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Abstract

Energy-efficiency has become one of the most important metric in recent computing systems.

Power consumption of a large scale computing center is reaching to the physical limitation of

power supply systems. Now, we have to scale system performance without increasing power

consumption. To this end, heterogeneous systems with accelerators are becoming popular due to

its high performance and its high energy efficiency. Peak performance and peak energy-efficiency

of such systems are much higher than those of conventional homogeneous systems. However,

it is not easy to achieve high energy-efficiency in practical situations because the actual energy

efficiency highly depends on the optimizations used in the applications.

To get great performance from accelerators in practical situation, it is important to provide

an easy programming environment to use accelerators. This is because the performance im-

provement is limited to a fraction of program codes which are not accelerated. To encourage

programmers to utilize accelerators, programming environments should provide simple and high

level abstraction of the underlying heterogeneous systems. However, current programming en-

vironments only provide low level and complicated APIs for users. Hence, we have to develop

simpler and high performance programming environments in heterogeneous systems with accel-

erators.

Also, to draw the maximum energy-efficiency from the systems, it is also necessary to reduce

unnecessary power consumption. For example, leakage power consumed in processors should be

taken into account. Plus, it is not necessary to execute tasks which are not on critical paths with

the highest processor frequency. In homogeneous systems with CPUs, such power consump-

tion has been successfully reduced by power gating (PG) and dynamic voltage and frequency
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scaling (DVFS). However, it is unclear that how we should maximize the effectiveness of these

techniques in heterogeneous systems with accelerators.

To this end, in this dissertation, we propose three new optimization techniques for the ac-

celerator compilers in order to solve these problems. The three techniques can be orthogonally

applied to applications running on heterogeneous systems. And each technique independently

contributes to improving the energy-efficiency of the system.

First, to ease the programming process in accelerator platforms, we propose a directive based

compiler which utilizes multiple accelerators automatically. The compiler provides single mono-

lithic memory space on top of discrete accelerator memories, and programmers can transparently

utilize multiple accelerators. The experimental in a machine with 2 GPUs show that the proposed

compiler reduce 68% of the code lines in utilizing 2 GPUs while it achieves 71% of the perfor-

mance compared to hand-written CUDA programs

Second, to reduce leakage power in CPU functional units, we propose a compiler directed

sleep control technique. Using a static analysis, the proposed sleep control technique can ef-

fectively reduce leakage power in CPU functional units. The experimental result shows that

the proposed technique can reduce 23.6% of leakage power compared to a conventional sleep

control.

Finally, to avoid inefficient executions due to load imbalance between CPUs and accelerators,

we investigate a runtime software technique with which we can utilize both CPUs and acceler-

ators in parallel. In addition to balancing load between CPUs and accelerators, the proposed

technique can cooperatively control the device frequencies and the task mapping between CPUs

and accelerators to further optimize energy-efficiency of the system. The experimental result

shows that the proposed technique achieves up to 14.4% higher performance compared to other

power capping techniques where the task mapping is not orchestrated with the device frequency

settings.

Through these experiments about the three proposed techniques, we demonstrate that com-

piler optimization techniques can greatly help us achieve high energy-efficiency in heterogeneous

systems with accelerators.
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Chapter 1

Introduction

Energy-efficiency, which is given by performance per power, has become one of the most im-

portant metric in recent computing systems [17, 44]. The maximum power consumption of a

large scale computing center is reaching to tens of Mega Watt, which is the physical limitation

of the power supply and the cooling system. In Figure 1.1, pairs of the energy-efficiency (x-axis)

and the power consumption (y-axis) of Top500 supercomputers are shown in a log scale scatter

plot. Points of exascale systems are plotted on the top right corner of Figure 1.1. We can see that

more than ten times improvement in energy-efficiency is required to build exascale computing

systems.

To improve energy-efficiency of such computing systems, heterogeneous systems equipped

with accelerators are becoming popular. Accelerators are designed to maximize performance and

energy-efficiency for specific applications. Among such accelerators, GPUs, which is originally

used for image processing applications, have become the center of attention. Previous studies

have already shown that GPUs can boost performance and energy-efficiency of many practical

applications, such as stencil computations, linear algebra, data mining, monte carlo simulations,

graph processing and many others [26]. At the time of 2013, tens of supercomputers in Top500

systems are equipped with GPUs.
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Figure 1.1: Trends of power and energy-efficiency of supercomputers in Top500 (extracted from
Green500 web site [1]).

1.1 Problems for Improving Energy-Efficiency

Heterogeneous systems equipped with accelerators have much potential to provide higher perfor-

mance and higher energy-efficiency than conventional homogeneous systems. However, because

the hardware architecture of such systems is very different from conventional systems, conven-

tional compilers cannot always draw the maximum energy efficiency from the systems.

Energy-efficiency of a computing system is defined by the following equations:

Eff =
Perf

Power
. (1.1)

Here, Eff is the value of energy-efficiency of the system, Perf is the average performance

achieved by the applications running on the system and Power is the average power consumption

during the application execution.

In heterogeneous systems, we can offload data parallel tasks in the applications to accelerators

in order to improve energy-efficiency. It can significantly improve the performance (Perf ) with
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small increase of the power (Power). The actual performance with accelerators can be explained

by using Amdahl’s law as shown in the following equation:

Perf = PerfCPUs ∗
1

(1− P ) + P
X

. (1.2)

Here, PerfCPUs is performance only with CPUs, P is the percentage of tasks offloaded to accel-

erators and X is a speedup ratio by utilizing accelerators.

In current accelerator platforms, typical values of the speedup ratio X is large, up to fifteen

for data parallel applications [36]. Meanwhile, the equation 1.2 tells us that, even if the value of

the speedup ratio X is large, it is important to increase the percentage of the tasks offloaded to

accelerators. However, values of the percentage (P in the equation 1.2) tend to be low because

the difficulty in optimizing programs for accelerators. In current accelerator programming en-

vironments, such as CUDA and OpenCL, low level architecture of accelerators are exposed to

programmers. It significantly decreases the programmability in using accelerators and prevents

programmers to utilize accelerators in many cases. To increase the percentage of offloaded tasks

in practical situations, it is necessary to improve the accelerator’s programmability.

Also, to improve the energy-efficiency, it is useful to reduce power consumption in processors

if we can do that with small performance degradation. Even in homogeneous systems, more than

half of power consumption in a computing node is occupied by processors (56% to 64% [53]).

Although power consumption in processors depends on the types and the number of accelerators

installed into the system, the percentage of power consumption in processors gets much larger in

accelerator platforms. Power gating (PG) and Dynamic voltage and frequency scaling (DVFS)

are two of the most effective power optimization techniques to reduce power consumption in

processors. They may also be effective when reducing the power consumption of heterogeneous

systems. However, they have not been well studied in heterogeneous systems with accelerators

yet.

In particular, we are going to tackle the following three problems to improve energy-efficiency

of heterogeneous systems.
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Improving programmability of accelerators Directive-based programming models have been

shown to be effective to ease the programming difficulty in utilizing accelerators [9, 22, 34, 56,

59]. However, existing directive based compilers are limited to single accelerator environments.

It is necessary to extend them to multiple-accelerator environments, which is popular in practical

situations.

Reducing leakage power of processors In today’s high performance processors, leakage power

is a non-negligible fraction in total power consumption of active processors. Power gating (PG)

is a circuit technique to make circuit blocks asleep to reduce the leakage power. PG has been

studied and shown to be effective in various circuit blocks in CPUs and accelerators [25, 30, 6].

However, we found that conventional PG techniques are not effective for CPU functional units.

This is because idle periods in CPU functional units are very short and we cannot ignore the en-

ergy overhead caused by PG mode transitions. It is necessary to develop a sleep control technique

to take the energy overhead into account.

Reducing dynamic power of processors To enable system administrators to optimize power

utilization in large scale systems, it is important to provide knobs to control power consumption

in each computing node. Dynamic voltage and frequency scaling (DVFS) is an effective tech-

nique to realize such power management with minimum performance degradation [17]. Unlike

in homogeneous systems, it is not easy to predict the performance and power fluctuation with

frequency scaling in heterogeneous systems because task mapping between CPUs and acceler-

ators affects the amount of fluctuation. Hence, to apply DVFS to such systems, it is necessary

to develop a technique to guide the settings of DVFS and heterogeneous task mapping coopera-

tively.

1.2 Contribution

In this dissertation, we propose three new compiler and runtime techniques. The three techniques

can be orthogonally applied to applications running on heterogeneous systems. Although the
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techniques mainly target at heterogeneous systems equipped with GPUs, which are the most

popular accelerator platforms, they should be applicable to heterogeneous systems equipped with

other accelerator devices, too. Brief summaries of the proposed techniques are described in the

following subsections.

1.2.1 Improving Programmability (Chapter 3)

The industry and a lot of academic researchers have been studying high-level programming mod-

els for accelerators to ease the programming complexity [8, 43, 52]. Among those, directive-

based accelerator programming models [9, 22, 34, 56, 59] have become the center of attention

because of their simplicity and their similarity to OpenMP, which is popular in multiprocessor

systems. OpenACC is the first industry standard of such a directive based accelerator program-

ming model, released in 2011 [3]. Previous work reported promising results of the OpenACC

programming model [35, 38, 48, 58].

However, the previous work also pointed out some limitations of the current OpenACC com-

pilers. One of the biggest limitations is that the current OpenACC compilers do not automate the

utilization of multiple accelerators. In the application development with the low level languages

such as CUDA and OpenCL, utilization of multiple GPUs is a popular technique to further im-

prove the performance [57]. For wide acceptance of OpenACC platforms, it is necessary to

integrate the multi-device execution into OpenACC compilers.

In order to integrate multi-device execution into an OpenACC compiler, we propose a new

compiler design and a new memory management technique among multiple accelerators. The

compiler system includes a software distributed shared memory which is customized for multiple

accelerator environments. In addition, we also propose a small set of new directives to optimize

data movement. The directives allow compilers to optimize the data movement among physically

disjointed memories according to the application characteristic. With the proposed compiler, we

can simplify the programming process in utilizing multiple accelerators. In terms of number of

code lines, it brings us 68% of reduction to the program sizes when compared to programs written

in a low level language (CUDA). Meanwhile, it achieves 71% of the performance of hand-tuned
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CUDA programs.

1.2.2 Reducing Leakage Power (Chapter 4)

Runtime power gating is a well known circuit technique to reduce leakage power consumption of

active processors. It can make idle circuit blocks asleep to reduce the leakage power consumption

during applications executions. Since the leakage power occupies a large fraction of power

consumption in high performance processors, it is effective to make use of runtime power gating

in order to improve the energy-efficiency of the system.

When we apply runtime power gating to circuit blocks in active processors, it is important

to control sleep-wakeup mode transitions by considering the energy overhead. To avoid large

energy overhead caused by excessive mode transitions, time-based sleep control techniques have

been proposed both for CPUs and GPUs [25, 30, 6]. However, in CPU functional units, we

found that these conventional techniques can miss a lot of chances to reduce the leakage power

consumption. The problem is that time-based sleep control techniques are not effective for fine-

grained idle periods, whose length is comparable to break even cycles, where the energy overhead

can easily surpass the energy saving gained in sleep mode.

To reduce the leakage power consumed in such fine-grained idle periods, we propose a novel

code analysis technique to predict the length of each idle period. With the proposed technique,

the compiler can predict lengths of idle periods in cycle level accuracy. Using the prediction,

the compiler can guide the sleep/wakeup mode transitions effectively. The experimental result

for CPU functional units shows that the compiler based sleep control can reduce 23.6% of the

leakage power compared to the conventional time-based technique.

1.2.3 Reducing Dynamic Power (Chapter 5)

Dynamic voltage and frequency scaling (DVFS) is an effective circuit technique to reduce the dy-

namic power consumption of processors. Because the optimal frequency depends on application

characteristic, researchers have investigated techniques to select the optimal processor frequency

in various situations [28].
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However, it is not easy to select the optimal frequencies of CPUs and accelerators when

the application makes use of both CPUs and accelerators in parallel. Such hybrid computa-

tion is common in heterogeneous systems because it improves the performance and energy-

efficiency [21, 39, 46, 50]. In this case, the optimal frequencies do not only depend on the

application characteristics but also depend on task mapping between CPUs and accelerators. It is

then necessary to develop techniques to cooperatively select the device frequencies and the task

mapping.

To do so, we propose a proactive technique in which the settings of frequencies and task

mapping are determined in advance of the execution. The proposed technique includes new em-

pirical models of performance and power of the target heterogeneous system. They can predict

performance and power of the system when we change device frequencies, task mapping or both

of them. Using such models, the proposed technique enables us to select the optimal setting

of device frequencies and task mapping. The experimental result shows that, when we opti-

mize the system performance under the given power budget, the performance with the proposed

technique is higher (up to 14.4%) than that with DVFS control techniques which don’t consider

the task mapping. In particular, the performance of the proposed technique is very close to the

performance with ideal parameter settings under the given power budget.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 describes the background

information about heterogeneous systems with accelerators and fundamental power management

techniques. In Chapter 3, we attack the programmability problem in the accelerator platforms

and propose a multi-device directive based compiler. In Chapter 4, we propose a compiler tech-

nique to reduce the leakage power consumed in CPU functional units. In Chapter 5, we propose

a cooperative DVFS and task mapping technique which enables us to reduce the total power

consumption of the heterogeneous systems with the minimum performance degradation. Then,

limitation and future work of this dissertation is discussed in Chapter 6. Related work is shown
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in Chapter 7 and the conclusion is presented in Chapter 8.



Chapter 2

Background

Recently, the amount of data processed in computer systems has been increasing rapidly. To this

end, data parallel applications, where the same tasks are executed on individual data elements,

has become important. The inherent parallelism in the data parallel applications can grow arbi-

trarily as the size of input data grows. They can be efficiently executed on parallel computing

systems with more than ten thousands of processors. Accelerators, which have specialized ar-

chitecture for data parallel computing, have emerged as the key computing elements [20]. In this

section, we will describe the background information about the hardware organizations of the

heterogeneous systems with accelerators, their programming environments, and the fundamental

low power technology for computing systems.

2.1 Heterogeneous System

Figure 2.1 shows an illustration of heterogeneous system equipped with accelerators. The system

consists of latency processors (LP), accelerators (ACC), and the interconnection which connects

these computing devices. Latency processors are usually conventional chip multi-processors,

where an operating system is running. Plus, multiple accelerators are installed to the system

in order to improve the performance and the energy efficiency. It is common that the accelera-

tor devices have dedicated local memories to fulfill their high memory bandwidth requirement

for the accelerators. Hence, the system may not have a single shared memory space and the

communication performance between computing devices is often limited and asymmetric.

9
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Figure 2.1: Heterogeneous computing system.

2.1.1 GPU Computing Server

GPUs consist of more than hundreds of simple in-order cores. This means that most of the

transistors on GPUs are used for actual computation. The GPU architecture is very different

from conventional CPU architecture where most of transistors are used for non computational

modules, such as instruction scheduling modules or cache modules. As a result, GPUs can pro-

vide much higher performance and energy-efficiency than CPU if the applications have massive

parallelism and they are optimized for the GPU architecture [36].

Figure 2.2 shows photos and a module diagram of a commercial GPU server. An Intel CPU

is used as a latency processor, and two NVIDIA GPUs are used as accelerators. Main memory

can be used only by the CPU. The GPUs have dedicated high throughput memory, which is

called GPU memory. A PCI express bus is used as interconnect between the CPU and the GPUs.

When the tasks are offloaded to the GPUs, data movement between the main memory and GPU

memory must be commanded. Due to the limited performance of the PCI express bus, this data

movement often becomes performance bottleneck.

2.1.2 Other Examples of Heterogeneous Systems with Accelerators

Many Core Processors An Intel Xeon Phi coprocessor is one of the most famous examples

for many core processors [23]. It features tens of in-order cores with vector units on a single die.
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Figure 2.2: An example of CPU-GPU heterogeneous systems.

Similar to GPUs, a Xeon Phi coprocessor is physically mounted in a PCIe slot and has dedicated

memory. Communication between the CPU memory and the Xeon Phi memory is also required.

Thus, in the system with Xeon Phi coprocessors, the memory organization is quite similar to that

in the GPU server.

FPGA Field-programmable gate array (FPGA) is an integrated circuit which can be configured

after manufacturing. FPGA can also be an efficient computing device for data parallel applica-

tions because the hardware logic in FPGA can be directly customized and optimized for an ap-

plication. Traditionally, the FPGA configuration is specified by hardware description languages.

However, recently, Altera have shown that it is possible to translate an OpenCL programs into

FPGA configuration and FPGA can be used as general purpose accelerators [13].

GPU Cluster So far, we focus on heterogeneity inside single computing node. Beyond a single

heterogeneous node, many practical computing systems include hundreds of such heterogeneous

computing nodes connected with Infiniband interconnect or other high performance inter-node

network. For example, more than 50 systems in the Top500 supercomputer systems consist of

hundreds of GPU computing nodes. These systems are called GPU clusters [32].
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2.2 Programming Model for Accelerators

Because the architectures of accelerators are very different from CPUs, we need special parallel

programming environments to utilize the accelerators.

2.2.1 CUDA and OpenCL

CUDA is a parallel computing platform and programming model created by NVIDIA and im-

plemented by the graphics processing units that they produce. In this paper, we use CUDA to

indicate the CUDA C/C++, which is the GPU programming interface in C/C++ languages. In

CUDA, programmers can express massive parallelism in the application by using the special

grammars. The parallel code is compiled into the assembly language used in the GPU. To get

maximum performance gain from GPUs, programmers have to optimize the memory access in

parallel codes by considering the GPU memory architecture, such as on-chip shared memory or

a coalesce access mechanism. Furthermore, programmers have to manually manage and opti-

mize the communication between a CPU memory and GPU memories because the GPUs have

physically discrete memories and the communication between CPUs and GPUs tends to be the

performance bottleneck.

Figure 2.3 shows an example of a vector addition program written in CUDA. We remove

error checking codes for simplicity. The actual parallel tasks are written in the function which

is declared with the special qualifier global (the line 1–10). The function is executed on

the GPUs. In the code at the line 12 to 35, data movement between the CPU memory and the

GPU memory is manually commanded with the CUDA API functions such as cudaMalloc and

cudaMemcpy.

For accelerators other than NVIDIA GPUs, including AMD GPUs, FPGAs, DSPs and oth-

ers, OpenCL [4] is defined as a portable and standard programming interface for accelerator

programming. The programming model and API of OpenCL is also low level and very similar

to those of CUDA.
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1 __global__ void
2 d_vectorAdd(const float *A, const float *B,
3 float *C, int numElements)
4 {
5 int i = blockDim.x * blockIdx.x + threadIdx.x;
6 if (i < numElements)
7 {
8 C[i] = A[i] + B[i];
9 }

10 }
11
12 void
13 vectorAdd(const float *h_A, const float *h_B,
14 float *h_C, int numElements)
15 {
16 float *d_A = NULL;
17 cudaMalloc((void **)&d_A, size);
18 float *d_B = NULL;
19 cudaMalloc((void **)&d_B, size);
20 float *d_C = NULL;
21 cudaMalloc((void **)&d_C, size);
22
23 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
24 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
25
26 int t_per_b = 256;
27 int b_per_g = (numElements + t_per_b - 1)/ t_per_b;
28 d_vectorAdd <<<b_per_g, t_per_b>>>(d_A, d_B, d_C, numElements);
29
30 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
31
32 cudaFree(d_A);
33 cudaFree(d_B);
34 cudaFree(d_C);
35 }

Figure 2.3: CUDA vector addition.

2.2.2 OpenACC

CUDA or OpenCL can be accepted for expert programmers while not for common programmers

due to its low programmability. For wide acceptance of accelerator computing, more productive

accelerator programming environments have been proposed [8, 43, 52]. Especially, the directive-

based accelerator programming models have become the center of attention because of their

simplicity and their similarity to OpenMP, which is popular in developing parallel applications

for multiprocessor systems [9, 22, 34, 56, 59].

OpenACC is the first industry standard of such a directive based accelerator programming

model, released in 2011 [3]. The OpenACC API is designed to offload the low-level accelerator

programming process to the compiler. It assumes the similar execution model as CUDA. That
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1 void
2 vectorAdd(const float *h_A, const float *h_B,
3 float *h_C, int numElements)
4 {
5 #pragma acc kernels copyin(h_A[0:numElements], h_B[0:numElements])\
6 copyout(h_C[0:numElements])
7 {
8 #pragma acc loop independent
9 for (i=0; i < numElements; ++i) {

10 h_C[i] += h_A[i] + h_B[i];
11 }
12 }
13 }

Figure 2.4: OpenACC Vector Addition.

is the main program runs on the CPU and the data parallel tasks are offloaded to the accelera-

tors. Unlike CUDA or OpenCL, which provide the unique languages to describe parallel tasks

for accelerators, the OpenACC API provides OpenMP-like directives to use accelerators. The

directives allow programmers to run parallel tasks written in C or Fortran on accelerators only

with a few additional lines of code. It can be thought as an accelerator extension of OpenMP.

Figure 2.4 illustrates a vector addition program written in OpenACC. As we can see, the

amount of complexity in the program is smaller than that in the program shown in Figure 2.3. At

the line 5-6, the kernels directive is used to identify the code regions to be offloaded to acceler-

ators. In addition to annotate the parallel code regions, the copyin and copyout clauses indicate

which arrays would be read or written on accelerators. The hint information about array accesses

helps the OpenACC compiler to avoid generating unnecessary data movement between CPUs

and accelerators. At the line 8, the loops are annotated with the loop directives. The loop is

the actual candidates to be transformed into the kernel program which is executed on accelera-

tors. Also, like OpenMP, the reduction clause can be used for scalar variables (not shown in the

Figure 2.4).

2.3 Power Management Technique

Power consumption in processors consists of dynamic power (PD) and leakage power (PL). Dy-

namic power is power consumed in switching activity of CMOS circuits. Given the capacitance
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of the circuit CL, the supply voltage Vdd and the frequency of the device, dynamic power is

the product of energy per charge-discharge (CLV
2
dd) and the number of switching per unit time

(αfclk). On the other hand, static power is consumed due to the leakage current (Ileakage) in

CMOS circuits. This kind of power consumption is called leakage power consumption and it

exists both in idle and active periods. The power consumption of processors can be modeled

with the following mathematical equation [11]:

Pprocessor = PD + PL = αCLV
2
ddfclk + IleakageVdd. (2.1)

A lot of researchers have investigated both circuit and architectural techniques to reduce both

leakage and dynamic power of processors. Here, power gating and DVFS are explained as ele-

mentary circuit techniques which enable us to control the power consumption of the processors.

Also, power capping is introduced as a key technology in computing center level power manage-

ment.

2.3.1 Power Gating

Power gating (PG) is one of the most important circuit techniques to reduce leakage power con-

sumption of CMOS circuits [45]. As shown in Figure 2.5 (a), the sleep transistors are inserted

between the circuit block and the ground wires to provide the sleep mode in which we can save

the leakage current in the circuit block by cutting off the supply voltage.

The energy overhead of the mode transition is not negligible and BET (Break Even Time)

must be considered. Power transition during a sleep/wakeup mode transition is shown in Fig-

ure 2.5 (b). BET is the time period when the energy saving in the sleep mode balances with the

energy overhead caused by the mode transition. The energy overhead of mode transitions, the

area slashed as 1 in Figure 2.5 (b), is mainly caused by switching activity in a sleep transistor and

charging/discharging for capacitance of the target circuit block. The length of BET depends on

the process technology, the structure of circuit blocks, and the temperature. In the case of PG in

the CPU functional units, which is the main concern in this dissertation, the length of BET is less

than 100 cycles [51]. In order to achieve large leakage power reduction by using runtime PG, we
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Figure 2.5: Power gated circuit and the power transition during sleep mode.

need sophisticated sleep control technique to avoid unnecessary mode transitions and the energy

overhead. Ideally, each functional unit should goes into the sleep mode only when the length of

the following idle period exceeds the length of BET.

2.3.2 DVFS

DVFS (Dynamic Voltage and Frequency Scaling) is a technique to reduce dynamic power con-

sumption of processors. There is a trade off between the frequency and power consumption of

the processor and we can improve the energy-efficiency of the system by tuning the frequency

according to applications characteristic.

In the power model shown in equation 2.1, we can see that the power consumption of proces-

sors depends on the supply voltage. Thus, we can reduce the power consumption of processors

by reducing the supply voltage. However, we have to decrease the clock frequency of the device

according to the supply voltage because lower supply voltage results in longer signal propaga-

tion time. Given the threshold voltage of the transistors Vth, the relationship between the supply

voltage and the clock frequency is formalized in the following equation:

fclk ∝
(Vdd − Vth)

α

Vdd

. (2.2)

α is a parameter which depends on process technology. It is usually from 1 to 2. In DVFS, as

shown in equation 2.1 and the equation 2.2, there is a trade-off between the power consumption
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of processors and the clock frequency. The amount of performance change caused by the fluc-

tuation of the clock frequency depends both on the processor architecture and the applications

characteristics.

2.3.3 Power Capping

Power capping is an elementary technique which is used in the global power management of

large scale computer systems. It eliminates the burst of power consumption in components or

computing nodes and keeps the power consumption under the given power constraint. Based on

power capping, we can optimize the power utilization among servers according to online activity

of running applications [17].

At the component level, power capping techniques for CPUs [15] or system memories [28]

have been already proposed. On a different level, power capping for a single computing node is

important for large scale computing systems [37]. In homogeneous systems with CPUs, several

power capping techniques have been proposed, but power capping in heterogeneous systems with

accelerators has not been well studied.
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Chapter 3

Multi-Device Execution in a Directive
Based Compiler

In this chapter, we focus on a technique to utilize multiple accelerators from OpenACC, standard

programming API for directive based accelerator programming.

The difficulty lies in the communication management among multiple accelerator memo-

ries. In the conventional programming models, such as CUDA or OpenCL, programmers have

to manually distribute data among the different memories and have to keep consistency of the

data replicated on the multiple memories. It is often the case that the complicated optimization is

required to avoid the performance bottleneck at the data movement among the distributed mem-

ories. To integrate such optimized communication management into an OpenACC compiler, we

propose a compiler and a runtime memory management mechanism which makes single memory

space illusion on top of the multiple accelerator memories.

3.1 Drawbacks of Current GPU Programming Environments

Figure 3.1 shows the performance and the number of code lines in several parallel implementa-

tions of two GPU friendly applications KMEANS and BFS. The implementations include OpenMP

(OpenMP), OpenACC (ACC), and CUDA {CUDA(1, 2GPU)} with one and two GPUs 1. Exper-

1Note that we cannot implement a multi-GPU OpenACC program for KMEANS and BFS because these appli-
cation requires us to use critical sections in the parallel loops. The current OpenACC API does not provide such
functionality.

19
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Figure 3.1: Comparison of current GPU programming environments.

imental setup is the same as that used in later evaluations: OpenMP uses one 6-core Intel CPU,

OpenACC and CUDA uses one or two 448-core GPUs. In measuring the number of code lines,

we only count the code lines which are used in actual parallel processing. The performance is

normalized to the performance of OpenMP. Figure 3.1 (a) shows that we can achieve 3-8 times

higher performance than that of OpenMP by utilizing multiple GPUs in CUDA(2GPU).

However, in Figure 3.1 (b), we can see that we have to develop much larger programs to

utilize multiple GPUs in CUDA. The numbers of code lines in CUDA(2GPU) is 4-5 times larger

than those in the OpenMP implementation. The reason is as follows. In BFS, parallel tasks

generate a lot of irregular write requests to visit the next graph node with chasing memory point-

ers. These irregular write requests can cause memory accesses to remote GPU memories in the

multi-GPU execution. In the CUDA multi-GPU implementation, we have to manage special

communication buffers on each GPU to manage these remote memory accesses. This increases

the number of code lines of two GPU CUDA BFS. In KMEANS, complicated reduction operation

is used to summarize the results of each parallel tasks. To implement the reduction on GPUs,

we have to implement hierarchical parallel reduction algorithm which is optimized for the GPU

memory hierarchy. In CUDA, this implementation needs a lot of code lines in the program.

As seen in this case study, no existing platform can provide both high programmability and

high performance in utilizing multiple GPUs.
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3.2 OpenACC Compiler with Software Distributed Shared Mem-
ory

To overcome the drawbacks of the current programming environments, we propose an OpenACC

compiler which is integrated with software distributed shared memory. Figure 3.2 shows the

concepts of the proposed compiler. To avoid the complicated programming interface for using

multiple accelerators, the proposed compiler receives OpenACC programs. Unlike conventional

platforms, it is unnecessary to rewrite the program to utilize multiple accelerators. The compiler

and the Multi-GPU memory manager in the proposed system automatically distribute parallel

loops and manage data among the physically disjointed memories. However, it is not easy for

compilers to automate efficient communication among the memories because this highly depends

on the applications characteristics, as explained in the previous case study. To solve the problem,

we propose new directives for programmers to express the applications memory access pattern

in parallel loops (Memory access directives in Figure 3.2). With the directives, the compiler can

safely assume which data items are accessed on a certain device. It greatly helps compiler reduce

unnecessary communication.

Figure. 3.3 illustrates the overall steps of the multi-device execution in the proposed compiler.

Parallel loops are executed on the multiple accelerators with three steps. First, the system maps

tasks and data to the multiple accelerators. The iteration space of the parallel loop is divided into

tasks. The system also determines the mapping of the tasks to the multiple accelerators. At the

same time, all the data potentially read by the tasks mapped to each accelerator are loaded into

the corresponding accelerator memory. Here, the memory access information given by the newly

introduced directives is used to reduce unnecessary data load. Next, actual computations are ex-

ecuted in parallel on the multiple accelerators. In this step, all write requests on data replicated

among multiple accelerator memories and all write requests on data which is not on the local

accelerator memory are recorded by the system. This is done by additional codes instrumented

in parallel kernel functions. Finally, the system handles necessary inter-accelerator communi-

cations, which include handling of writes to the replicated data, and include the handling of
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Figure 3.2: Overview of the proposed multi-device OpenACC compiler.

irregular writes whose destinations do not present in the local accelerator memory. In the final

step, the memory access information given by the newly introduced directives is also used to

update remote data items efficiently. Then, a global barrier operation among accelerators occurs

and the next parallel loop will be executed.

3.2.1 Directive Extensions

In order to allow compilers to optimize communication according to the application characteris-

tic, we propose two new directives as an OpenACC extension for multiple accelerator environ-

ments. Note the proposed system uses these directives only for performance tuning purpose. The

compiler can execute any OpenACC program on multiple accelerators without using these newly

introduced directives.

The design of the directives are based on the common memory access patterns which are

observed in typical data parallel applications. One directive is localaccess directive, which is

used to describe the region of data elements read by each parallel task inside the parallel loop.

The other is reductiontoarray directive, which is used to tell the compiler about complicated
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Figure 3.3: Execution steps of parallel loops in the proposed system.

reduction operations to array elements inside the parallel loops. These directives are designed

based on typical memory access patterns observed in common data parallel applications.

localaccess [clause] The directive allows programmers to specify the range of indices for a

certain array which can be read in i-th iteration of the loop. When the directive is given, the

compiler can aggressively optimize the generated code with the assumption that the i-th iteration

of the loop does not read any part of the array outside the specified range of indices. The range

of indices must be consecutive. Therefore, it is specified by a pair of a lower bound of indices

and an upper bound of indices. To express constant stride read accesses, the directive supports

stride(ArrayName[stride:left:right]) clause. This means that the i-th iteration of the loop use

the array elements whose indices are from (stride∗ i− left) to {stride∗ (i+1)−1+right}. To

support non-uniform stride access, programmers can specify an index array which contains lower

bounds of access indices for each iteration of the loop. The indirect(ArrayName[LowerBounds])

clause can be used for this purpose. We can specify an index array at LowerBounds and can

specify the actual array to be read in the loops at ArrayName. The LowerBounds array con-

tains lower bounds of indices used for the ArrayName in the i-th iteration of the loop. The

upper bound is given by the lower bound on the i+1-th iteration of the loop like the compressed
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1 #pragma acc loop
2 #pragma acc localaccess stride(x[1:0:0], b[1:0:0]) \
3 indirect(c[cIndex])
4 for (i=0; i < n; ++i)
5 {
6 for(j=cIndex[i]; j < cIndex[i+1]; ++j){
7 x[i] *= c[j];
8 }
9 #pragma acc reductiontoarray (+:errors[0:e_size])

10 {
11 errors[b[i]] += x[i];
12 }
13 }

Figure 3.4: An simple example of the proposed directives.

sparse row format used in the field of sparse linear algebra.

reductiontoarray [clause] We extend the scalar reduction clause for arrays. Unlike the con-

ventional reduction clause, the directive is used inside parallel loops to annotate single reduction

statement directly. We can specify the name of the destination array and the range of indices in

the clause. The access index of the destination array can be dynamically determined. The com-

piler generates optimized reduction codes which can run efficiently on the multiple accelerator

environment.

Example Fig. 3.4 illustrates an example of a C program annotated with the proposed directives.

In the code, the read access patterns for the array x, the array b and the array c are passed to the

compiler through the localaccess directive (line 2). On the other hand, the errors array does not

have the localaccess directive. In this case, the compiler does not aggressively optimize the data

movements for the array (detailed in Section 3.2.2). Also, we use the reductiontoarray directive

to tell the compiler that the statement at line 10 must be treated as the reduction operations whose

destinations are the elements in the array errors. Note that programmers do not have to consider

the existence of multiple accelerators because no task mapping and no data transfer between

multiple accelerators are manually commanded.
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3.2.2 Implementation and Optimization in multi-GPU platforms

We have implemented a prototype system of the proposed compiler on top of multi-GPU plat-

forms. Although, we have implemented the prototype system for NVIDIA CUDA platforms, the

proposed design of the system can be applicable to other accelerator platforms in which we can

use an OpenCL programming environment.

3.2.2.1 Module Diagram

Figure 3.5 illustrates a module diagram of the prototype system of the proposed OpneACC com-

piler. C to Multi GPU CUDA Translator (translator) is designed as a source to source translator.

The translator generates CUDA kernel codes and host codes from C programs annotated with

the OpenACC directives and the proposed extension. In addition to generating CUDA codes, the

translator also generates the information which summarizes memory access patterns for arrays.

The information is used in the runtime system in order to optimize data movement among dis-

tributed memories. GPU Data Loader (data loader) manages necessary data movement between

the CPU memory and the multiple GPU memories according to the OpenACC semantics. To

make sure that the execution is correct, all the data which are potentially read by the kernel run-

ning on each GPU must be loaded into the corresponding GPU memory before the kernel execu-

tion. Inter-GPU Communication Manager (inter-GPU communication manager) is responsible

for handling inter-GPU communication. It is called just after the kernels executed on every GPU.

It checks write operations done by the kernel on each GPU and updates remote GPU memories.

3.2.2.2 Translator

The translator generates a CUDA kernel and host codes which utilize multiple GPUs. In the

current implementation, a parallel loop annotated with an OpenACC loop directive is transformed

into a CUDA kernel function. The translator replaces the original loop with the call statement for

the kernel function. Also, the translator generates the CUDA host code which includes the control

codes to initialize the devices, to call the kernel functions, and to control the data movement

among distributed memories.



26 CHAPTER 3. MULTI-DEVICE EXECUTION IN A DIRECTIVE BASED COMPILER

C + 

Directives

Programs

C to Multi GPU

CUDA Translator

Multi GPU

Host Code Multi GPU

Kernel Code

Runtime

GPU Data 

Loader

Inter-GPU

Communication

Manager

Array 

Configuration

Information

NVCC

Compiler

Binary + 

PTX Code

Figure 3.5: An overview of the prototype system

Handling Data Movement The actual operations for data movement among the distributed

memories are delegated to the runtime system. The translator just inserts statements to call the

runtime functions at the program points where the data movements are required.

Task Mapping and Thread Generation In the current implementation, the tasks in the par-

allel loop are equally divided among the GPUs. Before the call of the kernel function on each

GPU, the host program sets up the number of the thread blocks and the number of the CUDA

threads per blocks for the GPU according to the number of the assigned tasks to the GPU.



3.2. OPENACC COMPILER WITH SOFTWARE DISTRIBUTED SHARED MEMORY 27

Organizing Array Accesses on GPUs In the kernel functions, all indices in array accesses

must be recalculated by considering data layout of the array on each local GPU memory. To

do so, the host program includes the codes to ask the runtime system about the layout of the

arrays among the GPU memories and includes codes to pass the information to the arguments of

the kernel functions. The translator rewrites indices of the array accesses in the kernel function

by using the arguments. In addition, the translator inserts additional codes for the inter-GPU

communication manager to identify which parts of the arrays are written by the kernel (detailed

in Subsection 3.2.2.4).

Optimizing Kernel Functions The translator applies two GPU-specific optimizations to ker-

nel functions. One is the data layout transformation of two-dimensional arrays for enhancing

the coalesced memory accesses. The transformation is applied to device arrays which satisfy the

following three conditions: read-only, the access indices are all in affine forms, and the array has

the localaccess directive. Also, to avoid the performance bottleneck at reduction operations, the

translator uses the hierarchical reduction algorithm for the reductions in the kernel functions. At

first level, the reduction is done on the shared memory for each thread block. Next, the values

are collected among the thread blocks on the same GPU. Finally, the values are transferred and

merged between multiple GPUs.

Generating Array Configuration Information The translator generates array configuration

information, which is used by the data loader and the inter-GPU communication manager. The

information summarizes memory access patterns of arrays. It is generated for every parallel

loop and for every device array in the loop. The information contains several attributes of the

array, including whether the array is read-only or write-only, the range of the access indices in

each loop iteration (if the array has the localaccess directive), and the array is the destination of

complicated reduction operations.
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3.2.2.3 Data Loader

In OpenACC, the compiler manages the data movement between the system memory and the de-

vice memory. The data loader is responsible for guaranteeing the semantics of the GPU memory

management while it transparently manages multiple GPU memories.

The data loader is called at the entrance and the exit points of the parallel regions, the ker-

nels regions and the data regions. In these regions, the data loader is called at the point where

programmers command data movement by inserting OpenACC directives such as the update di-

rectives. The data loader is also called before every kernel calls to load the necessary data into

the GPU memories because the necessary data can be different between different kernel calls.

In order to avoid unnecessary data movement among multiple GPU memories, the data loader

makes use of two different policies to load arrays into GPU memories. One policy is replica-

based policy. With the policy, all data elements in the array are replicated to all the GPU mem-

ories. The other policy is distribution-based policy. In the policy, an array is divided into sub-

arrays and only the sub-array actually accessed by each GPU is loaded into the corresponding

GPU memory. With the distribution-based policy, the arrays require less amount of data move-

ment and less amount of device memory footprints than arrays with the replica-based policy.

The data loader decides which placement policy should be used for each array according to

the user hint information given from the localaccess directive. Figure 3.6 is the flow chart used

to determine array placement policy. If an array is annotated with the localaccess directive at the

top of the parallel loop, then, the data loader uses the distribution-based policy. Also, even if the

array is not annotated with localaccess at the top of the corresponding parallel loops, the data

loader uses distribution-based policy as far as the array is annotated with the localaccess directive

at the top of the post dominant parallel loop. Otherwise, the data loader uses replica-based policy.

Note that the data loader can avoid additional data movement before the kernel calls when

the read memory access pattern in the next kernel call is the same to that in the previous kernel

call. This is common in iterative algorithms, the same parallel loop is executed many times, as

seen in the applications evaluated in the evaluation chapter.
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Figure 3.6: A flowchart to determine the placement policy of each array.

3.2.2.4 Inter-GPU Communication Manager

The inter-GPU communication manager is called just after the kernel functions executed on the

GPUs. It handles necessary data exchanges between multiple GPU memories, including update

operations at the writes to the replicated data and the remote write operations to the data which

exist only in the remote GPU memory. To maximize the performance at the communication step,

the communication manager directly exchanges the data between the GPU memories and the

communications are executed asynchronously.

Replicated Array When write accesses occur in replicated arrays, the inter-GPU communica-

tion manager must update other copies on the different GPU memories to keep consistency.

To do this, the manager prepares the dirty bit arrays on the GPU memories for replicated

arrays. In order to identify which elements of the array are written in a kernel execution, the

translator inserts additional operations to turn on the dirty bits at every writes accesses to the

replicated arrays. However, with the single level dirty bits, the manager has to transfer all array

data, including clean elements and the dirty bits, to other GPU memories because the manager
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Figure 3.7: Two-level dirty-bit mechanism to keep consistency of the replicated arrays.

cannot check the contents of dirty bits efficiently on the sender GPU. It degrades the performance

of the inter-GPU communications.

To solve the problem, we use two-level dirty-bit mechanism. It is illustrated in Fig. 3.7. A

dirty bit array is subdivided into chunks whose sizes are constant. Each chunk also maintains

single bit, which indicates all the dirty bits in the chunk are clean. The bit is used as the second

level dirty bit. The translator add codes to turn on the second level dirty bits in kernel functions.

With the second level dirty bits, the inter-GPU communication manager avoids unnecessary data

transfers at chunks which have no dirty data. The optimal size of the chunks is dependent both on

applications and hardware characteristics. In the evaluation chapter, we experimentally choose

1MB to the chunk size of the second level dirty bit arrays.

Distributed Array In the case of the arrays which are subdivided and distributed among mul-

tiple GPUs, we have to handle irregular writes to the data which do not exist in the local GPU

memory. To correctly handle writes to data on remote GPU memories, the manager must know
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that which write accesses missed on the local GPU memory in the previous kernel execution. To

tell the manager about the write misses, the translator insert check codes at every write accesses

on distributed arrays to identify the write misses. When the write access causes write miss, a pair

of the written data and the destination address are temporarily buffered into the system buffers

on the local GPU. After the kernel execution, the inter-GPU communication manager transfers

the records of the write misses to the remote GPU memories where the destination exists. Then,

the communication manager calls the CUDA kernels to complete the write access on the remote

GPUs. If the compiler can statically analyze that the write address is always within the range

described by the localaccess directive, we can eliminate the check code to avoid the additional

performance overhead.

3.3 Evaluation

The translator is implemented by using ROSE compiler infrastructures developed at Lawrence

Livermore National Laboratory [5]. It also uses parts of an existing C to CUDA translator [56],

which is publicly available. The runtime system is implemented with C++ on top of the CUDA

4.0 platform. We evaluated the proposed compiler system in two different machines. One is the

desktop machine equipped with two GPUs. The other is a thin-node of TSUBAME2.0 super-

computer at Tokyo Institute of Technology. Each platform differs by the type and the number

of CPUs and GPUs. Also, the performances of communication buses are different. The details

of the platforms are shown in the Table 3.1. We use three benchmark applications BFS, MD,

and KMEANS selected from rodinia [12] and shoc [14] benchmark suites. They exhibit different

inter-GPU communication characteristics. BFS is highly memory intensive with a lot of irregu-

lar writes. It is one of the most difficult applications to be efficiently executed in multiple GPU

environments. On the contrary, MD requires no inter-GPU communications. KMEANS is in the

middle of these two applications. It requires small amount of inter-GPU communications due to

the existence of reduction operation whose destination is the array which is used in all GPUs.

We summarize the details of the applications in Table 3.2.
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We compare the performance of the several versions of the applications. The versions are as

follows.

• OpenMP (OpenMP): The programs are written with OpenMP. They are compiled by the

gcc compiler with the O2 optimization flag. The number of running threads is set to 12 in

the Desktop Machine and 24 in the supercomputer node.

• CUDA (CUDA(1, 2)): The programs are written in CUDA. They are compiled by the nvcc

compiler with the O2 optimization flag. The number in the label denotes the number of

GPUs which is used in the implementation.

• Proposal(Proposal(1, 2)): The programs are written with the OpenACC API with the pro-

posed extensions (the localaccess directive and the reductiontoarray directive). The gen-

erated CUDA codes are compiled by the nvcc compiler with the O2 optimization flag. The

number in the label denotes the number of GPUs which is used in the implementation.

3.3.1 Performance and Programmability

In this subsection, we show the results of performance and the programmability in Desktop

Machine in detail.

In Figure 3.8, we plot the pairs of the performance and the number of code lines (LOC) for

each platform. The x-axis denotes LOC normalized to that of CUDA(2). The y-axis denotes

performance normalized to that of CUDA(2). Each point represents each implementation of the

application. We measure the execution time spent in the parallel regions, including the time

Table 3.1: Machine setup for the evaluation.
Desktop Machine

CPU Intel Core i7 x 1 (6core, Hyper Threading)
GPUs Nvidia Tesla C2075 x2

Supercomputer Node
CPU Intel Xeon x 2 (12=2x6core, Hyper Threading)
GPUs Nvidia Tesla M2050 x3
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Figure 3.8: Performance and lines of code (LOC). Normalized to the CUDA 2GPU versions.

spent on the CPU-GPU communications and the GPU-GPU communications. In measuring the

number of code lines, we only count codes related to actual parallel processing. We exclude

I/O related operations to prepare the input data for parallel processing. However, we count

codes related to transform data layout of arrays to enhance coalesce memory accesses on GPUs

and codes related to prepare index arrays specified in the localaccess directive with the indirect

clause. In the figure, a point is better if it is plotted in upper-left region because it is better for

Table 3.2: A: Total device memory usage in single GPU execution, B: # of parallel loops, C: #
of kernel executions, D: # of arrays with localaccess directive / # of arrays used in parallel loops.

Application Source Description Input A B C D
BFS SHOC Graph Traversal 5M node 444.9MB 1 10 2/3
MD SHOC Simulation 73728 Atom 39.8MB 1 1 2/3

KMEANS Rodinia Clustering kdd cup 69.2MB 2 37 2/5
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Figure 3.9: Performance trends when the size of input data changes. Normalized to the CUDA
2GPU versions with base inputs.
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platforms to have the low LOC (x-axis) and the high performance (y-axis).

First of all, we can see that the points of Proposal(1, 2) are at the upper-left of other points,

which represents other platforms (OpenMP and CUDA(1, 2)). This means that we can achieve

better performance with smaller programs in the proposed system than in the other platforms.

Comparing Proposal(1) and Proposal(2), in the proposed system, we can improve the perfor-

mance by utilizing 2 GPUs with small increase of LOC. On average, the performance with Pro-

posal(2) achieves 71% of the performance with CUDA(2) while the LOC with Proposal(2) is

32% of the LOC with CUDA(2) (Figure 3.8 (d)). Also, Figure 3.9 shows the performance when

we vary the size of input data. The performance is normalized to the OpenMP versions with the

base data sizes, which are show in the Table 3.2. The performance trend does not significantly

differ in the different data size.

Next, we look at the detailed performance analysis for each application through comparing

CUDA (2GPU) versions and the proposed compiler.

MD In MD, there’s no inter-GPU communications and the largest data array, which occupies

the most of the CPU-GPU communication, are accessed with the constant stride in parallel loops.

Hence, with the localaccess directives, the compiler can successfully avoid most of the unnec-

essary data movement as same in the optimized CUDA program. Therefore, in Figure 3.8 (a),

Proposal(2) achieves almost same performance to CUDA(2) at large input data. This is because

the runtime overhead becomes relatively smaller when the size of input data gets large and the

percentage of computation time grows.

KMEANS Both in CUDA and the proposed compilers, KMEANS achieved the highest speed

up by utilizing two GPUs among the evaluated applications. This is because it is possible to apply

GPU specific optimizations to the parallel loops in KMEANS, such as data layout transformation

to enhance coalesce accesses or parallel reductions on the GPU shared memory. On the other

hand, for large data, the difference between performance of Proposal(2) and that of CUDA(2) is

the largest among the applications. This is because that there is some difference in the imple-
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mentations. First, in the proposed compiler, the data layout transformation is done on the CPU

while it is done on the GPU in the CUDA program. Second, at the end of each iteration of the

KMEANS parallel kernels, it is necessary to communicate some small arrays which contain the

results of the reduction operations. The proposed compiler uses dirty-bit based coherence mech-

anism to communicate the small arrays. It incurs non-negligible performance overhead due to

the execution time of the runtime memory manager and the communication time of the dirtybit

array. The performance overhead is originated from unoptimized implementations in the com-

piler and the runtime memory manager. Hence, it seems to be reduced if we further optimize the

implementations of them.

BFS Although the runtime memory manager has to handle a lot of irregular write requests

which incurs inter-GPU communications, these requests still exist in the hand-written CUDA

program. Then, the performance difference is not very large in BFS across the input data sets.

One interesting observation is that the CUDA program uses the smaller size data type for the

inter-GPU communication because the programmer can know the values of the communication

data do not exceed a certain constant value. In particular, char type (1byte) is used for communi-

cating data whose original type is integer (4byte). Such kind of application specific optimizations

cannot be done by the proposed compiler. It is a fundamental limitation of the automatic GPU

memory management. However, in this case, the effect is not very large and the proposed com-

piler achieves modest performance (79%-84% of the performance of CUDA(2)).

Finally, Table 3.3 shows the details of LOC in OpenMP, single GPU OpenACC (equivalent

to Proposal(1)), Proposal(2), and CUDA(1). We can see that the numbers of code lines needed

to implement the parallel programs for the proposed multi-GPU OpenACC compiler are almost

same to the numbers of code lines in OpenMP and OpenACC. In summary, the proposed multi-

GPU OpenACC compiler can provide comparable programmability to OpenMP or conventional

single-GPU OpenACC, which provide better programmability than CUDA.
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3.3.2 Evaluation in a Supercomputer Node

To see scalability of the proposed system, we evaluate the proposed system on the machine with

more than 2 GPUs. Figure 3.10 (a) shows the performance of the proposed system in a thin node

of TSUBAME2.0. We do not evaluate CUDA(2) and CUDA(3). The computing node is equipped

with 3 GPUs. The y-axis is the performance normalized to the performance of OpenMP. Also,

we show the breakdown of the execution time in Figure 3.10 (b). To investigate the memory

overhead caused by the runtime system, including the data replication and the temporary buffers

on GPUs, Figure 3.10 (c) shows the GPU memory usages in the applications with the proposed

system. The bars in the figure indicate the amount of memory used to store the user data (User)

and the amount of memory used in the runtime system (System). The values are normalized to

the total device memory usage in the single GPU execution, where no system memory or no

replicated data exists.

In Figure 3.10 (b), we can see that the time spent on the data transfer between CPUs and

GPUs (CPU-GPU) are the main reason that prevents us from achieving linear speed up to the

number of GPUs (shown in Figure 3.10 (a)). Because the proposed system does not incur large

overheads in the data transfer between the CPU and the GPUs, the limitation is originated in the

application characteristics. Thus, the data transfer between CPUs and GPUs still prevents the

linear speed up even when we manually make use of multiple GPUs with CUDA or OpenCL. To

OpenMP OpenACC Proposal(2GPU) CUDA(1GPU)

BFS

Actual Processing 40 40 40 42
Directive 2 7 9 –
API Call – – – 22

Other – – 7 –
Total 42 47 56 64

MD

Actual Processing 26 26 26 26
Directive 1 2 3 –
API Call – – – 23

Other – – – –
Total 27 28 29 49

KMEANS

Actual Processing 51 54 54 113
Directive 8 7 16
API Call – – – 34

Other – – – 21
Total 59 61 70 168

Table 3.3: Number of code Lines.
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solve the problem, we have to rewrite the applications by redesigning the algorithm. However,

this is beyond the scope of this work.

In Figure 3.10 (c), we can see that the amount of User memory, which includes the memory

for replicated data, does not increase significantly even with the multi-GPU executions. If the

data loader replicates all the data on every GPU memory, it would increase in proportion to the

number of GPUs. However, with the memory access patterns provided through the localaccess

directives, the proposed system can avoid this situation by making use of the access locality in

the arrays. On the other hand, the runtime system consumes some amount of the device mem-

ory in order to handle the inter-GPU communications. The amount of device memory used in

the runtime system is larger in the applications in which more inter-GPU communications are

needed, such as BFS. However, the overhead is less than 30% even in BFS. Thus, the extra mem-

ory overheads in the proposed system do not decrease the benefits of larger available memory

with multi-GPU executions.
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Figure 3.10: Evaluations in TSUBAME2.0 thin-node (2CPU-3GPU).
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Chapter 4

Compiler Based Sleep Control in CPU
Functional Units

In the case when we offload all data parallel tasks to accelerators, CPUs have less tasks to do.

As a result, the utilization of CPUs gets lower than that in conventional homogeneous systems.

However, CPUs still have to be active in order to execute tasks which cannot be accelerated

by accelerators, such as I/O operations, legacy software libraries, or sequential processing on

complex data structures. Such CPUs still consumes large amount of power due to leakage power

consumption of CMOS circuits. To eliminate this inefficiency, we have to develop techniques to

aggressively reduce leakage power wasted in the CPUs.

4.1 Drawbacks of Conventional Sleep Control Techniques

Conventional sleep control techniques for run-time PG intended to detect idle phases in which

the target circuit is rarely used. This results in almost ideal leakage power reduction in the case

that the target functional unit is rarely used through the entire application execution. However, if

fine-grained idle periods have a large amount of fraction in the total execution time, conventional

sleep control techniques fails to reduce the leakage power. And this is often observed in CPU

functional units during the execution.

To quantify the amount of the inefficiency of conventional sleep control in CPU functional

units, we consider the difference between the ideal leakage power with ideal sleep control(opt)
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and realistic leakage power (real) achieved by a realistic sleep control technique in the following

equation: WLR = 100∗ (Lreal−Lopt)/Lnosleep. WLR stands for Wasted Leakage energy Ratio.

Lopt, Lreal, Lnosleep denote leakage power consumed with ideal sleep control, with a realistic sleep

control, and without sleep respectively. Note that WLR is better if the value is lower because it

means that the difference from ideal sleep control is smaller.

Table 4.1 gives the evaluated values of WLR in conventional sleep control techniques for

several applications in SPEC CPU 2000 FP Benchmark Suite. In the table, timeout is the sleep

control proposed by Hu[25] and loop is the sleep control proposed by Roy[49]. The value is

obtained via the cycle accurate processor simulator used in the experiments described in the later

evaluation in this Chapter. Table 4.1 tells us that a large amount of potential leakage power

reduction is left even when runtime PG with conventional sleep controls is used.

The source of this inefficiency is that the fine grain idle periods whose lengths are in the

same order to the BET. Figure 4.1 shows the correlation between the fraction of fine grain idle

periods in total execution cycles and the WLR. In the figures, the y-axis denotes the values

of WLR showed in the Table 4.1. The x-axis denotes the fraction of fine grain idle periods

in total execution cycles. Here, the fraction of fine grain idle periods is defined as the idle

periods whose length are shorter than 2x of the length of BET. Figure 4.1 shows there is strong

positive correlation between the fraction of fine grain idle periods and the amount of inefficiency

in conventional sleep control techniques. In short, conventional sleep control techniques fail to

reduce the leakage power consumed during the fine grain idle periods.

In this chapter, we propose a sleep control technique in CPU functional units which can

reduce leakage power consumed during such fine grain idle periods. To achieve large amount

of leakage power reduction in fine grain idle periods, we developed a sophisticated idle length

prediction technique based on compiler.
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application FPALU FPMULT INTMULT
loop timeout loop timeout loop timeout

ammp 1 1 2 1 0 0
apsi 27 22 15 13 28 29
art 4 3 5 2 0 0

equake 27 20 16 10 0 0
mesa 36 11 43 7 40 5
mgrid 8 10 59 10 67 5
swim 22 30 37 15 0 0

wupwise 31 19 43 12 30 4

Table 4.1: Wasted leakage energy ratio(WLR) of conventional techniques (%, BET=20cycle).
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Figure 4.1: Correlation between fraction of fine grained idle periods and WLR (BET=20 cycles).

4.2 Sleep Control Based On Precise Analysis of Idle Length

Our proposal is based on an observation that the fine grain idle periods is mainly originated

in instruction sequences and cache misses. The most important factor is instruction sequences,

which determine usage pattern of functional units statically. Therefore, our proposed sleep con-

trol technique is based on the static compiler analysis to predict the length of each idle period

in cycle-level accuracy. Second factor is cache misses which cause the processor pipeline stalls.

Because cache misses are dynamically determined, it is not easy to predict them by compilers.

Our solution is to combine a compiler-based technique with an existing cache miss based sleep

control technique[51], in which hardware detects last level cache misses and turn off functional
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Figure 4.2: An overview of the proposed sleep control system.

units at that moment. The cache miss based sleep control technique requires little hardware to

implement. Thus, it does not affect the advantage of static sleep control technique that it requires

little changes in hardware.

Figure 4.2 gives an overview of the proposed sleep control technique. In the compiler system,

object codes are generated as usual. The object codes are analyzed in order to predict the length

of idle periods at link time (Step 2). In this analysis step, the compiler determine predicted

lengths of idle periods after every instructions. And it uses the predictions to determine where to

inject sleep control information into the final machine code (Step 3). To increase the accuracy of

the prediction, we can utilize profiling information about the branch probability of each branch

instruction (Step 1). The target CPU dynamically decodes the sleep control information injected

by compiler and turn off functional units (Step 4). Also, a simple cache miss detector is added to

the target CPU to turn off functional units when the last level cache misses occur(Step 5).
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Figure 4.3: Architectural support for run-time PG in functional units.

4.2.1 Architecture Support for Compiler Based Sleep Control

Here, we show an overview of the CPU architecture to support the proposed runtime PG control

in functional units. Figure 4.3 shows our base processor architecture assumed in this chapter.

The processor architecture is based on the prototype CPU reported by Seki et al. [51]. The

processor is a simple in-order processor intended for embedded use. We can turn on and off each

functional unit in extremely fine grained manner. The mode transition takes only tens of nano

seconds. Note that the latency of the sleep/wakeup mode transitions can be hidden with some

architectural techniques [51]. Therefore, we assume the performance overhead of the runtime

PG in functional units is negligible and we focus on the energy overhead management of the PG

in functional units.

4.2.2 Code Analysis to Detect Fine-Grained Idle Periods

To achieve a large amount of leakage power reduction, we must predict the length of each idle

period accurately. In this subsection, we show the detail of our static analysis technique which

can predict the lengths of fine grain idle periods with cycle-level accuracy.

Table 4.2 shows a simple illustration of the prediction algorithm. In the figure, the first mul-

tiply instruction is executed. The second multiply instruction is executed after three instructions.

Assuming a single issue in-order processor, the length of idle periods in the multiplier between
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Opcode Latency Idle Period
mult 3 cycle -
store 1 cycle 1
load 2 cycle 3
add 1 cycle 4
mult 3cycle -

Table 4.2: Idle length prediction in a basic block.

Procedures

(Functions)
Basic Block

load

add

sub

store

...

br

Instructions

Figure 4.4: Structures in programs

the first and the second multiply instructions is predicted as the sum of execution cycles of in-

termediate three instructions. The model can be extended with ILP prediction techniques in case

that target CPU is a multi-issue processor. Based on the algorithm inside each basic block, we

extend the idle length analysis for inter-basicblock and inter-procedural analysis. Figure 4.4 illus-

tarates the structure observed in programs. By considering the structure, the prediction becomes

more accurate.

Next, we formalize an intra-procedure analysis techniques to predict the length of idle periods

in functional units. The algorithm can be formalized by using data-flow analysis framework[7].

The process collects the information of the utilization of functional units at various points in a

program. To gather the data-flow information, we define idlein[s], idleout[s], and pnuExitin[s], pnuExitout[s]

for each instruction s. An unusual thing in the data flow analysis is that data flow variables are

not boolean variables as usual. To identify the lengths of idle periods, the data flow variables are

defined as real number variables. The variables idlein[s], idleout[s] are the average lengths of idle
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periods from the points before or after an instruction s. The variables pnuExitin[s], pnuExitout[s]

are the average probabilities of reaching the exit point of the procedure without using the target

functional unit from the points before or after an instruction s.

In addition to defining data-flow variables, we define length of the execution cycle len[s] and

define the probability of not using the target functional unit during execution pnu[s] for each

instruction s as follow.

len[s] =

{
0 (if s use the FU)
ExecLatency[s] (else)

pnu[s] =

{
0 (if s use the FU)
ProbNotUseFU [s] (else) (4.1)

Here, ExecLatency[s], ProbNotUseFU [s] are the length of execution cycles for an instruction

s and the probability of not using the target functional unit during execution of an instruction

s respectively. These values can be given based on the target architecture except for the case

that an instruction s is a function call instruction. We will explain how to handle a function call

instruction for inter-procedural analysis later in this subsection. These values are corresponding

to transfer functions in a data-flow analysis framework.

Considering the characteristic of idlein[s], idleout[s] and pnuExitin[s], pnuExitout[s], we de-

fine data-flow equations in the following equations.

idlein[s] = pnu[s] ∗ idleout[s] + len[s]

pnuExitin[s] = pnuExitout[s] ∗ pnu[s]

idleout[s] = (1− q[s]) ∗ idlein[ssuc1] + q[s] ∗ idlein[ssuc2] (if s is a branch.)

idleout[s] = idlein[ssuc] (if s is not a branch.)

pnuExitout[s] = (1− q[s]) ∗ pnuExitin[ssuc1]

+q[s] ∗ pnuExitin[ssuc2] (if s is a branch.)

pnuExitout[s] = pnuExitin[ssuc] (if s is not a branch.). (4.2)

At the branch instructions, idleout[sbranch] is given by an average of idlein[ssuc1], idlein[ssuc2],

where ssuc1, ssuc2 are the successors of a instruction sbranch, weighted by the branch probability

q[sbranch]. The branch probability q[s] can be simply set to 0.5, or can be obtained by profiling.
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The initail values in the iterative solver are given in the following equations:

idle0in[s] = pnu[s] ∗ len[s],

pnuExit0in[s] = pnu[s],

idle0out[s] = 0,

pnuExit0out[s] = 0,

idlebin[sexit] = 0,

pnuExitbin[sexit] = 1. (4.3)

Here, the instruction sexit is the exit node of a procedure. Note that although the data-flow

variables are not boolean values but real number values, the convergence of iterative algorithm

is guaranteed by linear algebra theory if there is no infinite loop. We show a pseudo program of

the data-flow algorithm below:

INPUT Control Flow Graph(CFG), the execution cycle(len) and the probability that does not

use a target functional unit(pnu) for each instruction

OUTPUT predicted lengths of idle periods in a target functional unit for every instructions

idlein[sexit]← 0, pnuExitin[sexit]← 0

for each node s ∈ CFG other than sexit do

/* set initial data-flow values according to equations 4.3 */

Set initial values of idlein[s], pnuExitin[s], idleout[s]，pnuExitout[s]

end for

while changes to any idleout or pnuExitout occur do

for each node s ∈ CFG other than sexit do

/* update data-flow values according to equations (4.2) */

update idlein[s], pnuExitin[s], idleout[s], pnuExitout[s]

end for

end while

.
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Practical programs consist of a lot of procedures. In the context of idle periods prediction, it

makes it difficult for compilers to detect idle periods across multiple procedures. To overcome

this problem, we need to extend the data-flow analysis for inter-procedure analysis.

To extend the analysis for inter-procedural one, the transfer function values for a functional

call instruction scall is determined by using the information of callee procedures. Considering that

we can treat a callee procedure as a large single instruction, we use an prediction value at callee’s

entrance point for ExecLatency[scall], ProbNotUseFU [scall]. This means that, let s′entrance is

the entrance node of the callee procedure, the value of ExecLatency[scall] is set to a value of

idlein[s
′
entrance] and the value of ProbNodtUseFu[scall] is set to a value of idlein[s′entrance]. This

is expressed in following mathematical equations:

ExecLatency[sfcall] = idlein[s
′
entrance],

P robNotUseFU [sfcall] = pnuExitin[s
′
entrance]. (4.4)

To use callee’s information, the analysis for the callee procedure must have been done before

analysis for the caller procedure. We use Region-Based Analysis [7] to determine an analysis

order of procedures in the same program in order to pass the information correctly between

procedures.

The inter-procedural analysis is divided into three steps. First, we construct a call graph and

reduce its strongly connected components into single nodes. Second, we determine a first visiting

order of procedures through depth-first traversal on the reduced call graph. According to the first

visiting order, we determine the data-flow values idle, pnuExit at their entrance node sentrance.

If a visited node have multiple procedures (strongly connected components in a original call

graph), we treat multiple procedures as one procedure. Finally, we determine the final data-flow

values for every point in every procedure. The final visiting order is the inverse of the first visiting

order. In the analysis for each procedure, the values of idlebin[sexit] and pnuExitbin[sexit] are set

to the average values of idle and pnuExit of the entrance nodes in the procedures which call the

procedure.



50 CHAPTER 4. COMPILER BASED SLEEP CONTROL IN CPU FUNCTIONAL UNITS

4.3 Evaluation

In this section, we evaluate the sleep control technique through cycle-accurate processor simu-

lations. Simulations are based on SimpleScalar [10]. We add the functionality of the run-time

PG and the cache-miss based sleep mechanism in the simulator. Detailed parameters of the pro-

cessor model are shown in Table 4.3. In addition to the hardware simulation system, we build

an experimental compiler as a back-end system of gcc. It analyzes object codes and insert sleep

information into them . We use sleep bit mechanism [51] as a software-hardware interface for

communicating sleep information. We turn on the sleep bit at each instruction whose idle length

is predicted to be longer than BET. Also, we utilize profile information to determine branch

probability q[s] for each branch instruction.

We evaluate the results using 8 benchmarks from SPEC CPU2000 FP Benchmark Suite [24].

These benchmarks are chosen because they exhibit a large amount of fine grain idle periods

in functional units. For each program, we skip the first 1 billion instructions and simulate the

following 200M instructions. We use reference input set for the simulation. We evaluate leakage

power (including energy overhead of mode-transitions) in three functional units, floating point

ALU (FPALU), floating point multiplier (FPMULT) and integer multiplier (INTMULT). A key

metric in the evaluation is normalized leakage power in functional units. This refers to a ratio of

the power of the functional unit with a certain sleep control technique compared to the original

leakage power without any runtime PG.

In addition to evaluating the proposed technique, we evaluate two conventional sleep control

techniques. In the results, proposal, loop, and timeout refer the proposed technique, the loop

based sleep control technique proposed by Roy[49], and time based sleep control technique pro-

posed by Hu[25] respectively. In the time based sleep control, the value of BET is used for the

value of sleep threshold. In this evaluation, conventional techniques are combined with a cache

miss based sleep control technique because a last level cache miss based sleep always results in

leakage power saving in the simulation setup, where memory access latency is longer than BET,

thus a cache miss based sleep control technique can be safely combined with conventional sleep
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ISA PISA
Issue In-Order

Branch Predictor bimodal(2K Entry)
Num. Functional Unit

-Int ALU 1
-(load/store) 1

-Integer Multiplier 1
-FP ALU 1

-FP Multiplier 1
L1 I/D cache 32KB 2-way 1-cycle latency

L2 unified cache 1MB 8-way 6-cycle latency
Memory Latency 100 cycle
Break Even Time 20, 40 cycle

Table 4.3: Simulation setup.

control techniques.

Figure 4.5 - Figure 4.10 show the results. Figure 4.5, Figure 4.7, Figure 4.9 are the results in

the case that BET is 20-cycle. Figure 4.6, Figure 4.8, Figure 4.10 are the results in the case that

BET is 40-cycle. In each graph, each application has three bars according to three sleep control

techniques. The rightmost bar is the proposal.

A notable result is that the proposed technique achieves the best leakage power saving in all

cases. The result tells us that we can achieve a large amount of leakage power saving in a wide

range of applications through the compiler based sleep control. The proposal techniques achieve

up to 19% more leakage power saving compared to the timeout sleep control technique and up

to 67% more leakage power saving compared to loop sleep control technique. In the applica-

tions which use the target functional units most frequently, apsi, mgrid,swim, and wupwise, the

improvement of leakage power saving by proposal is especially high. In these application, the

number of total cycles spent in fine grain idle periods is large. In Table 4.4, we show the average

leakage reduction from the leakage power in timeout sleep control.
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BET FPALU FPMULT INTMULT
20 cycles 22.2 24.2 25.1
40 cycles 14.2 21.4 12.7

Table 4.4: Average leakage reduction from timeout sleep control (%).
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Figure 4.5: Normalized leakage power (BET=20cycle, FPALU).
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Figure 4.6: Normalized leakage power (BET=40cycle, FPALU).
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Figure 4.7: Normalized leakage power (BET=20cycle, FPMULT).
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Figure 4.8: Normalized leakage power (BET=40cycle, FPMULT).
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Figure 4.9: Normalized leakage power (BET=20cycle, INTMULT).
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Figure 4.10: Normalized leakage power (BET=40cycle, INTMULT).



Chapter 5

Cooperative DVFS and Heterogeneous
Task Mapping

Dynamic voltage and frequency scaling (DVFS) is an effective technique to reduce the dynamic

power consumption of processors. Current CPUs and accelerators provide the control knob for

softwares to save power consumption. One of the most important problems about the frequency

control is that how to minimize the performance degradation when we constrain a system to keep

the power under a given power budget. Such power management is called power capping and it is

used in large scale computing centers in order to optimize the center-level power utilization [17].

This problem cannot be solved easily in heterogeneous systems because the performance

and the power consumption are complicated functions of the task mapping between different

computing devices and the frequency settings. To effectively apply DVFS to heterogeneous

system with accelerators, it is necessary to develop techniques to guide the settings of the device

frequencies and the task mapping cooperatively.

5.1 Drawbacks of Conventional Power Capping Techniques

Hybrid computing is one of the important software optimization techniques in the heterogeneous

systems with accelerators [21, 39, 46, 50]. In the hybrid computing, parallel tasks are distributed

to both CPUs and accelerators and the tasks are executed in parallel. Figure 5.1 illustrates a

simple example of the hybrid computation with a single CPU and a single GPU. In Figure 5.1,

55
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CPU GPU

0 99

Array

parallel tasks

3029

Figure 5.1: Hybrid computation with a CPU and a GPU.

CPU executes 30% items in the array and the rest of 70% items are executed by the GPU. The

interesting point is that we can flexibly adjust the percentages of tasks mapped to each device

in order to avoid the load imbalance between the computing devices. The optimal task mapping

ratios depend on the application characteristics and the hardware organization.

If we directly apply conventional DVFS to such applications in order to set the power budget

on the system, the load imbalance between CPUs and accelerators can occur and the performance

can be significantly degraded. This is because the amounts of the performance fluctuations by

DVFS are different between CPUs and accelerators.

To quantify how large the problem is, in Figure 5.2, we show the performance of such hybrid

parallel applications with the conventional DVFS control. The detailed experimental setup is the

same as that in the evaluation section. We decrease the frequencies of the CPU and the GPU

until the power consumption of the system meets the given power budget. The values of the

power budget are shown in the x-axis. The performance is normalized to the performance with

the ideal settings of DVFS and task mapping under the given power constraint, in which we can

avoid load imbalance caused by DVFS through adjusting task mapping. The result means that

the performance degradation can be large if we simply apply DVFS to the CPU and the GPU.

This is due to the lack of mechanism to fix the load imbalance caused by applying DVFS.

To this end, to minimize the performance degradation of conventional DVFS in the hybrid

parallel applications, it is necessary to develop techniques to guide the settings of the device

frequencies and the task mapping cooperatively.
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Figure 5.2: Performance with conventional DVFS control. Normalized to the ideal execution
without load imbalance.

5.2 Model-based DVFS and Task Mapping

Figure 5.3 shows the overview of the proposed power capping technique. In the proposed tech-

nique, we determine the frequencies of CPUs and accelerators, and the task mapping at the

beginning of the application execution. The reason why we determine the execution parameters

in advance of the execution is that we can avoid performance overhead caused by runtime param-

eter adjustments. The behavior of a typical data parallel application does not change drastically

during the executions because they often use iterative algorithms [50].

To enable us to set the parameters in advance of the application execution, we take profile

information at small number of representative parameter points. Based on the profiles, empir-

ical models predict the execution time and the maximum power consumptions for all possible

parameter settings. Hence, the models enable us to examine all possible settings of DVFS and

task mapping without the exhaustive profiling of the all possible settings of parameters. With the

optimal parameters predicted by the model, we execute the application.

It is possible that the system exceeds the power constraint with the pre-determined parameters

due to the prediction error of maximum power consumption. In this case, we can adjust the

CPU frequency with the existing technique at runtime to prevent the power violation [37]. In

Figure 5.3, the Reactive DVFS controller is responsible for this.
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Figure 5.3: An overview of the profile-based power capping.

5.2.1 Model Parameters and Profile Information

The key part of the proposed technique is empirical models of the execution time and the maxi-

mum power consumption in the hybrid execution. The models take profiling information about

the executions only with the CPU and about the executions only with the accelerator. Using these

profiling information, they predict the time and the power of actual CPU-accelerator hybrid exe-

cutions.

In Table 5.1, we summarize the model parameters and profile information. The control pa-

rameters include the frequency of the CPU (fcpu), the frequency of the accelerator (facc) and

the percentages of CPU tasks (rcpu) and accelerator tasks (racc). The model outputs the normal-

ized execution time of applications (ttotal) and the maximum power consumption (pnode) with the

given parameter set: (fcpu, facc, rcpu, racc). Note that the sum of percentages of CPU tasks and

accelerator tasks must be 100: i.e. rcpu + racc = 100. Here, we assume that the system consists

of single CPU and single accelerator. However, the proposed method can be easily extended for

systems with multiple CPUs and multiple accelerators.

In the profiling runs, we set the percentages of CPU and accelerator tasks to rcpu = 100, racc =
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Predicted Values
ttotal Total Execution time
pnode Power Consumption of the Node

Control Parameters Description
fcpu Frequency of the CPU
facc Frequency of the accelerator
rcpu percentage of CPU tasks (1 - racc)
racc percentage of accelerator tasks

CPU(accelerator)-only Profile
K

c(a)
i Execution Time of ith Parallel Kernel

P
c(a)
node Power of the Node

P
c(a)
cpu Power of the CPU

P
c(a)
acc Power of the accelerator

Table 5.1: Model parameters and profile information.

ratio of 	
ACC tasks (Racc)	

CPU	
Frequency (Fcpu)	

ACC	
Frequency (Facc)	

Profiled points	

Model	

Figure 5.4: Parameter space represented as a three-dimensional cube.

0 (CPU-only profile) and rcpu = 0, racc = 100 (accelerator-only profile). With the settings of task

mapping, we profile the execution time and the maximum power consumption for all possible

set of device frequencies. Figure 5.4 illustrates the parameter space as a three dimensional cube.

The profiled parameter points are at the ceiling and the bottom of the cube. The models predict

the time and the power for all the other parameter points inside the cube.

In the profiling runs, we collect the execution times of each parallel kernel function. The

execution times are normalized to the execution time of the execution only with the accelerator

at the highest frequency. Thus, the model is applicable to executions with different data whose
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sizes are different from that of the data used in the profiling runs. The profile information also

includes the power consumption of the CPU, the accelerator, and the computing node. We use

hardware power counters which is already integrated into commercial CPUs and accelerators to

measure the power consumption of CPUs and accelerators.

Scenario for Obtaining the Profile If we can use typical input data and the actual computer

system used in the real situation during the testing and tuning phase of the application devel-

opment, it is not problematic to get the profiling information. For high performance computing

applications, it is often the case that we can access the typical input data and the computer sys-

tem during the application development. If we cannot do that, application users have to prepare

the typical input data and have to profile the application when the application is installed in the

system. Although some parts of the process can be automated, this scenario adds the complexity

of the installing process. Also, in both two scenarios, it is possible that the size of data used in

the profiling runs differs from the size of the actual input data. Considering this case, we will

evaluate the sensitivity on input data size in the later evaluation.

5.2.2 Empirical Models

The total execution time of the application can be modeled by the sum of the execution time of

the parallel kernel functions as the following equation:

ttotal =
∑
i

Ki(fcpu, facc, rcpu, racc).

The execution time of the i-th kernel is represented as Ki(fcpu, facc, rcpu, racc).

To estimate the execution time of the i-th kernel (Ki) in hybrid computations, in which both

the rcpu and the racc are not zero, we make the following two assumptions: 1. the actual execution

time on the CPU or the accelerator is proportional to the amount of mapped tasks, and 2. global

barrier is required after the execution of each parallel kernel. The global barrier is illustrated in

Figure 5.5. In this situation, the faster device must wait for the other device at the synchronization

point. Using the two assumptions and the profile information, we can estimate the execution time
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of the i-th kernel with the following equation:

Ki = max
{
Kc

i (fcpu, facc)×
rcpu
100

, Ka
i (fcpu, facc)×

racc
100

}
.

Note that we treat data transfers between a CPU and an accelerator as a task which is mapped to

both of the CPU and the GPU. In this case, rcpu + racc ̸= 100. With this assumption, we can use

the same model for data transfers.

The total node power pnode(fcpu, facc, rcpu, racc) can be decomposed into three terms as the

following equation:

pnode = pidle(fcpu, facc) + pcpu(fcpu, facc, rcpu) + pacc(fcpu, facc, racc).

The term pidle represents the idle power consumption, which depends on the device frequencies

but is independent of the task mapping. It includes static power of the system. The terms pcpu

and pacc represent power consumptions in the CPU and the accelerator, which depend on all the

control parameters (fcpu, facc, rcpu, racc).

First, we estimate the values of the idle power in the CPU-only profile and the accelerator-

only profile (denoted as pcidle and paidle respectively). We subtract the dynamic power consumption

of the device from the total power consumption of the node as the following equation:

p
c(a)
idle = P

c(a)
node(fcpu, facc)−

{
P

c(a)
cpu(acc)(fcpu, facc)− P

a(c)
cpu(acc)(fcpu, facc)

}
.

The dynamic power consumption of the device is approximated by the expression P
c(a)
cpu(acc) −

P
a(c)
cpu(acc). The values of pcidle and paidle include the static power of CPUs, the static power of

accelerators, and the power consumption of the all other components (mother board, hard disk

etc.). In the power model, the total idle power is linearly interpolated by using these values as

the following equation:

pidle = pcidle(fcpu, facc)×
rcpu
100

+ paidle(fcpu, facc)×
racc
100

.

The CPU and the accelerator are not always busy because fine-grained synchronization is

required as illustrated in Figure 5.5. Because the activities of the devices change according to
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the task mapping, the values of device power consumption pcpu and pacc also fluctuate. To model

this, we assume that the power consumptions are proportional to the fraction of busy time to the

total execution time. This relationship is expressed in the following equation:

pcpu = αcpu ×
{
P c
cpu(fcpu, facc)− P a

cpu(fcpu, facc)
}
,

pacc = αacc × {P a
acc(fcpu, facc)− P c

acc(fcpu, facc)} .

The term αcpu and the term αacc represent the fraction of busy time in the CPU and that in the

accelerator respectively. In the equations, the expression P c
cpu − P a

cpu and the expression P a
acc −

P c
acc are used as the approximations of the maximum amount of the dynamic power consumption

in the CPU and that in the accelerator respectively.

To estimate the fraction of busy time αcpu and αacc from the profile information, we define

the busy time of each device during execution as the sum of the actual execution time of each

kernel function. The definition is shown in the following equation:

tcpu(acc) =
∑
i

K
c(a)
i (fcpu, facc)×

rcpu(acc)
100

.

The busy times are denoted by tcpu and tacc. Using them, we estimate the fraction of busy time

of the CPU αacc and that of the accelerator αacc as the following equations:

αcpu(acc) =
tcpu(acc)(fcpu, facc, rcpu(acc))

ttotal(fcpu, facc, rcpu(acc))
.

5.2.3 Parameter Selection

After taking the profiling information, we examine all possible sets of parameters with the em-

pirical models and build an optimal parameter tables. The table keeps the list of the optimal

parameter sets for every possible values of the power constraint. We have to build the tables once

for one profiled data. Plus, it does not take much time to build it even if we explore the optimal

parameter sets with exhaustive search algorithms because we can quickly estimate the execution
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Barrier

Kernel1 Kernel2 Time

idle

idle
CPU

ACC

Barrier

Figure 5.5: Fine-grained synchronization between the CPU and the accelerator.

time and the maximum power consumption at any parameter set with the models. At the be-

ginning of the application execution, the runtime system looks up the table to get the optimal

parameter set under the given power constraint.

5.3 Evaluation

In the experiment, we use a computing node with a single multi-core CPU and a single GPU.

The details of the platform are shown in Table 5.2. We measure the total power consumption

of the machine at every one second with “watts up? .net” [27]. To measure power consumed in

the CPU and the GPU in profiling executions, we use RAPL [15] and NVML [2] APIs to read

the hardware counters related to the device power consumption. We use Linux “cpufreq-set”

command to change the CPU frequencies and use “nvidia-smi” command to change the GPU

frequencies.

We evaluate five GPGPU applications selected from rodinia benchmark suite [12] and from

BLAS library. The applications are summarized in Table 5.3. Compilers or runtime libraries

with the capability of scheduling tasks between CPUs and GPUs have not been publicly available

yet. Therefore, we manually implemented a heterogeneous task mapping mechanism for each

evaluated application. They are compiled with gcc 4.4 and with nvcc 5.0. We use the “-O3” flag
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CPU Intel Core i7 x1 (6core)
GPU Nvidia Tesla K20c x1

CPU Frequencies(GHz) 1.2 - 3.2 (0.2 GHz step)
GPU Frequencies(MHz) 614, 640, 666, 705, 754

OS Linux

Table 5.2: Machine setup for the evaluation.

Application Description Input Description
BFS Graph Traversal 5M node random graph

HOTSPOT Heat Simulation (1024, 1024) Grid
KMEANS Clustering 494020 data items

PF Model Estimation 50K particles
SGEMM BLAS Library (2k, 2k) matrices x100

Table 5.3: Description of the benchmarks.

for the compiler optimization. We enlarge the provided data sets and use them for evaluations.

In the developed hybrid applications, we use the existing parallel codes of rodinia benchmark

suite and BLAS library. The parallel codes use OpenMP and SIMD instructions for CPU side

computations and they use CUDA for GPU side computations. In the hybrid SGEMM imple-

mentation, we use Intel MKL for the CPU side computation and NVIDIA CUBLAS for the GPU

side computation. In the hybrid executions, the data elements are transferred only when they are

really necessary on the GPU at the given task mapping. In the experiment, we assume that we

can change the percentages of CPU and GPU tasks with a step of 10%.

5.3.1 Model Verification

In Figure 5.6 and Figure 5.7, we plot the errors in the execution time model and those in the

power model. In the figures, the GPU frequency is fixed at 614MHz. The x-axis denotes the

percentage of GPU tasks (racc). We show the result of the percentage of GPU tasks from 50%

to 100% because the optimal percentages of GPU tasks are in this range for all the evaluated

applications. The y-axis denotes the CPU frequency (fcpu). The z-axis denotes the errors in the

proposed model. The execution time is normalized to the execution time of the execution only

with the GPU at the highest frequency.
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Application Ave. Time(%) Ave. Power(W)
BFS 9.18 4.95

HOTSPOT 5.97 3.65
KMEANS 10.41 5.10

PF 14.07 3.49
SGEMM 10.67 1.49

Table 5.4: Average Errors of the Model (the percentage of GPU tasks: 50% - 90%).

We can see that the predicted values are closely fitted to the actual measurement. The average

errors for 50%-90% GPU tasks are shown in Table 5.4. The average error of the execution time

is up to 14%. The average errors of the maximum power consumption are up to 5.1 Watt.

5.3.2 Performance Under the Power Constraint

Figure 5.8 shows the normalized performance with the proposed power capping techniques. The

x-axis denotes the power constraint. The y-axis denotes the performance normalized to the per-

formance of the execution with ideal settings of DVFS and task mapping under the given power

constraint. We compare power capping techniques with fixed task mappings to the proposed

one. They are: cpu-dvfs, the percentage of GPU tasks is fixed at 0%, gpu-dvfs, the percentage of

GPU tasks is fixed at 100%, dvfs, the percentage of GPU tasks is fixed at the optimal percentage

without power constraint.

In the region with strict power constraint (200W-240W), the CPU and the GPU must run

with lower frequency levels. Because the range of frequency scaling in the CPU is larger than

that of the GPU, the performance degradation caused by DVFS tends to be larger in the CPU.

This causes load imbalance between the CPU and the GPU in dvfs, which directly results in

large performance degradation. On the other hand, the performance of gpu-dvfs is relatively

constant throughout the various power constraints. However, gpu-dvfs cannot achieve the optimal

performance in any cases. Plus, gpu-dvfs fails to run under the most strict power constraint

(200W) in BFS, HOTSPOT and PF.

With the proposed technique, we can migrate parallel tasks between the CPU and the GPU

with considering the DVFS effects on the performance of the CPU and the GPU. Thus, we can
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Figure 5.6: Errors in the estimated execution time: GPU 614MHz.
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Figure 5.7: Errors in the estimated power (watt): GPU 614MHz.
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eliminate inefficient execution caused by load imbalance. On average across five applications,

the proposed power capping technique achieves more than 97% of performance compared to the

ideal performance under all the power constraint. Comparing it to other techniques, it achieves

14.4% higher performance than that of dvfs at 200W and it achieves 13.0% higher performance

than that of gpu-dvfs at 280W.

5.3.3 Sensitivity on Different Input Data

Since the proposed models use the normalized execution times to select the device frequencies

and the percentage of CPU and GPU tasks, we can use the same profiles for the execution with

data whose size is different. It’s worth investigating the sensitivity of the proposed technique on

the change in input data size, as the actual input data size is not always the same to that used in

the profile runs. In Figure 5.9 and Figure 5.10, we apply the profile information of the input data

listed in Table 5.3 for the executions with 2 times larger data (Figure 5.9) and with 4 times larger

data (Figure 5.10).

Although we can see small performance degradation for the data 4 times larger than profiled,

the proposed technique works well in most cases. This result demonstrates that the proposed

technique can be used even in the situation where the input data sizes are not exactly the same to

the sizes of profiled data.

However, in some cases, the proposed technique fails to meet the given power budgets.

The cases are in HOSTSPOT under 200, 220, and 240 watts and in SGEMM under 200 watts.

The selected parameters by the proposed technique in these cases are (fcpu=1.2GHz, fgpu=614,

rgpu=90%) for HOTSPOT under 200 watts, (fcpu=1.2GHz, fgpu=666, rgpu=100%) for HOTSPOT

under 220 watts, (fcpu=1.2GHz, fgpu=758, rgpu=100%) for HOTSPOT under 240 watts, and

(fcpu=1.2GHz, fgpu=705, rgpu=100%) for SGEMM under 200 watts. On the other hand, the ideal

parameters are (fcpu=1.6GHz, fgpu=705, rgpu=80%) for HOTSPOT under 200 watts, (fcpu=1.2GHz,

fgpu=614, rgpu=100%) for HOTSPOT under 220 watts, (fcpu=1.4GHz, fgpu=705, rgpu=100%) for

HOTSPOT under 240 watts, and (fcpu=1.2GHz, fgpu=666, rgpu=100%) for SGEMM under 200

watts. In short, in these problematic cases except for HOTSPOT under 200 watts, the proposed



5.3. EVALUATION 69

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  220  240  260  280

P
er

fo
rm

an
ce

cpu-dvfs gpu-dvfs dvfs proposal

(a) BFS

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  220  240  260  280

P
e
rf

o
rm

a
n

c
e

(b) HOTSPOT

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  220  240  260  280

P
e
rf

o
rm

a
n

c
e

(c) KMEANS

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  220  240  260  280

P
e
rf

o
rm

a
n

c
e

(d) PF

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  220  240  260  280

P
e
rf

o
rm

a
n

c
e

Power Constraint (W)

(e) SGEMM

Figure 5.8: Performance under the power constraint. Normalized to the ideal performance for
each power constraint.
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technique select higher GPU frequencies than the ideal GPU frequencies. The proposed system

includes a reactive DVFS controller only on CPUs but does not include a reactive DVFS con-

troller on GPUs. Hence, it could not lower the GPU frequencies to meet the budget when the

power violations are detected by the power meter. This problem seems to be easily fixed by

adding a reactive DVFS controller on GPUs. Also, the case in HOTSPOT under 200 watts is an

exceptional case in which we have to migrate tasks from GPUs to CPUs to lower the utilization

of GPUs to meet the power budget. This means that, in this case, we have to intentionally cause

load imbalance between the CPU and the GPU to lower the power consumption. Hence, adding

a reactive DVFS controller on GPUs cannot be the solution in such case. However, such case is

rare.

On the other hand, the reason why the proposed technique select the higher GPU frequencies

in the problematic cases is that the power models underestimate the power of GPUs with larger

data. It seems that the power consumption of the GPU gets larger with the large data. Cur-

rently, the proposed models do not include any mechanism to consider such effects of different

input data. To predict the power consumption across different data, several previous researches

have tried to predict the performance and the power consumption of GPUs when the input data

changes [33, 54]. In the previous researches, they use training input data and machine learning

algorithms to precisely predict the performance and the power for unknown input data. We may

improve the precision of the proposed models by utilizing these prediction techniques.

5.3.4 Optimizing for Energy-Efficiency

The proposed models can be used not only to maximize the performance under the power budget

but also to explore the parameter set which achieves the highest energy-efficiency. Here, we use

performance per watt as the metric for evaluating the energy-efficiency.

Figure 5.11 shows the performance per watt with the parameters selected by using the pro-

posed models. The baseline in Figure 5.11 is the performance per watt when we choose the

parameter sets which can achieve the highest performance (MaxPerf). We also show the perfor-

mance per watt with the ideal parameter sets (Ideal). We can see that the proposed models can
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Figure 5.9: Performance with data 2 times larger than profiled. Normalized to the ideal perfor-
mance for each power constraint.
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Figure 5.10: Performance for the data 4 times larger than profiled. Normalized to the ideal
performance for each power constraint.
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Figure 5.11: Normalized energy-efficiency.

successfully improve the energy efficiency of the computing node.

Also, we show the selected parameter sets in Table 5.5. In HOTSPOT, KMEANS, SGEMM,

100% GPU executions result in the most energy efficient execution. On the other hand, in BFS,

PF, it is not the case because the GPU speedup ratios in these applications are not as high as the

previous three applications. Comparing the parameter settings of the MaxPerf and the settings of

the Proposal, a certain amount of tasks are migrated from the CPU to the GPU in Proposal and

it results in the higher energy efficiency.
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Application CPU Freq GPU Freq GPU Task Ratio
BFS(maxperf) 320 758 60
BFS(proposal) 120 705 90

BFS(ideal) 180 758 80
HOTSPOT(maxperf) 280 758 90
HOTSPOT(proposal) 200 705 90

HOTSPOT(ideal) 120 758 100
KMEANS(maxperf) 300 758 80
KMEANS(proposal) 140 705 90

KMEANS(ideal) 120 705 100
PF(maxperf) 320 758 70
PF(proposal) 200 758 80

PF(ideal) 200 758 80
SGEMM(maxperf) 320 758 80
SGEMM(proposal) 160 758 90

SGEMM(ideal) 120 705 100

Table 5.5: Selected parameters in the parameter exploration for the highest energy-efficiency.



Chapter 6

Discussion

Here, we summarize the three techniques proposed in Chapter 3– 5 and discuss cross cutting

issues and their extensibility.

Multi-Device OpenACC Compiler The compiler runs an OpenACC program among mul-

tiple GPUs. It reduces the programming complexity in utilizing multiple GPUs while it can

provide comparable performance to the low level programming environment, such as CUDA.

The compiler system includes the novel memory manager to handle inter-GPU communications

efficiently. In addition to proposing the basic design, we propose a small set of new directives as

extensions to the OpenACC API. They allow programmers to express detailed memory access

patterns in parallel loops. The information given by the directives enables the system to optimize

the data movement among distributed GPU memories. With the proposed compiler, numbers of

code lines to utilize multiple GPUs are significantly reduced. Experiments on a machine with 2

GPUs show that the proposed compiler reduce 68% of the code size in utilizing 2 GPUs while it

also achieves 71% of the performance compared to hand-written CUDA programs

Compiler Based Sleep Control in CPU Functional Units We propose a compiler based sleep

control technique in order to maximize the leakage reduction of runtime PG in CPU functional

units. In CPU functional units, conventional time based sleep control techniques fail to effec-

tively reduce the leakage power consumption because lengths of the idle periods in CPU func-

tional units are too short. To this end, we develop a static analysis technique to predict lengths

75
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of such short idle periods with cycle level accuracy. With the static analysis, the compiler in-

serts additional sleep control information into the executable codes and this information controls

the sleep in CPU functional units. The simulation result shows that the proposed technique can

reduce 23.6% of the leakage reduction compared to the time-based sleep control.

Cooperative DVFS and Heterogeneous Task Mapping The proposed technique maximize

the performance of CPU-accelerator hybrid applications under a given power budget through

coordinating DVFS and the heterogeneous task mapping. To do so, it is necessary to precisely

predict changes in both performance and power when the device frequencies and task mapping

are different. We proposed empirical models of performance and power to solve the problem.

With a small number of profiles, the models enable us to select the optimal set of parameters.

The experimental result shows that the proposed technique achieves up to 14.4% higher perfor-

mance compared to other power capping techniques where the task mapping is fixed. Also, the

performance achieved by the proposed technique is almost the same as the ideal performance

under the given power budget.

6.1 Combination of the Proposed Techniques

As we mentioned in Chapter 1, the proposed techniques can be orthogonally applied to hetero-

geneous systems. Here, we discuss the reason.

In the compiler based sleep control technique, proposed in Chapter 3, all the details are

hidden in the compiler back-end and in the hardware mechanism. The other two techniques

are relatively high level optimization techniques when we compared them to the sleep control

technique. They can use the low level functionality without any modification. In this case, it is

necessary to use the proposed processor and the compiler when we take profile information in

the techniques proposed in Chapter 5. Then, the power model can take the effects of the sleep

control technique into account.

Also, the OpenACC compiler, proposed in Chapter 3, can be easily modified to use the tech-

nique proposed in Chapter 5 because the design of software distributed shared memory can be
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applicable to machines with multiple OpenCL devices. Such integration of the two techniques

can be done by modifying the translator to generate OpenCL programs instead of CUDA pro-

grams. OpenCL programs can be run either on CPUs and GPUs or other accelerators. Therefore,

the generated programs can be run on CPUs and accelerators in parallel. Then, at the task map-

ping step in the OpenACC compiler, we can use the empirical models in Chapter 5 to determine

the optimal task mapping and device frequencies. In this case, one remaining problem is that we

have to extend the empirical models to the systems equipped with multiple CPUs and multiple

GPUs. Our future work includes extending and evaluating the performance and power models in

the system with multiple CPUs and GPUs.

6.2 Extension to Other Heterogeneous Systems

Heterogeneous systems with accelerators are getting more and more popular and various kinds

of such systems are emerging. Several examples are explained in Chapter 2. In this section, we

discuss the extensibility of the proposed techniques to other heterogeneous systems, especially

the extensibility of the techniques described in Chapter 3 and Chapter 5. In particular, we ex-

amine two directions to extend the proposed techniques. One direction is to extend them for

different types of accelerators other than NVIDIA GPUs. The other direction is to extend them

for a computing cluster, which consists of multiple computing nodes.

Many Core Processor and Other Accelerators Using accelerators is getting more and more

popular. Now various types of accelerators are becoming available. The internal processor ar-

chitecture of these accelerators are different because each accelerator has its target application

domain and its usage scenario. However, from the software perspective, the execution model of

these accelerators are very similar :i.e. main control program runs on host CPUs and the parallel

tasks are offloaded to accelerators.

Hence, the industry have specified OpenCL as a standard programming APIs for acceler-

ators [4]. Now many vendors support OpenCL in their accelerator devices because OpenCL

enables programmers to port their applications easily between other types of accelerators. Such
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kind of accelerators includes most of the practical accelerators, Intel Xeon Phi many core proces-

sors, FPGAs, and the GPUs from vendors other than NVIDIA :e.g. AMD and ARM. Assuming

that the accelerators supports OpenCL, the proposed techniques are extensible to the system

with the accelerators. The OpenACC compiler proposed in Chapter 3 can be modified to gen-

erate OpenCL programs instead of CUDA programs. Meanwhile, the cooperative DVFS and

heterogeneous task mapping technique proposed in Chapter 5 can be also implemented by using

OpenCL API.

In terms of the effectiveness, the communication mechanism used in the multi-accelerator

OpenACC compiler is considered to be also effective in systems with accelerators other than

NVIDIA GPUs. This is because most of the accelerators have dedicated local memories and they

are connected to host CPUs on PCI express bus like NVIDIA GPUs. Hence, the communication

optimizations used in the OpenACC compiler are also effective in these platforms. Also, the

cooperative DVFS and task mapping technique makes use of profile information of the installed

accelerators. It can take characteristic of the accelerator into account. Thus, the technique is

considered to be also effective to the system with accelerators other than the GPU evaluated in

Chapter 5.

GPU Cluster As explained in Chapter 2, it is common that large scale computing system

consists of a lot of computing nodes equipped with GPUs and single application uses multiple

computing nodes. It is not obvious how to use the techniques in Chapter 3 and Chapter 5 to the

applications running across multiple GPU computing nodes.

In the simplest way, the multi-device OpenACC compiler can be combined with MPI. In this

case, programmers use the proposed compiler to make use of multiple GPUs inside the node and

use MPI to make use of multiple nodes. The situation is similar to hybrid parallel implementation

where programmers use both OpenMP and MPI. Such OpenACC plus MPI style programming

have already been investigated in previous work [38]. Meanwhile, it is worth investigating the

possibility of extending the proposed compiler to make use of multiple accelerators across mul-

tiple nodes. Previous work has proposed a directive based compiler which can make use of
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multiple GPUs across multiple nodes, though the compiler do not have a GPU kernel code gen-

erator and programmers still have to write parallel GPU kernels by hand [16]. It may be possible

to extend our compiler system for multiple nodes with the previous technique. This is our future

work.

Next, we want to consider how to extend the power capping techniques proposed in Chapter 5

for multiple computing nodes. One easy way to do so is to give a different power budget for each

computing node with the proposed technique according to the amount of tasks in the node. In

this scheme, busy nodes get assigned more power budget while other nodes which are not busy

receive less power budget. Such kind of power management is called power shifting [37] and

is said to be effective to improve the energy-efficiency of the computing center. However, the

power shifting strategy miss the chance to further optimize the energy-efficiency by re-mapping

the parallel tasks across multiple nodes. It is also our future work to orchestrate inter-node task

mapping and DVFS settings in these computing nodes.
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Chapter 7

Related Work

7.1 GPU Programming Environment

Previous studies evaluate various aspects of the current OpenACC compilers [38] [48] [58].

Wienke et al. [58] evaluate and compare the performance of the realistic GPU applications written

in OpenACC and OpenCL. They reported that OpenACC can achieve good performance gains

with modest programming cost compared to OpenCL. Levesque et al. [38] investigate the hybrid

implementation with MPI and OpenACC in the GPU cluster system. They use OpenACC for the

intra-node application development and use MPI to make use of the multiple nodes in the clus-

ters. The result shows that OpenACC can successfully replace the OpenMP and achieve higher

performance. In addition to these case studies, Reyes et al. [48] have developed an open source

OpenACC compiler. They have illustrated basic design to implement an OpenACC compiler

system. Lee et al. [35] compared the current OpenACC compiler to the previous directive based

GPU compilers in performance, functionality, and programmability. They listed limitations in

the current directive based GPU compilers. The scalability issues in multiple GPU environments

is one of the limitations which are listed by them.

Kim et al. [31] have developed the OpenCL system which can make use of multiple GPUs

from single GPU OpenCL programs. The concept is similar to ours. That is to build an single

GPU memory abstraction on top of the multiple GPUs. We integrate the concept with an Ope-

nACC compiler and propose a small set of directives to enhance communication optimizations.
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The integration is essential because we can design compiler and runtime system in a holistic way

in order to make use of the application characteristics.

Tipparaju et al. [55] have developed Global Array on multiple GPU environment. Global

Array is based on the GAS programming model and it can provide an abstraction of single

memory space on top of the distributed memory machine. However, they do not integrate it with

directive-based GPU compilers. Thus, they fail to provide advanced communication optimization

among CPU and GPUs memories. Several researches proposed programming interface based

on data-flow programming model for multiple GPU environments [8, 16]. OmpSs has been

presented as a directive based programing model to execute single GPU CUDA programs on

GPU clusters [16]. OmpSs provides directives to express data dependency between parallel

tasks. The directives allow programmers to express the detailed memory access pattern, so they

are similar to the localaccess directives proposed in this paper. However, the OmpSs system does

not include compilers to generate programs running on the GPUs. Hence the programmers must

manually write the CUDA codes and divide the applications into parallel tasks. Also, their inter-

GPU memory manager relies on inefficient software cache mechanisms. StarPU [8] provides

another high level programming interface for the multi-GPU environments. In the programming

model, programs must be rewritten with a data-flow based API, so we cannot incrementally port

the existing programs to the multi-GPU environments.

A lot of researchers have proposed compilers or runtime systems to schedule data paral-

lel tasks among CPUs and GPUs in order to maximize the performance of GPGPU applica-

tions [19, 21, 39, 46, 50]. Luk et al. [39] have proposed a dynamic compiler for CPU-GPU

heterogeneous systems. The compiler maps parallel tasks among CPUs and GPUs based on an

empirical performance model. Scogland et al. [50] have integrated heterogeneous task schedul-

ing into OpenMP compilers with accelerator extensions. Grewe et al. [21] have proposed a static

technique based on machine learning in order to determine the optimal percentages of CPU and

GPU tasks. On the other hand, several domain specific platforms for GPUs adopt the capabil-

ity to schedule parallel tasks among CPUs and GPUs [19, 46]. Since these techniques do not

consider power consumption of CPU-GPU hybrid executions, we cannot directly apply these
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techniques to systems under power budgets.

7.2 Runtime Power Gating

In prior works for overcoming the leakage power problem in processors, leakage power reduction

techniques in cache structures are investigated[30][18]. In addition to leakage power reduction

in cache structures, researchers aim to apply runtime PG to functional units in CPUs [25] and

in GPUs [6]. In these researches, they uses timeout based sleep control techniques to avoid

excessive sleep-wakeup mode transitions. Also, some researchers have proposed compiler based

sleep control techniques [47, 60, 49]. But the accuracy of these analysis is not good enough to

reduce leakage power consumption in short idle periods whose lengths are in the same order to

BET.

These previous works target the leakage power consumed in relatively coarse grain idle peri-

ods originated in application phase in which the target functional units are rarely used. Based on

these prior sleep control techniques in functional units, recent research also investigates various

aspects of dynamic power gating in functional units. Kannan et al. [29] propose a sleep control

technique to adapt the leakage power fluctuation caused by the process variation and temperature

variation. Prior to our work, Lungu et al [40] point out that fine grain idle periods can cause the

leakage power increase in the existing sleep control techniques and propose a guard mechanism

to prevent such a power increase. While Lungu et al. treat fine grain idle periods as bad behavior

of running applications, we treat the fine grain idle periods as the chance for reducing the leakage

power in functional units. We propose software-hardware hybrid sleep control techniques which

can effectively reduce the leakage power consumed in fine grain idle periods, which can not be

captured by the existing techniques.

7.3 Power Capping

Power capping techniques have been proposed for various layers of computing systems [17, 37].

Fan et al [17] evaluates the effectiveness of cluster level power capping with commercial work-
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loads in data centers. David [15] have proposed a power capping technique for memory modules,

and Kai et al [41] have proposed a power capping technique for many-core CPUs running mixed

groups of multi-threaded applications. However, no previous work has investigated a power

capping for CPU-GPU heterogeneous systems.

GreenGPU [42] is a system which is related to the proposed technique in Chapter 5. The

system can apply both DVFS and task mapping between CPUs and GPUs in order to maximize

the energy-efficiency. However, they use DVFS and task mapping individually, so their method

cannot set optimal parameters of DVFS and task mapping. Plus, their technique cannot be used

as a power capping technique because they do not provide any mechanism to keep a power

constraint.



Chapter 8

Conclusion

Energy-efficiency has become one of the most important metric in recent computing systems. To

this end, heterogeneous systems with GPUs are promising platforms because they have higher

peak performance and energy-efficiency than those of conventional homogeneous systems.

However, achieving high energy efficiency in practical situations is not easy because the

energy efficiency of the heterogeneous systems highly depends on the optimizations used in the

softwares running on them. The hardware architecture of the CPU-GPU heterogeneous systems

are very different from conventional systems only with CPUs and we have to reconsider the

optimization techniques in compilers and runtime software to get maximum benefit from the

heterogeneous system architecture.

To attack these problems, in this dissertation, we proposed three new compiler and runtime

optimization techniques. One is for improving the programmability of the GPU platform, and

the other two are for reducing dynamic and static power consumption of the system.

First, to improve the programmability of GPU platforms, we present an OpenACC com-

piler system with the capability to execute single GPU OpenACC programs on multiple GPUs.

By orchestrating the compiler and the runtime system, we could build an efficient multi-GPU

directive-based compiler on top of the current platforms. In order to enable the advanced com-

munication optimizations in the proposed system, we also propose a small set of directives as

an extension to the current OpenACC standards. The directives allow programmers to express

the memory access patterns in the parallel loops with a few lines of additional codes. We im-
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plemented and evaluated the prototype system. The compiler successfully reduces most of the

programming complexity in the multi-GPU programming by automating the data management

among multiple GPU memories. And the performance of the compiler is comparable to the hand

optimized CUDA programs, in which we have spent much more time to optimize the programs

for the GPU architecture.

Second, to reduce static power wasted in CPUs, we propose a sleep control technique to

reduce leakage power consumed in CPU functional units during its execution. To maximize

the effect of the runtime power gating, it is necessary to predict the length of each fine grain

idle period accurately because excessive sleep/wakeup mode transitions must be avoided to sup-

press the energy overhead caused by power gating. We propose a compiler technique to analyze

program codes and predict the length of the idle periods with cycle-level accuracy. Simulation

results show that, the proposed technique can achieve higher leakage power reduction, 23.6% on

average, than the conventional time-based sleep control.

Finally, to reduce and manage dynamic power consumption, we propose an efficient power

capping technique for heterogeneous systems. In the proposed technique, the frequency of the

CPU, the frequency of the accelerator, and the task mapping between the CPU and the accelerator

are cooperatively determined in order to avoid both the power violation and the load imbalance

between the CPU and the GPU. To guide the parameter settings, we build empirical models to

predict the execution time and the power consumption of a heterogeneous system. The experi-

mental result shows that the proposed power capping technique can achieve up to 14.4% higher

performance compared to conventional power capping techniques. This is close to the perfor-

mance with the ideal parameter settings.
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