij, ∀(i, j) ∈ A, (2.60)

xo
ij ≥ 0, ∀o ∈ O, ∀(i, j) ∈ A. (2.61)

In the same way, the entropy function with only the link flows by destination, xd,
can be defined. This work has been extended to the formulation with state specific
scale parameters in Baillon and Cominetti, 2008.

2.2.5 Sequential link choice model

As seen in Equation (2.36), φid is the expected minimum cost from nodes i to d when
the error term of link costs is i.i.d. extreme value type I with the scale parameter µ.
Therefore, φ is formulated as the dynamic programming (Bellman, 1957):

φid = E

[
min
j∈N+

i

(c̃ij + φjd)

]
∀i ∈ N , ∀d ∈ D. (2.62)

where,

c̃ij ≡ cij + ε ij ∀(i, j) ∈ A, (2.63)

N+
i is the set of nodes that is directly connected with node i by a link, and ε ij is the

error term of the link cost and i.i.d. extreme value type I. Gentile and Papola, 2006
and Baillon and Cominetti, 2008 clearly mentioned that route choice is not an issue
to be solved once and for all at the origin of each trip, but instead it is considered as
the outcome of sequential choices of links at every intermediate node. In the case of a
logit Markovian model, the expected minimum cost in Equation (2.62) is formulated
as a logsum:

φid = − 1
µid

log ∑
j∈N+

i

exp[−µid(cij + φjd)] ∀i ∈ N , ∀d ∈ D, (2.64)

where µid is the state-specific scale parameter in general discrete choice schemes
(Gentile and Papola, 2006; Baillon and Cominetti, 2008). It is equivalent to Equation
(2.36) when µid = µ, ∀i ∈ N . In that case, the transition probability from nodes i to j
is given as follows:

pd(j|i) = ∂φid

∂cij
(c) =

exp[−µid(cij + φjd)]

∑j′∈N+
i

exp[−µid(cij′ + φj′d)]
∀(i, j) ∈ A, ∀d ∈ D, (2.65)

where the fact that the change rate of the expected minimum cost to each cost cor-
responds to the choice probability is proved in e.g., Baillon and Cominetti, 2008.
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Equation (2.65) is a well-known multinomial logit model; therefore, we can get the
interpretation of the transition probability as the choice probability of a link at each
node. It indicates that a traveler at node i chooses a link (i, j) that minimizes the sum
of the link cost cij and the expected minimum cost from the sink node of the link j to
the destination node d, φjd.

2.2.6 Description of correlation structures

The logit-type route choice models suffer from the IIA (Independence from Irrelevant
Alternatives) property of the logit model and can assign excessive probabilities to
paths that overlap each other. Daganzo and Sheffi, 1977 proposed a probit-based
network loading algorithm without the path enumeration to solve the overlapping
problem, but it requires heavy computational burden and the application to break
networks is difficult. On the other hand, in recent, a route choice model that is based
on the network-GEV model (Bierlaire, 2002; Daly and Bierlaire, 2006) have been pro-
posed by Papola and Marzano, 2013, Hara and Akamatsu, 2014, and Mai, 2016. Ma
and Fukuda, 2015 applied the model to a hyperpath-based model to analyze route
choice behavior under uncertainties. The network-GEV based route choice model
can consider the correlation structure among paths without enumerating paths, by
assuming the structure of a road network as that of a GEV network, where an inter-
section corresponds to a state node.

The network-GEV based route choice model is developed as follows. Daly and
Bierlaire, 2006 showed that the GEV network, which is proposed in the paper and
represents the correlation structure among alternatives, can always generate RUM-
based discrete choice models if the network satisfies that 1) it has a unique root and
2) has no cyclic structure in it. In the GEV network (S , E), where S is the set of
nodes and E is the set of arcs, every node i has the specific GEV function Gi. The
relationship between the GEV function of node i Gi and that of the successive node
j Gj is described as follows:

Gi(y) = ∑
j∈Si

αjiGj(y)µi/µj , (2.66)

and the choice probability of node j conditional on node i is

p(j|i) =
αjiGj(y)µi/µj

∑j′∈Si
αj′iGj(y)µi/µj′

, (2.67)

where Si is the set of the successive nodes of node i, the allocation parameter αji and
the scale parameter µi are strictly positive. In the GEV network, the set of nodes
with no successor represents the choice set C and all other nodes represent nests.
The expected maximum utility corresponding to each Gi is given as:

Ūi = E

[
max
r∈C

(uk + εi
r −

γ

µi
)

]
=

∫ ∞

−∞
max
r∈C

(uk + εi
r −

γ

µi
) f (ε)dε

=
log Gi(y)

µi
, (2.68)



26 Chapter 2. Literature review

where γ is the Euler’s constant and the error utility component εi
r follows the dis-

tribution F(εi
1, ..., εi

r) = exp[−Gi(exp(−εi
1), ..., exp(εi

r))]. Using Equation (2.67), the
relationship between the expected maximum utility of node i Ūi and that of its suc-
cessive node j Ūj is expressed as a recursive form:

Ūi =

{
1
µi

log ∑j∈Si
αjieµiŪj ∀i ̸∈ C

0 ∀i ∈ C
(2.69)

More detailed development of the formulas is seen in McFadden, 1978 and Daly and
Bierlaire, 2006.

Hara and Akamatsu, 2014 uses the GEV network to describe the sequential link
choice behavior in a road network. In the context of route choice model, each inter-
mediate arc (i, j) ∈ E has the attribute corresponding to the link cost −cij; therefore,
the expected maximum utility is defined as link specific value as follows:

Ūij = −(cij + φd
j ), (2.70)

where φd
j is the expected minimum cost from node j to the destination. Also, the

choice probability of node j conditional on node i is:

p(j|i) =
αjiGij(y)µi/µj

∑j′∈Si
αj′iGij(y)µi/µj′

=
αji exp[−µi(cij + φd

j )]

∑j′∈Si
αj′i exp[−µi(cij′ + φd

j′)]
, (2.71)

where

Gij(y) = exp(µjŪij) (2.72)

The probability of path r = [i0, ..., iJ ] is given as the product of the link choice proba-
bilities. The relationship between the expected minimum cost of node i φd

i and that
of its successive node j φd

j is expressed using Equation (2.69),

φd
i =

1
µi

log ∑
j∈Si

αjieµiŪij

=
1
µi

log ∑
j∈Si

αji exp[−µi(cij + φd
j )]. (2.73)

In the case that µi = µ, ∀i ∈ S and αji = 1, ∀(i, j) ∈ E , the expected minimum utility
from the origin o to the destination d is

φd
o =

1
µ

log ∑
r∈Rod

exp

(
−µ ∑

ij∈r
cij

)
=

1
µ

log ∑
r∈Rod

exp(−µcr). (2.74)

This corresponds to the well-known expected minimum cost of the logit-type Marko-
vian route choice model. For this reason, the network-GEV based route choice model
can be considered as a generalized form of the Markovian route choice model.
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2.2.7 Recursive logit model

Fosgerau, Frejinger, and Karlstrom, 2013 is the first to deal with the sequential link
choice model in the context of economic discrete choice models, based on a dynamic
discrete choice model (Rust, 1987). We first review the dynamic discrete choice
model (DDCM), and we then present the formulation of the recursive logit (RL)
model proposed by Fosgerau, Frejinger, and Karlstrom, 2013.

Rust, 1987 proposed a DDCM, which is also referred to as dynamic programming
conditional logit model. Aguirregabiria and Mira, 2010 presented a comprehensive
review of DDCMs. In DDCMs, an individual at every time period t observes the vec-
tor of state variables st and chooses the alternative at that maximizes the discounted
expected utility (Samuelson, 1937):

E

(
T

∑
j=t

βj−tũ(aj, sj)|at, st

)
, (2.75)

where β ∈ (0, 1) is the discount factor and ũ(at, st) is the utility function at period
t. T is the terminal period of the decisions. This is the dynamic programming (DP)
problem of the individual. By the Bellman’s principle of optimality (Bellman, 1957),
the value function can be expressed as the recursive expression:

V(st) = max
a∈C

{
ũ(a, st) + β

∫
V(st+1)dF(st+1|a, st)

}
, (2.76)

where F(st+1|at, st) is a Markov transition distribution function that represents the
individual’s beliefs about future states. The optimal decision rule α(st) is then:

α(st) = arg max
a∈C

{v(a, st)}, (2.77)

where

v(a, st) ≡ ũ(a, st) + β
∫

V(st+1)dF(st+1|a, st) ∀a ∈ C (2.78)

is a choice-specific value functions. This DP problem can be by starting determining
the value function at the terminal period T V(sT) and calculating Equation (2.76)
in descending order. However, the procedure includes a number of maximization
problems and it is computationally very expensive.

Rust, 1987 defined six assumptions to solve the problem more easily: AS (Ad-
ditive Separability), IID (iid Unobservables), CI-X (Conditional Independence of Future x),
CI-Y (Conditional Independence of y), CLOGIT, and DIS (Discrete Support of x) (see Rust,
1987; Aguirregabiria and Mira, 2010, for more detail). By these assumptions, the
choice-specific value function is:

v(a, st) = u(a, xt) + εt(a) + β
∫ ∫

V(xt+1, εt+1)dGε(εt+1)dFx(xt+1|at, xt), (2.79)

where the state variables and the utility functions are distinguished into two subsets,
st = (xt, εt) and, ũ(a, xt, εt) = u(a, xt) + εt(a), respectively. By the assumption IID
and CI-X, F(st+1|a, st) can be decomposed as F(xt+1, εt+1|a, xt, εt) = Gε(εt+1)Fx(xt+1|at, xt),
where Gε(εt+1) is the CDF of the iid distributed unobserved value εt+1 and Fx(xt+1|at, xt)
is the distribution function conditional on the current decision and observed state
variables. By defining the integrated value function V̄(xt) =

∫
V(xt, εt)dGε(εt)
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and assuming that the state space X is discrete and finite, Equation (2.79) can be
re-defined as:

v(a, st) = v(a, xt) + εt(a) (2.80)

where

v(a, xt) = u(a, xt) + β ∑
xt+1

V̄(xt+1)Fx(xt+1|at, xt). (2.81)

Moreover, by the assumption CLOGIT, this can be expressed as DP conditional logit
model with the Bellman equation

V̄(xt) = log

[
∑
a∈C

exp

{
u(a, xt) + β ∑

xt+1

V̄(xt+1)Fx(xt+1|at, xt)

}]
, (2.82)

and choice probabilities:

P(a|xt) =
exp{v(a, xt)}

∑a′∈C exp{v(a′, xt)}
. (2.83)

This is similar to the static multinomial logit model, and it has contributed to the
extensive development of DDCMs. A review of the applications of DDCMs in trans-
portation studies are presented by Cirillo and Xu, 2011.

Fosgerau, Frejinger, and Karlstrom, 2013 proposed the recursive logit model as
a network route choice model with unrestricted choice set, using the DDCM frame-
work above. In the RL model, the route choice model is assumed as a utility-based
and link-based one, while the above discussion is cost-based and node-based. At
each current link k, a traveler chooses the next link a from the set of outgoing links
A(k). An instantaneous utility ũ(a|k) = u(a|k)+ ε(a), where the random utility term
ε(a) is i.i.d. extreme value type I with the scale parameter µ, is associated with each
link in the choice set A(k) conditional on current link k. In the context of sequential
route choice models, the decision a corresponds to the state at the next period. More-
over, the state variables are link-specific and deterministic. Travelers are assumed to
know the link utilities over the network deterministically; therefore, the discount
factor β equals one and Equation (2.76) can be expressed as:

Vd(k) = E

[
max

a∈A(k)
(ũ(a|k) + Vd(a))

]
∀k ∈ A, (2.84)

where d is a dummy link for a destination that has no successors, and Ã = A ∪ d.
This corresponds to the expected maximum utility from links k to d. Also, based on
Equation (2.81)-(2.83), the link choice probability can be formulated as

pd(a|k) = exp[µ{u(a|k) + Vd(a)}]
∑a′∈A(k) exp[µ{u(a′|k) + Vd(a′)}] ∀k, a ∈ A, (2.85)

and the value function is formulated as a logsum:

Vd(k) =

{
1
µ log ∑a∈A δ(a|k) exp[µ{u(a|k) + Vd(a)}], ∀k ∈ A,

0, k = d.
(2.86)
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where an indicator δ(a|k) is equal to one if a ∈ A(k) and zero otherwise. Since d
has no successive state, Vd(d) equals to zero. This corresponds to Equation (2.64),
which is the expected maximum utility in the DP framework. Equation (2.86) is
transformed by multiplying µ and taking the exponential:

eµVd(k) =

{
∑a∈A δ(a|k)eµ{u(a|k)+Vd(a)}, ∀k ∈ A,

1, k = d.
(2.87)

which is corresponding to v in Equation (2.35) and (2.36) in Akamatsu, 1996. Using
the matrix forms: M (|Ã| × |Ã|) with entries δ(a|k)eµu(a|k), which is the incidence
matrix defining instantaneous utilities, zd (|Ã| × 1) with entries zd

k = eµVd(k), and bd

(|Ã| × 1) with entries bk = 0 if k ̸= d, and bd = 1, Equation (2.87) can be written as a
system of linear equations:

zd = Mzd + bd ⇔ (I − M)zd = bd (2.88)

which has the solution if the matrix M is a convergence matrix. The main differ-
ence of Fosgerau, Frejinger, and Karlstrom, 2013 from previous route choice models
based on Markovian model is that the deterministic component of instantaneous
utility is expressed as un(a|k) = u(xn,a|k; θ), where xn,a|k is a vector of observed char-
acteristics of the link pair (k, a) that may include characteristics of traveler n and θ
is an unknown parameter vector to be estimated by maximum likelihood. The log
likelihood function defined for observations n = 1, ..., N is:

LL(θ) = log
N

∏
n=1

P(rn) = µ
N

∑
n=1

In−1

∑
i=0

un(ki+1|ki; θ)− V(k0) (2.89)

where the choice probability of path rn = [k0, ..., k In ] is the product of link choice
probabilities. The log likelihood function is maximized using structural estimation
method, such as the nested fixed point (NFXP) algorithm (Rust, 1987) and the nested
pseudo likelihood (NPL) algorithm (Aguirregabiria and Mira, 2002), which consist
of two steps: the non-linear optimization to search over the parameter space and the
evaluation of the system of linear Equation (2.88).

Mai, Fosgerau, and Frejinger, 2015 and Mai, 2016 has extended the RL model
to the nested RL (NRL) model and the generalized RL (GRL) model, which are the
framework for considering the correlation structure among paths based on the RL
model, respectively. In Mai, Fosgerau, and Frejinger, 2015, the scale parameter of the
error term distributions of the instantaneous utility is assumed to be link-specific µk,
and Equation (2.87) is re-formulated as

eµkVd(k) =

{
∑a∈A δ(a|k)eµk{u(a|k)+Vd(a)}, ∀k ∈ A,

1, k = d.
(2.90)

In the same way with Fosgerau, Frejinger, and Karlstrom, 2013, this is replaces by
the matrix expression defining the matrix M and zd:

zd
k =

{
∑a∈A Md

ka(z
d
a)

µk/µa , ∀k ∈ A,
1, k = d,

(2.91)
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then

zd = MX(zd) + bd (2.92)

where X(zd) is a matrix of size |Ã| × |Ã| with entries X(z)kad = (zd
a)

µk/µa . This is a
system of non-linear equations, and it is solved by a value iteration approach. Mai,
2016 proposed a generalized recursive logit (GRL) model, which describes correla-
tion structures among path alternatives integrally, based on the network-GEV model
(Daly and Bierlaire, 2006) similarly to the method shown in Section 2.2.6. More-
over, Mai, Frejinger, and Bastin, 2015 proposed a dynamic programming approach
to quickly solve the large scale network models with correlation structures.

2.3 Discussion

2.3.1 Biases in estimating route choice models

We discussed the estimation methods of route choice models using GPS data in Sec-
tion 2.1.5 and 2.1.7. For observing route choices, passive monitoring with the GPS
technology is used; however, it is required to match the data format to transporta-
tion networks and to deal with the measurement errors. As mentioned in Section
2.1.5, in the case that the measurement uncertainty is large, bayesian approaches are
used, which incorporate route choice models as the prior to correct the measurement
probabilities. In bayesian approaches, the parameters of the route choice model that
is used as the prior are required to be given. These parameters that are given by
the modeler are not consistent with those that are estimated in route choice models.
As the results, the parameter estimation, which is the objective of discrete choice
analysis, can be biased.

In the framework of the joint estimation of Bierlaire and Frejinger, 2008, the def-
inition of the set of path candidates is required, and for this purpose, the concept
of DDR is used. For defining the DDRs, the variance of GPS measurement error σ
should be given and often regarded as the constant value over the network. How-
ever, it is assumed that the localization errors largely depends on spacial attributes
on which travelers move, especially in pedestrian networks. The probability that
is evaluated by the measurement equation with given σ can be biased. Figure 2.3
shows the measurement probabilities with different variances, which are often as-
sumed to be a Rayleigh distribution here as:

p(x̂|x; σ) =
∥x̂ − x∥

σ
exp

(
∥x̂ − x∥2

2σs

)
, (2.93)

where measurement probability p(x̂|x; σ) is the probability that measurement x̂ is
observed if x is the true location. The figure shows that the measurement proba-
bilities are largely dependent on the value of the variance, that is, the error of the
variance parameter can cause biases in evaluating the measurement probabilities.
Also, as the result, the estimated parameters of the route choice model can also be
biased.

The above discussion demonstrates that previous frameworks for estimating route
choice models using uncertain measurements, such as GPS data, often result in bi-
ased parameters due to the initial parameter settings of both the measurement model
and the prior information. We show the illustration of the process in Figure 2.4,
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FIGURE 2.4: Biases in estimation process of route choice models

where solid lines indicate the unbiased inputs and dash lines denote the biased in-
puts or outputs. In bayesian approaches shown in Figure 2.4(a), the parameters θ̄
of route choice preferences have to be given to calculate the route choice probability
p(r|R; θ) of the prior, while the modeler cannot know the true preferences of route
choices. Therefore, the biases included in the initial parameters are retained into the
inferred routes r̃, and also into the estimated parameters θ̃. In the joint estimation
method of Bierlaire and Frejinger, 2008, which is shown in Figure 2.4(b), the assump-
tion of the variance σ̄ is required to define the set of path candidates. The value of
the variance is assumed as the constant value over a network; however, in the case
that the variances have spatial dependence, the measurement probabilities p(m̂|r; σ)
can be biased, and as the result, the estimated parameters θ̃ are biased. For this rea-
son, a new method for reducing the biases is needed, especially in the case of high
resolution networks, such as pedestrian networks.

2.3.2 Computational property of Markovian route choice models

In this section, we point out a challenge of Markovian route choice models using
the example networks of Figure 2.5. The number associated with each link is link
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cost cij, which is the only attribute of utilities, and the link utility is uij = θcij, where
θ = −1.5. For the path-based MNL model and the PSL model, the choice set includes
3 paths: [o1, 12, 23, 3d] (path 1), [o1, 12, 24, 43, 3d] (path 2), and [o1, 13, 3d] (path
3). In Markovian model, which is referred to as the RL model in this section, the
universal set is considered. Table 2.1, 2.2 and 2.3 show the choice probabilities of the
three paths given by the path-based MNL model, the PSL model with θPS = 2.5, the
RL model, and the RL model with the link size attributes and θLS = −0.75 in network
(a), (b), and (c) of Figure 2.5, respectively. We denote the three path probabilities as
P1, P2, and P3, respectively. As is seen in Table 2.1, in network (a), which has no
cyclic structure, the path probabilities given by the MNL model and the RL model
are equivalent to each other: P1 = P2 = P3 = 0.333, because the universal set is
path 1, 2 and 3 in the case of network (a). As mentioned in Section 2.2.3, the path
probabilities given by the logit-type Markovian route choice model is consistent with
that of the path-based MNL model with the universal choice set. The RL model can
also consider the overlapping effect of paths by incorporating the link size attributes
into the model. The tables show that the RL model with link size attributes output
the values of the path probabilities close to those given by the PSL model, which is
one of the most popular models for considering the overlapping effects.

In network (a), the total value of the path probabilities given by every model
is equivalent to one; however, in network (b) and (c), the total value is lower than
one, because the probabilities are assigned to the cyclic paths. In the case of the RL
model in network (b) and (c), probability 0.050 and 0.214 are assigned to the cyclic
paths, respectively. This assignment of probabilities to cyclic paths causes a problem
for solving the Bellman equation. Consider the incident matrix W defining the link
utilities, and the logit-type Markovian model has to satisfy the following inequality
to solve the expected minimum cost:

ρ(W) ≡ max
h

{|λh|} < 1, (2.94)

where λh is the h-th eigenvalue of the matrix W and ρ(W) is the spectral radius,
which is the maximum absolute value of the eigenvalues of W. Equation (2.94) is
then the necessary and sufficient condition for the matrix Wm to converge as m →
+∞. When the network has no cyclic structure as network (a), ρ(W) is always zero
and satisfies Equation (2.94), theoretically. However, when the network has cyclic
structures, it depends on the balance between the number of paths that connect the
nodes in the network and the size of the link utilities.

We investigate this conditions using network (c), which has two cyclic structures:
[12, 24, 41] and [24, 42]. We change the coefficient of the link cost in the link utility
function, θ, and report the change of the spectral radius, ρ(W) in Table 2.4. The
ρ(W) values that are larger than one indicate that the matrix W is not a convergence
matrix and (I − W) is not invertible. Table 2.4 shows that in the case of network (c),
the maximum expected utilities diverge and the Bellman equation cannot be solved
when θ is larger and equal to −0.4. That is, we cannot solve the path probabilities of
the Markovian route choice models when the link utilities are large and the network
has cyclic structures.

In Fosgerau, Frejinger, and Karlstrom, 2013, the link utilities are defined to be
always lower than zero, and a fixed large penalty to each u-turn is introduced so that
their probability is close to zero. However, the computational stability is retained in
the parameter estimation process, because the values of coefficients fluctuate and
the spectral radius can be larger or equal to one in the process. Moreover, the setting
that the utilities are always negative do not allow one to introduce variables that can
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FIGURE 2.5: Example networks

have positive effects to the utilities, such as the number of lanes, the attractiveness
of shops along the road, the width of sidewalk, and so on.
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TABLE 2.1: Path probabilities in network (a)

Path MNL PSL RL RLwithLS
1:[o1,12,23,3d] 0.333 0.294 0.333 0.292
2:[o1,12,24,43,3d] 0.333 0.294 0.333 0.227
3:[o1,13,3d] 0.333 0.411 0.333 0.481
total 1 1 1 1

TABLE 2.2: Path probabilities in network (b)

Path MNL PSL RL RLwithLS
1:[o1,12,23,3d] 0.333 0.294 0.317 0.283
2:[o1,12,24,43,3d] 0.333 0.294 0.317 0.212
3:[o1,13,3d] 0.333 0.411 0.317 0.485
total 1 1 0.950 0.979

TABLE 2.3: Path probabilities in network (c)

Path MNL PSL RL RLwithLS
1:[o1,12,23,3d] 0.333 0.294 0.262 0.262
2:[o1,12,24,43,3d] 0.333 0.294 0.262 0.161
3:[o1,13,3d] 0.333 0.411 0.262 0.504
total 1 1 0.786 0.927

TABLE 2.4: Spectral radius of the incident matrix W in network (c)

θ -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8
ρ(W) 0.559 0.591 0.626 0.662 0.701 0.742 0.785 0.832

θ -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
ρ(W) 0.881 0.934 0.989 1.048 1.111 1.178 1.249 1.325
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Chapter 3

Structural estimation under
measurement uncertainties

In this chapter, we propose an estimation method for obtaining parameters of route
choice models without biases dependent on parameter settings, using GPS data
with measurement uncertainties. The content of this chapter has been presented
as Oyama, Y. and Hato, E., 2016. A link-based map matching algorithm with structural es-
timation method, 5th symposium arranged by European Association for Research in Trans-
portation (hEART), Delft, Netherlands.

For estimating parameters of discrete choice models, observations correspond-
ing to the models are required. In the context of route choice models, we need the
information of paths, which are sequences of links that connect between the origin-
destination pairs. Passive monitoring with Global Positioning System (GPS) is more
and more used to observe trip data, because it contributes to facilitating to observe
trip data automatically. However, data from monitoring with GPS is not consis-
tent, in formats, with network, which is the fundamental description of route choice
models, and it has a measurement error dependent on devices and locations. These
errors cause the biased observation of route choices, and as the result, the parameter
estimation results of route choice models ca be biased. In this study, we propose a
link-based route measurement method, which is a bayesian approach and incorpo-
rates a Markovian route choice model as the prior. It allows one to infer links based
on both measurements and behavioral mechanisms, and at the same time, to esti-
mate the variance of GPS measurement error on each link. Moreover, we propose
a structural estimation method for a route choice model to remove biases regard-
ing the initial parameter settings. The performances of these methods are examined
through a numerical example and a case study of applying in a real pedestrian net-
work. As a result, the estimated preferences of route choices using the structural
estimation method are less biased and show the different trend from those using the
biased route choice observations. Moreover, the estimated variances of GPS mea-
surement errors are realistic.

Keywords: Route choice model, Route choice observation, GPS data, Structural esti-
mation, link-based route measurement, map matching
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3.1 Introduction

For estimating parameters of discrete choice models, observations corresponding
to the models are required. In the context of route choice models, we need the in-
formation of paths, which are sequences of links that connect between the origin-
destination pairs. Conventionally, mail and telephone surveys have been conducted
to ask travelers which routes they took; however, it is difficult to assume that many
travelers correctly answer their routes. On the other hand, recently, passive monitor-
ing with Global Positioning System (GPS) is used to observe trip data automatically.
Probe cars and connected cars contribute to allowing one to obtain a number of and
real-time trip data. However, data from monitoring with GPS has two problems: its
format is not consistent with network, which is the fundamental description of route
choice models, and it has a measurement error by each data. If we observe routes as
the errors remain and estimate route choice models using the observed route data,
by necessity, the estimation results are biased. Bierlaire and Frejinger, 2008 propose
a method to observe routes probabilistically and to estimate route choice models as
the ambiguity of observations remains. However, in the algorithm to identify the
set of path candidates, the assumption of variances of GPS measurement errors are
required, and it causes the biases in evaluating route probabilities. In bayesian ap-
proaches to infer routes from uncertain measurements, the biases dependent on ini-
tial parameter settings of the prior remain. That is, previous studies of route obser-
vations retain the biases regarding the initial parameters. In this study, we propose
a link-based route measurement method and a structural estimation method to esti-
mate route choice models without the biases using GPS data with measurement un-
certainties. We present a numerical experiment to examine the model performance
and a case study applying the model to a real pedestrian network.

The structure of this chapter is as follows. In Section 3.2, we present a literature
review of estimation methods for route choice models based on uncertain measure-
ments. In Section 3.3, we present a framework of this study and notations. In Section
3.4, we introduce a link-based route measurement method, which allows one to in-
fer links based on both measurements and behavioral mechanisms, and at the same
time, to estimate the variance of GPS measurement error on each link. In Section
3.5, we propose a structural estimation and present its algorithm. In Section 3.6, we
examine the performance of our model in a simulation analysis and a case study
of applying the model to a real pedestrian network. Conclusions and discussion of
future research directions are provided in the end.

3.2 Literature review

In this section, we present a literature review of frameworks for estimating parame-
ters of route choice models using GPS data. We first introduce studies that observe
route choice data, for route choice models, from GPS data. This kind of studies is
often referred to as map matching (MM) algorithms. We then review a framework
of the joint estimation of route observations and route choice models.

3.2.1 Route choice observation

Raw data from sensors is often useless for behavior analyses without the pre-processing,
because GPS location data is not consistent with network graphs in format and has
measurement errors dependent on the devices and spatial contexts. For these rea-
sons, many methods for estimating activity states from the passive data have been
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proposed within the last two decades. Map matching (MM) methods, which aim to
match GPS data to transportation networks, are typical techniques and have been
developed. MM algorithms can be categorized into three groups: geometric (e.g.,
White, Bernstein, and Kornhauser, 2000), topological (e.g., Greenfeld, 2002; Quddus
et al., 2003; Velaga, Quddus, and Bristow, 2009), and probabilistic (e.g., Ochieng,
Quddus, and Noland, 2003; Quddus, Ochieng, and Noland, 2006; Hunter, Abbeel,
and Bayen, 2014). Quddus, Ochieng, and Noland, 2007 comprehensively reviewed
map matching methods presented before early 2000s. Most of the algorithms are
based on sequential link inferences, where the true location is inferred for each loca-
tion data in chronological order, because they are aimed at applying on-line naviga-
tion systems. On the other hand, in transportation studies, researchers require the
actual path as a sequence of links rather than on-line identification of the traveler
locations (Bierlaire, Chen, and Newman, 2013).

Pyo, Shin, and Sung, 2001 and Bierlaire, Chen, and Newman, 2013 propose path-
based and probabilistic MM algorithms, which evaluate the likelihoods of path can-
didates regarding all GPS data in a trip and do not identify to a specific path. Chen
and Bierlaire, 2015 presents a MM algorithm that includes the transportation mode
detection, for applying in multi-modal networks.

Recently, some studies proposed advanced methods based on bayesian approaches
(Fuse and Nakanishi, 2012; Danalet, Farooq, and Bierlaire, 2014; Chen and Bierlaire,
2015). In bayesian approaches, the path likelihoods are evaluated by both measure-
ment probabilities calculated by probabilistic MM algorithms and the path choice
probabilities as the prior given by route choice models. Based on the path likeli-
hoods, the paths are identified. The correction of the path likelihood using the path
choice probabilities of route choice model is helpful of inferring paths in the case
that the measurements have large uncertainties, e.g., when the localization is weak
and the network is dense (Danalet, Farooq, and Bierlaire, 2014). However, the pa-
rameters of the route choice model that is used as the prior are required to be given.
These parameters that are given by the modeler are not consistent with those that are
estimated in route choice models. As the results, the parameter estimation, which is
the objective of discrete choice analysis, can be biased.

3.2.2 Joint estimation of route choice models

Bierlaire and Frejinger, 2008 proposed a framework to estimate route choice models
as the ambiguity of observations remains. In the framework, the following probabil-
ity of reproducing the vector of observations m̂ is maximized to estimate parameters:

p(m̂) = ∑
r∈R

p(m̂|r; σ)p(r|R; θ), (3.1)

where r is a route in choice set R. p(m̂|r; σ) is the measurement equation, which
gives the probability that m̂ is observed if r is the actual path, where σ is the pa-
rameter and often assumed as the variance of GPS measurement error. p(r|R; θ) is
the route choice model, which gives the probability that path r is selected within
the choice set R, where θ is the unknown parameters to be estimated. As is seen in
Equation (3.1), the paths are regarded as latent variables, and a specific path is not
identified. The measurement probabilities are calculated by e.g., path-based proba-
bilistic MM algorithms. In evaluating the probabilities in Equation (3.1), similarly to
route choice models, probabilistic models for route choice observations also suffer
from the problem of the path set generation. Bierlaire and Frejinger, 2008 propose
the concept of domain of data relevance (DDR) for restricting the set of observed path
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based on GPS localization errors. A path is included in the set of path candidates
only if it is associated with the area of the sequence of data. For defining the DDRs,
the variance of GPS measurement error σ should be given and often regarded as the
constant value over the network. However, it is assumed that the localization errors
largely depends on spacial attributes on which travelers move, especially in pedes-
trian networks. The probability that is evaluated by the measurement equation with
given σ can be biased, as the result, the estimated parameters of the route choice
model can also be biased.

In this study, we propose a link-based route measurement method and a struc-
tural estimation method to estimate route choice models without the biases using
GPS data with measurement uncertainties. The link-based route measurement method
is based on a bayesian approach and can infer paths even in dense networks. The
structural estimation finds a fixed point of estimated parameters to remove the bi-
ases regarding the initial parameter settings. Our model can estimate both the pa-
rameters of the measurement equation and the route choice model.

3.3 Framework and notations

We aim at estimating parameters of the route choice model without biases, using a
sequence of GPS location data, which has the measurement error. In this section, we
present the framework of this study, defining the route choice model and the route
measurement model, with the explanations of the notations.

3.3.1 Network

We define a transportation network G = (N ,A), where N is the set of nodes and
A is the set of links. The horizontal position of each node i ∈ N is described by
xi = {xilat, xilon}, which is a pair of coordinates consisting of latitude and longitude.
Link a ∈ A is characterized by the pair of its up-node and down-node (ua, da), and
by the vector of spatial attributes ya. We define A(a) as the set of outgoing links
from down-node of a. The indicator δ(a′|a) is also defined, which equals one if the
pair of link a and link a′ ∈ A(a) is directly connected, and zero otherwise.

3.3.2 Route choice model

We assume that travelers move continuously on the network G = (N ,A) to go
from a place to another. In this study, it is assumed that travelers do not determine
their routes before trips, but at every period t and current state at, they sequentially
choose the link at+1 that maximizes the utility, from the set of outgoing links A(at).
The link choice probability is formulated as follows:

p(at+1|at) = P

(
ũ(at+1|at) = max

at+1∈A(at)
ũ(a|at)

)
, (3.2)

where

ũ(at+1|at) = u(at+1|at) + ε(at+1), (3.3)

and the deterministic utility component of transitioning from link at to link at+1 is
the function of the vector of spatial attributes ya and the vector of unknown parame-
ters θ: u(at+1|at) = u(yat+1|at , θ). The error term of the utility ε(at+1) is i.i.d. extreme
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value type I. Based on Equation (3.2), the path choice probability is given as the
product of the link choice probabilities:

P(r = [a0, . . . , aT]) =
T−1

∏
t=0

p(at+1|at; θ) (3.4)

where a0 and aT are defined as the origin link and the destination link, respectively.
This type of route choice model is the Markovian route choice model. As the Marko-
vian route choice model in the context of discrete choice model, Fosgerau, Frejinger,
and Karlstrom, 2013 propose a recursive logit (RL) model, which is consistent with
the conventional path-based MNL model without path enumeration. Mai, Fosgerau,
and Frejinger, 2015 and Mai, 2016 proposed the models that consider the correlation
structures among paths based on the GEV model (McFadden, 1978). Oyama et al.,
2016 also present a myopic model and the integration formulation of myopic and
global decisions.

3.3.3 Route choice observation

We use the data recorded by the built-in sensors in devices that are carried by trav-
elers regardless of transportation mode. We denote a measurement as m̂ = (x̂, τ̂),
where x̂ = (x̂lat, x̂lon) is the pair of coordinates and τ̂ is a measurement timestamp.
For a given trip, we obtain a chronologically ordered sequence of measurements
m̂ = (m̂1, ..., m̂n, ..., m̂N), which are recorded by the same device. It is assumed that
the recorded location x̂ always has measurement error, while the timestamps τ̂ has
no measurement error. The true location of x̂, x is on the location on a link a ∈ A, and
the difference between x̂ and x follows a probability distribution, p(x̂|x; σ), where σ
is the variance of GPS measurement error. In this study, it is assumed that the vari-
ance σ is dependent on spatial attributes, that is, the value is link-specific: σ = σa.

3.4 Link-based route measurement

In this section, we propose a link-based route measurement method, where the for-
mulation is based on a bayesian approach.

3.4.1 Data decomposition

For considering both route choice model and route measurement model in the same
framework, we first present a method to adjust the unit of the route measurement.
We define the discretized time sequence (1, ..., t, ..., T) where t = {t−, t+} is a time
period and the interval t̄ = t+ − t− is consistent for all time periods. t̄ can be de-
fined by the network structure; it is usually t̄ = (mina La)/vave, where La is the
link length and vave is average speed of the target transportation mode. Let m̂t =
(m̂t

1, ..., m̂t
j, ..., m̂t

J) denote a vector of measurements, which are observed within a
time period t and satisfy t− ≤ τ̂t

j ≤ t+. Therefore, m̂ is decomposed as (m̂1, ..., m̂t, ..., m̂T).
We assume that all measurements observed within the same period correspond to
the same link (Figure 3.1).
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FIGURE 3.1: Link-based measurement model

3.4.2 Sequential link measurement model

Using decomposed data m̂t, at every time period t, we probabilistically observe the
link at given the choice set A(at−1) defined by the previous state at−1. The link like-
lihood given a vector of measurements m̂t and the previous state at−1, p(at|m̂t, at−1)
is formulates based on Bayes’ theorem:

p(at|m̂t, at−1) ∝ p(m̂t|at; σat)p(at|at−1; θ), (3.5)

where p(m̂t|at; σat) is the measurement equation, giving the probability that the mea-
surement vector m̂t is observed if at is the actual link, and σat is the link-specific
variance of GPS measurement error. p(at|at−1; θ) is the link-based route choice model,
which is defined in Section 3.3.2. In the route choice context, the state variable at can
be discretized; therefore, Equation (3.5) is replaced as the standardization form:

p(at|m̂t, at−1) =
p(m̂t|at; σat)p(at|at−1; θ)

∑at∈A(at−1) p(m̂t|at; σat)p(at|at−1; θ)
. (3.6)

Based on this link likelihood, we identify the link at each time sequentially as fol-
lows:

at = arg max
at∈A(at−1)

p(at|m̂t, at−1). (3.7)

By the iteration of this process until time period T, we finally obtain a inferred path
ψ = [a1, ..., at, ..., aT] (Figure 3.1).

3.4.3 Measurement equation

By the assumption that timestamps τ̂ have no measurement error, the probability
that the vector of measurements m̂t = (m̂t

1, ..., m̂t
J) is observed if at is the actual state

is given as

p(m̂t
1, ..., m̂t

J |at; σat) = p(x̂t
1, ..., x̂t

J |at; σat). (3.8)

Moreover, we assume that traveler locations on a link depend on only the time from
the arrival at the link, and traveler moves at the constant speed in the same link. As
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the result, Equation (3.8) can be decomposed as follows:

p(x̂t
1, ..., x̂t

J |at; σat) =
J

∏
j=1

p(x̂t
j |at; σat),

=
J

∏
j=1

∫
xj∈at

p(x̂t
j |xj, at; σat)p(xj|at)dxj (3.9)

where,

xj = lxdat
+ (1 − l)xuat

, (3.10)

l =
τ̂t

j − t−

t+ − t−
+ η, (3.11)

η ∼ N(0, σ2
η). (3.12)

Equation (3.9) includes the same component p(x̂t
j |xj, at; σat), which is a probabil-

ity distribution derived from the measurement error of the GPS location. The er-
rors in latitudinal and longitudinal directions are generally assumed to be indepen-
dently normally distributed (Diggelen, 2007), hence the distance between the mea-
surement and the true location d follows a Rayleigh distribution. The probability
p(x̂t

j |xj, at; σat) that a location xj on link at generates the measurement x̂t
j is formu-

lated as follows:

p(x̂t
j |xj, at; σat) =

∥x̂t
j − xj∥
σ2

at

exp

(
−
∥x̂t

j − xj∥2

2σ2
at

)
, (3.13)

where the variance σ2
at

indicates localization error of GPS measurements. This vari-
ance is assumed to consist of the error in network data and the error dependent on
GPS devices (Quddus, Noland, and Ochieng, 2005; Bierlaire, Chen, and Newman,
2013). The error in previous studies is assumed to be constant over the network,
and as the result, the measurement probabilities are biased. On the other hand, out
link-based measurement model allows the value to change dependently on each link
a ∈ A(at−1). The parameter σat is estimated by the maximum likelihood estimation
at each time,

σat = arg max
σ

p(m̂t|at−1; σ), (3.14)

where

p(m̂t|at−1; σ) = ∑
at∈A(at−1)

p(m̂t|at; σt)p(at|at−1; θ). (3.15)

The link likelihood p(at|m̂t, at−1) is also calculated using this estimated variance σat

by Equation (3.14).

3.4.4 Link switching

The sequential link measurement method has difficulties regarding link connectiv-
ity because of its myopic optimization. Figure 3.2 illustrates an example, where
a path ψ = [2, 4, 6] (expressed as the bold line) is estimated given measurements
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FIGURE 3.2: Example of errors in path estimation

(m̂1, m̂2, m̂3). Link a1 = 2 is at first determined using the measurement model pro-
posed in Section 3.4, then the set of candidate states for a2 is A(a1) = {2, 4, 5, 7}.
By calculating link likelihoods p(a2|m̂2, 2), a2 is determined as link 4. Focusing on
m̂3 = (m̂3

1, m̂3
2, m̂3

3), the measurements are not likely to correspond to any link in the
set of candidates for a3, A(a2) = {1, 3, 4, 6}, but a3 is identified as link 6. The actual
path in this case is assumed to be ψ = [2, 7, 10] (expressed as the dash line), that is,
a2 = 4 is not correct and causes errors in subsequent link measurements.

To deal with this problem, we introduce the link switching algorithm (Figure 3.3)
to the link based measurement model. The algorithm is described as follows.

Step 1: Calculate the link likelihoods p(at|m̂t, at−1) of all candidates for at ∈ A(at−1)
using Equation (3.6).

Step 2: Sort and label the candidate links by the likelihoods p(at|m̂t, at−1) as [at,1, ..., at,|A(at−1)|],
which satisfy

p(at,1|m̂t, at−1) ≥ · · · ≥ p(at,r|m̂t, at−1) ≥ · · · ≥ p(at,|A(at−1)||m̂
t, at−1). (3.16)

Step 3: Set r = 1, and calculate the measurement log-likelihood LLmr of at+1
given the measurements m̂t+1 and the state at,r:

LLmr = log
(

p(m̂t+1|at+1; σat+1)
)

, (3.17)

where

at+1 = arg max
a

p(a|m̂t+1, at,r). (3.18)

Step 4: Finish the algorithm if the following inequality with the convergence tol-
erance γ is satisfied:

LLmr

J
> γ, (3.19)

then at = at,r. Otherwise, go Step 5.
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FIGURE 3.3: Flow of link switching algorithm

Step 5: If r = |A(at−1)|, finish the algorithm with at = at,1, and otherwise, set
r = r + 1 and back to Step 3.

3.5 Structural estimation

In some transportation studies, measurement models are used to generate data set
for the parameter estimation of behavior models. This section focuses on the rela-
tionship between the measurement model and the behavior model, and proposes a
method for estimating these models at the same time to remove biases in estimated
parameters.

3.5.1 Estimation of behavior model

Maximum likelihood estimation is generally adopted to estimate the parameters of
behavior models, such as route choice models. In this study, the log-likelihood func-
tion is formulated as the function of a vector of parameters θ as follows:

LL(θ) = log

(
∏

i

T

∏
t=2

p(at|at−1; θ)δi
at

)

= ∑
i

T

∑
t=2

δi
at

log (p(at|at−1; θ)), (3.20)
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where the suffix i indicates an individual, and δi
at

equals one if individual i chooses
the link at at time t, and zero, otherwise. It is assumed that p(at|at−1; θ) is the prob-
ability of the link-based route choice model, which is already formulated in Section
3.3.2. This model is identical to the model that is used as the prior in the measure-
ment model. The parameters are estimated by maximizing the log-likelihood func-
tion LL(θ):

θ = arg max
θ

LL(θ). (3.21)

In the case of the link-based models that is based on the recursive formulation of the
dynamic programming, such as the RL model (Fosgerau, Frejinger, and Karlstrom,
2013), the NRL model (Mai, Fosgerau, and Frejinger, 2015), the GRL model (Mai,
2016), and the β-SRL model (Oyama et al., 2016), the Bellman equation should be
solved to evaluate the expected maximum utilities. For estimating this type of mod-
els (dynamic discrete choice models), e.g., the nested fixed point (NFXP) algorithm,
the nested pseudo likelihood (NPL) algorithm are used.

3.5.2 Algorithm of structure estimation

The measurement model based on a bayesian approach requires the prior informa-
tion of route choice behavior. For evaluating the prior, the parameters θ of the route
choice model are initially needed. Since the true value of θ is unknown, θ is usu-
ally defined as, e.g., estimated parameters using historical or external data sources
(Chen and Bierlaire, 2015), arbitrarily given (Danalet, Farooq, and Bierlaire, 2014),
and assumed to be uniformly distributed if no information is available (Chen and
Bierlaire, 2015; Hunter, Abbeel, and Bayen, 2014). However, these assumptions are
likely to result in biased estimates, because the given parameters are not consistent
with the estimated parameters in the route choice model. In this paper, we focus
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on that the parameter θ is used in both the measurement model and the behavioral
model, and propose a method for estimating these models at the same time to retain
the consistency of the parameters. The structural estimation method is described in
Figure 3.4 given the following steps:

Step 1: Initialization. Input data m̂ and initial parameters θ̄, and set h = 1.

Step 2: Path Inference. Estimate link variance σa and paths ψ using the link-based
measurement model proposed in Section 3.4, and set ψ(h) = ψ.

Step 3: Parameter Estimation. Estimate parameters θ of the link-based route choice
model by maximum likelihood estimation using estimated behavior data
ψ(h). Set θ(h+1) = θ.

Step 4: Convergence Check. Finish the algorithm if the following inequality with
convergence tolerance ξ is satisfied:

|θ(h+1) − θ(h)| < ξ, (3.22)

then θ = θ(h+1). Otherwise, set h = h + 1 and back to Step 2.

This is the algorithm of the structural estimation, and we use it to find a fixed
point of parameters of the route choice model.

3.6 Numerical examples

In this section, we show two numerical examples: one is a twins experiment us-
ing simulation data, and the other is a case study of applying our method to a real
pedestrian network of Matsuyama-city, Japan.

3.6.1 Twins experiments

We first validate the proposed models using the network of Figure 3.5. The numbers
in the parenthesis on each link indicates the continuous cost CCa, the discrete cost
DCa (1 or 0) and the variance of the measurement error σa, respectively. In the net-
work, links on the line y = 60 and y = 30 have large variances σ = 20, 10, and the
other links have small variance σ = 5. Figure 3.6 shows the example plots of three
paths with different variances from each other. The locations generated from path
(b) and (c) widely vary, because these paths pass links with large variances. Simu-
lations are conducted using first-order Markov model, which is the myopic model,
using the parameter θ̄ = [−0.1,−2,−1.5,−4] (TRUE values). The link utility func-
tion and the link choice probability are formulated as follows:

u(a|k) = θ1TTa + θ2CCa + θ3DCa + θ4UTa|k, (3.23)

and

p(a|k) = exp(u(a|k))
∑a∈A(k) exp(u(a|k)) , (3.24)

where TTa is the travel time in seconds of link a and UTa|k is a u-turn dummy vari-
able that equals one, if the up node of link k corresponds to the down node of link a,
and zero otherwise. We set the interval of the time discretization to t̄ = 30s and the
interval of measurements to τ̂n − τ̂n−1 = 10s.



46 Chapter 3. Structural estimation under measurement uncertainties

DC
aCC

a

D

d

x

y

O
x = 40 x = 80o

y = 90

y = 60

y = 30

x = 120

*(continuous cost:        / discrete cost:         / variance:       )

(2/1/5) (1/1/5) (2/1/5)

(2/1/10) (2/1/10) (2/1/10)

(1/0/20) (1/0/20) (1/0/20)

(2/0/5)

(2/1/5) (2/1/5) (2/1/5) (3/1/5)

(3/1/5) (2/0/5) (2/1/5) (3/1/5)

(3/1/5) (3/1/5) (3/1/5) (2/1/5)

(2/0/5) (2/0/5)

a

FIGURE 3.5: Illustrative example

x

y

x

y

x

y

(a) (b)

: True path : Measurement

(c)

FIGURE 3.6: Examples of plots and the effect of σa

Table 3.1 indicates measurement accuracy and the difference of estimated σ̃ from
the true value σ∗ in each model. Estimation error of σ is,

1
|I||T| |σ̃a − σ∗

a |, (3.25)

where |I||T| is the sample size. In Table 3.1, θ = [0, 0, 0, 0] means that the mea-
surement model does not use the prior. The accuracy in the case of using only the
measurement equation with given σa = 20 (∀a ∈ A) (Model 1) is 54.57, and the re-
sults show that the estimation of σ refines the measurement (Model 2). Model 3, and
4 incorporate the prior probability into the measurement model. The results show
that the accuracy can be extremely worsen if wrong parameters are given (Model
3). This result indicates the importance of the accuracy of θ in the situation, e.g.,
when we have few measurements and localization is weak. Moreover, comparing
the model with the switching algorithm presented in Section 3.4.4 to an alternative
model without it, we can conclude that the algorithm works well for all models.

Using the measurement model (Model 3,4,5) in Table 3.1, we estimate the be-
havior model, and report the estimation results in Table 3.2. "One-way" in the tables
mean the estimation result using behavioral data reproduced from the measurement
model with θ̄, which is the parameters initially given, and "Structural estimation" in-
dicates the result from the iteration process in Figure 3.4. When θ̄ = [0, 0, 0, 0] (no
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TABLE 3.1: Accuracy and the difference of σ in each model

Link accuracy(%) Ave.|σ̃a − σ∗
a |

Model σ θ - Switching - Switching
1 Given [0, 0, 0, 0] 54.57 68.86 - -
2 Estimated [0, 0, 0, 0] 76.86 82.86 5.848 4.40
3 Estimated [−1.5,−0.1,−2,−10] 4.86 38.29 41.99 21.21
4 Estimated [−0.1,−2,−1.5,−4] 76.86 91.71 7.58 4.06
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FIGURE 3.7: Change of link measurement accuracy, the differences of
σ and θ in iteration process

prior information) and θ̄ = [−1.5,−0.1,−2,−10] (wrong), one-way estimation re-
sults are largely different from true values: the total of differences is 3.643 and 6.058,
respectively. The cases that positive and negative signs are reversed are also seen. By
contrast, the results of the structural estimation converge to the same values, which
are closer to the true values than one-way results, regardless of θ̄. The t-values and
ρ2 are also refined. When θ̄ = [−0.1,−2,−1.5,−4] (TRUE values), the structural es-
timation results slightly get worse. However, considering real situations, we cannot
know the true value of θ. It is assumed to be important that the structural estima-
tion reproduces the values close to the true parameters with any θ̄. The validation
against samples is addressed in the Monte Carlo simulation in Appendix A.1.

Figure 3.7 shows how link measurement accuracy, the difference of σ and θ
change in the iteration process. Regardless of θ̄, link measurement accuracy achieves
over 90%. Moreover the differences of σ and θ are smaller than that at the initial step.
It is assumed that ψ, σ and θ are related to each other, and removal of biases in all
parameters is important for more precise measurement.

We also tested the convergence process for some cases with different initial pa-
rameters of the route choice model θ̄ in Figure 3.8. The horizontal axis and the ver-
tical axis of the figure indicate the difference between the convergence value and
the h-th estimated value of θ and σ, respectively. We use the two cases discussed
above: (a) θ̄ = [−0.1,−2,−1.5,−4] and (b) θ̄ = [0, 0, 0, 0], and additional two cases:
(c) θ̄ = [−1.5,−0.1,−2,−10] and (d) θ̄ = [10, 10, 10, 10]. In all cases, regardless of
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TABLE 3.2: Structural estimation results

Input: θ̄ = [0, 0, 0, 0] (No information)
One-way Structural Estimation

TRUE Estimates abs(diff.*) t-value Estimates abs(diff.) t-value
θ1 -0.1 0.002 0.102 0.101 -0.064 0.036 -2.562
θ2 -2 -0.755 1.245 -4.164 -1.727 0.273 -6.882
θ3 -1.5 -1.312 0.188 -4.772 -1.046 0.454 -3.519
θ4 -4 -1.892 2.108 -8.864 -3.519 0.481 -9.739
total error 3.643 1.244
sample 350 350
L0 -373.221 -371.887
LL -269.872 -211.308
ρ2 0.266 0.421
iteration 6

Input: θ̄ = [−1.5,−0.1,−2,−10] (Wrong values)
One-way Structural Estimation

TRUE Estimates abs(diff.) t-value Estimates abs(diff.) t-value
θ1 -0.1 -0.097 0.003 -5.312 -0.064 0.036 -2.562
θ2 -2 -0.419 1.581 -2.710 -1.727 0.273 -6.882
θ3 -1.5 0.178 1.678 0.963 -1.046 0.454 -3.519
θ4 -4 -1.204 2.796 -6.774 -3.519 0.481 -9.739
total error 6.058 1.244
sample 350 350
L0 -373.560 -371.887
LL -328.587 -211.308
ρ2 0.110 0.421
iteration 8

Input: θ̄ = [−0.1,−2,−1.5,−4] (TRUE values)
One-way Structural Estimation

TRUE Estimates abs(diff.) t-value Estimates abs(diff.) t-value
θ1 -0.1 -0.075 0.025 -2.932 -0.070 0.030 -2.762
θ2 -2 -1.816 0.184 -7.111 -1.772 0.228 -7.014
θ3 -1.5 -1.010 0.490 -3.405 -1.022 0.478 -3.462
θ4 -4 -3.469 0.531 -9.754 -3.448 0.552 -9.766
total error 1.230 1.288
sample 350 350
L0 -371.193 -371.193
LL -211.614 -211.798
ρ2 0.419 0.419
iteration 3
*diff: the difference from the true value
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FIGURE 3.8: Convergence processes

the largely difference values from the true parameters, the models converge in small
number of iterations.

3.6.2 Case study

Finally, we test the proposed method using real GPS data, in a pedestrian network.
The data from Probe Person (PP) surveys in Matsuyama city, Japan. The PP surveys
use an automatic position and time recording system based on GPS and Internet
communications using cellular phones (Hato, 2006), where accurate travel informa-
tion such as trajectories and behavior contexts can be observed throughout the sur-
vey (Hato, 2010). Figure 3.9 shows the plots of the pedestrian trajectories, and many
measurements are located in two streets, which are located at the center of the figure
and are shopping streets. Using this data, we observe routes and estimate parame-
ters of the pedestrian link-based route choice model using the structural estimation
method. The utility function when a pedestrian moves from link k to a are as follows:

u(a|k) = θ1TTa + θ2CUa + θ3DUa + θ4UTa|k, (3.26)

where CUa is the width of sidewalk and DUa is the arcade dummy variable. The link
choice probabilities are given by Equation (3.24). We use the data of 30 trips, which
are selected randomly and include 792 locations in total. We input θ̄ = [0, 0, 0, 0],
and obtain the result through 11 iterations.

One of the contributions of our link-based route measurement model is that it
can estimate the variance of GPS measurement error σ of each link. Table 3.3 reports
the average and variance values of estimated σ, and Figure 3.10 shows its spatial
distribution over the network. Street A in Figure 3.10 corresponds to a shopping
street and it has an arcade. The estimation result identifies the large variance of the
street due to the arcade. Also, link B and C is the links in front of the city hall and
the prefecture hall, respectively. These halls are often the destination of travelers. We
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FIGURE 3.9: GPS plots of pedestrians collected from Probe Person
surveys

assume that the two links have the large variances because the errors of the inside of
buildings are included. In both cases, they are assumed to be realistic results to the
Matruyama network.

TABLE 3.3: Estimation results of the measurement equation

Average Variance
σ̃a 31.622 941.021

The estimation results of the route choice model with the structural estimation
method are shown in Table 3.4. We compare the results of the one-way result and the
structural estimation result, in the same way with Section 3.6.1. One-way result has
no significant signs and very low ρ2, but structural estimation produces high value
of ρ2. In the result of the one-way model, the travel time (θ1) seems to be significant
as the preference of pedestrian route choices. However, in the result of the structural
estimation, the travel time is not significant. The width of sidewalks (θ2), the arcade
dummy variable (θ3), and the u-turn dummy variable (θ4) are effective to pedestrian
route choice behavior rather than the travel time. The results suggest as follows.
Pedestrians are likely to pass links with arcades and wide sidewalks, but in the links
with arcades, the localization is very weak. When measurement model has no prior
information or wrong information, we cannot specify routes using links with arcade,
and as the result, the travel time seems to be significant. Our method of the structural
estimation can identify the effect of arcades by iterating and updating the processes
of the route measurement and the estimation of route choice parameters.

These results indicate the usefulness of the structural estimation method and
possibility to develop discrete choice modeling with network-free data (Bierlaire and
Frejinger, 2008).
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FIGURE 3.10: Plot of estimated σ of each link

TABLE 3.4: Structural estimation result using Probe Person data

Input: θ̄ = [0, 0, 0, 0] (No information)
One-way Structural Estimation

Estimates t-value Estimates t-value
θ̃1 -0.007 -2.473 -0.001 -0.428
θ̃2 0.088 1.497 0.134 1.582
θ̃3 -0.004 -0.011 2.760 4.288
θ̃4 0.774 0.532 0.469 3.344
sample 270 270
L0 -307.608 -309.066
LL -302.174 -225.162
ρ2 0.005 0.259
iteration 11

3.7 Conclusions and discussion

3.7.1 Conclusions

In this study, we propose an method for estimating route choice models without
biases dependent on the initial parameter settings, using GPS data with measure-
ment uncertainties. We focus on that previous route choice analyses have problems
regarding parameter settings of both the route measurement model and the route
choice model. Inputting parameters including biases is likely to result in path mea-
surement errors, and as the result, the estimated parameters can be biased.

This study starts to introduce the link-based route measurement method 1) to
remove bias regarding the variance of GPS measurement error σ, which has been
assumed to be independent from spatial attributes over networks, and 2) to describe
behavioral connected paths including cyclic and detour, based on the link-based
route choice models. Based on the data decomposition, we sequentially infer the
link based on the link likelihoods, and at the same time, we estimate the variance of
GPS measurement errors as the link-specific value.

Focusing on the relationship between the parameters in the measurement model



52 Chapter 3. Structural estimation under measurement uncertainties

and the behavior model, we present a structural estimation method. The method
can remove biases caused from parameter settings of the measurement and the route
choice model as the prior by estimating simultaneously measurement and behavior
models.

As numerical results, we confirm the effectiveness of the estimation of σ and the
switching algorithm, and recognize the necessity of good θ̄ setting. The structural
estimation results show that the proposed method allows to achieve estimates close
to the true value regardless of θ̄ and refine the accuracy of link measurement.

Moreover we validate the method in the case of using real data. We use Probe
Person data collected in Matsuyama-city, Japan, and obtain the parameter estimation
results of the pedestrian route choice model. The results show that iteration process
makes estimates get better by refining path estimations. The estimated preferences
of route choices using the structural estimation method are less biased and show
the different trend from those using the biased route choice observations. Moreover,
σ, which has been assumed to be independent of spatial attributes in networks in
previous studies, is estimated for each link a ∈ A in the proposed model, and the
estimated values are realistic.

3.7.2 Discussion for the future research

In the end, we would like to discuss the future research. In this study, the link-based
route measurement model determines the link at each time, and given the inferred
links, the route choice model is estimated. Also, these process are iterated until
the route choice parameters arrive at the fixed point, by the structural estimation
method. We will extend this approach to more generalized framework. In the future
work, we develop the link-based route measurement model into the probabilistic
one, and we maximize the following likelihood function:

p(m̂1:T; σ, θ) = ∑
a1:T∈P

p(m̂1:T|a1:T; σ)p(a1:T; θ), (3.27)

where P is the set of path candidates, which is generated in the process of the link-
based route measurement model. By maximizing Equation (3.27), we can estimate
both σ and θ at the same time. For solving this problem, the development of algo-
rithms for generating path candidates is required, because the size of the path candi-
date set becomes uncountable soon and we cannot preserve it naively. Also, in this
framework, the calculation of link measurement probabilities and the estimation of
link-specific variances are repeated until the route choice parameters converge. For
dealing with the computational cost, we will apply or develop a method for effi-
ciently maximizing Equation (3.27).
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Chapter 4

Dynamic sequential route choice
model

In this chapter, we propose a dynamic sequential route choice model, which is a gen-
eralized formulation of global and myopic decisions in route choice behavior. A part
of this work was presented as Oyama, Y., Chikamatsu, K., Shoji, Y., Hato, E., Koga, M.,
2016. Trajectory-oriented traffic management using sequential discount rate: a case study
of the Great East Japan Earthquake, 11th ITS European Congress, Glasgow, Scotland. The
content of this chapter has been submitted to Transportation Research Part C: Emerging
Technologies as Oyama, Y. and Hato, E., 2017. Dynamic sequential route choice model for
gridlock network analysis.

Emerging sensing technologies such as probe vehicles equipped with Global Po-
sitioning System (GPS) devices on board provide us real-time vehicle trajectories
that are helpful for the understanding of the cases, which are significant, but diffi-
cult to observe because of its infrequency, such as gridlock networks. On the premise
of this type of emerging technology, this paper propose a novel route choice model
that describes route choice behavior, both in ordinary networks, where drivers ac-
quire spatial knowledge of networks through their experiences, and in extraordi-
nary networks, which are situations that drivers rarely experience, and applicable
to real-time traffic simulations. In extraordinary networks, drivers do not have any
experience or appropriate information. In such a context, drivers have little spa-
tial knowledge of networks and choose routes based on dynamic decision mak-
ing, which is sequential and somewhat forward-looking. In order to model these
decision-making dynamics, we propose a dynamic sequential route choice model
using a sequential discount rate, which is a discount factor of expected future util-
ity. Through illustrative examples, we show that the sequential discount rate re-
flects drivers’ decision-making dynamics, and myopic decisions can confound the
network congestion level. We also estimate the parameters of the proposed model
using a probe taxis’ trajectory data collected on March 4, 2011 and on March 11, 2011,
when the Great East Japan Earthquake occurred in the Tokyo Metropolitan area. The
results show that the sequential discount rate has a lower value in gridlock networks
than in ordinary networks.

Keywords: Route choice model, Dynamic discrete choice model, Sequential discount
rate, Urban gridlock, Trajectory data, Probe vehicles
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4.1 Introduction

A gridlock network is an extraordinary situation that drivers do not usually experi-
ence, unlike congestion due to accidents, construction, rush hour, and special events.
In gridlock networks, drivers cannot make global decisions for their route choice
because of which they travel in confusion. These extraordinary route choice mecha-
nisms may confound the network situation. Therefore, technologies to observe and
analyze these behaviors are needed.

The mainstream method of traffic congestion control is the crossing or area con-
trol (Daganzo, 2007; Geroliminis and Daganzo, 2008) that is based on traditional
vehicle detection sensors, but this method cannot deal with network-based conges-
tion spread, which is critical in dealing with gridlock networks. On the other hand,
emerging sensor technologies such as probe vehicles equipped with global position-
ing system (GPS) devices are helpful to understand the infrequent but significant be-
havior of each vehicle in gridlock networks. Using certain type of vehicles as probe
vehicles, such as taxis or buses, has increased the monitoring capability (Dailey and
Cathey, 2002). This emerging sensor technique is now ubiquitous and provides real-
time information of vehicle trajectories, while traditional vehicle detection sensors
provide only flow or density at fixed locations.

In this paper, on the premise of this type of emerging technology, we aim at
developing a novel route choice model applicable to a trajectory-oriented frame-
work for gridlock network analysis and management (Figure 4.1). The management
method is based on traffic simulations using trajectories from real-time and ubiqui-
tous technologies in contrast to the previous route choice models that require the
choice set generation (e.g., Bekhor, Ben-Akiva, and Ramming, 2006) and the infor-
mation regarding entire trips, including origin and destination for estimating pa-
rameters. Herein, we propose a dynamic sequential route choice model that does
not require the information of entire trips to estimate parameters. Using the model,
in the framework of Figure 4.1, the parameter estimation is implemented at each
time period, because we assume that not only network situations but also behav-
ioral preferences can change at different time periods.
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Moreover, previous route choice models describe only the route choice behavior
of habitual drivers in daily networks. In a route choice modeling context, it is as-
sumed that drivers usually acquire spatial knowledge of networks through direct en-
vironmental experiences (Gale et al., 1990). That is, they postulate that drivers have
global spatial cognition to evaluate the path utilities of all alternatives. Contrary to
such a daily route choice model, in extraordinary situations such as natural hazards
or urban gridlocks, drivers’ route choice behavior has distinctive features. They are
non-habitual situations where drivers’ have no experience. Moreover, drivers can-
not gain appropriate information because of network disarray, as a result, they have
little spatial knowledge of networks. In such a situation, route choice decisions be-
come sequential and somewhat forward-looking, that is, drivers choose routes based
on dynamic decision making.

This study aims at developing a route choice model, which describes both route
choice behavior in ordinary networks and gridlock networks, and focuses on the
decision-making dynamics in sequential route choice models. Existing sequential
route choice models (e.g., Baillon and Cominetti, 2008; Fosgerau, Frejinger, and Karl-
strom, 2013) formulate route choice behavior based on sequential link choices con-
veniently; however, they do not discuss the serializability of decisions and result in
the equivalent path probability to the path-based MNL model. To the contrary, we
deal with the dynamic sequential decisions of drivers, which mean that the decisions
at possible future states affect the decision at the current state. For this reason, we
apply the concept of a discount factor in the dynamic discrete choice model (Rust,
1987) and formulate a dynamic sequential route choice model, where the dynamics
is within a trip. Note that we model the dynamics of decisions as the mechanism of
route choice behavior, as opposed to dealing with the route switching/adaptation
behavior in time-dependent networks as previous dynamic route choice models do:
therefore, the targets are different from each other. It is possible to combine both
the dynamics of decisions and networks; however, in this study we concentrate on
the former and assume a static and deterministic network to clarify the impact of
decision-making dynamics in route choice models.

We also estimate parameters of the route choice model as a disaggregate dis-
crete choice model, rather than macroscopic analyses of extraordinary networks
(Daganzo, 2007; Mahmassani, Saberi, and Zockaie, 2013).Real-time parameter es-
timation and traffic simulations are significant for gridlock network management;
however, path-based route choice models require the information on entire paths of
trips and choice set generations. On the other hand, sequential route choice mod-
els require the information of only link transitions and the destination, for parame-
ter estimation, and these are applicable to emerging real-time sensing technologies.
Moreover, we focus on the change of route choice mechanisms in each network con-
dition and compare the estimation results among multiple time periods over two
very different days (ordinary/extraordinary) using probe-vehicle data. One of the
days is that of the Great East Japan Earthquake.

The paper is organized as follows. In Section 4.2, we present a literature review
of dynamic route choice models, which describe the route decision-making process
en-route, as opposed to pre-trip route choice models and sequential link choice mod-
els. In Section 4.3, we formulate a route choice model as a simple extension of the
recursive logit model (Fosgerau, Frejinger, and Karlstrom, 2013) using the concept of
a sequential discount rate. In Section 4.4, we give illustrative examples to show the
difference between route choice models based on global decision and those based
on myopic decisions. In Section 4.5, we then discuss the comparison of estimation
results using probe-vehicle data in the Tokyo Metropolitan area. Conclusions and
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discussion of future research directions are provided in the end.

4.2 Literature review

Most existing route choice models describe the route choice behavior of habitual
drivers in deterministic networks, e.g., C-logit (Cascetta et al., 1996), Link-Nested
Logit (Vovsha and Bekhor, 1998) and Path Size Logit (Ben-Akiva and Bierlaire, 1999).
In these studies, drivers choose routes pre-trip and do not change the routes en-route:
that is, the dynamics of route choice behavior is ignored. We review here dynamic
route choice models, which describe the route decision processes en-route rather than
pre-trip route choices, and classify them into two kind of models: route choice models
in dynamic networks and sequential link choice models. We summarize dynamic
route choice models in Table 4.1.

TABLE 4.1: Dynamic route choice models

Model type Authors Network Choice set Routing
Decision 
making

Parameter estimation
(Data requirement)

(O, D, whole paths)

(O, D, whole paths)

(O, D, whole paths)

(D, link transitions)

(D, link transitions)

Static route choice model Cascetta(1996), 
Ben-Akiva and Bierlaire (1999)

Static/Deterministic Given Pre-trip Global

Route switching model Ben-Akiva(1991), 
Mahmassani and Liu(1999)

Dynamic/Deterministic Given Pre-trip+En-route Global

Routing policy model Gao(2005), Gao et al.(2010) Dynamic/Stochastic Given Pre-trip+En-route Global

Markov chain model Sasaki(1965) Static/Deterministic No enumeration En-route Myopic

Sequential route choice model Gentile and Papola(2006),
Baillon and Cominetti (2008)

Static/Deterministic No enumeration En-route Global

Recursive logit model Fosgerau et al.(2013), 
Mai et al.(2015), Mai (2016)

Static/Deterministic No enumeration En-route Global

  -scaled recursive logit model !is study Static/Deterministic No enumeration En-route Global+
Myopic

4.2.1 Route choice models in dynamic networks

In the context of route choice model, "dynamics" usually indicates that network con-
ditions are stochastic and dependent on real-time information (e.g., Ben-Akiva, De
Palma, and Isam, 1991; Abdel-Aty, Kitamura, and Jovanis, 1997; Mahmassani and
Liu, 1999; Dia, 2002; Abdel-Aty and FathyAbdalla, 2006) or uncertainty (e.g., Peeta
and Yu, 2005; Palma and Picard, 2005; Gao, Frejinger, and Ben-Akiva, 2010). Dy-
namic route choice models describe the route switching behavior from a previous
chosen or experienced route and have been applied in DYNASMART (Mahmas-
sani, 2001), DynaMIT (Ben-Akiva et al., 1997; Ben-Akiva et al., 2002) and EVAQ (Pel,
Bliemer, and Hoogendoorn, 2009). Route choice studies in networks with risks have
incorporated the concept of decision rules, including elimination by aspects (Tver-
sky, 1972), fuzzy logic (Zadeh, 1965) and cumulative prospect theory (Tversky and
Kahneman, 1992). Morikawa and Miwa, 2006 and Li, Miwa, and Morikawa, 2014
have analyzed driver’s decision process. We can see the review of travel behavior
modeling from the viewpoint of evacuation behavior in Pel, Bliemer, and Hoogen-
doorn, 2012.

However, previous dynamic route choice models deal with the route choice be-
havior in habitual networks, where drivers have spatial knowledge based on en-
vironmental experiences, regardless of whether there are risks or not. In such a
context, route choice behavior is based on global spatial cognition over networks
and described as path-based choice, which is a joint choice of the links identify-
ing a path. In this study, to describe route choice behavior not only in habitual but
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also non-habitual networks, where drivers have little experiences or network knowl-
edge, we model the dynamics of decision making within a trip rather than dynamics
of network conditions.

4.2.2 Sequential route choice models

Decision making dynamics refers to the drivers’ forward-looking decision mech-
anism. Sequential route choice models (e.g., Gentile and Papola, 2006; Baillon and
Cominetti, 2008; Fosgerau, Frejinger, and Karlstrom, 2013) assume that drivers reach
destinations through successive link choices rather than choosing jointly all the links
identifying a path. In these studies, path choice probability is described as a product
of link transition probabilities as follows:

P(σ = [a1, ..., aJ ]) =
J−1

∏
j=1

p(aj+1|aj), (4.1)

where a path σ is a sequence of links a1, ..., aJ ∈ A and A is the set of all links of the
network. This assumption that drivers choose the next link at each intersection is re-
alistic, especially in non-habitual networks. Moreover, Baillon and Cominetti, 2008
and Fosgerau, Frejinger, and Karlstrom, 2013 can consider all possible paths includ-
ing cyclic ones, which are also assumed to be important in gridlock networks. Note
that the idea of using link transition probabilities was proposed in the context of
traffic assignment (Sasaki, 1965; Bell, 1995; Akamatsu, 1996; Baillon and Cominetti,
2008) to avoid the path enumeration. Fosgerau, Frejinger, and Karlstrom, 2013 link
the idea to the infinite multinomial logit model in the context of route choice anal-
ysis, using dynamic discrete choice models (Rust, 1987). We briefly introduce the
recursive logit (RL) model proposed by Fosgerau, Frejinger, and Karlstrom, 2013
here, since our model is an extension of the RL model.

Consider a directed connected graph G = (A,N ), where A is the set of links and
N is the set of nodes. It is assumed that a driver chooses a link aj+1 in the set of
outgoing links A(aj), which maximizes the sum of instantaneous utility u(aj+1|aj)
associated with each link pair and expected downstream utility to destination link d
Vd(at+1) that is given as a value function and formulated via the Bellman equation
(Bellman, 1957) as follows:

Vd(aj) = E
[
maxaj+1∈A(aj){v(aj+1|aj; θ) + Vd(aj+1) + µε(aj+1)}

]
∀aj ∈ A, (4.2)

where v(aj+1|aj; θ) = v(xat+1|at ; θ) is the deterministic utility component, xat+1|at is
a vector of observed characteristics of the link pair (aj, aj+1) and θ is an unknown
parameter vector to be estimated. It is the main difference of the RL model from
previous sequential link choice models (e.g., Gentile and Papola, 2006; Baillon and
Cominetti, 2008) that it allows to estimate its parameters by providing an interpreta-
tion of the model as a dynamic discrete choice model. The random term ε is assumed
to be an i.i.d extreme value I with zero mean, the dummy link for the destination d
has no successor, and the union of the link set and the dummy link is denoted as
Ã = A∪ d. The probability of choosing a link aj+1 given state aj is:
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p(aj+1|aj) =
e

1
µ{v(aj+1|aj)+V(aj+1)}

∑a′j+1∈A(aj) e
1
µ

{
v(a′j+1|aj)+V(a′j+1)

} , (4.3)

which is the multinomial logit model. Path probability in the RL model is also given
by Equation (4.1). By the assumption of the random term distribution, Equation (4.2)
is re-formulated as a logsum:

Vd(aj) =

{
µ log ∑aj+1∈A δ(aj+1|aj)e

1
µ {v(aj+1|aj)+Vd(aj+1)}, aj ∈ A

0, aj = d,
(4.4)

where δ(aj+1|aj) is an indicator that equals one if aj+1 ∈ A(aj) and zero otherwise.
Since the destination link d has no outgoing link, Vd(d) is set to zero.

In order to calculate the probability of link choices, the Bellman equation must
be solved, and Equation (4.4) is transformed by taking the exponential,

e
Vd(aj)

µ =

{
∑aj+1∈A δ(aj+1|aj)e

1
µ {v(aj+1|aj)+Vd(aj+1)}, aj ∈ A

1, aj = d.
(4.5)

Moreover, the matrix z(|Ã| × 1) and M(|Ã| × |Ã|) are defined with entries

zaj = e
Vd(aj)

µ , Majaj+1 = δ(aj+1|aj)e
v(aj+1 |aj)

µ (4.6)

The value functions are the solutions to the following equation:

z = Mz + b (4.7)

where b(|Ã| × 1) is a vector with zero value for all states except for the destination,
where it equals 1. The value functions are evaluated by solving the system of linear
Equation (4.7), and in Fosgerau, Frejinger, and Karlstrom, 2013, it is solved using the
inverse matrix of I − M.

The RL model describes the decision-making dynamics, which is a sequential
and forward-looking decision, by incorporating the value function into the link util-
ity function. However, it assumes global spatial cognition similar to previous pre-trip
route choice models, because it is known that the path probabilities of the RL model
correspond to those of the pre-trip MNL model. In other words, drivers choose routes
with perfect information of all states over networks.

This study focuses on the parameter of the discount factor in dynamic discrete
choice models (e.g., Rust, 1987). The review of studies of dynamic discrete choice
models can be found in Cirillo and Xu, 2011, and the models describe the sequen-
tial decision in the time axis. In the context of dynamic discrete choice models, the
expected future utility is described as a "discounted" utility, because decision mak-
ers regard the future states as uncertain and do not have perfect information. We
assume the route choice behavior in non-habitual networks is similar to such a sit-
uation. In the context of route choices, the uncertainty of the future state means
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D

D

FIGURE 4.2: Decision making dynamics with different sequential dis-
count rates

the ambiguity or lack of spatial knowledge, and a driver cannot evaluate utilities
of distant space with the same weight with the utility of current links. It is natural
that in extraordinary networks, such as urban gridlocks drivers find ways to get out
of congestions anyway. In this study, we define the discount factor in the dynamic
discrete choice model as a "sequential discount rate", which is the parameter that
represents decision-making dynamics, and incorporate it into the sequential route
choice models.

4.3 β-scaled recursive logit model

In this section, we present the concept of a sequential discount rate and the formula-
tion of a route choice model referred to as the β-scaled recursive logit (β-SRL) model.
Our model is an extension of the RL model that is based on sequential link choices.
Note here that we model the route choice behavior in static and deterministic net-
works to clarify and emphasize the impact of the sequential discount rate.

4.3.1 Sequential discount rate

We first present the concept of sequential discount rate β. It is a generalization of
drivers’ decision-making dynamics and also a representation of the degree of spatial
cognition of networks as a parameter. The sequential discount rate β is assumed to
be between zero and one, and can be estimated together with other parameters θ. A
large value of β means that drivers evaluate the future expected utility with great
weight. Figure 4.2 shows the difference of drivers’ decision making with different β
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in the context of a sequential route choice model. When β is one, drivers evaluate
the expected utility of forward space V and the instantaneous utility of the next link
v with equal weights, that is, route choice behavior depends on global decision over
networks. On the other hand, when β is zero, drivers myopically choose the next
link based only on its instantaneous utility v. In this case, the utility and probability
of choosing link aj+1, given a state link aj are respectively:

u(aj+1|aj) = v(aj+1|aj) + µε(aj+1) (4.8)

and

p(aj+1|aj) =
e

1
µ v(aj+1|aj)

∑a′j+1∈A(aj) e
1
µ v(a′j+1|aj)

. (4.9)

Equation (4.9) is the transition probability of first-order Markov chain models and
indicates that drivers have only visible link conditions as the information for de-
cision making. We define this model as a myopic link choice (MyL) model in this
study.

4.3.2 Model formulation

Using the sequential discount rate, we re-formulate the value function of Equation
(4.2) as follows:

Vd(aj) = max
aj+1∈A(aj)

E

[
∞

∑
t=j

βt−ju(at+1|at; θ)

]

= E

[
max

aj+1∈A(aj)
{v(aj+1|aj; θ) + βVd(aj+1) + µε(aj+1)}

]
, (4.10)

where t ∈ N0 is the number of decision-making from the origin link and β (0 ≤ β ≤
1) is the sequential discount rate of the value function. The transition probability
from link aj to aj+1 is given by the multinomial logit model,

p(aj+1|aj) =
e

1
µ{v(aj+1|aj)+βV(aj+1)}

∑a′j+1∈A(aj) e
1
µ

{
v(a′j+1|aj)+βV(a′j+1)

} . (4.11)

The path probability of the β-SRL model is also given by Equation (4.1).

4.3.3 Solving the Bellman equation

The Bellman equation (4.10) is transformed by taking a logsum and exponential form
in the same way with Equation (4.4) and (4.5),

e
Vd(aj)

µ =

{
∑aj+1∈A δ(aj+1|aj)e

1
µ {v(aj+1|aj)+βVd(aj+1)}, aj ∈ A
1, aj = d.

(4.12)
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Based on the recursive logit model, we define the matrix z(|Ã| × 1) and M(|Ã| ×
|Ã|) with the entries of Equation (4.6). In our case, the value functions are the so-
lutions to the following system of non-linear equations with the sequential discount
rate,

zaj =

{
∑aj+1∈A Majaj+1

(
zaj+1

)β
, aj ∈ A

1, aj = d.
(4.13)

This equation is written in matrix notations as:

z = MX(z) + b, (4.14)

where X(z)(|Ã| × |Ã|) is the matrix with entries X(z)aj =
(

zaj

)β
. We solve Equa-

tion (4.14) by iterative computations until the value function arrives a fixed point
(the use of the same solution method is found in e.g., Mai, Fosgerau, and Frejinger,
2015). We first initialize the vector z(0) and then update as z(1) = MX(z(0)) + b. If z
converges, i.e., it satisfies |z(n+1) − z(n)| < γ where γ is a convergence tolerance, we
finish the iteration, and otherwise, we update z using Equation (4.14). As mentioned
in Fosgerau, Frejinger, and Karlstrom, 2013, it depends on the balance between the
network structure and the size of the instantaneous utilities v(aj+1|aj). Cyclic struc-
tures in networks may cause the divergence of the value functions. In this paper,
this is discussed in more detail in Section 4.4.3.

Note here that this model corresponds, as special cases, to the recursive logit
model when β equals one and to the myopic link choice model when β equals zero.
Therefore, the proposed model can be assumed as a generalized version of these pre-
vious models. We also note that we do not consider the correlation structure among
path alternatives, which is addressed in e.g., Mai, Fosgerau, and Frejinger, 2015 and
Mai, 2016, though our model can be developed in the same way with the literatures.
In this paper, we would like to focus on the effect of the sequential discount rate.

4.4 Illustrative examples

In this section, we present illustrative examples to show the difference between our
model and previous route choice models. We use simple networks, where the only
attribute in the instantaneous utility v(a) is the link cost, and its parameter is set
θcost = −1 for simplicity.

4.4.1 Path probabilities

The first example uses the network of Figure 4.3(a), and we have three alternative
paths in Figure 4.3(b): [1,2,4] (path 1), [1,3,4] (path 2), and [1,3,2,4] (path 3). The
number on each link is the link cost. We denote the path probabilities as P1, P2 and
P3, respectively.

In order to compare the path probabilities, given by the model incorporating the
sequential discount rate, to previous route choice models, we calculated the prob-
ability of the pre-trip MNL model, the recursive logit model (Fosgerau, Frejinger,
and Karlstrom, 2013), the MyL model defined in the previous section, and the β-SRL
model. Table 4.2 shows the results. The probabilities of MNL, RL and β-SRL with
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FIGURE 4.3: (a) Example network and (b) path alternatives

β = 1 give the same results; P1 and P2 are equivalent and higher than P3. Since path-
based costs of route 1 and 2 are lower than that of route 3, these models reflect the
global decision making of travelers. As proven in Akamatsu, 1996 and mentioned in
Fosgerau, Frejinger, and Karlstrom, 2013, the path probabilities of the RL model cor-
respond with those of the path-based MNL model if the universal choice set, which
is the set of path 1, 2 and 3 in this case, can be defined. This result indicate that
those of the β-SRL model with β = 1 are also equivalent. On the other hand, the
result given by β-SRL with β = 0.5 shows the difference between P1 (0.206) and P2
(0.397), and in the case of MyL and β-SRL with β = 0, P3 is the highest of all routes.
The smaller β becomes, the more link 1-3 and 3-2 are likely to be chosen at node 1
and 3, respectively, and as a result of sequential decisions, the probability of route 3
becomes higher. While previous path-based route choice models could not describe
such a myopic decision, the model proposed in this study generalizes the decision-
making dynamics as the parameter of the sequential discount rate, and it includes
the RL and the MyL models as special cases, as the results show.

To analyze the impact of β on travelers’ route choice behavior in detail, we report
the relationship between β and path probabilities in Figure 4.4. Despite that the
path-based costs of route 1 and 2 are equivalent, P2 is always equal to or higher
than P1, because there is difference between the costs of links 1-2 and 1-3, which
are connected with link o. It is realistic that the difference of the costs of the first
links changes the selectivity of routes; therefore, the result represents a contribution
of our model to previous route choice models, which evaluate the probabilities of
route 1 and 2 equally. Moreover, in Figure 4.4, we show the fluctuations of the three
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TABLE 4.2: Comparison of path choice probabilities given by several
route choice models applied to the example in Figure 4.3

β P1 P2 P3
MNL - 0.422 0.422 0.155
RL - 0.422 0.422 0.155
β-SRL 1 0.422 0.422 0.155
β-SRL 0.5 0.206 0.397 0.397
β-SRL 0 0.119 0.237 0.644
MyL - 0.119 0.237 0.644
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FIGURE 4.4: Path probabilities of the three path alternatives of Figure
4.3

path probabilities when β changes. With respect to β, P2 monotonically increases
and P3 monotonically decreases. The figure indicates that β has a large impact on
not only path probabilities but also their ranking: P3 > P2 > P1 when 0 ≤ β < 0.5,
P2 > P3 > P1 when 0.5 ≤ β < 0.75 and P2 ≥ P1 > P3 when 0.75 ≤ β ≤ 1. The fact
that P3 is the largest of the three suggests that most of travelers make decisions at
each node and choose the links with smaller instantaneous costs; link 1-3 at node 1,
link 3-2 at node 3, and link 2-4 at node 2. Assuming that link costs mean the level
of congestion, it seems to be likely that travelers choose links myopically in order
to avoid the congestion. This result indicates that β-SRL model can describe both a
myopic decision and a global decision in route choice behavior.

In order to examine the mechanism of path probability change, we show the
values of Vd(a) (Figure 4.5a), βVd(a) (Figure 4.5b) and v(a) + βVd(a) (Figure 4.5c)
of each link a ∈ [o, 1-2, 1-3, 2-4, 3-2, 3-4]. V and βV of link 2-4 and 3-4 are always
log(exp(0)) = 0 because the unique outgoing link of these links is link d. In this case,
the deterministic component of link transition utility v depends on only link cost;
therefore, the value functions of links that share the sink node are equal to each other
in the network of Figure 4.3, where V(1− 2) = V(3− 2). The link choice probability
of the β-SRL model is given by exp(v + βV)/ ∑ exp(v + βV) and dependent on (v +
βV), which is the sum of instantaneous utility v and the product of the sequential
discount rate and value function βV. Comparison between (v + βV) of link 1-2 and
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1-3 indicates that the value of link 1-2 is always higher than that of link 1-3, but the
difference becomes gradually smaller as β becomes large. On the other hand, the
order of (v + βV) of link 3-2 and 3-4 reverses at β = 0.5, and the reverse causes the
inversion of the order of P2 and P3.

The results of path probabilities demonstrates that the sequential discount rate in
the β-SRL model reflects the decision-making dynamics. The smaller β is, the more
important myopic decision (instantaneous utility) is regarded. In contrast, the larger
β is, the more significant expected downstream utility is. It also can be assumed
that the sequential discount rate indicates the spatial heterogeneity of link cost cog-
nition, because drivers consider future expected utility with small weight when the
sequential discount rate is small. Moreover, the β-SRL model can describe the global
decision as well as previous models, since the β-SRL model includes the RL model
as a special case.

4.4.2 Link flows

In order to analyze the effect of the sequential discount rate on prediction of traf-
fic flow, we report on the results of traffic assignment, using a simple grid network
in Figure 4.6. We calculated link flows using the assignment method based on link
transition probabilities, which are detailed in Sasaki, 1965 and Akamatsu, 1996. Pan-
els in the top row indicate the three network settings used for assignments, where
the number on each link is the link cost. Network 2 and 3 are the networks with
some high cost links and low cost links compared to network 1, respectively. The
lower part in Figure 4.6 shows the assignment results that are based on link transi-
tion probabilities given by the β-SRL model with different sequential discount rates
(β = 0, 0.5, 1), where the line weight indicates the link flow. In this example, we set
the OD flow to 1000. In the case of β = 1, the assignment results reflect the effect
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FIGURE 4.6: Assignment results given by the β-SRL model with dif-
ferent β

of the link cost changes, where the links with cost 4 have little flow in network 2.
The links with zero cost have large flow in network 3, because when β = 1, travelers
consider path-based cost from origin to destination, rather than separated link costs.
The smaller β becomes, the more flow we can see on links with cost 4 in network 2.
Moreover, when β = 0, the assignment results are the same regardless of network
settings in these examples. When β = 0, travelers myopically choose links. There-
fore, larger flows are assigned to high cost links, which drivers should ordinarily
avoid to travel in network 2, and smaller flows are assigned to zero cost links in net-
work 3. The fact that larger flows are assigned to high cost links shows that myopic
route choice decisions can worsen the congestion of networks, and it may suggest
the mechanism of gridlock occurrence.

We conclude that the sequential discount rate has a large impact on predicted
link flows, and existing route choice models with global decision may cause erro-
neous predictions in terms of network flow, and, therefore, the estimation of β using
real data is useful for real-time traffic management.
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4.4.3 Cyclic paths

The advantage of sequential route choice models compared to general route choice
models is that we do not need path enumeration and can consider all possible paths
including cyclic paths. In the case of gridlock networks, where route choice behavior
is confusing, the generation of cyclic paths, which pass the same node more than
once, is an important issue. Cyclic paths are generally assumed to be chosen, not
under global decisions, but myopic decisions in route choice behavior. In order to
analyze the impact of the sequential discount rate on the selectivity of cyclic paths,
we simulated the network of Figure 4.7(1). Instantaneous utility associated with the
link pair (aj, aj+1) is given by v(aj+1|aj) = θcostxaj − 10xaj+1|aj

, where xaj is the link
cost, and xaj+1|aj

is the u-turn dummy variable that equals one, if the source node of
link aj corresponds to the sink node of link aj+1, and zero otherwise.

We first the coefficient of link costs θcost to −2. With respect to every β, we have
100 sets of 1000 path observations, and we present the maxima, the minima and the
means of the ratio of cyclic paths, in Figure 4.8. When β is large (close to one), there
are few cyclic paths because travelers choose routes with global decision making.
Maxima, minima and means are zero when β = 1 and 0.9. This result indicates
that no cyclic path is generated by the RL model, which is the special case of β-SRL
when β = 1, in this network. As we decrease β, we first observe cyclic paths when
β = 0.8: the maximum equals 0.001. Further, there are sets that contain no cyclic path
(the minima are equal to zero), when β is equal to or greater than 0.6. The smaller
β becomes, the more cyclic paths are observed, and when β = 0 the maximum is
0.253, the minimum is 0.200 and the mean of ratio of cyclic paths is 0.225.

In order to examine the relationship between the values of parameters and the
generation of cyclic paths, we observe 10000 paths for each parameter set of θcost
and β and report the maximum number of cyclic structures in a path among the
observations in Table 4.3. When the absolute values of both θcost and β are large,
no cyclic path is contained in the 10000 observations, where the results are shown
as 0 in Table 4.3. On the other hand, when the absolute value of θcost or that of β is
small, a path that includes two figures of cyclic structures is observed. Paths with a
number of cyclic structures are observed, especially when β is close to one and θcost
is close to zero. In the case of β = 1 and θcost = −0.1, an observed path includes
6398 cyclic structure, and in the case of β = 1 and θcost = 0, Equation (4.14) has no
solution and we cannot observe paths.

When β = 1, the β-SRL model corresponds to the RL model. The condition of
solution existence of the RL model is that the incidence matrix M is a convergence
matrix, i.e., the following equation is satisfied:

ρ(M) = max
h

{|λh|} < 1, (4.15)

where λh is the eigenvalue and ρ(M) is the spectral radius of matrix M. The matrices
M with θcost equal to or smaller than −0.1 satisfy Equation (4.15); however, when
β = 0, the spectral radius of M is 1.189, which is larger than one. In this case, the
value functions diverge due to the cyclic structures with large utilities. When β is
smaller than one, Equation (4.14) has the solution even though Equation (4.15) is
not satisfied, in the network of Figure 4.8(1). This is because the value functions are
discounted by the sequential discount rate β and do not diverge.

These results demonstrate that the sequential discount rate, which describes de-
cision making dynamic in route choices, has a large impact on the selectivity of cyclic
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FIGURE 4.7: Simulation network with cycles
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FIGURE 4.8: Ratio of cyclic paths in 1000 observations

paths. Especially in non-habitual networks, such as gridlock networks, it is thus im-
portant that the proposed model can simulate the generation of cyclic paths.

4.5 Parameter estimation

In this section we present parameter estimations given by the β-SRL model. First, we
discuss the estimation methods for the β-SRL model, and then we present validation
results using simulated route choice data. Finally, we present the estimation results
using real observations.
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TABLE 4.3: The maximum number of cyclic structures in a path of
10000 observations

sequential discount rate β
θcost 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
-2 0 0 0 3 4 6 10 22 22 28 30

-1.9 0 0 3 4 5 8 12 20 22 30 32
-1.8 0 0 1 4 7 12 20 26 30 29 30
-1.7 0 2 1 8 4 12 16 22 28 34 30
-1.6 0 0 3 4 7 12 14 20 28 28 34
-1.5 0 1 1 4 7 11 16 22 28 28 28
-1.4 0 3 4 5 8 16 20 22 32 30 34
-1.3 1 3 4 4 16 14 22 30 24 30 44
-1.2 0 3 4 8 10 12 16 20 26 24 34
-1.1 1 4 7 6 8 16 22 24 26 28 34
-1 3 4 6 8 12 18 26 24 28 28 32

-0.9 3 4 7 8 11 20 36 26 24 32 32
-0.8 4 10 8 11 12 18 24 22 38 30 32
-0.7 4 8 8 14 20 26 30 28 38 42 30
-0.6 5 10 12 18 16 24 20 26 24 30 32
-0.5 7 10 16 16 22 26 32 32 34 36 40
-0.4 16 20 18 20 28 30 32 40 32 30 32
-0.3 23 24 32 32 40 44 30 32 38 28 34
-0.2 44 50 42 36 40 36 32 26 28 30 32
-0.1 6398 80 56 54 38 38 46 30 28 28 28

0 - 216 80 46 42 32 44 48 30 34 24
*-: The Bellman equation has no solution.

4.5.1 Maximum likelihood estimation

Parameters of the β-SRL model are estimated by the method of maximum likelihood
estimation. The log-likelihood function LL is defined as follows:

LL(θ, β) = ln
N

∏
n=1

Pn(σn = [a1, ..., aJn ])

=
N

∑
n=1

Jn−1

∑
j=1

ln pn(aj+1|aj)

=
N

∑
n=1

Jn−1

∑
j=1

1
µ
(vn(aj+1|aj) + βVd

n (aj+1)− Vd
n (aj)), (4.16)

where N is the number of paths, and Jn is the number of links included in path
n. As Equation (4.16) shows, the link choice probability p depends on the value
function V, which has a recursive structure as shown in Equation (4.2). That is, p
includes an endogenous variable, and we have to solve the fixed point problem of
the parameters. In the field of economics, several estimators for dynamic discrete
choice models have been proposed. One can see the reviews in Aguirregabiria and
Mira, 2010. Most methods are two-step iterative solutions, e.g., the nested fixed
point (NFXP) algorithm (Rust, 1987), and the nested pseudo likelihood (NPL) al-
gorithm (Aguirregabiria and Mira, 2002). Recently, Su and Judd, 2012 proposed a
constrained optimization method for structural estimation, which is referred to as
the mathematical programming with equilibrium constraints (MPEC) approach.

In order to estimate β, we adopt a two-step iterative method, which includes the
first step for maximization of the log-likelihood function and the second step is for
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calculating the value functions, because the estimation of β includes a problem re-
garding parameter identification in the case of simultaneous estimation, such as the
MPEC approach. NPL does not solve the fixed point problem of the value functions
in the second step. Therefore, it is useful when the value functions are costly to eval-
uate. However, in the case of dynamic sequential link route choice models, the first
step takes much more time because the number of links is usually huge. In this study,
we use another approach, which is also based on two-step procedures: 1) set m = 0
and initialize the value functions V(0) and the parameters θ(0), β(0), 2) maximize the
log-likelihood function and solve the parameters θ(m+1), β(m+1), 3) solve the Bellman
equation and update the value functions V(m+1), and 4) finish the algorithm if the
parameters and the value functions satisfy |θ(m+1) − θ(m)| < ξ, |β(m+1) − β(m)| < ξ ′,
and |V(m+1) − V(m)| < ξ ′′, where ξ, ξ ′ and ξ ′′ are the convergence tolerances, return
step 2 otherwise.

4.5.2 Simulation analysis

In order to confirm the estimability of parameters in the β-SRL model, we present
a simulation analysis using the cyclic network of Figure 4.7(2) and simulation data
is generated on the five conditions in Table 4.4. The instantaneous utility associated
with the link pair (aj, aj+1) is given by v(aj+1|aj) = θcostxaj − 10xaj+1|aj

, where xaj is
the link cost and xaj+1|aj

is a u-turn dummy variable that equals one, if the source
node of link aj corresponds to the sink node of link aj+1, and zero otherwise. In this
case, θ and β are estimated.

Table 4.5 shows the estimation results of the β-SRL model using simulation data.
Note that we do not estimate β directly, but γ, where the relationship between them
is β = exp(γ)/(1 + exp(γ)), and evaluate β using γ. For this reason, the table have
no information of the standard errors of β.

Regarding the estimated θ, the difference from the true value is the maximum
in dataset 5 (0.060), and in all datasets, we get the estimates close to this true value.
We also can estimate γ and evaluate β, and the results show close values to each
true value. In the case of dataset 1, the difference between estimated β and true β is
0.070 and larger than the other datasets. All estimates of θ and γ are not significantly
different from their true values at the 5% significance level.

4.5.3 Case study

We used data of vehicle trajectories in the network of the Tokyo Metropolitan area,
collected by the Vehicle Information and Communication Systems Center, which is a typ-
ical corporation collecting and providing driver’s road traffic information. The data
includes vehicle trajectories of taxis, as sequences of consecutive geo-referenced co-
ordinates and the corresponding timestamps, which are typically recorded every
few seconds. It is important to note that this emerging sensor technology, using taxis,
enabled us to observe trajectories anytime, therefore the data includes the traces on
March 11, 2011, which is the day of the Great East Japan Earthquake. We use the
data on that day, and the day a week before (March 4, 2011) for comparison. They
include 33,858,752 locations and 872,070 trips. We here briefly introduce a summary
of the Great East Japan Earthquake.

At 14:46 on March 11, 2011, a magnitude-9 earthquake shook eastern Japan.
The Tokyo Metropolitan area also experienced the large earthquake, the through-
put of the entire transportation network declined. The Metropolitan Expressway
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TABLE 4.4: Dataset used in simulation analysis

utility function parameters Travelers
Set v(aj+1|aj) θ β N
1 θcostxaj − 10xaj+1|aj

-2 0.9 2000
2 θcostxaj − 10xaj+1|aj

-2 0.7 2000
3 θcostxaj − 10xaj+1|aj

-2 0.5 2000
4 θcostxaj − 10xaj+1|aj

-2 0.3 2000
5 θcostxaj − 10xaj+1|aj

-2 0.1 2000

*xaj : Link cost, xaj+1|aj
: U-turn dummy

TABLE 4.5: Estimation results of the β-SRL model using simulation
data

θ β = exp(γ)/(1 + exp(γ))
Set Estimate

(θ)
Std. err. t-value∗1 Estimate

(γ)∗2
Std. err. t-value∗1 β

1 -2.012 0.067 -0.178 3.477 1.046 1.223 0.970
2 -2.031 0.065 -0.473 0.890 0.109 0.394 0.709
3 -2.005 0.060 -0.086 0.026 0.067 0.381 0.506
4 -1.969 0.056 0.547 -0.827 0.083 0.248 0.304
5 -2.060 0.058 -1.050 -2.250 0.198 -0.267 0.095
*1: t-value is reported with respect to the true value.
*2: In order to satisfy 0 < β < 1, γ in β = exp(γ)/(1 + exp(γ)) is estimated instead of β.

was closed and all railways stopped. As a consequence of the concentration of all
demand on road traffic, the network was heavily congested. It is the first time that a
Japanese city experienced the gridlock phenomenon.

We report the mapping of the average link speeds at each time period (14:00-
15:00, 15:00-16:00, 16:00-17:00, 17:00-18:00) on March 11, 2011 in Figure 4.9. At 14-15,
most links were ordinary and link speeds were equal to and faster than 30km/h,
over the network, and we can see a little congestion on narrow streets in the city
center. However, after the earthquake occurred, congestion started to spread from
the right side of the figure, where the density of the network was high, at 15-16.
In the left side area with low network density, we can observe many green links
with 20-30 km/h, but arterial roads were already congested, because a number of
people started to go home from the city center to the suburbs. At 16-17, the link
speeds declined over the network and most links were under 20km/h. Then at
17-18, especially surrounding the Imperial Palace (the empty spot at the center of
the figure), the links under 10km/h connected with each other, and the congestion
spread widely. As a result of the congestion propagating from one link to the next,
the system achieved minimal throughput. This state can be referred to as a gridlock.

Figure 4.10 shows the variation of the average number of right or left turns per
vehicle per five kilometers in time series: the broken line is for March 4 and the solid
line is for March 11. Before 14:46, which is the time when the earthquake occurred
on March 11, 2011, the two lines are consistent; however, after the time, the number
of direction changes on March 11 rapidly increases, while that on March 4 gradu-
ally does not significantly change during 14-17 and decreases afterward. This result
suggests that in the disaster network, the mechanisms of route choice behavior can
dynamically fluctuate as the network situation changes. We guess that the myopic
decision causes the increase of direction changes after the earthquake, and examine
the route choice mechanisms through estimating parameters of the β-SRL model.
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FIGURE 4.9: Link speed distribution at each time on the day of the
Great East Japan Earthquake in the Tokyo metropolitan area network

Note that a multifaceted analysis of route choice behavior in the gridlock net-
work using the same data is shown in Oyama et al., 2016.

In order to examine the route choice mechanism in such a situation, we estimated
the β-SRL model for each time period on each day. For estimating parameters, we
extracted a smaller one of the network in Figure 4.9, which includes 852 links, and
we used 700 samples, which are the number of observations of link choices, at every
period for the comparison of estimated parameters. The average number of desti-
nations for each period is 21.75. More detailed characteristics of observations used
for estimating parameters are reported on Table 4.6. In this case study, we define the
deterministic component of instantaneous utility function as follows:

v(aj+1|aj) = θTTTTaj + θRTRTaj+1|aj
. (4.17)

where TTaj is the travel time, in minutes, of link aj, which is calculated by the length
divided by the average link speed. The average link speed is calculated at each time
using processing data with a map-matching algorithm, or it is set via the average
over the network in the corresponding zone (as the second-order grid square), if
the link has no observation. RTaj+1|aj

is a right turn dummy variable that equals
one, if the turn from link aj to aj+1 is a right turn with an angle between 40◦ and 177◦

compared to the direction of the link aj, and zero otherwise. Note that we focused on
right turns, because in Japan people drive their cars in the left lane and are reluctant
to turn right.

We report the parameter estimation results in Table 4.7 and Table 4.8. We can
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TABLE 4.6: Characteristics of observations used for estimating pa-
rameters at each time period

date time of
day

observation∗1 sample∗2 number
of desti-
nations

CPU-
time

[s]

prediction-
all∗3

[%]

prediction-
out∗4

[%]
March 4 14-15 883 700 26 2000.13 71.80 74.32

15-16 849 700 17 1959.07 68.90 69.13
16-17 967 700 20 1556.15 69.39 71.91
17-18 1050 700 18 1198.72 73.43 68.57

March 11 14-15 724 700 27 1767.05 71.96 83.33
15-16 1848 700 26 1948.06 74.78 74.83
16-17 1663 700 23 1248.20 72.28 72.48
17-18 1122 700 17 1088.20 74.42 75.36

total 9106 5600 174 12765.57 - -
average 1138.25 700 21.75 1595.70 72.12 73.74
*1: It is the number of observed link choices.
*2: 700 samples are extracted from observations for parameter estimations at every period.
*3: Examining the prediction performance of the model to all of observations at every period.
*4: Examining the prediction performance of the model to observations that are not used for the
estimation at every period.

estimate the parameters at all time periods, and the average time for estimating pa-
rameters of the β-SRL model for a period was 1595.70 seconds. The calculation time
of each estimation is reported on Table 4.6, and it depends on the number of desti-
nations. As well as the analysis in Section 4.5.2, we set β = exp(γ)/(1 + exp(γ))
and estimate γ to satisfy 0 < β < 1, then evaluate β using γ. Therefore, the tables
have no information regarding the standard errors and the t-values of β1. There are
differences among estimated values: θTT is estimated between −0.056 and −0.510,
and θRT is between −0.785 and −1.677. The result that β is estimated between 0.355
and 0.738 suggests the possibility for both ordinary and extraordinary situations that
route choice behavior is not necessarily based on global decisions.

In order to examine the temporal change of each parameter, we present the plots
of estimated parameters in Figure 4.11. For the sake of comparison, we show the
ratios of parameters, θTT/(θTT + θRT) and θRT/(θTT + θRT), in Figure 4.11(a) and (b),

1*One of limitations of this case study is that β theoretically cannot take one and zero, because we
estimate γ in β = exp(γ)/(1+ exp(γ)) instead. Moreover, the standard error of β is needed for testing
if the estimated β is significantly different from 1.
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TABLE 4.7: Estimation result of the β-SRL model using the data on
March 4, 2011

date March 4, 2011
time of day 14:00-15:00 15:00-16:00

Estimates Std. err. t-value Estimates Std. err. t-value
θTT -0.352 0.079 -4.444 -0.157 0.065 -2.408
θRT -1.410 0.287 -4.915 -1.384 0.271 -5.112
γ 0.233 0.364 0.642 1.035 0.461 2.246
β 0.558 - - 0.738 - -
sample 700 700
LL -332.357 -338.792

time of day 16:00-17:00 17:00-18:00
Estimates Std. err. t-value Estimates Std. err. t-value

θTT -0.056 0.048 -1.168 -0.510 0.094 -5.454
θRT -1.249 0.236 -5.303 -1.006 0.303 -3.318
γ 0.275 0.389 0.707 0.395 0.366 1.078
β 0.568 - - 0.597 - -
sample 700 700
LL -373.748 -301.608
*In order to satisfy 0 < β < 1, γ in β = exp(γ)/(1 + exp(γ)) is estimated instead of β.

TABLE 4.8: Estimation result of the β-SRL model using the data on
March 11, 2011

date March 11, 2011
time of day 14:00-15:00 15:00-16:00

Estimates Std. err. t-value Estimates Std. err. t-value
θTT -0.308 0.065 -4.741 -0.395 0.079 -4.979
θRT -0.785 0.221 -3.556 -1.111 0.295 -3.762
γ -0.316 0.467 -0.678 0.556 0.391 1.423
β 0.422 - - 0.636 - -
sample 700 700
LL -343.750 -307.336

time of day 16:00-17:00 17:00-18:00
Estimates Std. err. t-value Estimates Std. err. t-value

θTT -0.387 0.079 -4.881 -0.284 0.043 -6.544
θRT -1.505 0.375 -4.013 -1.677 0.279 -6.007
γ 0.157 0.370 0.425 -0.599 0.475 -1.261
β 0.539 - - 0.355 - -
sample 700 700
LL -339.586 -352.889
*In order to satisfy 0 < β < 1, γ in β = exp(γ)/(1 + exp(γ)) is estimated instead of β.
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FIGURE 4.11: Plots of estimated parameters. (a) The ratio of the pa-
rameter of travel time, (b) the ratio of the parameter of right turn
dummy and (c) the estimated value of the sequential discount rate.

respectively. Figure 4.11(c) shows the change of β. The white and black plots are the
estimation results on March 4 (normal day) and March 11 (disaster day), respectively.

θTT/(θTT + θRT) on the normal day is the largest at 17-18, because drivers are sen-
sitive to the travel time for returning home at the peak vehicle density. On the other
hand, θTT/(θTT + θRT) on the disaster day shows a different trend from the normal
day, and it decreases systematically as time goes by. The change indicates that after
the earthquake occurrence at 14:46, drivers simultaneously start to go home from
the city center to the suburbs and choose routes with short travel times, but as the
congestion becomes worse, they cannot evaluate the travel time appropriately.

We can see the opposite dynamics between estimated θRT/(θTT + θRT) on the
normal and the disaster day. On the disaster day, the estimated value decreases as
time goes by, while it becomes bigger on the normal day. At 17-18 on the normal
day, which is the peak period of the network, the value is the smallest. At 17-18 on
the disaster day, θRT/(θTT + θRT) is the largest on the day, that is, the cost of right
turns becomes very high because of urban gridlock.

Regarding β, the estimation results on the disaster day are smaller than that on
the normal day at all time periods. This result suggests that the earthquake occur-
rence makes drivers’ decision myopic. β temporarily becomes large at 15-16 on the
disaster day, and afterwards decreases as time goes by. At 14-15, including the time
of earthquake occurrence, drivers myopically choose routes because of the earth-
quake confusion, then they simultaneously start to go home and choose route based
on global decisions at 15-16. The results subsequently indicates that afterwards
drivers have to choose routes myopically because the congestion has reached lev-
els never experienced before. Moreover, the result that β is the smallest at 17-18 on
the disaster day shows the myopic decision in gridlock networks.



4.6. Conclusions and discussion 75

Finally, we examined the prediction performance of the estimated β-SRL model
at every period, using 1) all of observations and 2) observations that are not used for
estimating parameters (the number of samples equals to that of observations minus
700), and report the results on the rightmost two columns of Table 4.6. The predic-
tion performances in both of the two cases are almost equivalent. Moreover, the per-
formances for periods that have many out-of-sample observations, e.g., at 15-16 and
16-17 on March 11, 2011, are not relatively worse than those with small observations.
This result indicates that the out-of-sample fits of the estimated models are almost
equivalent to in-sample fits. The average values of the prediction performances for
the two cases are 72.12% and 73.74%, respectively, and are not high; therefore, we
note that the development of the model to decrease the uncertainty and enrich the
performance, e.g., examining the interpersonal heterogeneity of β by a mixed logit
model, is needed for applying it to the traffic management, as a future work.

4.6 Conclusions and discussion

This paper proposed the β-scaled recursive logit (β-SRL) model, which incorporates
a parameter of the sequential discount rate for capturing the diversity of decisions
under congestions.

Through some illustrative examples using simple networks, we presented the
properties of the β-SRL model in terms of path probability and link flow prediction,
and showed the differences from several existing route choice models. The sequen-
tial discount rate reflected the effect of links that travelers pass early and had a large
impact on the order of path probabilities of routes. It also affected network assign-
ment results, and we concluded that the evaluation of appropriate sequential dis-
count rates was important for precise demand forecasting. Moreover, we mentioned
the selectivity of cyclic paths, which have not been discussed in detail in previous
works and may cause the divergence of expected utilities, and showed the effect of
the balance between the parameter of link cost and the sequential discount rate.

We then presented estimation results using both simulation data and real data,
including GPS traces in the time of the Great East Japan Earthquake. The estimated
parameters using real data showed that the difference of route choice mechanisms
between the normal day and disaster day, and among the time periods. On the disas-
ter day, all parameters systematically changed as time went by after the earthquake
occurrence, and the estimation results of the sequential discount rate indicated my-
opic route choice behavior in gridlock networks. We conclude that the β-SRL model
enable us to examine the decision-making dynamics in route choices and also to fore-
cast demand more precisely by estimating appropriate sequential discount rates.

Regarding the limitations in this paper, we mention the characteristics of probe
vehicle data of taxis. In the first place, it is difficult to detect trips from the sequence
of continuous GPS data because the stop time of taxis is often very short. We de-
fined the end of a trip, if the interval between successive two data is larger than
120 seconds; however, some sorts of methods for more accurate inference of origins
and destinations may be possible. Moreover, we assumed a static and determinis-
tic network to clarify the impact of the sequential discount rate, and we estimated
parameters using restricted samples. More realistically, it is assumed that the value
of the sequential discount rate depends on the characteristics of each traveler. This
paper consider a common value for all travelers; however, the variation, e.g., among
travelers or networks at the same time period, should be discussed. A mixed logit
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model or a latent class model can be applied for this purpose, and a method for
dealing with the expensive computation is needed.

As an application of the β-SRL model, we refer to the framework of trajectory-
oriented gridlock network management in Figure 4.1, again. The β-SRL model is ap-
plicable for both trajectory data in ordinary and extraordinary situations, thanks to
its generalized description of myopic decisions and global decisions in route choices.
Regarding the parameter estimation, the calculation of log-likelihood function in
Equation (4.16) does not require the information of whole paths in trips, because
the link choice probability is based on only the information of link transition and
the destination. Therefore, the β-SRL model goes well with the traffic simulations
using emerging sensing technologies, such as full-time connected vehicles. We note
that the expensive computational time for estimating parameters of the β-SRL model
even in small networks is a big problem, and faster efficient estimation algorithms
should be developed. The definition of the unit of time periods is also key character-
istics of the framework. We are based on the assumption that travelers’ route choice
preferences and the sequential discount rate can change at different time periods,
and estimate the β-SRL model at each period. In the case study of this paper, we set
the unit as one hour, because we assume that the changes depend on the macroscopic
situation of the network. The relationship between the behavioral preferences and
network situations will be discussed in future works. Based on a traffic simulation
using the β-SRL model, information provision, route guidance and signal control
can be implemented for real-time traffic management. This trajectory-oriented traf-
fic management will be helpful for gridlock network control.
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Chapter 5

Stochastic assignment in
time-structured networks

In this chapter, we propose a method of path set restriction for the Markovian route
choice model to solve its computational challenges dependent on cyclic structures
in networks. The content of this chapter has submitted to Journal of JSCE Series D3:
Infrastructure Planning and Management as Oyama, Y. and Hato, E., 2016. Stochastic
network assignment in time-structured networks (in Japanese).

Markovian route choice models describe stochastic route choice behavior with-
out path enumerations. They can consider the set of all feasible paths including
cyclic paths, which is referred to as the universal set, while the Dial’s algorithm,
which is also one of the most popular algorithms for the logit-type assignment with-
out path enumerations, considers the set of efficient paths. However, in Markovian
route choice models, it is known that cyclic structures in networks cause three com-
putational challenges: unreasonable cyclic flows, computational instability due to
divergence of expected utilities, and amplification of the IIA property. Regard-
ing the amplification of the IIA property, network-GEV based models (Papola and
Marzano, 2013; Hara and Akamatsu, 2014) show a solution of the problem; however,
the selectivity of cyclic paths has been little discussed. In this study, we model se-
quential link choice behavior of travelers based on Markovian route choice models.
We present a time-structured network, where travelers’ states are decomposed by
decision-making time period, and propose a method for restricting path sets based
on the time-constraint. This idea is a solution of the three computational challenges
of Markovian route choice models, in reasonable time. We present several numerical
examples to examine the model properties, and apply it to a stochastic user equilib-
rium (SUE) problem and a network-GEV based model.

Keywords: Route choice model, Network loading, Stochastic user equilibrium, Time-
structured network, Network-GEV
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5.1 Introduction

Network loading is the process of assigning the O-D entries to a network for specific
(constant) link travel times, which underlies the stochastic traffic assignment model
(Sheffi, 1985). The simplest setting of the path set for the stochastic network loading
is the set of simple paths that do not pass the same node, but the path enumeration
of all simple paths is impossible. On the other hand, approaches based on implicit
path enumeration have been proposed and have made significant contributions to
stochastic assignment. In this paper, we propose a new algorithm for implicit net-
work loading, which is referred to as the time-structured assignment method.

The most popular algorithm as an implicit approach is Dial’s algorithm (Dial,
1971). It restricts the path set to the set of efficient paths that never include any move
that goes away from the destination in terms of travel time. Dial’s algorithm is pop-
ular in stochastic assignment models because it has good computational efficiency
and has proved to be equivalent to the logit-type model by Van Vliet, 1981; how-
ever, two large problems remain. First, the algorithm often generates unreasonable
flow patterns as a result of restriction of the path set to efficient paths. Secondly,
the stochastic user equilibrium using Dial’s algorithm does not converge to an exact
solution because the set of efficient paths can change dependent on the link flows
at each iteration. Leurent, 1997 proposed a solution to the second problem, but this
also can generate unreasonable flow patterns and cannot consider cyclic paths.

Another representative approach based on implicit path enumeration is the Markov
chain assignment (MCA) algorithm, which can consider the set of infinite paths in-
cluding cyclic paths. MCA was first proposed by Sasaki, 1965 and has been linked to
the logit-type model by Bell, 1995 and Akamatsu, 1996, and it has gathered attention,
once again because of its high operability. Baillon and Cominetti, 2008 add the inter-
pretation of decision-making dynamics to the MCA model, and Fosgerau, Frejinger,
and Karlstrom, 2013 extended it to a discrete choice model. However, the MCA-
based model has computational challenges; it can output excessive cyclic flows, and
the existence of solutions depends on network condition.

The logit-type loading model also suffers from the IIA (Independence from Irrele-
vant Alternatives) property of the logit model and can load excessive flows to paths
that overlap each other. Daganzo and Sheffi, 1977 proposed a probit-based loading
algorithm to solve the overlapping problem, but it requires heavy computational
burden and the application to stochastic user equilibrium in real networks is diffi-
cult. GEV-based route choice models such as the CNL model (Vovsha and Bekhor,
1998) and the GNL-based stochastic user equilibrium model (Bekhor and Prashker,
2001) can also consider the correlation structure among path alternatives, but path
enumeration is required. On the other hand, network-GEV (Bierlaire, 2002; Daly and
Bierlaire, 2006) based route choice models, which can consider the correlation struc-
ture without path enumeration, have been proposed by Papola and Marzano, 2013,
Hara and Akamatsu, 2014 and Mai, 2016. However, the application of the network-
GEV model requires editing of the network to remove cyclic structures; therefore,
these models cannot consider original networks that include cycles.

The time-structured assignment algorithm proposed in this paper is based on the
MCA model, and describes the sequential link choice behavior at each node, which
is similar to that of as well as Baillon and Cominetti, 2008. Moreover, we incorporate
the concept of time-constraints into the route choice model and decompose the state
of the network at each decision-making time. Thanks to this idea, we can solve the
challenges of MCA: excessive cyclic flows, computational instability dependent on
network conditions and the amplification of the IIA property. Note that our method
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is a static model and does not consider any dynamics of link flows, though we use
the word "time" in this paper.

The structure of this paper is as follows. In Section 2, we introduce the descrip-
tion of the time-structured network. In Section 3, we formulate a route choice model
in the time-structured network and present the method to calculate state transition
probabilities. In Section 4, we propose the algorithm of the time-structured assign-
ment (TSA) method. In Section 5, we give some numerical examples and examine
computational characteristics of the TSA algorithm. In Section 6, we apply the TSA
algorithm to a stochastic user equilibrium problem. In Section 7, we extend the
route choice model in time-structured networks to a network-GEV based model,
and examine its characteristics through some numerical examples. Conclusions and
a discussion of future research are provided at the end.

5.2 Time-structured networks

Consider a directed connected graph G = (N ,A), where N is the set of nodes and
A is the set of links, and the space connection indicator δ(j|i) equals one, if a link
connecting the node pair (i → j) exists, and is zero otherwise. This is a general
spatial network.

In this paper, we propose the time-structured network G = (S , E), where S =
[S0, ...,St, ...,ST] and E = [E0, ..., Et, ..., ET−1] are the arrays of state sets and those of
edge sets at time t = {0, ..., T}, respectively. Moreover, St includes states st = i ∈ N
and and Et includes edges et = (st, st+1). In this notation, a path is described as a
sequence of states [s0, ..., sT], where T is the time constraint. In the time-structured
network, it is important that st, st′(t ̸= t′) are strictly different from each other, even
if both of them are in the same node i: st = i, st′ = i. Thanks to this property, we can
avoid the cycles from the network, while spatial cycles remain.

In the time-structured network, St and Et are restricted by time-space constraints.
Note that in this study T corresponds to the maximum number of states in a path
and is independent of the travel time of links. Consider the initial and final states:
s0 = o ∈ N and sT = d ∈ N . We introduce variables Do(i) and Dd(i), which are
defined as the minimum number of steps from node o to i and from node i to d in
the spatial network, respectively. The relation of Do(i) and Dd(i) of connected two
nodes are given by dynamic programming as follows:

Do(i) = min
h∈N−

i

[Do(h) + 1] (5.1)

Dd(i) = min
j∈N+

i

[Do(j) + 1] , (5.2)

where N−
i and N+

i are the set of upstream and downstream nodes connected to
node i, respectively. Using these variables, the set of possible states at t, St is de-
scribed as follows:

St = {i ∈ N |It(i) = 1}, (5.3)

where

It(i) =
{

1, if Do(i) ≤ t, Dd(i) ≤ T − t
0, otherwise.

(5.4)
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FIGURE 5.1: Illustration of a constrained network by the time-space
prism

Moreover, we define the time-space state connection indicator ∆ and the constrained
set of edges Et is described as follows:

Et = {(i, j) ∈ A|∆t(j|i) = 1}, (5.5)

where

∆t(j|i) = It(t)δ(j|i)It+1(j). (5.6)

δ(j|i) is the spatial connection indicator. This network reduction also represents a
constraint of the time-space prism (Hägerstrand, 1970).

Figure 5.1 shows an example of the set of the restricted paths by the time-space
prism. Consider the directed and connected spatial graph in the left panel of Figure
5.1, where the origin and destination are node 7 and 14. When we set T = 5, the set
of possible paths is restricted in the time-space prism, as shown in the right panel
in Figure 5.1. Focusing on node 18 as an example, considering that D7(18) = 3 and
D14(18) = 2, I(18) is then

I(18) =
( 0 1 2 3 4 5

0 0 0 1 0 0
)
, (5.7)

and ∆2(18|17) = ∆2(18|13) = ∆3(19|18) = ∆3(13|18) = 1. In this way, we have
Sts in layers and get the time-space prism. In this case, the restricted path set Ω
includes forty one paths, which are shown in Appendix B.1. Using the description
of the time-space prism, we can reduce the volume of computation and the memory
capacity.

5.3 Route choice model

In this section, we formulate a route choice model in time-structured networks.

5.3.1 Formulation

We assume that a traveler in state st = i chooses the state st+1 = j that minimizes the
sum of the cost of link (i, j), cij, and the expected minimum cost from state st+1 = j
to state sT = d, φsT

t+1(j). The transition probability from state st = i to state st+1 = j
is given by the multinomial logit model as follow (for simplicity, we omit the index
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FIGURE 5.2: A simple cyclic network

TABLE 5.1: Spectral radius of the matrix W

µ 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
ρ(W) 0.45 0.51 0.59 0.68 0.78 0.91 1.05 1.23 1.44 1.70

of the absorbing state sT).

pt(j|i) = e−µ{cij+φt+1(j)}

∑j′∈S+
ti

e−µ{cij′+φt+1(j′)} , (5.8)

where µ > 0 is the perception parameter of the travel cost, and S+
ti is the following

set of successive states of st,

S+
ti = {j ∈ St+1|∆t(j|i) = 1}. (5.9)

The expected minimum cost φt(i) is formulated as the following recursive equa-
tion given by the Bellman equation (Bellman, 1957):

φt(i) = E

[
min
j∈S+

ti

{
c̃ij + φt+1(j)

}]
, (5.10)

where

c̃ij = cij + ε ij. (5.11)

ε is the i.i.d. extreme value type I. By this assumption of the random term distribu-
tion, Equation (5.10) is re-formulated as the logsum

φt(i) =

{
− 1

µ log ∑j∈N ∆t(j|i)e−µ{cij+φt+1(j)}, t ̸= T ∧ i ̸= d,
0, t = T ∨ i = d.

(5.12)

The above formulations of dynamic programming are shown in Markov chain as-
signment models, such as Akamatsu, 1996, Baillon and Cominetti, 2008 and Fos-
gerau, Frejinger, and Karlstrom, 2013; however, our model is the first to incorporate
the concept of time t and prism constraints ∆t(j|i) into route choice modeling. This
incorporation enables us to solve the Bellman equation easily.
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5.3.2 Bellman equation

We transform Equation (5.12) by taking the exponential.

e−µφt(i) =

{
∑j∈N ∆t(j|i)e−µ{cij+φt+1(j)}, t ̸= T ∧ i ̸= d,

1, t = T ∨ i = d.
(5.13)

Moreover, we define an array of matrices v = [v0, ..., vt, ...vT], where the size of the
matrix vt is |N | × 1, and an array of matrices W = [W0, ..., Wt, ..., WT−1], where the
size of the matrix Wt is |N | × |N |, with entries

vti = e−µφt(i), Wtij = ∆t(j|i)e−µcij . (5.14)

The expected minimum costs µ are the solutions of the following equations:

vti =

{
∑j∈N Wtijvt+1,j, t ̸= T,

1, t = T.
(5.15)

Finally, the Bellman equation Equation (5.15) can be written as:

vt = Wtvt+1 + b, (5.16)

where b(|N | × 1) is a vector with zero values for all states except for the destination
that equals 1.

5.3.3 Condition to solve Bellman equation

The key issue here compared to previous Markov chain based route choice models
(e.g., Akamatsu, 1996; Baillon and Cominetti, 2008; Fosgerau, Frejinger, and Karl-
strom, 2013; Mai, Fosgerau, and Frejinger, 2015) is that our model is time-structured
and has no cyclic structure, while spatial cycles remain. For this reason, we do not
need the invertibility of I − W or iterations in order to solve the system of Equation
(5.16). In previous models, the following equation should be satisfied to solve the
expected minimum cost:

ρ(W) = max
h

{|λh|} < 1, (5.17)

where λh is the eigenvalue and ρ(W) is the spectral radius of matrix W (not includ-
ing the concept of time). Equation (5.17) is then a necessary and sufficient condition
for the matrix Wm to converge as m → ∞.

Using a cyclic network, illustrated in Figure 5.2, we calculate the spectral radii of
the matrices W with various values of µ shown in Table 5.1. The results show that
Equation (5.17) is not satisfied and the expected minimum cost diverges when the
network includes cycles and µ is small. In this case, we cannot solve the Bellman
equation when µ is less than or equal to 0.4. From above discussions it is concluded
that the expected minimum cost cannot be solved with a small perception param-
eter. In other words, existing approaches retain the instability in the calculation of
convergence.
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5.3.4 Solving with backward induction

In this paper, by time-structuring the network, the Bellman equation can be solved
with the following algorithm of backward induction.

Step 1: Set s0 = o, sT = d and φsT
t (d) = 0, ∀t. Calculate ∆, then M.

Step 2: Initialize t = T, and φsT
t (i) = 0, ∀i ∈ N .

Step 3: Set t = t − 1, and calculate φsT
t (i) with Equation (5.16).

Step 4: Finish the algorithm if t = 0, otherwise back to STEP 3.

It is very simple and does not require convergence, therefore the computational bur-
den is almost the same order, as long as the time constraint T is finite.

5.4 Time-structured assignment

In this section, we present a network loading algorithm on time-structured net-
works. It calculates the link flow xij in flow-independent networks without path
enumeration, as performed in previous loading algorithms (Dial, 1971; Bell, 1995;
Akamatsu, 1996).

We define gt
i and f t

ij as the state flow at st = i and edge flow from st = i to
st+1 = j, respectively. Note that they are temporary storage spaces of flows, and
there is no meaning in themselves. The relationship between state and edge flows is
formulated as follows:

gt
i =

 ∑k∈N f t−1
ki , t ̸= 0

Q, t = 0 ∧ i = o
0, t = 0 ∧ i ̸= o

(5.18)

and

f t
ij = gt

i pt(j|i), t = {0, ..., T − 1} (5.19)

where Q is a given generating flow. Figure 5.3 shows the time-straightforward as-
signment algorithm: setting G0

o = Q will then allow all other state and edge flow
can be calculated, using Equation (5.19) and (5.18) alternately, as shown in Figure
5.3, until time T. Finally, we obtain spatial link flow of (i, j) ∈ A, xij by summation
f t
ij as follow,

xij =
T−1

∑
t=0

f t
ij. (5.20)

xij in Equation (5.20) corresponds to link flow in previous loading models.

5.5 Computational examination

Hereafter this section, we present some numerical examples to validate the efficiency
of the proposed model. We first have the network loading examples, using simple
networks to show the computational stability and the efficiency of the model com-
pared to previous loading algorithms.
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FIGURE 5.4: A simple network

5.5.1 Computational stability

To confirm the consistency with previous loading models and the computational
stability, we calculated the network loading using the simple network of Figure 5.4.
The number associated with each link is the link cost cij. We set OD flow to Q = 1000,
and compared the loading results given by Dial’s algorithm, MCA and TSA. Table
5.2 shows the loading results when the perception parameter µ = 1. The results
show that the TSA with T = 20 outputs the same flow with the MCA (the difference
with Dial’s assignment result is because of its restriction to efficient paths). That is,
TSA is a generalized formulation of MCA, since it theoretically corresponds to MCA
as a special case, if T is large enough. We also calculated link flow when µ = 0.2 in
order to check the computational stability of the models, and the results are shown
Table 5.3. Thanks to the restriction of efficient paths, Dial’s algorithm can calculate
the link flow, but cyclic flow cannot be considered. TSA can output results including
cyclic flows regardless of the value of µ, while MCA fails to do so because of a large
spectral radius (in this case, ρ(W) = 1.058). These results demonstrate that the
proposed method is consistent with the MCA approach, moreover it enables one to
solve network flow with small cost or perception parameter.

5.5.2 Computational efficiency

The time-structured network has a larger number of states than the general spatial
network. In order to confirm computational efficiency of the TSA, we compared the
computational time for loading to other loading algorithms using the grid networks
in Figure 5.5. The network has 2n(n + 1) links and (n + 1)2 nodes, when a side
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TABLE 5.2: Loading results in network 2 with µ = 1

1-2 2-3 1-4 2-5 3-6 4-5 5-6 4-7 5-8 6-9 7-8 8-9 5-4 7-4
Dial 269 0 731 269 0 731 731 0 269 731 0 269 0 0
MCA 290 54 710 236 54 797 643 83 236 697 67 303 154 16
TSN (T=5) 298 63 702 235 63 639 639 63 235 702 63 298 0 0
TSN (T=10) 290 54 710 236 54 795 642 83 236 697 67 303 153 16
TSN (T=20) 290 54 710 236 54 797 643 83 236 697 67 303 154 16

TABLE 5.3: Loading results in network 2 with µ = 0.2

1-2 2-3 1-4 2-5 3-6 4-5 5-6 4-7 5-8 6-9 7-8 8-9 5-4 7-4
Dial 269 0 731 269 0 731 731 0 269 731 0 269 0 0
MCA - - - - - - - - - - - - - -
TSN (T=5) 465 144 535 320 144 391 391 144 320 535 144 465 0 0
TSN (T=10) 363 36 637 327 36 1431 399 764 327 435 238 565 1032 526
TSN (T=20) 340 12 660 328 12 3312 401 2008 328 413 259 587 2911 3164

o
1

1

2

n

2 n…

d

FIGURE 5.5: Grid network

includes n links. Table 5.4 shows the computational time of Dial’s algorithm, MCA
and TSA with T = 2n. Note that we use a sparse matrix coding in all loadings and
the dynamic programming for calculating the shortest path in both Dial’s algorithm
and TSA. The computational speed of MCA is shortest, but results show that the
computational time of TSA is reasonable, too.
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TABLE 5.4: Loading time in seconds in grid networks

n 10 20 30 40 50 60 70 80
Dial 0.79 5.23 16.64 44.25 99.88 187.53 356.83 639.30
MCA 0.16 0.59 1.78 5.18 12.37 27.69 59.86 124.14
TSN 0.26 1.34 5.46 18.10 45.08 93.66 187.99 398.81
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5.6 Stochastic user equilibrium

5.6.1 Equivalent optimization problem

We apply here the TSA algorithm to stochastic user equilibrium. Akamatsu, 1997
presented the decomposition method of the entropy term in Fisk 1980’s optimiza-
tion formulation of the SUE as follows:

min Z(x) = ∑
ij

∫ xij

0
tij(ω)dω + ∑

r
∑
ij

1
µ

xr
ij ln xr

ij − ∑
r

∑
i

1
µ
(∑

j
xr

ij) ln(∑
j

xr
ij), (5.21)

s.t.,

∑
h

xr
hi − ∑

j
xr

ij − ηriqrs + ∑
s

ηisqrs = 0, (5.22)

xij = ∑
r

xr
ij, (5.23)

xr
ij ≥ 0, (5.24)

where tij(xij) is the flow-dependent cost and xr
ij is the flow of link ij from origin

r. Equation (5.22) is the flow conservation principle at node i from origin r, where
ηri equals one if i is a destination node and zero otherwise, ηis equals one if i = r
and zero otherwise, and qij is the generating flow from i to j. Equation 5.24 is the
non-negative condition of every flow.
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FIGURE 5.7: Marginal and average errors

5.6.2 Assignment result

To compare the assignment results given by the three algorithms, we implemented
a stochastic user equilibrium in the Sioux Falls networkYan2 with 24 nodes, 76 links,
552 OD pairs and 36650 total demands. In this calculation, we set the perception
parameter µ = 1. We denote the assignment results given by the three algorithms
as Dial-SUE, MCA-SUE and TSA-SUE, respectively. Figure 5.6 shows the difference
of link flows between MCA-SUE and Dial-SUE (A) and TSA-SUE and Dial-SUE (B).
Colors means the degree of difference: gray and black links indicate that the differ-
ence from Dial-SUE is small, on the other hand, orange and red links indicate the
large increase. The assignment result given by MCA-SUE (A) shows that flows of
the cycle consisting of node 7, 8, 16 and 18 increase by more than 200, that is, the
MCA algorithm generates unreasonable cyclic flows. The assignment result given
by TSA-SUE with T = max[2Do(d)] (B) also indicates the increase of link 7-18 and
18-7; however, the overall increase of link flows are restrained. These results con-
clude that the TSA algorithm can reduce the unreasonable cyclic flow of the MCA
algorithm by incorporating the time-constraint concept, which is based on a behav-
ioral mechanism.
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TABLE 5.5: Calculation time of SUE

Model iteration time(s) average(s)
Dial-SUE 51 2762.29 54.16
MCA-SUE 71 3906.52 55.02
TSN-SUE 89 3456.29 38.83

To examine the iteration process of the SUE using the three algorithms, we then
in Figure 5.7 show the change of error degree as follows:

ϵ1 = 100 ×
∑ij(x∗ij − xij)

∑ij x∗ij
, (5.25)

ϵ2 = 100 × max
ij

|x∗ij − xij|
x∗ij

, (5.26)

where x∗ij is the link flow at the convergence and xij is the flow at each iteration step.
In the cases of using the MCA and the TSA, which consider cyclic flows, the errors
oscillate with grater amplitude than using the Dial’s algorithm, but the iteration
speeds are almost equivalent to each other. The iteration number of Dial-SUE is
small; however, it is known that the convergence does not indicate an exact analytic
solution because the set of paths (referred to as efficient paths) may change in each
iteration step, which are caused by the change of link travel time. It is assumed that
the iteration number of TSA-SUE increases because the TSA has a larger number of
states and the number of parameters to be converged is larger than other algorithms.

Table 5.5 shows the number of iterations, total computational time and average
time per iteration. TSA-SUE required many iterations but its computational time
was shorter than MCA-SUE, and its average time was the shortest. The calculation
of the previous section (Table 5.4) indicated the computational time for one-time
loading of an O-D pair, and most of the time was used for calculating Do and Dd.
In the calculation of SUE, we need only one calculation of Do and Dd for the whole
process. Therefore the average calculation time of TSA-SUE was the shortest.

5.7 Overlapping paths in cyclic networks

Finally, in this section, we show the model properties in terms of overlapping de-
scriptions by extending the model to a network-GEV based model.

5.7.1 Formulation of a network-GEV model

Following the literature (Papola and Marzano, 2013; Hara and Akamatsu, 2014), we
extend the proposed model to a network-GEV (n-GEV) based route choice model.
The application of the n-GEV requires the network to be acyclic (see Bierlaire, 2002;
Daly and Bierlaire, 2006), and in the literature of n-GEV based route choice models,
the network was edited to remove cyclic structures. However, in this paper all paths
in time-structured networks, originally, do not have any cycles, so we do not need
to remove any links and the spatial connection condition is retained.
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The state transition probabilities of the n-GEV based route choice model in time-
structured networks (n-GEV-t) are formulated as follows:

pt(j|i) =
∆t(j|i) · αije−µi{cij+φt+1(j)}

∑j′∈N ∆t(j′|i) · αij′e
−µ{cij′+φt+1(j′)} , (5.27)

where µi is the scale parameter peculiar to node i, and states st = i, ∀t have the same
scale parameter with each other. αij is the allocation parameter peculiar to the node
pair (i, j) and edges et = (st = i, st+1 = j), ∀t have the common value. Note that the
allocation parameter describes the relationship between neighboring node pairs and
satisfies ∑j αij, αij > 0, ∀ij. By incorporating these parameters, the Bellman equation
can be re-formulated as follows:

vti = ∑
j∈N

wtij(vt+1,j)
µi
µj (5.28)

where,

vti = e−µi φt(i) (5.29)
wtij = ∆t(j|i) · αije−µicij (5.30)

Equation (5.30) is non-linear, but we can solve the equation using the backward in-
duction algorithm, similarly to as is shown in Section 5.3.4, because the value func-
tion vti is time-structured.

5.7.2 Path probability

The probability of a path ψ in the n-GEV-t model is formulated using the transition
probabilities:

P(ψ = [i0, ..., it, ..., iT]) =
T−1

∏
t=0

pt(it+1|it) (5.31)

Using Equation (5.31), we calculate path probabilities in the network of Figure 5.8
and compare the results with previous models. We set T = 6, then obtain the six
paths shown in the bottom of Figure 5.8. The costs of the paths are 4, 4, 4, 6, 6 and
6, and we denote the path probabilities as P1, P2, P3, P4, P5 and P6, respectively. The
scale parameters and allocation parameters are formulated as

µi =
Do(d)
Dd(i)

(5.32)

αij =
δ(j|i)
N(i)

, (5.33)

where N(i) is the degree of node i.
Table 5.6 shows the path probabilities given by logit (acyclic), n-GEV (acyclic),

logit (cyclic) and n-GEV-t (cyclic). The result of the logit-type route choice model
not considering cycles, is P1 = P2 = P3 = 0.333. Path 1 and 2 share the link 1-2
and are assumed to be correlated with each other. However, all path probabilities
are equal to each other because of the IIA property of the logit model. The n-GEV
based route choice model can describe the correlation among paths, and the path
probabilities are P1 = P2 = 0.250 and P3 = 0.500. Application of this model requires
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FIGURE 5.8: Network and alternatives

the removal of the link 3-1, after which P4, P5 and P6 can not evaluated. The result
of the logit-type route choice model including cyclic paths is P1 = P2 = P3 = 0.294
and P4 = P5 = P6 = 0.040. This model also can not consider the overlapping paths.
Against these models, the n-GEV-t model showed the result P3 > P1 > P2 > P6 >
P4 > P5; all path probabilities are different from each other. P1 became larger than
P2 because of the correlation among the path set, which includes the cyclic paths.
Moreover, P4, P5 and P6 are evaluated to be smaller than the result of the logit model
because a mechanism that travelers take more cost when they pass the same node
more than once, which is referred to as cycle reluctancy in this paper, is described. In
disaster or pedestrian contexts, we cannot ignore the cyclic paths and it is assumed
to be inappropriate to remove the cyclic structure from the network. The proposed

TABLE 5.6: Path probabilities

Path 1 2 3 4 5 6
logit 0.333 0.333 0.333 - - -
nGEV 0.250 0.250 0.500 - - -
TSN-logit 0.294 0.294 0.294 0.040 0.040 0.040
TSN-nGEV 0.281 0.140 0.562 0.005 0.002 0.010
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FIGURE 5.9: Logit-based and network-GEV-based loading results
with TSN

model in this paper can consider the mechanism of cycle reluctancy, therefore can
avoid to the assignment of unreasonable probabilities to cyclic paths.

5.7.3 Network loading

Figure 5.9 shows the network loading results given by the four models of Section
5.7.2. Note that this example does not consider congestion. Figure 5.9 (A) and (B)
are the results considering the path 1, 2, and 3. In the case of Figure 5.9(A), link 1-2
had excessive flow, but in the case of Figure 5.9(B), it was alleviated as the result of
the consideration of the overlapping paths. Figure 5.9(C) is the result given by the
logit-type model considering cyclic paths, and it shows that more excessive flows
were loaded on link 1-2 and 2-3 than the result of Figure 5.9(A). The flow of link 3-1,
which constitutes cyclic paths, is 119. On the other hand, Figure 5.9, which is the
result given by the n-GEV-t model, shows that the unreasonable flows generated in
the case of Figure 5.9(A), (B) and (C) are alleviated because the model can consider
the correlation structure among the path set including cyclic paths. The result of
considering cyclic link 3-1 is that more flow is loaded on path 3 (link 1-4) and less
flow is loaded on link 1-2 than the results of the case of not considering cyclic paths.
The difference of flow of link 3-4 is large among the results: 333 in cases (A) and
(C), without considering cyclic paths; 250 in case (B); and 142 in case (D). Previous
studies could not describe the change of flow because of the correlation structure
of cyclic paths; however, our model can evaluate the effect of a variety of paths,
including cyclic paths.

5.8 Conclusions and Discussion

In this paper, we proposed an algorithm referred to as a time-structured assignment
(TSA), as a method for stochastic network loading. Time-structuring of networks
decomposes the state by the timing of decision-making, and it can remove the cyclic
structure from the network for calculations. Moreover, we incorporated the concept
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of time-constraint into the route choice model and proposed an algorithm for sys-
tematically restricting path sets. Thanks to these ideas, we can solve the Bellman
equation with backward induction, which is a simple solution method, and we can
calculate the expected minimum cost regardless of network conditions. A numerical
example of network loading showed that the TSA can always output the link flows,
while the MCA cannot do so when link costs are small. The TSA can also examine
the change of link flow by varying the parameter of time-constraint T. The result
of the stochastic user equilibrium indicated the possibility that the application of
the TSA algorithm could alleviate the unreasonable cyclic flow given by the MCA.
Moreover, we extended the model to the network-GEV model in time-structured
networks (n-GEV-t), and showed that the n-GEV-t model can describe the effect of
overlapping among the path set including cyclic paths.

These results conclude that the TSA algorithm is the one of the solution of the
challenges that the MCA algorithm retains: 1) computational instability dependent
on network conditions, 2) unreasonable cyclic flows, and 3) the amplification of the
IIA property, with reasonable computational time.

As to the limitation of this algorithm, we have to mention about the settings
of the parameter T. In this paper we set arbitrary values. However, in the future
work, because T is a behavioral parameter, we will examine the way of setting the
parameter T using real data.
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Chapter 6

Markovian activity assignment
with time-space constraints

In this chapter, we use a Markovian route choice model to describe the path choice
behavior in time-space networks, and present a framework that evaluate the use
of time and space integrally. We apply it to a pedestrian network design problem.
This is the collaboration work with Dr. Michel Bierlaire and Dr. Riccardo Scarinci
at EPFL. A part of the content of this chapter was presented as Oyama, Y. and Hato,
E., 2016. Pedestrian activity model based on implicit path enumeration, Proceedings of the
21st International Conference of Hong Kong for Transportation Studies (HKSTS), 331-338,
and has been published as Oyama, Y. and Hato, E., 2016. Pedestrian activity assignment
problem with time-space constraint and path correlation, Journal of the City Planning Insti-
tute of Japan 51(3), 680-687 (in Japanese).

In the pedestrian route choice context, the continuity between behavior of walk-
ing in networks and of staying for conducting activities is very high. For this rea-
son, the activity path choice approach, which is a route choice model in time-space
networks, is applicable to describe integrally the combination of choices of routes,
activity locations and durations. Activity paths are often complicated, and it is dif-
ficult to solve the activity path choice problem. Most of previous models deal with
the problem as the deterministic one and optimize in the restricted path set in rough
networks. However, pedestrian activities are often probabilistic and should be de-
scribed in high resolution networks. In this study, we propose a Markovian activity
assignment model for dealing with the computational challenges of the pedestrian
activity path choices. Moreover, we present a method for systematically restricting
the path set based on the concept of the time-space prism (Hägerstrand, 1970). We
examine the properties of the model through several illustrative examples and a case
study of the network in Matsuyama-city, Japan. In the end, we present a pedestrian
network design problem based on the activity assignment model. The problem is a
a multi-level and multi-objective programming, and the Pareto front is investigated
by a neighborhood search algorithm.

Keywords: Activity assignment, Route choice model, Time-space constraint, Pedes-
trian, Traffic assignment
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6.1 Introduction

Pedestrian route choice behavior has difficulties for modeling; 1) a path enumeration
problem because of the route variety, 2) pre-trip decision mechanism and trip-based
model are not suitable since there is high continuity of walking and staying behav-
ior in pedestrian contexts. In this paper, we propose a pedestrian activity model
without path enumeration. We formulate an activity path choice model based on
implicit approach to describe activity correlation as one type of network-GEV based
model. The model allows us to compute the activity assignment with cyclic, multi-
trip and time attributes. The assignment results show that time-space discount rate
of expected utility and the prism constraint are important parameters that have an
influence on pedestrian decision-making.

6.2 Literature review

For evaluating the use of time and space in urban networks, a number of activity-
based models have been proposed over the past decades, such as discrete choice
models (e.g., Bowman and Ben-Akiva, 2000), discrete-continuous choice models
(e.g., Bhat, 2005; Habib, 2011) and rule-based models (e.g., Arentze and Timmer-
mans, 2004; Miller and Roorda, 2003; Roorda, Miller, and Nurul Habib, 2008). Activ-
ity generation models (e.g., Chapin, 1974; Arentze, Ettema, and Timmermans, 2011;
Nijland, Arentze, and Timmermans, 2013) have also been developed. Activity-based
approach considers that travels are derived demand of activities, and is expected to
solve the challenges of traditional 4-step models. However, in pedestrian context,
there is high continuity between moving behavior and staying behavior, e.g., an un-
planned activity can be generated while conducting trips. In this paper, we focus
on the continuity of moving and staying behavior in pedestrian networks. For this
reason, we take an activity path approach which can describe spatial and temporal
choices integrally, while most of activity-scheduling models are step-by-step where
the activity places are given prior to route choices.

6.2.1 Activity path choice model

In activity path choice approaches, where the choices of routes, activity locations
and durations are integrated, path enumeration is a difficult problem because of
the combinatorial explosion. Kang and Recker, 2013 and Liao, Arentze, and Tim-
mermans, 2013 formulated activity path choice models including location choices
as optimization problems with restricted solution set by defining constraints, and
Danalet and Bierlaire, 2015 used an importance sampling method proposed by Flöt-
teröd and Bierlaire, 2013 for path set generation. Since the continuity of walking and
staying behavior is important in pedestrian networks, pedestrian activities should
be described at a higher spatial-temporal resolution and probabilistically. However,
incorporating network route choices into activity modeling generates infinite paths,
and then we cannot define appropriate path set.

6.2.2 Traffic assignment without path enumeration

Markov chain assignment (MCA) algorithm (Bell, 1995; Akamatsu, 1996; Baillon
and Cominetti, 2008) is well-known as an implicit route choice model which does
not need any path set generation, as well as Dial ’s algorithm (Dial, 1971). MCA
uses a sequential link choice model to describe probabilistic route choice including
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cycles. Fosgerau, Frejinger, and Karlstrom, 2013 provided it with an interpretation
of modeling decision making by formulating the model as a dynamic discrete choice
model (Rust, 1987). Moreover, Oyama et al. (2016) focused on the decision making
dynamics in non-habitual networks such as disaster or pedestrian networks, and
modeled it by incorporating sequential discount rate into the Fosgerau, Frejinger,
and Karlstrom, 2013’s model.

6.2.3 Activity assignment

In this paper, we formulate an activity assignment model based on a Markovian
activity path choice model including route choices as a sequential state transition
model in time-structured networks. In recent literature, activity assignment model
have been proposed as dynamic user equilibrium model (e.g., Lam and Yin, 2001;
Liu et al., 2015). On the other hand, we are interested in more detailed interaction
between travels and activities such as in pedestrian context. Moreover, we incorpo-
rate the ideas of prism constraints and the time-space discount rate. They are useful
not only to describe the characteristics of pedestrian activities but also to reduce
computational effort and memory capacity. Note that we focus on not microscopic
and two-dimensional pedestrian behavior (e.g., Hoogendoorn and Bovy, 2004; An-
tonini, Bierlaire, and Weber, 2006; Robin et al., 2009) but activity and route choice
behavior in graphs at about 1km square scale. This paper is the first to describe
probabilistic pedestrian activities with route choices and to analytically evaluate the
network flow including time-use pattern.

6.3 Time-space constraints

6.3.1 Network description

In order to model the activity path choice, which includes both moving and staying
behavior, we use a graph incorporating the concept of scheduling. We first define
a directed graph Gs = (N ,A) representative of the spatial network. N is the set of
nodes, and A is the set of links. The set of nodes N includes two kind of node sets,
i.e., the set of nodes for only moving N m and for both moving and staying N s. Thus,
N = N m ∪N s. Likewise, the set of links A contains both the set of moving links Am

and the set of staying links As, then A = Am ∪As. A moving link am = (i, j) ∈ Am

connects two different nodes i, j ∈ N , i.e., Am = {am = (i, j)|i ̸= j, i, j ∈ N}. A
staying link as = (i, j) ∈ As links the same nodes included in N s, i.e., As = {as =
(i, j)|i = j, i, j ∈ N s}.

We then define a time-structured activity state network Ga = (S , E) by incorpo-
rating the time axis into the spatial network Gs. S is the set of states and E is the set
of edges, where a state s is defined as the pair of time and space (node) and an edge
e connects two different states. Time t is discretized at each interval τ, and has the
time-constraint T, i.e., t ∈ {0, 1, ..., T}. Thus, the set of states S and the set of edges
E are decomposed as S = [S1, ...,St, ...,ST] and E = [E1, ..., Et, ..., ET−1]. The set of
states at time t St is defined as St = {st = (t, i)|t ∈ {0, 1, ..., T}, i ∈ N} and the set of
edges between time t and t + 1 Et is defined as Et = {et = (s, s′)|s ∈ St, s′ ∈ St+1},
respectively. According to this notation, an activity path ψ is described as a sequence
of states from t = 0 to t = T, ψ1:T = [e0, ..., et, ..., eT−1]. Figure 6.1(a) shows an illus-
tration of a spatial network, and Figure 6.1(b) is the time-structured activity state net-
work based on the spatial network (a). By projecting an activity path in the network
(b) on x-y plain, we can evaluate spatial route choice. Figure 6.1(c) is the projection
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FIGURE 6.1: An activity path ψ0:5 =
[(8, 9), (9, 14), (14, 14), (14, 13), (13, 8)] in time-structured network
and its projections. (a) Spatial network graph, (b) time-structured

network with time constraint T = 5 and (c) time use pattern.

of the activity path on the time-axis and describes the pattern of time use. With the
description of time-structured network, we are able to evaluate the use of time and
space at the same time.

6.3.2 Network restriction

The activity path choice in the time-structured activity state network has a huge num-
ber of alternatives, which requires large memory space and makes computation ex-
pensive. Moreover, the existence of unreasonable paths causes the computational
instability dependently on network conditions. In order to reduce the network and
make computation stable, we propose a method for restricting state and edge sets
based on Markovian approach.

We assume that an individual necessarily transitions from the current state st to
the next state st+1 at every discretized time t, and the initial state s0 = (0, o) and
the final state sT = (T, d) are always given and fixed for each individual. Where
the origin node o and the destination node d are contained in the set of node N .
These assumptions indicate that every state transition takes the same time τ, and an
individual who departs from the origin node o ∈ N at time t = 0 must arrive at the
destination node d ∈ N within the time-constraint T. Of course, an individual can
arrive at the destination earlier than time t = T.

With the state constraints s0 = (0, o) and sT = (T, d), we restrict the set of states
S and the set of edges E . We at first define the variables for topological ordering;
the minimum number of steps from the origin node o to an node i Do(i), and the
minimum number of steps from an node i to the destination node d Dd(i). These
equal to the shortest path travel time between two nodes when the travel time of all
links are one. Using these variables, the set of states at time t is restricted as St =
{st = (t, i)|i ∈ N , It(i) = 1} where the state existence indicator It(i) is formulated
as follows,

It(i) =
{

1, if Do(i) ≤ t, Dd(i) ≤ T − t
0, otherwise.

(6.1)

Moreover, the constrained set of edges is described as Et = {et = (st, st+1)|st =
(t, i) ∈ St, st+1 = (t+ 1, j) ∈ St+1, ∆t(j|i) = 1} where the time-space state connection
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FIGURE 6.2: Time-space constraints and path restriction. (a) Prism
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Bundle constraint when the constraints are s0 = s2 = s3 = s5 = 13

and (c) Domain constraint.

indicator ∆t(j|i) is formulated as follows,

∆t(j|i) = It(i)δ(j|i)It+1(i) ∀t ∈ {0, 1, ..., T}, ∀i, j ∈ N (6.2)

where δ(j|i) is the spatial connection indicator that equals one if the link (i, j) is
contained in the link set A, and zero otherwise. The time-space state connection
indicator ∆t(j|i) denotes the existence of the edge to transition from node i at time
t to node j at time t + 1. We can also denote it based on link description ∆t(j|i) =
∆t(a), a = (i, j) ∈ A. The connection between two edges et = a, et+1 = a′ is
conditioned as follows,

ιt(a′|a) = ∆t(a)∆t+1(a′) ∀t ∈ {0, 1, ..., T − 1}, ∀a, a′ ∈ A (6.3)

This time-space link connection variable ιt(a′|a) is used in Markovian state transition
model for describing activity path choice behavior in a later section.

6.3.3 Time-space prism

As an example, consider the network of Figure 6.1. We set the time-constraint T =
5, and the initial and final state are assumed as s0 = (0, 13) and s5 = (5, 13).
The set of states after restricted is 1: S0 = {13}, S1 = {8, 12, 13, 14, 18}, S2 =
{3, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 23}, S3 = {3, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 23},
S4 = {8, 12, 13, 14, 18} and S5 = {13}. Likewise, the set of restricted edges can be
defined as the edges which connect restricted states. By piling up the restricted set
of states and edges, we get the illustration shown in Figure 6.2(a). The activity paths
never pass outside of the polyhedron colored in gray. This constraint corresponds to
the concept of time-space prism proposed by Hägerstrand, 1970.

Hägerstrand, 1970 also proposed bundle and domain as the time-space constrains
of activity paths, and our method can describe these constraints in the same way.
The bundle constraint indicates the existence of activity that binds an individual on a
certain space during specific time period. For example, the bundle means activities
such as appointment with someone or ones with high-priority. In our notation, the

1For the sake of simplicity, we omit the notation of time from states. It is expected to not disturb the
understanding of readers because all states included in the set of states St are always at time t.
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bundle constraint is described as st−b :t+b
= i (t−b < t+b , t−b , t+b ∈ {0, 1, ..., T}, i ∈ N ).

We show an illustration of the activity path set in Figure 6.2(b) when the bundle
constraint s2:3 = a is added. The domain constraint indicates a certain time-space
sphere where an individual cannot enter such as a shop with limitation of opening
hours and private buildings. In our model, the domain constraint is described as
s ̸∈ Z where the domain Z is defined as the set of states.

6.4 Activity assignment model

Base on the network described in Section 6.3, we propose an activity assignment
model for evaluating the use of time and space of travelers especially in pedestrian
context. We at first formulate an activity path choice model based on Markovian
approach, and then propose an assignment method in time-space networks.

6.4.1 Activity path choice model

We formulate an activity path choice model using the sequential edge transition
model based on Markovian approach. It is assumed that an individual on edge
et = a chooses the next edge et+1 = a′ which maximizes the sum of direct utility
of transition ut

aa′ and the expected maximum utility of subsequent paths from state
et+1 = a′ to the final state sT = (T, d), φsT

t+1(a′). We define vt as the constant or mono-
tonic decreasing function of time. φsT

t (a) is the function that evaluates the expected
utility of prism with st = (t, i) and sT = (T, d) as the vertexes, and is formulated as
the Bellman equation (Bellman, 1957) as below (for the sake of simplicity, we omit
the notation of the final state sT),

φt(a) = max
et+1

E

[
T−1

∑
τ=t

βτ−tũ(eτ+1|eτ)

]

= E

[
max
a′∈E+

ta

{ut
aa′ + βφt+1(a′) + εt+1(a′)}

]
, (6.4)

where ε is the random term of transition utility and i.i.d. extreme value type I and
its scale parameter µ is strictly positive. E+

ta is the set of successive edges connected
with et = a; E+

ta = {et+1 = a′ ∈ Et+1|ιt(a′|a) = 1}. β is the time-space discount rate
of expected utility and satisfies 0 ≤ β ≤ 1. Based on the assumption of distribution
of ε, the transition probability from et = a to et+1 = a′ is given by the multinomial
logit model as follows (see Rust, 1987 for the derivation of the equation),

pt(a′|a) = eµ{ut
aa′+βφt+1(a′)}

∑a′∈E+
ta

eµ{ut
aa′+βφt+1(a′)} . (6.5)

The choice probability of activity path ψ1:T = [e1, ..., et, ..., eT] = [a1, ..., at, ..., aT] is
formulated as the product of transition probabilities2 ,

P(ψ1:T = [a1, ..., at, ..., aT]) =
T−1

∏
t=1

pt(at+1|at). (6.6)

2at does not include the information of time while it has the suffix of time t conveniently. For this
reason, we add the suffix of time t to the transition probability, pt(at+1|at) for distinguishing it from
the spatial transition probability.
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By the property of maximum value distribution, Equation (6.4) can be re-formulated
as the logsum,

φt(a) =

{
1
µ log ∑a′∈A ιt(a′|a)eµ{ut

aa′+βφt+1(a′)}, t ̸= T ∧ a ̸= d,
0, t = T ∨ a = d.

(6.7)

The activity path choice model proposed in this paper describes the path choice be-
havior in time-space networks without path enumeration, and the prim constraint
∆t reduces unreasonable paths and computational burden. Moreover, the time-space
discount rate β is important to describe decision making dynamics as we will men-
tion later.

6.4.2 Path correlation

It is well-known that Logit type route choice models have the IIA (Independence from
Irrelevant Alternatives) property. In case of activity path choices, the similarity of
paths is a more considerable problem. Three activity paths shown in Figure 6.3 are
different from each other in terms of only time when an activity is implemented,
while all of them share moving route and staying location with each other. That is,
there are points of similarity among the three paths, however they are assumed to
be independent from each other in Logit model because of the IIA property. The
ignorance of the similarity among activity paths can cause the wrong evaluation of
the use of time and space.

time path1 path2 path3

space

t=1

t=3

t=5

o a
1

o a
1

o a
1

FIGURE 6.3: Example of activity paths which have similarity with
each other

Recently some literatures have presented route choice models considering the
correlation structure among alternatives without path enumeration (Papola and Marzano,
2013; Hara and Akamatsu, 2014; Mai, Fosgerau, and Frejinger, 2015; Mai, 2016).
These models are based on the network-GEV (n-GEV) model proposed by Bierlaire,
2002 and Daly and Bierlaire, 2006. However, the application of the n-GEV model re-
quires the network to be acyclic. For this reason, in literature of n-GEV based route
choice models the network was edited to remove cyclic structures. On the other
hand, time-space networks naturally have no cycle and satisfy the condition for ap-
plying the n-GEV model. In this paper, for describing the activity path correlation,
we formulate a n-GEV based activity path choice model with time-space discount
rate and prism constraint.

We here assume that time-space discount rate β and the scale parameter µ are
the variables specific on each state, βst and φst . Using these parameters and taking
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exponential, we re-formulate Equation 6.4 as follows,

eµta φt(a) = ∑
a′∈A

ιt(a′|a)eµta{vt
aa′+βta φt+1(a′)} (6.8)

We then divide the deterministic term of state transition utility ut
aa′ into the utility

dependent on only state et+1 = a′, ûet+1 and the other,

ut
aa′ = ût+1,a′ +

1
µta

log αt
aa′ (6.9)

Moreover, we define yt(a) = eφt(a) and Gt,a(y) = yt(a)µta , and re-formulate Equation
6.8 as follows,

Gt,a(y) = ∑
a′∈A

eµt,a ût+1,a′ αt
aa′

{
Gt+1,a′(y)

µta
µt+1,a′

}βta

(6.10)

Equation 6.10 describes the relationship between upstream node et = a and down-
stream node et+1 = a′ in GEV-network, and α is the allocation parameter. The state
transition probability of an arbitrary node pair is given by the following equation,

p(et+k|et) = ∑
et+k−1

p(et+k|et+k−1)p(et+k−1|et) (6.11)

where,

p(et+1|et) =

ηt
aa′

{
Gt+1,a′(y)

µta
µt+1,a′

}βta

∑a′∈A ηt
aa′

{
Gt+1,a′(y)

µta
µt+1,a′

}βta
(6.12)

ηt
aa′ = eµta ût+1,a′ αt

aa′ (6.13)

βta means that the weight of future expected utility can change at each edge. In
pedestrian activity context, it is assumed that whether an individual consider the
future utility or not is dependent on his/her situation at that time. We examine
these parameters through sensitivity analyses in Section 6.5.

6.4.3 Solving the Bellman equation

Note that we have to solve the Bellman equation (6.8) in order to evaluate the max-
imum expected utility and the state transition probability. Since previous implicit
route choice models solve the maximum expected utility at the steady state, they
need to apply inverse matrix or iterative calculation which may cause computa-
tional instability dependently on network conditions. On the other hand, in this
paper φt(a) has different value at each state (space and time), therefore we can solve
the Bellman equation using following backward induction algorithm:

Step 1: Preliminaries. Set the initial edge e0 = o, the final edge eT = d and φsT
t (d) =

0, ∀t. Calculate I, ∆, ι.

Step 2: Initialization. Set t = T, and φsT
t (a) = 0, ∀a ∈ A.

Step 3: Backward calculation. Set t = t − 1, and calculate φsT
t (a) based on Equation

(6.8).
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Step 4: Finalization. Finish the calculation if t = 0, return Step 3 otherwise.

6.4.4 Assignment algorithm

We define gt
a and f t

aa′ as the state flow at (t, a), ∀t ∈ {0, 1, ..., T}, ∀a ∈ A and edge
flow from states (t, a) to (t + 1, a′), ∀t ∈ {0, 1, ..., T − 1}, ∀a, a′ ∈ A, respectively. The
relationship between state and edge flows is formulated as follow,

gt
a =

 ∑k∈A f t−1
ka , t ̸= 0

qod, t = 0 ∧ a = o
0, t = 0 ∧ i ̸= l

(6.14)

and

f t
aa′ = gt

a pt(a′|a), ∀t ∈ {0, ..., T − 1}, (6.15)

where qod is a generating flow from the origin o ∈ O ⊆ A to the destination d ∈ D ⊆
A. The assignment algorithm is following. We first set the generating flow g0

o = qod,
and calculate the edge flows at time t = 1 using Equation (6.15). Then, the state
flows at time t = 2 can be calculated by Equation (6.14). All of other state and edge
flows can be calculated alternately until time t = T. Moreover, we obtain spatial link
flow of a ∈ A, ga by summation gt

a as follow,

ga =
T

∑
t=0

gt
a, (6.16)

where fa in Equation (6.16) corresponds to link flow in previous loading models.
Note that the activity network assignment is computationally expensive if the num-
ber of links and/or times are large. The propose method of time-space constraint
description helps for reducing network size and the path alternatives.

6.5 Illustrative example

We evaluated activity patterns using a simple network of Figure 6.4(a). Figure 6.4(b)
indicates the possible path set under the time-space constraints; T = 5, s0 = (0, 0)
and sT = (5, 14). For simplicity, the transition utility ut

aa′ depends on only the utility
of link a′ ut

aa′ = ûa′ , and the value of ûa′ is given in the parenthesis on each link. The
utility of staying link a ∈ As is defined as ûa = ba + cat where ba > 0 and ca < 0 are
dependent on each activity location and shown on the network.

6.5.1 Activity assignment

Figure 6.5 shows the results of activity assignment where the total demand is 1000
and all of them have the state constraint s0 = (0, 0) and sT = (5, 14), T = 5. Each
column shows the top three frequent activity patterns, link flows and the number
of activities. Activity pattens are generated based on random walk algorithm using
transition probabilities. Link flows are calculated by the time-structured assignment
algorithm proposed by Section 6.4.4. We can also calculate the duration time at each
node by multiplying the flows of staying link by the interval of time discretization,
that is, our activity assignment model in time-space network can evaluate the use of
time and space simultaneously.
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FIGURE 6.4: A simple network with three nodes for staying. (a) Net-
work and parameter setting and (b) Time-structured network and

prism constraint.

Each row corresponds to the result with different value of the time-space dis-
count rate. The time-space discount rate does is common value for all states in this
example. When β = 1, an individual evaluate the instantaneous utility ut

aa′ and fu-
ture expected utility φt+1(a′) at equal weights, i.e., they consider the total utility of
activity paths. As the result, the activity pattern which includes the stay at a3 where
the access cost is high but the utility is large enough was the most frequent. In con-
trast, when β = 0, activities are based on myopic decision without consideration of
future utility. As the result, the pattern including activity at a1 where the access cost
is low was the most frequent, and the flow of staying at a3 was only 6. The result
in the case of β = 0.5 showed the eclectic patterns. These results concluded that
the time-space discount rate β is a parameter describing the difference of decision
making and had a large impact on the evaluation of activity patterns.

6.5.2 Time-space discount rate

In order to examine of the effect of time-space discount rate, we changed the value of
each link and calculated probabilities of eight paths in Table 6.1. We show the path
probabilities in Table 2, where "Original" column presents the probabilities when
βa = 1, ∀a ∈ A and the right four columns indicate the probabilities when the value
of the time-space discount rate of some links change. The probabilities of paths in-
cluding activity at a2 (C, D) and a3 (E, F, G, H) increased when the discount rate
of links corresponding to each activity became small, because the (dis)utilities for
return (uback) were evaluated as the discounted value. In the real contexts, it is as-
sumed that the weight of future expected utility is large on link which is likely to
be passed, while the weight of myopic utility is large on link with many shops or
heterogeneous characteristics. The results indicated the possibility to describe the
decision making dynamics by changing the value of β on each link. When β8 = 0,
there was a large difference between the probabilities of path F and H that have the
same utotal, and this result indicates the tendency that people want to arrive early at
the main destination because the access cost (−ugo) of path F is smaller than that of
path H. In the case of β6 = β7 = β8 = 0, the probabilities of path C, F and G in-
creased. We confirmed that the effect of the time-space discount rate depends on the
relationship among activity utility, future expected utility, access and egress costs.
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FIGURE 6.5: Evaluation of activity path and its change with various
β

6.5.3 Activity path correlation

In order to examine the activity path correlation, we changed the value of scale pa-
rameter φa and calculated the path probabilities. For the sake of simplicity, in this
case study we set time-space discount rate βa = 1, ∀a ∈ A. We show in Figure 6.6 the
change of eight path probabilities when the scale parameter of stay links µ6, µ7, µ8
change. When µ6 = µ7 = µ8 = 1, the probabilities of path A, D, F and H are the same
value, because they are based on the same path-based utility utotal. According to the
change of µ, the activity path probabilities changed, and when µ6 = µ7 = µ8 = 0 the
probabilities of only 4 paths are non-zero. This result shows the transition between
paths with the same activity place (A and B; C and D; E and F; G and H), and we can
describe the path correlation among similar paths by changing the scale parameter
µ.

Here, we examine the effects of removal of specific states when µ6 = µ7 = µ8 =
0.5. In this study, we can describe not only spatial state removals (ex. road closing)
but also the temporal state removals (ex. operation time saving of shop; Domain
constraint in Figure 6.2C), because the activity path choice model includes the con-
cept of scheduling. Table 6.3 shows the change of path probabilities with additional
state constraints. When state s4 = 6 is excluded from the network, path A cannot
be chosen and the choice probability of path B largely increased, and when state
s4 = 7 is removed, travelers cannot chose path C and the choice probability of path
D largely increased, respectively. Regarding the state removal of move links, when
states st = 4, ∀t are removed, the choice probability of path E and F, which include
link 4 in the path, became zero. In that case, choice probability not only of paths
which share the activity location a3 with E and F but also of path C which has the
largest utility utotal expect for path E increased. On the other hand, when states
st = 13, ∀t are excluded, the choice probability of paths that has high similarity with
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TABLE 6.1: Eight dominant activity paths and their utilities

path: [links] stay utotal ustay ugo uback
A: [0,1,6,6,6,9,14] a1 4 6 -1 -1
B: [0,1,6,6,9,14,14] a1 3 5 -1 -1
C: [0,2,7,7,7,10,14] a2 5 9 -2 -2
D: [0,2,7,7,10,14,14] a2 4 8 -2 -2
E: [0,1,4,8,12,9,14] a3 6 12 -3 -3
F: [0,1,4,8,13,10,14] a3 4 12 -3 -5
G: [0,2,5,8,13,10,14] a3 2 12 -5 -5
H: [0,2,5,8,12,9,14] a3 4 12 -5 -3

TABLE 6.2: Time-space discount rate and path probabilities

probability with β varied
path original* β6 = 0 β7 = 0 β8 = 0 β6,7,8 = 0.5
A 0.067 0.060 0.054 0.027 0.044
B 0.025 0.008 0.020 0.010 0.010
C 0.182 0.187 0.375 0.074 0.258
D 0.067 0.069 0.019 0.027 0.035
E 0.496 0.508 0.400 0.549 0.460
F 0.067 0.069 0.054 0.202 0.103
G 0.009 0.009 0.007 0.027 0.014
H 0.067 0.069 0.054 0.074 0.062
AB* 0.092 0.068 0.074 0.037 0.054
CD* 0.249 0.256 0.394 0.101 0.293
EFGH* 0.639 0.655 0.515 0.852 0.639
*Original: βa = 1, ∀a ∈ A
*AB, CD, EFGH: Total value of path probabilities

removed paths increased. These results show the tendency of keeping activity lo-
cations even with additional state constraints, and the relaxation of IIA property of
logit model.

6.6 Case study

We finally show a case study using a simple network of the city center of Matsuyama-
city, Japan. For applying the activity assignment model to the network where the
travel time of links is different, we first introduce a method of network standardiza-
tion. Then we define the utility of links and implement the activity assignment in
Matsuyama-network. Moreover, we apply the framework to a pedestrian network
design problem and investigate the Pareto front solutions in Section 6.6.4.

6.6.1 Network standardization

In the time-structured activity network, travelers are assumed to necessarily transi-
tion to the next state at each discretized time, and the interval of time discretization
τ is a constant value. This constraint can cause a problem when the length of link is
varied, i.e., discretized time τ can be largely different from the time for passing links.
For this reason, we standardize a network before applying the activity assignment.
Figure 6.7(a) shows an example of standardizing link length. In this case, the length
of link (1, 2) is l12 = 3vwτ where vw is walking speed. In order to solve this problem,
we add two pseudo nodes and divide the link into three links, where the length of
each divided link is l12/3 then passing time is l12/3vw = τ. In the same way, we can
consider the minimum duration time at each node i ∈ N s, τmin

i . In the case of Figure
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6.7(b), the minimum duration time at node 1 is τmin
1 = 3τ. Then we add two pseudo

nodes and divide the link into three links as well as moving links.

6.6.2 Modeling utility

Travelers can move on moving links am ∈ Am, which are directed and have the
attributes: link length la, sidewalk width xw

a and shopping street dummy variable
xs

a. There are also links for staying as ∈ As with the deviated function of staying
utility: u̇s

a(ω) = xc
ij + xd

ijω, where ω is continuos time from departure at the origin.
The utility function of link is defined as:

ût
a = θtttta︸ ︷︷ ︸

travel time

+ (θwxw
a + θsxs

a)

(
la

L

)
︸ ︷︷ ︸

utility of moving sidewalk and shopping street

+ θu

∫ (t+1)τ

tτ
(xc

ij + xd
ijω)dω︸ ︷︷ ︸

utility of staying

,(6.17)
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TABLE 6.3: Addition of state constraint and path probabilities

probability with state removed
path original s4 = 6 s4 = 7
A 0.075 0 - 0.089 +0.014(+18.67%)
B 0.010 0.031 +0.021(+210%) 0.012 +0.002(+20.00%)
C 0.205 0.217 +0.012(+5.85%) 0 -
D 0.028 0.029 +0.001(+3.57%) 0.094 +0.066(+235.7%)
E 0.589 0.623 +0.034(+5.77%) 0.694 +0.105(+17.83%)
F 0.011 0.011 ±0.000(±0.00%) 0.013 +0.002(+18.18%)
G 0.001 0.002 +0.001(+100%) 0.002 +0.001(+100.0%)
H 0.080 0.084 +0.004(+5.00%) 0.094 +0.014(+17.50%)

probability with state removed
path original st = 4, ∀t st = 13, ∀t
A 0.075 0.188 +0.113(+150.67%) 0.076 +0.001(+1.33%)
B 0.010 0.025 +0.015(+150.00%) 0.01 ±0.000(±0.00%)
C 0.205 0.511 +0.306(+149.27%) 0.206 +0.001(+0.49%)
D 0.028 0.069 +0.041(+146.43%) 0.028 ±0.000(±0.00%)
E 0.589 0 - 0.598 +0.009(+1.53%)
F 0.011 0 - 0 -
G 0.001 0.004 +0.003(+300.00%) 0 -
H 0.080 0.199 +0.119(+148.75%) 0.081 +0.001(+1.25%)
*βa = 1, ∀a ∈ A, µ6 = µ7 = µ8 = 0.5, µa = 1, ∀a ̸∈ {6, 7, 8}

where θ is a vector of coefficients and tta is the travel time of link a. L is a standard-
ization constant of link length. Then,

ût
a =

 θttttij + (θwxw
a + θsxs

a)
(

lij
L

)
, a ∈ Am (moving an link)

θu
∫ (t+1)τ

tτ (xc
ij + xd

ijs)ds, a ∈ As (staying a node)
(6.18)

In the time-structured activity network, ttij has to be always same value, i.e., ttij = τ,
∀(i, j) ∈ A, i ̸= j. As mentioned above, we standardize the network in order to make
all of link length same lij = L, therefore the travel time of all links is τ = L/vw.

6.6.3 Assignment result in Matsuyama network

Based on the proposed model, we calculated the pedestrian assignment in a grid
network of the city center in Matsuyama-city, Japan (Figure 6.8). We set the stan-
dardization constant of link length L = 100 [m], which is the length of the shortest
link. The length of the longest links is 300 [m]. Moreover, the walking speed vw is
assumed to be 4.0 [km/h], thus τ = 1.5 [min].

We show the assignment results in Figure 6.9 where the upper is the link flow and
the lower is the average of activity duration per person at each staying node i ∈ N s.
When the time-constraint was one hour (Figure 6.9A), most of activities occurred
at node 4 or 18 and link flows were locally distributed. When the time-constraint
is two hours (Figure 6.9B), activity locations and link flows are distributed around
node 4 and 18. In real measurement (not appeared in this paper) we could also see
the deviation of activity locations in the city center of Matsuyama-city, therefore the
results in this paper described the expanse of pedestrian activity sphere correspond-
ing to time-constraint. Moreover, when the time-constraint is three hours (Figure
5C), the distribution of activity duration barely changed from the case B while the
link flows were widely distributed. It is assumed that the result came from the utility
decreasing as time went by.
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TABLE 6.4: Attributes of links

source sink la nmin
a nmax

a xs
a xc

a xd
a link

1 2 200 8 8 1 0 0 move
2 3 300 4 8 0 0 0 move
3 4 200 4 8 0 0 0 move
5 6 300 2 8 0 0 0 move
6 7 200 2 8 0 0 0 move
8 9 200 4 8 0 0 0 move
10 11 200 2 8 0 0 0 move
11 12 300 2 8 0 0 0 move
12 13 200 2 8 0 0 0 move
14 15 200 2 8 0 0 0 move
15 16 300 2 8 0 0 0 move
16 17 200 2 8 0 0 0 move
18 19 200 8 8 1 0 0 move
19 20 300 8 8 1 0 0 move
20 21 200 8 8 1 0 0 move
1 8 200 4 8 0 0 0 move
2 5 100 4 8 0 0 0 move
3 6 100 0 8 0 0 0 move
4 7 100 8 8 1 0 0 move
5 9 100 4 8 0 0 0 move
8 10 100 4 8 0 0 0 move
9 11 100 2 8 0 0 0 move
6 12 200 0 8 0 0 0 move
7 13 200 8 8 1 0 0 move
10 14 200 4 8 0 0 0 move
11 15 200 2 8 0 0 0 move
12 16 200 0 8 0 0 0 move
13 17 200 8 8 1 0 0 move
14 18 100 4 8 0 0 0 move
15 19 100 0 8 0 0 0 move
16 20 100 0 8 0 0 0 move
17 21 100 8 8 1 0 0 move
1 1 0 0 0 0 0.5 -0.005 stay
4 4 0 0 0 0 0.8 -0.015 stay
7 7 0 0 0 0 0.4 -0.003 stay
13 13 0 0 0 0 0.3 -0.001 stay
15 15 0 0 0 0 0.5 -0.006 stay
17 17 0 0 0 0 0.3 -0.001 stay
18 18 0 0 0 0 0.8 -0.015 stay
19 19 0 0 0 0 0.3 -0.001 stay
20 20 0 0 0 0 0.3 -0.001 stay
21 21 0 0 0 0 0.4 -0.002 stay
*All links are bidirectional and paired link have same attributes with each other

TABLE 6.5: OD patterns

Pattern s0 sT Flow Pattern s0 sT Flow
1 (0, o1) (T, o1) 400 3 (0, o3) (T, o3) 300
2 (0, o2) (T, o2) 100 4 (0, o4) (T, o4) 200
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FIGURE 6.8: Network of the city center in Matsuyama-city, Japan

6.6.4 Application to network design

We finally apply the activity assignment model above to a network design problem.
Recently in Japanese cities including Matsuyama-city, street space conversion at-
tracts more attention as a urban design method for increasing pedestrian activities.
Focusing this kind of design, in this study we assume the widening the sidewalk
width. Given a network of interconnected streets, we are looking for the config-
uration of a network that satisfies the travel demand with the maximum activity
time for different increasing sidewalk area [m2]. We assume that the capital cost of
widening sidewalk width is proportional to the area. Our problem decides on which
links and how wide we increase the sidewalk width in meters, i.e., the decision vari-
able is the sidewalk width nij = xw

ij on each moving link am = (i, j) ∈ Am. We
assume that each moving link has the possible maximum sidewalk width nmax

ij and
the minimum sidewalk width nmin

ij because of geometrical limitation. The minimum
sidewalk width nmin

ij is assumed to equal to the current sidewalk width on link (i, j)
because we consider only the widening in this study. Then, the sidewalk width nij
must satisfy the following constraint,

nmin
ij ≤ nij ≤ nmax

ij ∀(i, j) ∈ Am (6.19)

We investigate the trade-off curve between the total activity time and the total
increasing sidewalk area. This Pareto front indicates the possible activity time in-
crease for different levels of investment in building a pedestrian network. Therefore,
our problem has two conflicting objectives, maximizing the total activity time in the
district and minimizing the capital cost (increasing sidewalk area). The objective
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function for the activity time is,

max z1 = ∑
(i,j)∈A

∑
t

f t
ijτ, (6.20)

where f t
ij is the flow on link (i, j) at time t and τ is the interval of time discretization.

The objective function for the capital cost is,

min z2 = ∑
(i,j)∈A⇕

(nij − nmin
ij )lij ĉ, (6.21)

where ĉ is the unit capital cost for widening sidewalk width [yen/m2] and multi-
plied by the area which is the product of the increased width nij − nmin

ij [m] and the
link length lij [m]. Our problem is a bi-objective optimization problem as mentioned
above, and it is also bi-level programming because travelers react the network con-
figuration and change their activity locations, durations and routes, and vice versa.

We adopt the network update algorithm as the solution methodology (Scarinci
et al., 2016) of the optimization problem. This algorithm has two main steps: activity
assignment and network update. The activity assignment proposed in former sec-
tions is used to evaluate the flows f t

ij on an activity network. The flows are used to
calculate the total activity time associated to the first objective in Equation (6.20). The
network update modifies the current network, and the new solution is evaluated as
a Pareto front solution if it satisfies the following condition,

¬{∃ f ∈ F , z1 ≥ z( f )
1 ∧ z2 ≥ z( f )

2 }, (6.22)

where, F is the set of the Pareto front solutions. We also show the acceptance crite-
rion of new solutions in Figure 6.10.

The network update algorithm consists of four neighborhood structures based
on Scarinci et al., 2016: 1) Remove-random-width 2) Add-random-width 3) Remove-
worst-width 4) Add-best-width , subject to the constraint of Equation (6.19). In order
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to identify the worst and best link, we introduce two link-performance-value: loss
φloss and gain φgain formulated as follows,

φloss
ij = {ûij(n

(h)
ij − ñ)− ûij(n

(h)
ij )} · fij ∀(i, j) ∈ Am

φ
gain
ij = {ûij(n

(h)
ij + ñ)− ûij(n

(h)
ij )} · fij ∀(i, j) ∈ Am,

(6.23)

where n(h)
ij is the sidewalk width on link (i, j) at the h-th iteration. The unit re-

moval/additional width ñ is set as 1 [m] in this case study. These performance val-
ues give an upper bound on the possible loss/gain of pedestrian utility associated
with the removal/addition. We start with the network equipped with the maximum
possible sidewalk, i.e., n(1)

ij = nmax
ij ∀(i, j) ∈ Am, and iterate this activity assignment

and network update process for 1000 times.
The main characteristics of explored solutions are shown in Figure 6.11. Fig-

ure 6.11(a) shows all investigated solutions and they indicate the trade-off curve be-
tween total activity time and total area of widened sidewalk. The black circles are the
set of Pareto front solutions which are not dominated by any other solution. Figure
6.11(b) shows the variation of total sojourn time in iteration process, and indicates
the decrease of activity time according to iteration. As seen in Figure 6.11(c), that is
because the total area of widened sidewalk is decreasing as the iteration proceeds.
As the result, we can see the clear Pareto front in Figure 6.11(a).

In Figure 6.12, we also show an example solution A in Figure 6.11(a). Figure
6.12(a) shows the network configuration of solution A, where on eleven links the
sidewalk width increase. These links are located near the origins/destinations or
shopping streets. Figure 6.11(b) shows the activity assignment result in case of the
network configuration.

6.7 Conclusions and discussion

This paper propose an activity assignment model based on Markovian approach,
focusing on the high continuity between walking and staying behavior in pedes-
trian contexts. We formulate an activity path choice model based on implicit path
enumeration as one type of network-GEV based model. In order to solve the com-
putational challenges of Markovian assignment model, we introduced the three fol-
lowing methods: 1) time-structured network as a description of activity network,
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2) network restriction based on time-space constraints which can be interpreted as
the time-space prisms and 3) the dynamic sequential discrete choice model with
time-space discount rate . The model allows us to compute the activity assignment
with cyclic, multi-trip and time attributes. The assignment results show that time-
space discount rate of expected utility and the prism constraint are important param-
eters that have an influence on pedestrian decision-making. Moreover, we applied
the model to a network design problem in pedestrian context. We investigated the
Pareto front based on network update algorithm and solved a multi-objective and
bi-level programming.
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Chapter 7

Conclusions and future works

7.1 Conclusions of the thesis

This thesis proposes a number of methods for solving issues of Markovian route
choice analysis. Proposed methods are regarding Data and Estimation, Model, As-
signment algorithm, and Application, respectively. Therefore, this thesis is based on a
collection of papers, which are rather independent from each other. The contribu-
tions of this thesis and their relationship are shown in Figure 1.4. In this chapter, we
present an overview of this thesis again and some future research plans.

7.1.1 Conclusions

In Chapter 3, we focus on estimating parameters of route choice models using GPS
data with measurement uncertainties. Recently, the development of technologies is
facilitating one to observe micro-scale trajectories, such as walking trips and moves
in buildings, using GPS or WiFi technologies. However, in these cases, the GPS
measurement errors are still large and the path observations are difficult, because
networks are often dense and spatial attributes affect the size of measurement er-
rors. Since previous works have focused on networks of vehicles, they have often
assumed that the variance of GPS measurement errors is constant over a network.
Some studies use bayesian approaches and incorporate the prior with given prefer-
ences of route choices to correct the measurement probabilities. We focus on that
these parameters settings cause the biases in estimating route choice models, and
proposed two methods to reduce the biases: a link-based route measurement model and
a structural estimation method. The link-based route measurement model is based
on time-decomposition of states and a Markovian route choice model. It enables
us to estimate the link-specific variance of GPS measurement errors, while in pre-
vious studies the variance is given as constant value over a network and causes
the biases. The structural estimation method solves the fixed point of the param-
eters of a route choice model, and it can remove the biases included in the prior
information. Through twins experiments, we examine the effectiveness of proposed
methods from the viewpoint of measurement accuracy and the difference between
estimated parameters and the true values. The structural estimation results show
that the proposed method allows to achieve estimates close to the true value regard-
less of the initial parameter settings and refine the accuracy of link measurements.
Moreover we validate the method in the case of using real data. We use Probe Per-
son data collected in Matsuyama-city, Japan, and obtain the parameter estimation
results of the pedestrian route choice model. The results show that iteration process
makes estimates get better by refining path estimations. The estimated preferences
of route choices using the structural estimation method are less biased and show the
different trend from those using the biased route choice observations. Moreover, the
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variance of GPS measurement errors, which has been assumed to be independent of
spatial attributes in networks in previous studies, is estimated for each link in the
proposed model, and the estimated values are realistic.

In Chapter 4, we propose the β-scaled recursive logit (β-SRL) model that incor-
porates a parameter of the sequential discount rate, which is the discount factor
in dynamic discrete choice models (e.g., Rust, 1987), for capturing the diversity of
decisions under congestions. Through some illustrative examples using simple net-
works, we presented the properties of the β-SRL model in terms of path probability
and link flow prediction, and showed the differences from several existing route
choice models. The sequential discount rate reflected the effect of links that travel-
ers pass early and had a large impact on the order of path probabilities of routes.
It also affected network assignment results, and we concluded that the evaluation
of appropriate sequential discount rates was important for precise demand forecast-
ing. Moreover, we mentioned the selectivity of cyclic paths, which have not been
discussed in detail in previous works and may cause the divergence of expected
utilities, and showed the effect of the balance between the parameter of link cost and
the sequential discount rate. We then presented estimation results using both sim-
ulation data and real data, including GPS traces in the time of the Great East Japan
Earthquake. The estimated parameters using real data showed that the difference
of route choice mechanisms between the normal day and disaster day, and among
the time periods. On the disaster day, all parameters systematically changed as time
went by after the earthquake occurrence, and the estimation results of the sequential
discount rate indicated myopic route choice behavior in gridlock networks. We con-
clude that the β-SRL model enable us to examine the decision-making dynamics in
route choices and also to forecast demand more precisely by estimating appropriate
sequential discount rates. The case study is of the gridlock network, however, it is
assumed that the bias of link utility perception can be seen also in pedestrian and
general vehicle networks.

In Chapter 5, we focus on the computational challenges in Markovian route
choice models. We proposed an algorithm referred to as a time-structured assign-
ment (TSA), as a method for stochastic network loading. Time-structuring of net-
works decomposes the state by the timing of decision-making, and it can remove
the cyclic structure from the network for calculations. Moreover, we incorporated
the concept of time-constraint into the route choice model and proposed an algo-
rithm for systematically restricting path sets. Thanks to these ideas, we can solve
the Bellman equation with backward induction, which is a simple solution method,
and we can calculate the expected minimum cost regardless of network conditions.
A numerical example of network loading showed that the TSA can always output
the link flows, while the Markov chain assignment (MCA) cannot do so when link
costs are small. The TSA can also examine the change of link flow by varying the
parameter of time-constraint T. The result of the stochastic user equilibrium indi-
cated the possibility that the application of the TSA algorithm could alleviate the
unreasonable cyclic flow given by the MCA. Moreover, we extended the model to
the network-GEV model in time-structured networks (n-GEV-t), and showed that
the n-GEV-t model can describe the effect of overlapping among the path set includ-
ing cyclic paths. The TSA algorithm is the one of solution of the challenges that the
MCA algorithm remains; 1) computational instability dependent on network condi-
tions, 2) unreasonable cyclic flows and 3) the amplification of the IIA property, with
reasonable computational time. These challenges occur in the econometric models
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(see Fosgerau, Frejinger, and Karlstrom, 2013); therefore, our method can be applied
to the discrete choice analysis to solve the computational problems.

In Chapter 6, we propose an activity assignment model based on a Markovian
route choice model, focusing on the high continuity between walking and staying
behavior in pedestrian contexts. We formulate an activity path choice model based
on implicit path enumeration as one type of network-GEV based model. In order to
solve the computational challenges of Markovian assignment model, we introduced
the three following methods: 1) time-structured network as a description of activ-
ity network, 2) network restriction based on time-space constraints which can be
interpreted as the time-space prisms and 3) the dynamic sequential discrete choice
model with time-space discount rate. The model allows us to compute the activ-
ity assignment with cyclic, multi-trip and time attributes. The assignment results
show that time-space discount rate of expected utility and the prism constraint are
important parameters that have an influence on pedestrian decision-making. A case
study in the network of the city center of Matsuyama-city described the expanse of
pedestrian activity sphere corresponding to time-constraint. Moreover, we applied
the model to a network design problem in pedestrian context. We investigated the
Pareto front based on the network update algorithm and solved a multi-objective
and bi-level programming.

By using the models proposed in Chapter 3-6, we identify the preference of route
choice behavior and evaluate network flow even in pedestrian networks in the same
framework. Therefore as the main conclusion, we developed a integrated frame-
work of Markovian route choice analysis.

7.2 Future research

This study is halfway to the completion, and we are proceeding the continuing re-
search. In the following we present the future work related to the content of this
thesis.

In Chapter 3, we point out that previous frameworks of estimating route choice
models include biases in the process of route observations, and propose a new mea-
surement model and a novel estimation method: link-based route measurement model
and structural estimation method.

As the next work, we are planning to develop a more generalized framework,
which is the joint estimation of the measurement model and route choice model.
Our proposed measurement model identifies links sequentially, and achieves the re-
duction of the number of iteration and the analysis of the model property by inves-
tigating the convergence process of parameters. The framework retain the problem
regarding the analytical characteristics, such as the existence of the fixed point and
the solution stability of the convergence. As a more generalized framework, in the
future work, we are planning to maximize the joint probability of the two model.
Based on the proposed measurement and route choice models, we formulate a prob-
lem maximizing the probability of reproducing the vector of measurements by the
two models. As we mentioned in Chapter 2, the definition of the set of path can-
didates is required for evaluating the probabilities. In the framework of our model,
algorithms of generating and resampling paths sequentially in the process of path
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observations. For maximizing the joint probability, the application of the EM algo-
rithm or the variational Bayesian method and perhaps the development of a new
estimation method will be discussed in the future work.

We will also examine the relationship between the definition of the time dis-
cretization interval and the sequential route choice model. For applying the link-
based measurement model, we have to assume that travelers make decisions at a
certain interval. When the lengths of links differ from each other, the interval of
time discretization is often defined by the travel time of the shortest link. In this
case, we will assume that travelers choose the same link iteratively when they move
on long links. The distribution of the true location on link and the definition of the
utility function of staying at the same link will be examined in the future work.

Since the model includes the aspect of time, we will develop the framework to
the activities in time-space networks. Based on the activity path choice model, which
is presented in Chapter 6, we will identify the path in time-space networks and esti-
mate the mechanisms of the activity path choice behavior, using GPS data. We have
collected GPS data of pedestrians in city centers through multiple surveys, and will
use it to investigate the paths in time-space networks.

The structural estimation method proposed in Chapter 3 is applicable to not only
route choice models but also other transportation behavior models with uncertain
measurements. We expect the development based on various data and models.

In Chapter 4, we propose a Markovian route choice model with the sequential
discount rate and present its application to the gridlock network analysis. By con-
sidering the sequential discount rate, we can describe the mechanisms of myopic
decisions in route choice behavior, which is dependent on the environment close to
the decision makers.

In future work, we will investigate the interpersonal heterogeneity of the sequen-
tial discount rate, because the parameter indicates the decision making dynamics
and it is assumed to largely depends on personal characteristics of travelers. In the
analysis in Chapter 4, it is assumed that all travelers have the same value of the se-
quential discount rate, we will examine its dispersion among travelers by extending
the model to a mixed logit model or a latent class model. We will also investigate
the relationship between the value of the sequential discount rate and the temporal
and spatial situations of networks, using the large amount of data source.

The framework of estimating Markovian route choice models using real-time tra-
jectories will be developed in the future work. Markovian route choice models, such
as the RL model and β-SRL model, which is proposed in Chapter 4, do not require
the information of entire trips, but only the destination and link transitions for esti-
mating parameters. The destination is required for evaluating the value functions,
which are the expected maximum utilities of dynamic discrete choice models. How-
ever, the identification of the destinations is a big issue in the case of using real-time
trajectories. We are developing algorithms for identifying destinations, and their
validation will be presented in the future work.

The estimation of the β-SRL model takes time to calculate, because the system of
non-linear equations has to be solved to evaluate the route choice probabilities. As
is discussed in Mai, Frejinger, and Bastin, 2015, methods for reducing the computa-
tional time are required for applying the model to real large-scale networks.

In Chapter 5, we focus on that the cyclic structures in networks cause the di-
vergence of the Bellman equation and unreasonable flows, and introduce a method
for restricting path set by incorporating the parameter of the time-constraint. The
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method does not remove all cyclic paths, and do solve the computational challenges
of Markovian route choice models in reasonable time.

We define the value of the time-constraint arbitrarily in the analyses of Chapter 5,
but in the future work, we will discuss the way of the definition and the validation of
the time-constraint. We will examine the set of paths that are used in real networks,
using real trajectories, and present a method for defining the time-constraint.

We also will apply the method to estimating route choice models, which is dis-
cussed in Chapter 3 and 4. Because the same problem of the divergence of the Bell-
man equation can be seen in the model estimation, it is meaningful to examine the
possibility of application of the path restriction to estimators.

We show that the divergence of the expected maximum utilities is restrained
using a simple network analysis, and discuss the condition of the convergence as
the inequality of the spectral radius of the incidence matrix defining link costs. The
theoretical discussion of the convergence condition in the case of incorporating the
time-constraint will be presented in the future work.

In Chapter 6, we apply the Markovian route choice model with the sequential
discount rate and the time-constraint to an activity network, and present a pedes-
trian network design problem as the framework of bi-level and bi-objective pro-
gramming.

We define the utility function of the time use in an activity network as a quadratic
function of the elapsed time from departing the initial node. More realistically, the
utility function should be defined as a function of the duration time at each location
to describe the law of diminishing marginal utility. However, in Markovian route
choice models, the utilities of paths are always calculated in the link additive way,
which is a problem for expressing realistic path utilities, such as considering effects
of the elapsed time or the distance from the middle of the paths. The way of defining
utility functions of Markovian route choice models will be discussed in the future
work. The balance between the size of staying utilities and moving costs will also be
examined.

For solving the network design problem, we investigate the Pareto front using
a simple solution method of metaheuristics. This algorithm can result in the local
optimal solution; therefore, the test and the development of solution methods to
obtain more precise solutions will be presented in the future work. More efficient
algorithms of solving both the network design problem and the activity assignment
are required for applying to large-size networks.
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Appendix to Chapter 3

A.1 Monte Carlo simulation

We generate 100 datasets in the same way with Section 3.6.1 and implement the
structural estimation for each dataset to validate the dependence of estimation re-
sults on samples. We show the average and the standard deviation of estimated pa-
rameters of route choice models, the number of iterations and computational time in
Table A.1. While we obtain the estimate close to the true value regarding the travel
time (θ1), the estimates of the other parameters have difference from the true values.
However, any parameters are closer to the true value than the initial parameters
(θ̄ = [0, 0, 0, 0]), and it is expected that enriching the measurement model improves
the estimation results. Regarding the variable of u-turn dummy, the standard devia-
tion is large. It is assumed that the number of path observations including u-turn is
small because we assume the large resistance for u-turns in the true model (θ∗4 = −4).
The averages of the number of iterations and the computational time are 4.086 and
858.179 seconds, respectively. In this experiment, the three cases do not converge.
We show the possibility that the structural estimation converges regardless of the
initial parameter settings; however, this experiment indicates that the convergence
depends on samples and the structural estimation remains the challenge regarding
the convergence property. We consider the extension to the analytical framework as
the main future work, which is addressed in more detail in Section 3.7.2.

TABLE A.1: Average and standard deviation of estimated parameters,
the number of iterations and computational time of 100 structural es-

timations

θ̃1 θ̃2 θ̃3 θ̃4 Iteration CPU time (s)
Ave. -0.112 -1.140 -1.006 -2.916 4.086 858.179
Std. 0.023 0.663 0.413 4.006 1.007 229.737

A.2 Fluctuation of estimated values of parameters

Figure A.1 shows the fluctuation of estimated parameter values in the structural
estimation process, which is the result of the case study in Section 3.6.2.
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Appendix to Chapter 5

B.1 Restricted path set

The set of the restricted paths in Figure 5.1 includes forty one paths. We show the
paths in Table B.1. When T = 5, no path includes two or more cycles.

TABLE B.1: Restricted path set in Figure 5.1

node number at each time
path t = 0 1 2 3 4 5 path t = 0 1 2 3 4 5

1 7 2 3 4 9 14 22 7 8 9 14
2 7 2 3 8 9 14 23 7 8 13 8 9 14
3 7 2 3 8 13 14 24 7 8 13 8 13 14
4 7 2 7 8 9 14 25 7 8 13 12 13 14
5 7 2 7 8 13 14 26 7 8 13 14
6 7 2 7 12 13 14 27 7 8 13 18 13 14
7 7 6 7 8 9 14 28 7 8 13 18 19 14
8 7 6 7 8 13 14 29 7 12 7 8 9 14
9 7 6 7 12 13 14 30 7 12 7 8 13 14

10 7 6 11 12 13 14 31 7 12 7 12 13 14
11 7 8 3 4 9 14 32 7 12 11 12 13 14
12 7 8 3 8 9 14 33 7 12 13 8 9 14
13 7 8 3 8 13 14 34 7 12 13 8 13 14
14 7 8 7 8 9 14 35 7 12 13 12 13 14
15 7 8 7 8 13 14 36 7 12 13 14
16 7 8 7 12 13 14 37 7 12 13 18 13 14
17 7 8 9 4 9 14 38 7 12 13 18 19 14
18 7 8 9 8 9 14 39 7 12 17 12 13 14
19 7 8 9 8 13 14 40 7 12 17 18 13 14
20 7 8 9 10 9 14 41 7 12 17 18 19 14
21 7 8 9 10 15 14

B.2 Equivalence to the logit-type assignment

Proof. Consider a route in time-structured network ψ = [s0, ..., st, ..., sT] = [i0, ..., it, ..., iT].
The cost of route ψ is cψ = ∑T−1

t=0 cit,it+1 , where cit,it+1 is the cost of the link (it, it+1),
because the link costs are constant over the time. The choice probability of route ψ
is formulated as the product of the state transition probabilities:

P(ψ = [i0, ..., it, ..., iT]) =
T−1

∏
t=0

pt(it+1|it). (B.1)
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Equation (5.8) is re-formulated with Equation (5.10) and the notation vti = e−µφt(i)

as follows:

pt(j|i) = e−µcij
vt+1,j

vt,i
. (B.2)

Using Equation (B.1) and (B.2), we expand the choice probability of path ψ as fol-
lows:

P(ψ) =
T−1

∏
t=0

e−µcit it+1
vt+1,it+1

vt,it

= e−µci0 i1
v1,i1
v0,i0

e−µci1 i2
v2,i2
v1,1

· · · e−µciT−1 iT
vT,iT

vT−1,iT−1

=
vT,iT

v0,i0

T−1

∑
t=0

e−µcit it+1 . (B.3)

Based on the definition that φsT
t (i) is the expected minimum cost of the state st = i

given the final state sT = iT, that of the initial state s0 = i0 is:

φ0(i0) = − 1
µ

log ∑
ψ∈ΩT(i0,iT)

e−µcψ , (B.4)

where Ω is the feasible path set, which forms a time-space prism, given the initial
state s0 = i0 and the final state sT = iT. Finally, Equation (B.3) is re-formulated as
follows:

P(ψ) =
e−µcψ

∑ψ∈ΩT(i0,iT) e−µcψ
. (B.5)

This is equivalent to the logit-type probability of the path ψ, where the choice set
consists of all paths in the time-space prism. ■
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Appendix to Chapter 6

C.1 Equivalent optimization model

The activity network loading problem is:

min z( f ) = −∑
ij

∑
t

vt
ij f t

ij + ∑
o∈O

∑
ij

∑
t

1
µ

f o,t
ij log f o,t

ij

− ∑
o∈O

∑
i∈N

∑
t

1
µ

(
∑

j∈N
f o,t
ij

)
log

(
∑

j∈N
f o,t
ij

)
, (C.1)

subject to,

∑h f o,t−1
hi − ∑j f o,t

ij − ηt
oiqod + ηt

idqod = 0, ∀i ∈ N , ∀t ∈ {0, 1, ..., T} (C.2)

f t
ij = ∑l f l,t

ij , ∀(i, j) ∈ A, ∀t ∈ {0, 1, ..., T} (C.3)

f l,t
ij ≥ 0, ∀(i, j) ∈ A, ∀t ∈ {0, 1, ..., T}, ∀o ∈ O

(C.4)

where ηt
li equals one if t = T and i = l and zero otherwise, and ηt

il equals one if t = 0
and i = l and zero otherwise. The edge flow f t

ij is not defined and equals zero if t
is smaller than zero or larger than T. It is described that Equations (C.1)-(C.4) are
equivalent to the path choice model in the activity network as follows.

Proof. We first define the Lagrangian as follows:

L( f , µ, λ) = z( f ) + ∑
t

∑
l

∑
i

φl
t,i

(
∑
h

f l,t−1
hi − ∑

j
f l,t
ij − ηt

liql + ηt
ilql

)

+ ∑
ij

∑
t

λt
ij

(
f t
ij − ∑

l
f l,t
ij

)
, (C.5)
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then KKT-conditions is formulated as below:

∂L
∂ f l,t

ij

=
1
µ

log
f l,t
ij

∑j f l,t
ij

− vt
ij + φl

t+1,j − φl
t,i = 0, if f l,t

ij > 0, (C.6)

∂L
∂ f l,t

ij

=
1
µ

log
f l,t
ij

∑j f l,t
ij

− vt
ij + φl

t+1,j − φl
t,i > 0, if f l,t

ij = 0, (C.7)

∂L
∂φl

t,i
= ∑

h
f l,t−1
hi − ∑

j
f l,t
ij − ηt

liql + ηt
ilql , (C.8)

∂L
∂λt

ij
= f t

ij − ∑
l

f l,t
ij . (C.9)

Assuming f l,t
ij > 0, Equation (C.6) is re-formulated as:

1
µ

log
f l,t
ij

∑j f l,t
ij

− vt
ij + φl

t+1,j − φl
t,i = 0

⇔
f l,t
ij

∑j f l,t
ij

= exp[µ(vt
ij + φl

t+1,j − φl
t,i)]

⇔ pl
t(j|i) = exp[µ(vt

ij + φl
t+1,j − φl

t,i)], (C.10)

where the transition probability between states (t, i) and (t + 1, j), pl
t(j|i) is equiva-

lent to the branching fraction of flow f l,t
ij / ∑j f l,t

ij . Because the sum of the probability
equals one, we get the following equation:

φl
t,i =

1
µ ∑

j
exp[µ(vt

ij + φl
t+1,j)]. (C.11)

This formulation is equivalent to the expected minimum cost from states (t, i) to
(T, l), and finally we get the formulation of the transition probability by substituting
Equation (C.11) to Equation (C.10):

p(T,l)
t (j|i) =

exp[µ(vt
ij + φ

(T,l)
t+1,j)]

∑j′ exp[µ(vt
ij′ + φ

(T,l)
t+1,j′)]

. (C.12)

This is equivalent to the probability of the path choice model in time-structured net-
work. ■

C.2 Activity patterns with different βs

The time-space discount rate β in the activity path choice model describes the decision-
making dynamics of traveler. We change the parameter β and generate 1000 activity
paths, which depart at node 18 in the Matsuyama network in Chapter 6 with the
time-constraint of 90 minutes. Figure C.1 shows the most frequent activity patterns
in the case that β is 1 (a) and 0.8 (b), respectively. When β = 1, travelers optimize
their activities within the time-constraint and spend 81 minutes in the network. On
the other hand, when β = 0.8, travelers stay at only node 18 and the total duration
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time is only 45 minutes. It is because travelers behave myopically and optimize their
decisions at each timing.
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FIGURE C.1: The most frequent activity patterns with different βs

C.3 Flow of the solution algorithm

Figure C.2 shows the flow of the solution algorithm, which is used for the case study
in Section 6.6 in Chapter 6.
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Finish iteration
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FIGURE C.2: Flow of Network Update algorithm
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