
修 士 論 文

Recognizing Multi-scale Material Traits
(スケールの異なる画像からのマテリアル属性の認識)

東京大学大学院
情報理工学系研究科
電子情報学専攻

48-136450 張 璐霖

指導教員 佐藤 洋一 教授

平成27年2月





© Copyright by Lulin Zhang 2015.
All rights reserved.





Abstract

Material traits (e.g. smooth, transparent, shiny) provide abundant perceptual in-
formation of materials. Comparing with some low-level features, recognizing ma-
terials with its perceptual traits is much more similar to the function of human
beings’ brains. Learning material traits, which have been proved discriminative
and recognizable, provides a new perspective for materials recognition in computer
vision.

In latest research of Schwartz et al., a per-pixel algorithm was proposed to rec-
ognize material traits, with Flickr Material Database built by Sharan et al.. Ex-
periment results showed that their approach was effective and object-independent
for material traits recognition in arbitrary images. However, scale change of both
training and testing data had not been taken into consideration in their work.

In this thesis, we propose an approach to recognize material traits from im-
ages with different scales. We train hierarchical convolutional features of material
traits at different scales, with an unsupervised auto-encoder algorithm. Then
multi-scale randomized decision forest classifiers are trained on these features to
directly recognize material traits. We also proposed two methods to select ap-
propriate scale effectively in a recognition task. Our results present an obvious
improvement on recognition accuracy in a multi-scale recognition task comparing
with the single-scale approach.
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Chapter 1

Introduction

Object recognition is a topic which is never out of season in computer vision.
Since the first day we human beings invented a robot, we had never stopped
to teach these machines how to recognize an object. Unfortunately, until now,
our robots can not be as smart as real human being to recognize any objects
around us. Figure 1.1 shows that even if these three objects show similar texture
patterns, they are made of different materials, and obviously they are completely
different objects. So in order to recognize an object automatically and precisely,
it is necessary to discuss the problem that how to recognize different materials
effectively.

Actually, recognizing materials (e.g. metal, ceramic, fabric, plastic, wood)
is an meaningful task in both scientific research and industrial application. This
technology is not only widely utilized in industrial product inspection, mineralogy,
remote sensing, but also in our everyday life such as food inspection and resource
recycling. Many features contained in materials, such as color, Bidirectional Re-
flectance Distribution Function (BRDF), texture, translucency, and polarization,
provide us various solutions to solve material recognition problems.

Although some conventional approaches can obtain a high accuracy when im-
plemented in a laboratory environment or for a well-prepared raw material, recog-
nition for an everyday object in an arbitrary photo is still a challenging but mean-
ingful task for us.

Figure 1.1: Object with similar texture patterns can be made of different materials (from left to right): fabric,
plastic, and paper [1].
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In conventional approaches, material categories are often recognized directly
from low-level features, which depends too much on raw material properties. Such
In-Lab approach may cause a consequence that well-prepared raw materials can
be recognized at a very high accuracy rate in a lab environment, while it may
not work when recognizing a painted, dyed material in an everyday life photo.
In addition, complicated and expensive experimental devices are not acceptable
in a everyday application. Obviously, people should like to recognize or classify
something with a portable device like our smart phone, instead of doing this in a
laboratory or a factory.

Recently, Fleming et al. [6] proposed a method to predict the material’s per-
ceptual properties(e.g. hardness, rigidity, colorfulness), and proved that these
qualities are systematically related to their corresponding material classes. After
them, Schwartz et al.[7] proposed a more systematically generalized approach to
recognize per-pixel material traits(e.g. smooth, shiny, liquid, organic).

No matter what accuracy they will obtain, we can find that this approach
based on materials’ perceptual properties is not only a great improvement, but
also a trend in material recognition. By employing perceptual properties, we
will force our computer vision system to think more likely to human’s brain and
neural network. In an other word, we are trying to teach our computers how to
distinguish a material in a perceptual layer(Fig. 1.2(b)), instead of recognizing
materials with some basis visual information such as color, texture(Fig. 1.2(a)).
When we take the first glance at Fig.1.1, maybe some of us will also be confused
for a few seconds, as same as our robots. However, after these few seconds, all
the knowledge and memories stored in our brain will be activated in a short time,
and then we can soon make a precise judge of their corresponding materials. In
this process,usually we make our final decision by analysing material traits, such
as smooth, shiny, soft, instead of some fundamental features.

Therefore, recognizing material traits, which encode discriminative material
information is a good solution to do material classification in photos of everyday
life objects. In addition, a per-pixel recognizing approach may avoid dependence
on information of material’s object-specific features, making the system still effec-
tive for other test samples.However, in the paper of Schwartz et al., they do not
consider the case of handling material recognition with different image scales.

As Fig. 1.3 shows, even though patches are extracted with the same size from
a photo of a certain material, they may contain completely different appearance
of the same material, because the object may show different scales in one photo.

We consider that recognition results predicted by a wrong scale classifier con-
ceivably might be erroneous. Therefore, it must be an interesting and meaningful
topic to research recognition of material traits with different scales.

In this thesis, we propose an approach to recognize multi-scale material traits.
We firstly train Convolutional Auto-encoder (CAE) Filters, which can represent
the features well under an unsupervised learning, for material image patches with
S scales. These filters will later been proven to be very important in our classifiers.
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(a) Recognize materials by low-level features

(b) Recognize materials by perceptual traits

Figure 1.2: A perceptual layer in material recognition
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Figure 1.3: Image patches of the same size may contain material information with different scale

We also prepare annotated material trait patches, including patches with a certain
material trait(e.g. smooth, metallic, organic) present or not present. For each
trait, we take balanced sets of positive and negative examples for our classifier
training. Then, we take pooled convolutional responses of prepared positive and
negative trait patches by trained CAE filters of each scale, also together with some
other non-linear features (e.g. HOG, LBP, Color Histogram), as a huge Feature
Matrix. We utilize feature matrices obtained from CAE filters of N scale, to
train S Random Decision Forest Classifiers, which can directly recognize material
traits with different scales. After that we also propose two effective approaches of
scale selection for these classifiers to make a final decision, by searching maximum
confidence among the predictions given by multi-scale classifiers, or computing the
average prediction probability.

The remainder of this thesis is organized as follows:

In Chapter 2, we introduce some related works in material recognition firstly.
Then we will introduce the material database employed in our experiment.

In Chapter 3, we will firstly bring the concept of material traits and talk
about our goals in this research. Then our algorithms of multi-scale material trait
recognition will be introduced. Finally, we will talk about some strategies for
selecting the best scale of input samples.

In Chapter 4, procedures and settings of our experiments will be introduced.
Particularly, we would like to introduce how we train convolutional auto-encoder
filters and randomized decision forest classifiers with different scales. Our testing
results will be given to establish that our proposed approach does contribute to
an improvement of accuracy in a multi-scale recognition task.

In Chapter 5, we make a summary of our work and talk briefly about the future
direction of this research.



Chapter 2

Related Works

2.1 Material Recognition

Material recognition is a challenging but meaningful topic in computer vision, in
[8], Adelson et al.firstly separate material recognition from object recognition and
illustrate importance of material recognition in computer vision. Until now, many
algorithm have been proposed for material recognition, including per-pixel and
object-dependent methods. Although per-pixel recognition without object’s non-
local features such as edge contours would be more error-prone, which is proved
in [1], it is still the ideal approach for material recognition. In our everyday life
environment, many objects are not made of only one material (Fig. 2.1), which
makes per-pixel recognition a meaningful work to do. Wang et al. [2] proposed an
approach to utilise Bidirectional Reflectance Distribution Function(BRDF) fea-
ture of materials’ surface for per-pixel material recognition. Based on this work,
Gu et al. [?] proposed a algorithm to obtain an optimal coded illumination, after
projecting to which, the spectral BRDFs of different materials can be maximally
separated. And then they utilized this coded illumination to directly classify raw
materials directly. In [9], they employed the same model in [?], but to utilize coded
illumination to measure projections of Bidirectional Texture Functions (BTFs) di-
rectly for material classification. Both of these works can obtain a high accuracy,
however, these two methods require a very complicated and expensive device (a
dome with cameras and light sources fixed at different direction) to collect BRDF
features on material surface. In [10], Shiradkar et al.propose a method to use hand-
held flashlight camera to capture a 1D BRDF splice for material classification and
ink identification. Lombardi et al.[11] proposed an algorithm to estimate BRDF
directly from single images, however in this algorithm, geometry information of
the object is required.

Other than BRDF features which is acceptable and wildly utilized in material
recognition, we still have some other features which are reliable to employ. In com-
puter vision field, convolution owns a impregnable position for many situations.
Filters usually have a much smaller size than the images, but after a convolution
operation with them, many features of the original image will strongly appear,

5
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Figure 2.1: Objects made of different materials [2]

especially for materials’ different textures.

Varma et al.[3] proposed an algorithm to present materials’ textures as textons,
which is features obtained by convoluting images with a filter bank and clustering
the responses via K-Means. At the first stage(Fig. 2.2(a)), multiple, unregistered
images of the same texture are convolved with a filter bank. Then obtained filter
responses will be clustered into N textons via K-means algorithm with N clustering
centres. This procedure is repeated to train textons from different texture classes
and finally all the trained textons will be combined to form a texton dictionary.
In the material training stage (Fig. 2.2(b)), training image of a certain material
category is convolved with the same filter bank as stage I, then each filter response
is labelled with the closest texton in the texton dictionary. Finally the histogram of
textons, showing frequency of each texton’s presence in texton map with labelling,
will form a material-texton model of the training data. Thus, after training a set of
material-texton models of a material class, a testing image can classified easily by
comparing its material-texton model with the trained model dictionary and picking
the closet one as its material category.(Fig. 2.2(c)) This work is widely employed
and has been developed to many good algorithms by other researchers. Although
our algorithm is different from this work, the basic procedures and methodologies
are quite similar. In [12], the same group of Varma et al.proposed a new approach
to represent textures as a set of exemplar patches instead of filter bank responses,
and this method has been shown better than filter bank based representation.
However, patch representation has a disadvantage of quadratic increase in the
dimension of feature space with the neighbourhood patch size increasing.

In [13], Yaccob et al.investigated the relationship between the appearance of
a same material when it was dry and wet. Material classification and recognition
was also researched with a virtual synthesised dataset. [14][15]

To deal with multi-scale task in material recognition, Kang et al. [5] proposed
algorithm to compute texton clustering in random forest based on the work of
[4]. Kadir et al. [16] proposed a concept of scale saliency to extract areas of
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(a) Learning stage I: Generating the texton dictionary.

(b) Learning stage II: Model generation.

(c) Classification stage.

Figure 2.2: Procedures of texton-based texture recognition. [3]
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different scales in an image. Based on this work, in [26], Blunsden et al.proposed
a method to extract textons of VZ’s MRF model at different scales. In [17], Li et
al.introduced an unsupervised model of Multi-Scale Spike-and-Slab Sparse Coding
to learn multi-scale material features,

In [18], Sharan et al.build a new material database with single images of our
every life materials. Thanks to this good database, many new research has been
conducted successfully. In [19], Liu et al.utilised a rich set of low and mid-level
features from materials. Then they combine an proposed model of augmented La-
tent Dirichlet Allocation (aLDA) with these features under a Bayesian generative
framework to learn an optimal combination of different features. In [6], Fleming et
al. proposed a method to predict the material’s perceptual properties(e.g. hard-
ness, rigidity, colorfulness), and proved that these qualities were systematically
related to their corresponding material classes. In this work, they conducted two
experiments to research the interactions between materials and material prop-
erties in both visual and semantic domains. Based on this work, Schwartz et
al.[7] proposed a more systematically generalized approach to recognize per-pixel
material’ traits(e.g. smooth, shiny, liquid, organic), which had been proved to
be discriminative and object-independent. Schwartz et al.untilzed these per-pixel
material traits in material category recognition and segmentation successfully.

In this thesis, our research is most closely related to Schwartz’s work of recog-
nizing per-pixel material traits.

2.2 Database

In this section, we briefly introduce our selection of an ideal image database for
this work.

Recently, there exist many excellent database of computer vision provided by
researchers. Columbia-Utrecht Reflectance and Texture Database (CuRRET)[20]
is a very famous material database, containing BRDF database, BRDF parameter
database and a BTF database with it. However, in Figure 2.3 we can find that
although this database provides abundant information of materials’ texture, its
images are too different from our everyday life photo. So it may not be a good
choice in this research.

Microsoft Research Computer Vision Team at MSR Cambridge also provide
a popular object database for free, containing abundant object categories in ev-
eryday life photos. They also provide ground truth masks for users to annotate
a certain object category they want to utilize. However, this is not a database
designed for material recognition, so it is really difficult to prepare and pre-process
patches for material research effectively.

Fortunately, Sharan et al.provide us an excellent database, Flickr Material
Database(FMD), for material researches[18]. In this database, there are images of
10 material categories(fabric, foliage, glass, leather, metal, paper, plastic, stone,
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Figure 2.3: Material images from the Columbia-Utrecht database [3]

water and wood), and 100 images per one category. Consider that images in this
database all come from Photography Website:Flickr.com, all of them are vivid,
colorful, and have a very high quality, as some images shown in Figure 2.4. Besides,
they have made a mask image for each material image, so that the users can
annotate the region of interest (Metarials) with the provided masks, which is
quite convenient. Some annotation examples are showed in Figure 2.5.
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Figure 2.4: Images of different materials in FMD [1]
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(a) Material: Glass (b) Annotation of Glass

(c) Material: Metal (d) Annotation of Metal

Figure 2.5: Annotation of material region with the mask



Chapter 3

Recognize Multi-Scale Material
Traits

3.1 Background

Recently, Fleming et al. [6] proposed a method to predict the material’s perceptual
properties(e.g. hardness, rigidity, colorfulness), and proved that these perceptual
qualities are systematically related to their corresponding material classes. Based
on this, Schwartz et al.[7] proposed a more systematically generalized approach
to recognize per-pixel materials’ traits(e.g. smooth, shiny, liquid, organic). They
have proved that these material traits have ability to encode per-pixel information
of materials. What’s more, these properties which are independent from object-
specific features, are proved to be discriminative. In Schwartz’s experiment, they
have successfully utilized material traits in material category recognition and im-
age segmentation.

Schwartz’s proposed method is the first one to extract and utilize material
traits. However, in their research, scale chage in images, which are very important
in material recognition, have not been taken into consideration.

In this thesis we propose an approach to recognize material traits with different
scales, by training a training hierarchical convolutional features of material traits
at different scales, and then utilizing the trained features to train multi-scale
randomized decision forest classifiers to recognize multi-scale material traits.

3.2 Representing Multi-scale Material Traits

In this section, we propose an approach to recognize material traits with different
scales.

In [7], Schwartz et al.proposed an unsupervised setting to train Convolutional

12
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Material Features, based on a Convolution Auto-encoder model[21]. With this
model, a sparse set of filters, which encode different material traits, will be trained
by solving an minimum problem.

With a set of filters W, input images Ii can be transformed to a feature space
Ei with (3.1):

Ei = h(W ∗ Ii + be) (3.1)
where h() is an activation function (3.2), and be is encoder bias,

h(xi) =


0, if xi < 0

xi, if 0 ≤ xi ≤ 1

1, if xi > 1

(3.2)

Then, with another set of filters W’, images in feature space Ei can be recon-
structed to the original images Ri:

Ri = W’ ∗ Ei + br (3.3)

Here our target is to make the original image Ii and reconstructed image Ri

as similar as possible, described as a reconstruction error term Tr:

Tr =
1

N

N∑
i=1

∥ Ii − Ri ∥22 (3.4)

Then by adding a sparsity term Ts:

Ts =∥ p− 1

N

N∑
i=1

Ei ∥22 (3.5)

where p is a very small constant.

and a weight-decay term Tw:

Tw =∥ W ∥22 + ∥ W′ ∥22 (3.6)

Finally we can obtain filters W andW’ by optimizing such a minimum problem:

min
W,W ′

C = Tr + αTw + βTs (3.7)

where α and β are corresponding weights of weight-decay term and sparsity
term.

In our proposed method, in order to train multi-scale classifiers for multi-
scale material traits recognition, we should obtain features which can separately
represent materials images at different scales. Therefore, we train multi-scale CAE
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filters Wk, k = {1, 2, 3, ..., S} for S different scales. In order to train multi-scale
filters, we prepare S groups input images I with different scales, and utilize images
in each group with one particular scale to train filters W individually. These
trained filters Wk, k = {1, 2, 3, ..., S} will be employed in next steps to train
multil-scale randomized decision forest classifiers to recognize material traits with
different scales.

3.3 Multi-Scale Randomized Decision Forest

Randomized Decision Forest [22] is an ensemble learning model developed by
Breiman et al.from the decision tree algorithm. With a good performance, ran-
dom forest has become a very popular algorithm widely utilised for classification,
regression and other tasks.

Figure 3.1 gives a decision tree ,which contains many split nodes and leaf nodes.
Each node represents a prediction on a feature, and it will split into branches
connected to its next level with its predicting result. A node, which arrives the
maximum level or can not be split any more, will be noted as a leaf node. Each
leaf node will make a final decision, classifying the input data to one class label.
Therefore, we can obtain a class distribution P (c|l), representing frequency of each
class label given by all the leaf nodes, in a decision tree.

Figure 3.2 shows a random forest which is an ensemble of T decision trees
with different structures. When predicting the class of an input sample, each
decision tree in the forest will obtain a class distribution P (c|l). Therefore, T
trees in this forest will produce T histograms of class distribution P (c|lt), t =
(1, 2, 3, ..., T ). Finally, class label of input sample will be predicted by the average
class distribution:

P (c|L) = 1

T

T∑
t=1

P (c|lt) (3.8)

In our experiment, multi-scale random forests Fk, k = (1, 2, 3, ..., S) will be
trained from balanced sets of positive and negative material traits samples at S
different scale levels. Since in our setting we have S = 4, four random forests
with T trees in each will be trained, as shown in Figure 3.3. When predicting a
novel sample, forest at scale level k will obtain T class distributions Pk(c|lt), t =
(1, 2, 3, ..., T ) and the final prediction of the k-th forest will be made by computing
its average class distributions:

Pk(c|Lk) =
1

T

T∑
t=1

Pk(c|lt), k = (1, 2, 3, ..., S) (3.9)
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Figure 3.1: A single decision tree[4]

Figure 3.2: A random forest with T trees[4]
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3.4 Strategies for Scale Selection

In this section, we propose three approaches for our system to select a reasonable
predicting result from multi-scale forests.

As introduced in 3.3, in multi-scale random forests F with S scale levels, av-
erage class distribution for k-th scale forest can be computed as (3.9). The com-
puted average class distributions Pk(c|Lk) will be utilised to predict class label
c = Class(i) of an input sample i. In this research, we only have 2 classes,
c = 0, 1, where the case (c = 0) means the input patch i belongs to this material
trait class, and (c = 1) means patch i is not a patch with this material trait.

In our experiment, we have k = 4 scales for the training and testing data, and
also we trained 4 RDF classifiers for different scale. As results show in Section
4.3.2, the highest recognition accuracy will be obtained from classifier with the
same scale as the input sample. However, in a real recognition task, we do not
know to which scale the input patch should belong. Therefore, a reliable strategy
of scale selection is very important for our system to make the final decision to
recognize the input data.

We propose three strategies for scale selection:

Maximum Prediction Probability

The simplest model is to pick the highest probability from average class distribu-
tions of (c = 0) obtained from four classifiers:

kchosen = argmax
k

(Pk(c = 0|Lk), k = (1, 2, 3, 4) (3.10)

With this approach, we just simply predict the input patch’s class label by
checking the highest prediction probability. However, the lowest probability, which
plays a very important role for the prediction of negative label, is ignored in this
model. Our experiment results prove that this model has a unstable performance
and is sometimes error-prone.

Maximum Confidence

Based on the maximum probability model, we propose another model for scale
selection by checking the confidence of each prediction. Here, confidence of the
prediction made by each RDF classifier is defined as the distance between positive
prediction probability with 0.5:

Distancek(i) = |Pk(c = 0|Lk)− 0.5| (3.11)
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kchosen = argmax
k

(Distancek(i)), k = (1, 2, 3, 4) (3.12)

With this model, both maximum probability and minimum probability are
considered to make the final decision.

Average Probability

In addition, for this 2-class problem, we employ another simple model by comput-
ing the average probability of the positive class among all the forests:

PAV G(c = 0|Lk) =
1

S

S∑
k=1

Pk(c = 0|Lk), k = (1, 2, 3, 4) (3.13)

Then, instead of a strictly defined ’Scale Selection’, we predict the class label
of input sample i directly with this average probability:

Class(i) =

{
0, if PAV G(c = 0|Lk) ≥ 0.5

1, if PAV G(c = 0|Lk) < 0.5
(3.14)



Chapter 4

Experiments

In this chapter, we introduce our experiments in four sections. Firstly, we intro-
duce how we prepare training and testing data for the following steps. Then, our
implementation to train convolutional auto-encoder filters and randomized deci-
sion forest classifiers with different scales will be introduced. Both of experiment
settings and testing results will be given in these two sections. Finally, we discuss
some strategies for scale selection.

4.1 Data Preparation

Since this research is to do per-pixel material traits recognition, our experimental
objects should also be pixels instead of the whole material images. However, in this
work, all the features we employ to train classifiers (e.g. Filter responses, Local
Binary Pattern, Color histogram) require the neighbouring information around a
pixel. Therefore, instead of a single pixel, we extract a small patch around a pixel,
and utilize this small patch to represent its corresponding pixel.

In this work, we need to prepare two kinds of material patches:

1. Image patches of all material categories for training unsupervised convolu-
tional material features;

2. Balaced sets of positive and negative material trait patches for training
randomized decision forest (RDF) classifiers of each material trait and test-
ing.

We have to state that all these patches contain 4 different scales, and all of them
should be of a same image size.

Our setting is to prepare patches at scales of (16*16),(32*32),(48*48) and
(64*64), noted as 1x, 2x, 3x, 4x, from images of original sizes in FMD (Table. 4.1).
And then we down-sample all the patches larger than (16*16) back to size (16*16)

19
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Table 4.1: Material patches with different scales

Scale No. 1 2 3 4
Original Size (16,16) (32,32) (48,48) (64,64)
Target Size (16,16) (16,16) (16,16) (16,16)
Note 1x 2x 3x 4x

Figure 4.1: Preparation of material patches with different scales

for later utilization.(Figure 4.1) More details about the procedure of extracting
each type of patches in our experiment will be introduced in the following sec-
tions.

4.1.1 Patches for Training CAE Filters

As we have introduced in Chapter 3, convolutional auto-encoder filters are good
features to represent material traits for all the images. Therefore, patches for
training CAE filters are not restricted to a certain material image group. As
Figure 2.5 shows, in Flickr Material Database, material region in the original
image has already been annotated by its corresponding mask. With these masks,
patches for training CAE filters can be extracted directly from material regions.

In our experiment, we prepared four groups of 2048 patches for training CAE
filters. Each group is extracted randomly from all the material images of FMD,
with only one scale of 1x, 2x, 3x or 4x, as noted in Table 4.1. Then we will utilize
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these four groups of patches to train CAE filters with four scales.

4.1.2 Material Trait Samples for Training RDF classifiers

Different from training CAE filters which are a generalized representation for all
the material traits, in this section, we will train Randomized Decision Forest clas-
sifiers to recognize each material trait. Therefore, positive and negative training
samples should be individually prepared for different material traits. We pre-
pare five material traits: Organic, Metallic, Liquid, Smooth and Woven for this
experiment.

In FMD, regions of each material category have been annotated by masks,
which are also provided in the database. However, annotations of different material
traits are not given. Therefore, one work we have to do before training classifiers
is to draw new masks for each material trait in the original images in FMD.

Figure 4.2 gives an example of annotating ’Smooth’ region to show how we
extract material trait regions from FMD images.

Then, we extract 3500 positive samples and 3500 negative samples from ma-
terial trait regions and no material trait regions we have annotated at 4 scales.
The settings of these patches are the same as shown in Table 4.1. Then, 2500
positive samples and 2500 negative samples are set as training samples and other
1000 positive, 1000 negative samples are set as testing samples.

4.1.3 Whitening

Before we utilize these patches in the following steps, all the training data should
be properly whitened. For whitening operation, all the patch data should be
reshaped to a 2-D matrix, with each row representing one patch, and each column
representing a pixel value of one channel in this patch.

When we train on a raw data matrix with features in columns and data points
in rows, information is always redundant, particularly when the original data is
an image, in which adjacent pixel values are highly correlated. Therefore, before
we train on such a data, we always have to do whitening to make the data less
redundant. by making the features less correlated with each other with the same
variance.

Usually we have two model to do the whitening, Principal Components Anal-
ysis (PCA) and Zero-Phase Whitening Filters (ZCA).[23] [?]

Assuming that we have an input data I with features in columns and data
points in rows(in this work, rows index (16,16) patches and features in columns
are pixel values in three channels [R :(16 ∗ 16) + G :(16 ∗ 16) + B :(16 ∗ 16)]). To
whiten this data, we firstly have to make it become a centred data X, by doing:



CHAPTER 4. EXPERIMENTS 22

(a) The original image in category: Plastic

(b) Mask we drew to annotate ’Smooth’ region

(c) ’Smooth’ region extracted from the original image with the mask

Figure 4.2: An example of annotating ’Smooth’ region in a ’Plastic’ image
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X = I −mean(I) (4.1)

Then we compute the covariance matrix C, having eigenvectors in columns of
E and eigenvalues on the diagonal of D, so we obtain:

C = conv(X′,X) = EDE⊤ (4.2)

Finally PCA whitened data is given by:

WPCA = D−1/2E⊤ (4.3)

A PCA whitened data should have a property that it will still stay whitened
after rotation. That means if we introduce an orthogonal matrix R to compute
W = RWPCA, the result W will still be a whitened matrix. With this property,
ZCA whitening is introduced, letting E be the orthogonal matrix and finally we
will obtain:

WZCA = ED−1/2E⊤ = EWPCA (4.4)

After images whitening, ZCA-whitened images will still resemble the input raw
images, while the PCA-whitened data will appear completely different from the
original data. In this research, since we are going to utilize whitened data to train
convolutional features, the local properties of original images are also important.
So here we have to choose ZCA to whiten our material image data.

Figure 4.3 shows the results of training filters from data with and without ZCA
whitening. Filters trained from original raw data show identical appearance and
it is also proved that such filters have little contribution in a classifier.

4.2 Train Multi-scale CAE filters

4.2.1 Experiment Settings

In our experiment, we utilize four groups of patches with only one scale 1x, 2x,
3x or 4x to train four sets of CAE filters. Each patch has a size of (16,16) with 3
color channels (RGB). For each scale, our target is to train 128 filters with a size
of (7,7), and also these filters contain 3 color channels (RGB). Since we employ
Python with a library Theano to do this work, both the patch data and filter data
are stored in a 4-D tuple with a shape which can be accepted by Theano, as shown
in Table 4.2.

We have to state that training CAE filters is quite a time-consuming work.
We tried to compute only one set of CAE filters by using an Intel Core i7-2600
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(a) Filters trained from original raw data

(b) Filters trained from whitened data

Figure 4.3: Filters trained from data with and without ZCA whitening
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Table 4.2: Experiment Setting for training CAE filters

Patch Size Patch Number Patch Color Channels Tuple Shape
(16,16) 2048 3 (2048, 3, 16, 16)
Filter Size Filter Number Filter Color Channels Tuple Shape
(7,7) 128 3 (128, 3, 7, 7)

Table 4.3: Material patches with randomly mixed scales

Scale No. 5 6 7
Original Size (16,16),(32,32) (16,16),(32,32),(48,48) (16,16),(32,32),(48,48),(64,64)
Target Size (16,16) (16,16) (16,16)
Note 12x 123x 1234x

3.4GHz CPU, and the whole time it cost was around 6300s. Fortunately, the
Python library Theano provides us an access to compute these filters with GPU
instead of CPU. The time cost of computing 128 filters from 2048 patches with size
of (16,16) was around 1160s by an NVIDIA GeForce GT530 GPU. However, this
setting has been the limit of our device. With the patch number and patch size
increasing, a GPU with larger memory and higher compute capability is necessary.
If your device is powerful enough, more image patches and a larger patch size can
be considered for this experiment. Utilizing some cloud computing services, which
provide instances with powerful high-end GPU at a very low cost, to do this work
is also a recommended good idea.

4.2.2 Results and Discussions

Figure 4.4 shows four sets of CAE filters we have trained from patches with four
different scales. In each group, we train 128 filters which have been visualized as
128 blocks with 3 channels in Figure 4.4. We can find that filters trained from
patches with different scales are quite dissimilar in appearance with each other.

Therefore, we can assume that filters trained from scale N-x should be the best
representation for patches with the same scale N-x. Meanwhile, it may not be a
good representation for patches with other scales. In order to prove this, three
scale sets are created by randomly extracting material patches from (1x and 2x),
from (1x, 2x and 3x) and from (1x, 2x, 3x, 4x). (Table. 4.3) Then we train extra
three sets of filters for these mixed-scale patches.

Figure 4.5 shows an example to compare filters trained with scale 123x with
single-scale filters trained separately from patches with scale 1x, 2x and 3x. We can
find that filters of scale 123x are a collection of filters from each single scale. Also,
filters with scale 1234x contain some different filters which appear separately in
filters with single-scale 1x, 2x, 3x and 4x. With this property, we can utilize filters
with different scales as a discriminative feature to train multi-scale classifiers,
which can classify different material traits with different scales.
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(a) Scale: (16,16) (b) Scale: (32,32)

(c) Scale: (48,48) (d) Scale: (64,64)

Figure 4.4: CAE filters trained from multi-scale patches
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(a) Scale: (16,16) (b) Scale: (32,32)

(c) Scale: (48,48) (d) Random Scale: (16,16),(32,32),(48,48)

Figure 4.5: CAE filters trained from single-scale patches and randomly mixed scale patches
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4.3 Train Multi-scale RDF Classifiers

4.3.1 Experiment Settings

After preparing positive and negative samples with 4 scales for each material trait,
we extract proper features from training samples to train randomizied decision
forest (RDF) classifiers. In this experiment, we employ four kinds of features,
which are CAE filter responses (CAE), Histogram of Oriented Gradients (HOG)
[24], Local Binary Pattern (LBP)[25], and Color histogram, to train RDF classifiers
for material trait with 4 scales.

It is important to make sure that only CAE filters with the same scale as
training data can be utilized to generate filter response features for training. For
instance, when training classifier of scale 2x, we should utilize training samples
with scale 2x Also, all the other features should be extracted from training data
with the same scale.

4.3.2 Results and Discussions

Figure 4.6 shows an example of recognition for Trait ’Organic’ patches with 4 scales
via multi-scale RDF classifiers. In these figures, we can observe that the highest
accuracy for each sample is obtained from the classifier with the same scale as
the testing sample. Figure 4.7 shows this interesting result more intuitively with
a confusion matrix of the accuracy. The highest accuracy is always located in
the diagonal, which means the combination of testing sample and classifier with
the same scale. Then we check the results of other four material traits shown in
Figure 4.8 - Figure 4.12, and we observe the same results as Organic, without any
outliers.

Results in this experiment sufficiently prove that scale changes have a very
important impact on the accuracy in material trait recognition. In our multi-scale
recognition system, if the scale of testing samples can be correctly selected, the
general results of recognition will be efficiently improved.
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(a) Recognition Accuracy: Sample_1x (b) Recognition Accuracy: Sample_2x

(c) Recognition Accuracy: Sample_3x (d) Recognition Accuracy: Sample_4x

Figure 4.6: Recognition accuracy of ’Organic’ samples with 4 scales
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Figure 4.7: Confusion Matrix: Recognition accuracy of multi-scale ’Organic’ samples via multi-scale classifiers
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(a) Recognition Accuracy: Sample_1x (b) Recognition Accuracy: Sample_2x

(c) Recognition Accuracy: Sample_3x (d) Recognition Accuracy: Sample_4x

Figure 4.8: Recognition accuracy of ’Metallic’ samples with 4 scales
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(a) Recognition Accuracy: Sample_1x (b) Recognition Accuracy: Sample_2x

(c) Recognition Accuracy: Sample_3x (d) Recognition Accuracy: Sample_4x

Figure 4.9: Recognition accuracy of ’Liquid’ samples with 4 scales
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(a) Recognition Accuracy: Sample_1x (b) Recognition Accuracy: Sample_2x

(c) Recognition Accuracy: Sample_3x (d) Recognition Accuracy: Sample_4x

Figure 4.10: Recognition accuracy of ’Smooth’ samples with 4 scales
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(a) Recognition Accuracy: Sample_1x (b) Recognition Accuracy: Sample_2x

(c) Recognition Accuracy: Sample_3x (d) Recognition Accuracy: Sample_4x

Figure 4.11: Recognition accuracy of ’Woven’ samples with 4 scales
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(a) Recognition Accuracy: Metallic (b) Recognition Accuracy: Liquid

(c) Recognition Accuracy: Smooth (d) Recognition Accuracy: Woven

Figure 4.12: Confusion Matrix: Recognition accuracy of multi-scale samples via multi-scale classifiers
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4.4 Scale Selection: Results and Discussions

In this section, we utilize the same samples and the same setting as Section4.3.2
to do testing with multi-scale classifiers. Besides, we add three strategies for scale
selection in this experiment, and finally we will compare the accuracy obtained
from three scale selection strategies with results obtained from each single-scale
classifier.

Figure 4.13 shows results of a testing for ’Organic’ samples with 4 scales. In
these four figures, we can find that strategies of Maximum Confidence and Av-
erage Probability lead to good results, with both higher accuracy and stability
than an arbitrary single-scale classifier. The method of find Maximum Probabil-
ity sometimes has good performance, while it is not stable for all the 4 scales.
Figure 4.14 gives a statistics of the frequency that each classifier is selected by
the Maximum Confidence Strategy. We can see a reasonable results that classifier
with the same scale of testing samples are mostly selected. And then we check
the other three results of Metallic, Liquid and Smooth samples, the same results
as Organic samples can be also observed in Figure 4.15 - Figure 4.20. The only
outlier is the trait of ’Woven’, in whose results classifier scale can not be correctly
selected. (Figure 4.22) This result may be caused by two results:

1. The source data contain some problems, making it very difficult to train a
good classifier for these training samples

2. In Figure 4.22, we can find that the performance of each single-scale classifier
is similar, making the prediction probabilities very confusing for Maximum
Confidence strategy to select a correct scale for testing samples.
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(a) Recognition Accuracy: Sample_1x (b) Recognition Accuracy: Sample_2x

(c) Recognition Accuracy: Sample_3x (d) Recognition Accuracy: Sample_4x

Figure 4.13: Recognition accuracy of ’Organic’ samples with 4 scales and 3 approaches for scale selection
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(a) Scale Selection: Sample_1x (b) Scale Selection: Sample_2x

(c) Scale Selection: Sample_3x (d) Scale Selection: Sample_4x

Figure 4.14: Scale Selection by Maximum Confidence of ’Organic’ samples with 4 scales
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(a) Recognition Accuracy: Sample_1x (b) Recognition Accuracy: Sample_2x

(c) Recognition Accuracy: Sample_3x (d) Recognition Accuracy: Sample_4x

Figure 4.15: Recognition accuracy of ’Metallic’ samples with 4 scales and 3 approaches for scale selection
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(a) Scale Selection: Sample_1x (b) Scale Selection: Sample_2x

(c) Scale Selection: Sample_3x (d) Scale Selection: Sample_4x

Figure 4.16: Scale Selection by Maximum Confidence of ’Metallic’ samples with 4 scales
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(a) Recognition Accuracy: Sample_1x (b) Recognition Accuracy: Sample_2x

(c) Recognition Accuracy: Sample_3x (d) Recognition Accuracy: Sample_4x

Figure 4.17: Recognition accuracy of ’Liquid’ samples with 4 scales and 3 approaches for scale selection
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(a) Scale Selection: Sample_1x (b) Scale Selection: Sample_2x

(c) Scale Selection: Sample_3x (d) Scale Selection: Sample_4x

Figure 4.18: Scale Selection by Maximum Confidence of ’Liquid’ samples with 4 scales
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(a) Recognition Accuracy: Sample_1x (b) Recognition Accuracy: Sample_2x

(c) Recognition Accuracy: Sample_3x (d) Recognition Accuracy: Sample_4x

Figure 4.19: Recognition accuracy of ’Smooth’ samples with 4 scales and 3 approaches for scale selection
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(a) Scale Selection: Sample_1x (b) Scale Selection: Sample_2x

(c) Scale Selection: Sample_3x (d) Scale Selection: Sample_4x

Figure 4.20: Scale Selection by Maximum Confidence of ’Smooth’ samples with 4 scales
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(a) Recognition Accuracy: Sample_1x (b) Recognition Accuracy: Sample_2x

(c) Recognition Accuracy: Sample_3x (d) Recognition Accuracy: Sample_4x

Figure 4.21: Recognition accuracy of ’Woven’ samples with 4 scales and 3 approaches for scale selection
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(a) Scale Selection: Sample_1x (b) Scale Selection: Sample_2x

(c) Scale Selection: Sample_3x (d) Scale Selection: Sample_4x

Figure 4.22: Scale Selection by Maximum Confidence of ’Woven’ samples with 4 scales
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Summary

In [7], Schwartz et al.had proposed an approach to recognize materials by utilizing
material traits (e.g. smooth, shiny, organic). This is quite different from methods
in conventional research that employ some low-level features to do the recognition.
Actually, recognizing materials with perceptual properties as an intermediate-level
feature, is much more similar to the way human beings recognize material. They
experiment results also show that it is reliable to recognize materials by learning
material traits. However, in their research, scale change in images, which has an
very important impact on the accuracy, has not been taken into consideration.

In this thesis, we propose an approach to recognize multi-scale material traits.
We firstly train Convolutional Auto-encoder (CAE) Filters, which can represent
the features well under an unsupervised learning, for material image patches with
S scales. These filters will later been proven to be very important in our classifiers.
We also prepare annotated material trait patches with 4 different scales, including
patches with a particular material trait(e.g. smooth, metallic, organic) present or
not present. For each trait, we take balanced sets of positive and negative examples
to train multi-scale classifiers. For feature generating, we take pooled convolutional
responses of prepared positive and negative trait patches with trained CAE filters
at each scale. Besides we also employ some non-linear features (e.g. HOG, LBP,
Color Histogram), and generate them with CAE filter responses as a huge Feature
Matrix. We utilize feature matrices obtained at S different scales to train S
Randomized Decision Forest Classifiers. With these classifiers, material traits
with different scales can be directly recognized. Finally we propose two effective
and stable approaches of scale selection for these classifiers to make a final decision
of the testing sample’s class label: One is searching maximum confidence among
the predictions given by multi-scale classifiers, and the other one is computing
the average prediction. Both these two approaches are proved to have a positive
contribution to recognition accuracy.

Our results show that scale change has a very important impact on the accuracy
when we recognize material traits. If the scale of object samples can be correctly
selected, accuracy of recognition will have an obvious improvement. However, until
now we have just found this interesting phenomenon and bring some assumptions

47
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to explain the results. Searching the inner relationship between different scales
within the same material trait should be an promising topic in the future work.
Besides, scale selection strategy with a better performance should be another
feasible direction of this work in the future.
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