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Abstract

Supergravity is a well-motivated theory beyond the standard model of particle physics,
and a suitable arena to study high-energy physics at the early universe including inflation,
whose observational evidences are growing more and more. Inflation in supergravity, how-
ever, can not be trivially described because of restrictions from supersymmetry. The scalar
potential has an exponential factor and a large negative term whereas a flat and positive
potential is needed to realize inflation. The standard method to obtain a suitable infla-
tionary scalar potential requires an additional superfield to the one containing inflaton. In
this thesis, we propose and develop an alternative method which does not require the ad-
ditional superfield and thus reduces the necessary degrees of freedom by half. That is, we
study inflation in supergravity with only a single chiral superfield which contains inflaton.
We accomplish it by introducing a higher dimensional term in the inflaton Kéahler potential,
which plays an important dual role: fixing the value of the scalar superpartner of the inflaton
resulting in effective single field models, and ensuring the positivity of the inflaton potential
at the large field region. Our proposal is not just particular models but rather a new frame-
work to realize various inflationary models in supergravity. In particular, large field inflation
in supergravity using one superfield without tuning has become possible for the first time.
In our generic models, supersymmetry breaking at the inflationary scale by inflaton is not
completely restored after inflation, so null results for supersymmetry search at the LHC are
predicted for the simplest cases. Remarkably, however, it is possible with tuning to embed
arbitrary positive semidefinite scalar potentials into supergravity preserving supersymmetry
at the vacuum. Our discovery opens up an entirely new branch of model building of inflation
in supergravity.
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Chapter 1

Introduction

“What are the fundamental laws of Nature?” “What happened at the beginning of the
universe?” These deep and fundamental questions have been fascinating people since the
ancient time. Scientifically, these questions are addressed in particle physics and cosmol-
ogy. The aim of particle physics or high energy physics is to understand the fundamental
ingredients of the world — particles, strings, or some unknown elements — and interactions
among them as well as to understand the stage these actors play — spacetime. The aim of
cosmology is to understand the history and destiny of the universe. Going back in time, the
expansion of our universe implies that it began with an extremely hot and dense state, the
so-called Big-Bang cosmology. At very early stage of the universe, everything is decomposed
into elementary particles due to high energy interactions. This is the point where particle
physics and cosmology meet. We try to describe the universe in a way motivated by particle
physics.

As of 21st century, our understanding of elementary particle physics is summarized as
the standard model of particle physics. It is based on quantum field theory (QFT) with
the gauge group SU(3). x SU(2), x U(1)y. The recently discovered Higgs boson, the final
piece of the Standard Model, plays a crucial role in the spontaneous symmetry breaking
of the group into SU(3), x U(1)gm, and gives masses to quarks and leptons in the gauge
invariant manner. As for gravity, it is usually neglected in low-energy description of particle
physics because of its tiny interaction strength at low-energy. But it becomes important
in the cosmological context. The standard gravitational theory is General Relativity, the
theory of gravity as distortion of spacetime. These theories succeed to explain almost all
experiments and observations except for a few anomalies of minor significance, e.g. mismatch
of theoretical and experimental values of the muon anomalous magnetic moment. At least
as low-energy effective theories, viability of these theories are intact. It is remarkable that
although the Higgs sector is not as restrictive as the gauge sector, the Higgs observables are
consistent with the minimal standard model at the level of the current experimental results
obtained at the LHC.

On the other hand, the concordance cosmological model is called ACDM model with A
and CDM referring to the cosmological constant (dark energy) and cold dark matter respec-
tively. From recent precision observational cosmology [1, 2, 3], we have been establishing
this concordance model with the initial condition supposedly realized by cosmological infla-
tion [4, 5, 6]. Inflation solves the horizon, flatness, and monopole problems of the “standard”
Big-Bang model. (It should be safe nowadays to say that the standard cosmology is now
inflationary one.) Moreover, it generates the seeds of densify fluctuation which eventually



grows to the Large Scale Structure of the universe. In the vanilla inflationary model, the
potential energy of a scalar field, inflaton, drives exponential expansion of the universe. The
old models of inflation [5, 6] utilize the energy of false vacuum, and it ends with phase tran-
sition. But it does not lead to a graceful exit and the phase transition to the true vacuum
does not efficiently happen. The new models of inflation [7, 8] and subsequent models are
based on the inflaton slowly rolling down its potential. They are called slow-roll inflation. Its
Gaussian and almost scale invariant quantum fluctuation is the source of the primordial den-
sity perturbation. The inflationary ACDM cosmology is consistent with precise observations
such as Planck [2, 3].

Although agreement of these theories with experiments and observations are spectacular,
they are phenomenological. In particular, we do not know the nature of dark matter and
dark energy despite the fact that it dominates the current energy density of the universe.
We do not know the nature of inflaton neither. We want to understand them in a unified
framework with particle physics. Dark matter, dark energy, and inflation as well as neutrino
oscillation suggests extension of the standard model of particle physics. In addition to these
motivations, the standard model of particle physics has its own reasons to be considered as
not the fundamental theory and to be extended. They are related to the theoretical prob-
lem of naturalness. First, quantum gravity is perturbatively non-renormalizable. Although
the standard model is a renormalizable gauge theory, the whole theory of the standard
model coupled to perturbative quantum gravity on fixed background is non-renormalizable.
Then, the theory is effective field theory, and we can easily understand the fact that we
can neglect higher dimensional operators in the standard model because they are irrelevant
in the renormalization sense. They are suppressed by some high scale such as the Planck
scale. However, we can not understand the magnitude of coefficients of some of relevant and
marginal operators: the cosmological constant problem [9], the (gauge) hierarchy problem
of Higgs self-energy [10, 11, 12], and the strong CP problem [13].

One of the resolution to the hierarchy problems is supersymmetry (SUSY) [14, 15]. Itis a
fermionic symmetry which extends the Poincaré symmetry of spacetime leading to a concept
of superspace. When particle goes around a quantum loop in spacetime, its superpartner also
goes around in superspace. These contributions cancel not to produce large Higgs self-energy
and cosmological constant. Advantages of (low-energy) SUSY include the possibility of gauge
coupling unification implying the Grand Unified Theory (GUT) and presence of candidates
of dark matter as lightest supersymmetric particles (LSPs). If Nature is supersymmetric,
gravitational sector should be supersymmetric too. It is the gauged (local) version of SUSY,
and called supergravity (SUGRA) [16, 17] since it automatically includes gravity. It is worth
noting that SUSY is required to describe fermions in Superstring or M-Theory [18, 19, 20, 21],
a candidate of the Theory of Everything. Low energy landscape of Superstring Theory
includes supergravity.

The topic of this thesis is inflation in supergravity theories. In the context of inflation,
SUSY ensures absence of the potential hierarchy problem of inflaton self-energy and of the
Higgs in the standard model when they are coupled. Once adopting SUSY, it should be
upgraded to supergravity partly because inflaton traverse field range compatible with or
larger than the Planck scale in some models, and partly because inflation, expansion of
spacetime, is a phenomenon of gravitation, which is now part of supergravity. On the other
hand, effects of unknown UV effects presumably at the Planck scale can be neglected because
the energy scale of inflation is typically V/* ~ 10~25 M and smaller than the Planck scale.
Here, V' is the value of the scalar potential during inflation, and Mg is the reduced Planck
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mass (the subscript G denotes Gravitational). Since it is not far below the Planck scale, it
may be better to describe inflation in a fundamental theory like superstring. The advantage
of describing inflation in supergravity to such frameworks is that supergravity is better
understood and we are not restricted to specific known situations by our limited knowledge
of the UV theory.

Describing or even realizing inflation in supergravity is, however, highly non-trivial and
not easy [22]. The primary reason is because the scalar potential of supergravity involves
an exponential factor of fields. Without tuning or symmetrical reasons, any scalar field
receives the mass contribution of order the Hubble variable (the Hubble induced mass). It
defies the inflaton to slowly roll down its potential. Instead, it rapidly rolls down and settles
to the minimum of the potential in a few Hubble times. This is the so-called n problem
in supergravity [23, 22]. The details of these arguments will be presented in Section 2.
This difficulty made people to tune the Kéhler potential [24, 25] and the superpotential [26,
27, 28, 29], which defines a model in supergravity, to obtain a suitable scalar potential for
inflation. There are no legitimate reasons to justify their choices of intricate expressions.
These features are shared by various inflationary models including small field and large field
models, but the latter type is particularly difficult to be described in supergravity.

A true innovation was made in 2000 by Kawasaki, Yamaguchi, and Yanagida [30]. They
noticed a simple but important fact: a shift symmetry ensures that the exponential factor
does not depend on the inflaton. This means that the inflaton potential no longer has the
exponential dependence on the inflaton, and the n problem is naturally solved. Since an
exact shift symmetry means the exact flat scalar potential V' = (constant), we have to
softly break the shift symmetry after all. The shift symmetry in their model is broken by
the superpotential, and the scale of the superpotential is much smaller than the reduced
Planck scale. So the soft breaking of the shift symmetry is controlled by the small scale
of the inflaton superpotential. In this sense, the shift symmetry breaking is natural [31].
They successfully embedded the chaotic inflationary model with a quadratic potential into
supergravity. To do that, the shift symmetry is not enough, and they were led to introduce
another superfield in addition to the inflaton superfield. Without the additional superfield,
the inflaton potential becomes negative and even unbounded below. The instability is fixed
by introducing the additional superfield whose expectation value vanishes, so let us call it
the stabilizer superfield.

Ten years later, Kallosh and Linde generalized the method to more generic superpoten-
tials [32]. The superpotential is taken to be the product of the stabilizer superfield and
an arbitrary real-coefficient holomorphic function. It can be used to approximately embed
arbitrary inflationary models with positive semidefinite scalar potentials. The conditions
that other scalars than the inflaton are frozen at their origins and do not affect inflation are
obtained in their subsequent paper with Rube [33]. According to these works, it has become
much easier to describe inflation in supergravity.

An alternative framework for inflation utilizing vector or linear supermultiplet was pro-
posed by Farakos, Kehagias, and Riotto in the context of Starobinsky inflation in the new-
minimal formulation of supergravity [34]. The idea to use these supermultiplets was gener-
alized for generic supergravity models by Ferrara, Kallosh, Linde, and Porrati [35]. Their
theories are also capable of embedding approximately arbitrary positive semidefinite scalar
potentials. In this approach, the inflaton is the scalar component of a massive vector or
massive linear supermultiplet. Prior to gauge fixing, the theory contains a chiral or linear
superfield containing the inflaton and a real superfield containing a vector field. Thus, two



superfields are introduced also in this framework. In fact, the bosonic part of the resultant
Lagrangian contains a massive vector or two-form tensor in addition to a real scalar inflaton
as well as gravity. An advantage of this approach is there is no other scalar in the inflaton
sector, and we need not to worry about instability of the scalar potential in directions of
other scalar fields.

All of the above models or frameworks introduce an additional superfield other than the
inflaton superfield. It is not inconsistent at all to use two superfields to describe inflation in
supergravity by itself, but it is not favorable from the perspective of minimality. We would
like to ask the following questions. “Are these frameworks the simplest ways of realizing
inflation in supergravity?” “Are they the only methods to embed arbitrary positive scalar
potentials into supergravity?” “Are there any other simple ways of describing inflation in
supergravity?” Since the vector or tensor supermultiplet plays an essential role in the second
approach [34, 35], we focus on the first approach [30, 32, 33] based solely on chiral superfields.
More concretely, our aim is to examine the possibility of removing the stabilizer superfield.

However, this naively looks impossible. Actually, the authors of the pioneering work [30]
found that inflaton potential becomes unbounded below in the large field region once we
impose the shift symmetry. That is why they introduced the stabilizer superfield. Because
the shift symmetry is crucial for the flatness of the inflaton potential, we also impose it on
the theory. For this setup with a single chiral superfield and a shift symmetry, it was widely
believed that large field inflation does not occur. We show some of them in quotation.

“Large field sgoldstino inflation does not work, at least not for potentials that
grow at most polynomial.” [30]

“We conclude that large field sgoldstino inflation in a sugra model does not work
as ti is plagued by an instability in the scalar potential.” [306]

“We note that it is certainly not impossible to have large field inflation in sugra,
only that it does not work with a single chiral superfield.” [36]

See also Section 2 of Ref. [37] for the discussion against large filed or chaotic inflation with
a single superfield setup.

We have found in Refs. [38, 39] that it is actually possible to removing the stabilizer
superfield in realizing large field inflation in supergravity. The previous claims and arguments
against this possibility shows how our new findings are groundbreaking and revolutionary.
Our proposal is a framework for inflation in supergravity rather than some specific models.
The framework uses only a single chiral superfield which contains the inflaton, aside from
the supergravity chiral supermultiplet consisting of graviton, gravitino, and auxiliary fields.
Regarding the inflaton sector, we have reduced the necessary number of degrees of freedom
by half of the above standard frameworks [32, 33, 35] from two superfields to one superfield.

Moreover, we proposed a class of single superfield models in supergravity that can accom-
modate almost arbitrary positive semidefinite scalar potentials [39]. Thus, our theory is as
powerful as other frameworks [32, 33, 35] in spite of the fact that the former has only the half
degrees of freedom of the latter. Our discoveries open up novel possibilities of embedding
vast kinds of inflationary models in supergravity with a single chiral superfield.

The purpose of this thesis is to extensively study various aspects of the proposed mech-
anism of inflation in supergravity with a single chiral superfield, and establish its viability.
Instead of introducing the stabilizer superfield, we introduce a higher dimensional operator in
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the Kahler potential. This is the key ingredient in our method and we extensively study the
effects of the stabilization term. Other topics in the thesis include modification of the Kahler
potential, coupling to other fields in the theory, and their effects on inflationary dynamics.

The organization of the thesis is as follows. In Chapter 2, we review inflation in super-
gravity. In Chapter 3, we present our new, simple, and powerful framework for inflation in
supergravity without the need of the stabilizer superfield. We introduce a higher order term
(stabilization term) in the Kéahler potential instead of the stabilizer superfield. Its effect is
extensively studied both analytically and numerically. To address a naturalness or tuning
issue, we study effects of other terms in the Kéahler potential. At the end of the Chapter, we
generalize the method to charged superfields, thereby embed Higgs inflation into minimal
supersymmetric standard model (MSSM) for the first time. The summary, discussion, and
conclusions are presented in Chapter 4. We give mini reviews on supergravity and inflation
in Appendices A and B respectively.

We take the reduced Planck unit where ¢ = A = Mg = 1 where Mg = Mp,/ V81 =
1/v/8nG is the reduced Planck mass. When we clarify or emphasize dimensionality, we
indicates the reduced Planck mass. The complex conjugate or Hermitian adjoint of a quantity
A is denoted by A. The base notation and convention are those of Ref. [40]. For example,
the sign convention of the spacetime metric is (—, +,+,+). The sign of the coefficient of
the Einstein-Hilbert action of General Relativity is negative. For superconformal discussion,
we follow Ref. [41] with interpreted normalization augmented. Appendix A is not tailored
for self-consistent detailed introduction for supergravity. It is an overview and summary
of various formulations of supergravity, and help readers compare different formulations
appearing in the thesis. It may serve as a conceptual introduction for beginners and a concise
summary for professionals. For reviews of supergravity, see e.g. Refs. [40, 42, 43, 44, 41].
Similarly, Appendix B is to provide minimal requisite knowledge for inflation to read the
thesis. There are many books or reviews on inflation. See e.g. Refs. [45, 46, 47, 48, 49] and
references therein. The Planck papers [50, 3] are also helpful.



Chapter 2

Review of Inflation in Supergravity

In this Chapter, we review inflation in supergravity. There is already a review of inflation
in sueprgravity by Yamaguchi [22]. In the review, emphases are put on various inflation-
ary models such as new, chaotic, hybrid, topological, and Higgs inflation models based on
supergravity. In contrast, we are interested more in general embedding mechanism itself of
scalar potential into supergravity and some special classes of models with theoretical inter-
ests. Also we discuss known results for inflation with a single chiral superfield (the so-called
sGoldstino inflation), which is to be extended in the next Chapter. For complimentary in-
formation on inflation in non-SUSY, supergravity, or superstring frameworks, see also some
recent articles [51, 52, 53, 54, 55] and references therein.

First we see non-trivial points in trying to embed inflationary models, especially large-
field inflationary models, in supergravity in Section 2.1. The main theme of this thesis is
the inflationary framework in supergravity with a single chiral superfield, in which inflaton
field coincides with sGoldstino field which breaks SUSY during inflation. We review ear-
lier works on such a framework, sGoldstino inflation, and its limitation in the original form
in Section 2.2. Then, we proceed to the standard approach based on a shift symmetry in
Section 2.3 where another superfield is introduced to stabilize the inflationary potential. In
Section 2.4, we review an alternative framework with a chiral supermultiplet and a vector
or tensor supermultiplet. Finally, in relation to minimalistic approaches in Section 2.2 and
in Chapter 3, we discuss other “minimal” directions to inflation in supergravity based on
purely (super)gravitational theories in Section 2.5.

2.1 Difficulties of inflation in supergravity

The kinetic terms of the scalar sector in the flat space limit of the four dimensional N/ = 1
supergravity is

Lign = —K;50,0'0"’ (2.1)
where a bar denotes complex conjugation, K;; = 0°K/ d¢'d¢’ is the Kahler metric, and K

is the Kahler potential.
The scalar potential is given by

. — 2
V=K (KﬂD,-WD;W 3 |W|2> + %H;;‘BDADB, (2.2)
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where W, HAB, D4, and g are the superpotential, the real part of the gauge kinetic function,

the Killing potential, and the gauge coupling constant, respectively. 7, j,... are field indices
while A, B, ... are gauge indices. The Kahler covariant derivative is defined as
DW =W + KW, (2.3)

where subscripts denote differentiation, e.g. W; = OW/d¢!. KJ* and H4P are the inverse
matrices of the Kahler metric and the real part of the gauge kinetic function, respectively.

For the time being, let us consider F-term inflationary models and ignore D-term. Taking
the simplest, minimal Kéhler potential,

K = 6;070, (2.4)
the exponential factor in the F-term scalar potential becomes
el = i 1P, (2.5)

Thus, the scalar potential in supergravity typically has an exponential factor of field variables,
and it is too steep in the large-field region |®| > 1 to have a flat potential suitable for
inflation. This obstacle is not limited to the large-field region. Writing the F-term potential
as V = efV, V ~ V ~ 3H? due to the Friedmann equation. Expanding the exponential
factor, mass terms of order the Hubble parameter are induced,

V=V+VIDP+- . (2.6)

This contributes to the second slow-roll parameter n = V" /V as g =1y + 1+ --- where 7
is the n parameter determined from the V' part. To make it small, n < 1, tuning is required
unless some symmetries control flatness. Supersymmetry does not help because it must be
broken during inflation to obtain positive vacuum energy. This is the so-called n-problem.
See e.g. Ref. [23].

2.1.1 Approaches to evade the problem

Because of this difficulty, tuning in the superpotential [26, 27, 28, 29] or particular choice
of the Kéhler potential [24, 25] were required in the early attempts for inflation in super-
gravity.! The model in Ref. [28] is the first chaotic inflation model in supergravity, which is
consistent with observation, and it was recently revisited and slightly generalized by one of

! For example, the superpotential in Ref. [28] is

W(®) = e~ %"/ tanh \/%(@ — @) sinh \/g(q) —F (2.7)
and the Kahler potentials studied in Refs. [24] and [25] are

K:gln(Z+Z+<I><I>)+(Z+Z+‘1>‘I>)2, (2.8)

and

K:~3m<z+2—3é¢+§@@f>_ﬁ@+§(@mi (2.9)
a a 2

respectively, where Z is a no-scale modulus. These complicated or particularly tailored forms imply how non-trivial
it is to obtain a suitable inflationary potential in the supergravity framework.
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the authors [56]. The authors of Refs. [24, 25] utilized logarithmic Kéhler potential to have
global SUSY-like potentials for the inflaton.? It was argued in Ref. [25] that to separate the
inflation scale from the low-energy SUSY breaking scale, the no-scale model [57, 58, 59] is
useful, but (without the stabilization term which is heavily used in this thesis,) the inflaton
Kéhler potential has to be generalized to a non-minimal form like eq. (2.9) to avoid the
run-away behavior of the Z field.

Contrary to tuning, arguments based on symmetries are favorable. Discrete R-symmetries
[60, 61, 62] and the Heisenberg symmetry [63] are useful to ensure flatness of the potential.
We briefly review the model with discrete R-symmetry in the next Section. A simple method
utilizing a shift symmetry was proposed in Ref. [30] and generalized in Refs. [32, 33], which
will be discussed in Section 2.3 in more detail.

With the help of moduli fields whose values are driven to a quasi-fixed point where the
inflaton mass term vanishes, a flat potential can be obtained without tuning, leading to
inflection point inflation [64].

The above problem originates from the exponential factor in the F-term scalar potential,
so it can be avoided by using D-term as the driving source of inflation. D-term inflation
was proposed in Refs. [65, 66] and revisited in Ref. [67]. The usual D-term inflation is
one of hybrid inflationary models with charged and neutral chiral superfields as well as
a real superfield utilizing the Fayet-Iliopoulos (FI) term. It is also analyzed recently in
the superconformal framework, named superconformal D-term inflation [68, 69]. Recently,
however, chaotic regime of D-term inflation in the hybrid-type model was discovered [70].
See also other simple D-term chaotic inflation models [71, 72, 73]. In this thesis, we are
mainly interested in F-term inflation because inflation with minimal number of degrees of
freedom is possible in the F-term case.

Before moving to the discussion on small field inflationary models with a single chiral
superfield, we briefly review a model with plural superfields, the SUSY hybrid inflation,
because it is a famous, important, natural and typical inflationary model in SUSY. The
hybrid inflation was proposed in Refs. [74, 75] and embedded in SUSY and supergravity in
Refs. [23, 76, 77, 78, 79]. This is an example of sGoldstino inflation, which is discussed in
the next Section. The superpotential of the SUSY hybrid inflation is simple,

W=3a (m\inil - ,ﬂ) , (2.12)

where @ is an inflaton, and ¥ and ¥ are complex conjugate representations of each other
with respect to some symmetry (such as GUT gauge symmetry). This form is ensured by an
R-symmetry under which & is charged and U7 is a singlet. The parameters can be taken to
be real without loss of generality. As we will see below, ® breaks SUSY during inflation, so
it is the sGoldstino during inflation.

2 For example, the kinetic term and the scalar potential following from eq. (2.8) is [24]

1692 —3 169 +3
Lign =—— 2 ((0un)* + (1)) + —L 219,92, (2.10)
321 8
2 2
_,3/8 n? 8n 2 (1677 *9) 2 211
Vi=nte (16772+3|W¢ tsaeE—g ") (2.11)

where n=Z + Z + ®®, and I, = i0,(Z — Z) +i(®9,P — ®9,®) is a U(1) current. At the minimum of the n = 3/4,
the |W|? term vanishes and the first term proportional to |[We|? remains. Thus, inflationary model building in global
SUSY can seamlessly transformed into the supergravity framework.
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For simplicity, we take a minimal Kahler potential. Possible higher order terms of the
inflaton allowed by the R-symmetry are powers of ®® in the Kéhler potential. Its quartic
term produces a mass contribution, and it must be suppressed anyway. The scalar potential
of the model is

V=l ol ((1 — |02 + |@]*) \

+ ‘F&\if + ¥ (Ii\if\if - pz)

2 92 = . - N2
>>+3(\yuqf—mtﬂ) , (2.13)

where t,4 is the generator of the gauge algebra with A its index and implicitly summed.
The essential feature is well described in the global SUSY version, in the decoupling limit
of gravity Mg — oo (with W fixed) or the small field limit |®|, |¥|, |¥| < Mg. The F-term
potential in the global SUSY is

v}g‘global) _ ‘

202 (192 + [BP2) (2.14)

The vacuum is located at ® = 0, |¥| = |¥| = u/+/k and supersymmetric. Here we have
taken the D-flat direction as |\if|2 = |¥|? as in the U(1) case for simplicity. When |®| is
larger than u/v/2k, it is energemcally favorable for ¥ and ¥ to vanish. The tree-level masses
of the particles along the line ¥ = ¥ = 0 at the global SUSY level are

ma =0, (2.15)

m?\iupi;)/\/ﬁ =K% P|? £ Ky’ (2.16)
Note the vanishing mass of the inflaton at the leading order. The potential is approximately a
constant, V = p*. This is a consequence of the R-symmetry, which forbids quadratic or cubic
terms as well as a constant in the superpotential. The lighter nonzero mass becomes negative
when the inflaton value becomes small. The critical value of the inflaton is |®.| = u/v/k.
As we will see shortly, the inflaton is driven to the smaller value by the quantum (and
SUGRA) corrected potential. The inflation ends with the phase transition of the waterfall

field (U + 0)/v2.
Setting U=0=0 (note that this actually kills the positive semidefinite SUSY breaking
terms in the full supergravity potential (2.13)), the full tree-level potential reduces to

Vlg_go =€ " (1— |0 + @)

=u (1 + §¢4 + O(ch)) : (2.17)

where we have identified the radial part ¢ of ® = ¢e//2 as the inflaton. We see that
quadratic terms has canceled each other in this potential, which preserves flatness obtained
at the rigid SUSY. We again emphasize that this is a consequence of the R-symmetry. We
also consider models with a discrete R-symmetry in the next Section. Note that the quartic
term has arisen due to the supergravity effects. The coefficients may change if we include the
quartic term (®®)? in the Kihler potential. On top of this tree-level potential, the one-loop
quantum correction, Coleman-Weinberg potential [80], should be taken into account. This

9
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is induced by splitting of masses in U and ¥ supermultiplets, and given by [77, 22]

? 2022 — ku? 22 /9 2 2 42
‘/i-loop: wN ((RQSQ—QMZ)ZIHW—W_i_(H¢2+2M2)21n’% ¢/ + K _2¢41n’% (b)

12872 A? A2 A2
4,2
WEEN @
~ 52 In (b—, (2.18)

where A is the dimension of the gauge group ¥ and U belong to, A is the renormalization
scale, and ¢, = v/2|®.|. We have assumed ¢ > ¢. in the second equality.

The inflationary observables obtained from the sum of the tree-level and one-loop poten-
tials (eqs. (2.17) and (2.18)) are summarized in Ref. [22]. When kv/A > 0.1, the inflaton
experiences dynamics on the quartic potential, followed by dynamics on the logarithmic po-
tential, during the last 50 or 60 e-foldings. In this case, the spectral index ng becomes larger
than one, which is excluded. On the other hand, when kv A < 0.1, the spectral index is ob-
tained as ng = 0.985. Observationally, the spectral index is measured as ny = 0.9666+0.0062
(ACDM-+tensor; Planck TT+lowP) [3] (see Appendix B). Thus, one of the simplest and mo-
tivated model, the SUSY hybrid inflation, has been excluded by recent precise observation
at more than 20 level. This drives us to search for a more realistic and data-compatible
models of inflation in supergravity.

2.2 Small field inflation with a single chiral superfield

In this thesis, we pursue mainly inflation in supergravity with a single chiral superfield. The
method introduced and studied in detail in the next Chapter is useful to embed various kinds
of inflationary models. For large field inflation, the formalism is particularly useful because
corrections stemming from finite strength of stabilization to the leading order potential are
well suppressed and controlled. Actually, it is virtually the unique method?® to realize large
field inflation in supergravity with a single chiral superfield without tuning, to the best of
our knowledge. On the other hand, there are studies on small field inflation using a single
chiral superfield in supergravity. We here review such models or scenarios.

2.2.1 SGoldstino inflation

One such scenario is sGoldstino inflation, a minimal inflationary scenario [83, 84, 36]. Infla-
tion requires positive energy, and it in turn requires SUSY breaking in supersymmetric theo-
ries, global or local. That is, the superfield driving inflation inevitably breaks SUSY at least
during inflation. The inflaton can thus be identified with sGoldstino field, the scalar partner
of Goldstino, which is the analogue of Nambu-Goldstone boson in the case of the fermionic
symmetry (supersymmetry). Recall the supersymmetric conservation equation [85, 44] for
the Ferrara-Zumino supermultiplet [86].

D%Jos = X, (2.19)

where J,4 the supercurrent, whose leading bosonic component contains the U(1)g current,
the spinor component contains the current of supersymmetry, and the tensor part contains

3 There is also a way to obtain a viable inflationary model in which the only scalar in the theory is the inflaton
imposing the nilpotency condition to the stabilizer superfield [81, 82]. See Subsection 2.3.3.

10
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the energy-momentum tensor, the current of translational symmetries of spacetime, and
X is a chiral superfield representing breaking of the conformal symmetry. The X can be
represented by superfields in the theory uniquely in the UV up to an ambiguity corresponding
to the degrees of freedom of the Kéahler transformation [85]. The auxiliary component of X
is the order parameter of SUSY breaking, and the spinor component of X is Goldstino in
the IR [85]. The important point noted in Ref. [83] is that we can naturally identify X as
the inflaton without specifying the details of microscopic physics.

The X in the right hand side of eq. (2.19) flows into a constrained superfield %XNL in
the TR [85], where f is the order parameter of SUSY breaking, such that it satisfies the
nilpotency condition,

X3, =0. (2.20)

This implies that the first scalar component becomes not a dynamical independent scalar
field, but a Goldstino bilinear,

XnL = % + 120G + 66 F, (2.21)
where G is the canonically normalized Goldstino. The auxiliary field F' has an VEV whose
leading term in the Goldstino expansion coincides with the order parameter of SUSY breaking
f up to a sign [85]. The proposal in Ref. [83] is to identify the RG flow of X into Xy, as the
inflaton trajectory. Depending on the hierarchy of the inflaton mass and the gravitino mass,
the inflaton transforms itself to a pair of the longitudinal component of gravitino (essentially,
Goldstino) [87].

This scenario is interesting in the sense that it depends only on the universal structure of
the SUSY theory and does not depend on the detail of the model. Precisely because of this,
however, it does not shed light on a concrete microphysical mechanism of inflation. In fact,
it is just a scenario, and it is argued in subsection 3.3.1 of Ref. [36] that the simple models
by the original authors does not work without tuning.

If we completely identify X as the inflaton, it remains to be the sGoldstino field after
inflation, and the SUSY breaking scale is roughly same order as the inflation scale [83, 84].
But in general, SUSY breaking driving inflation and the low-energy SUSY breaking can be
independent phenomena. On the other hand, it is quite natural to identify the inflaton as the
sGoldstino only during inflation in the case of F-term SUSY breaking. In this broad sense,
all inflationary models with a single chiral superfield are models of sGoldstino inflation, and
it has nothing to do with whether it is large field, small field, or hybrid inflation. In this
sense, our new framework in the next Chapter is also regarded as sGoldstino inflation, but
as we discussed here, the philosophy and explicit implementations are quite different than
the original proposals of sGoldstino inflation.

Even if we deal with a single superfield inflation, sGoldstino inflation, there are realis-
tically other sectors in the theory. We should check whether these other fields affect the
inflationary dynamics or not, or require they do not. In general situations, we have to solve
multi-field dynamics during inflation, which is not an easy task. Various fields interact with
each other at least the Planck-suppressed strength. On the other hand, sGoldstino decou-
ples from other scalar fields by requiring that other fields keep sitting at their minima and
preserving SUSY during inflation, e.g. the only SUSY breaking field (sGoldstino) is the in-
flaton [36]. Explicitly, we first change the field basis so that the only SUSY breaking field is
® and other fields collectively denoted by Y do not break SUSY: Gg # 0 and Gy = 0 at a
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2.2. SMALL FIELD INFLATION WITH A SINGLE CHIRAL SUPERFIELD

configuration point Y = Yy (Y = Y;). Here we consider the F-term SUSY breaking. Second,
we require that the latter condition is preserved along the inflaton trajectory,

a<I>C7YY|Y:Y0 = a<fJGY|Y:Y0 = Ou (222)

where Oy is a shorthand notation of a derivative operation 9/Jx. This particularly means
there is no kinetic mixing between ® and Y. It also implies block diagonalization of the
mass matrix between ® and Y [36]. Under the above requirement (2.22), the general total
Kahler potential, G = K + In |[W|?, can be written as [36]

G(®,,Y,Y) =Go(®, D)
+ % D (Y =Y)(Y = Y0) f(2,2,Y,Y) + (Y = Yo)(Y — Vo) (@, B,Y,Y))

2]

(2.23)

where Gy, f, and h are real functions. The general mass formula of Y fields with this total
Kéhler potential was summarized in Ref. [36]. We only consider the simplest case here: there
is only one field in Y, and the total Kéhler potential can be (additively) separable, i.e. the
functions f and h do not depend on the inflaton ® and its conjugate. The simplest case tells
us basic features and essential things. The mass eigenvalues are [30]

1 2
mi|y, = e ((W + §|b+ 2|) - z) ) (2.24)

where z = h™1(f — f3G2) and b = GoaG§ — 3. b is approximately the energy driving inflation
in units of the gravitino mass, and x very roughly corresponds to the mass parameter of Y.
During inflation, the value of b changes, so do the masses of Y. These should be positive,
lz| < 1 or |x| > b+ 1, (or greater than the Hubble scale) during inflation. In the case of
hybrid inflation, the sign change of these masses is an indication of the end of inflation. In
more general cases not described by the total Kéhler potential (2.22), a complete analysis
involving complicated expressions, or model-specific studies are required.

2.2.2 Model with discrete R-symmetry

To obtain a flat potential, let us consider the condition to eliminate the mass term at the
origin of the field space for a simple setup. Consider the minimal Kéhler potential and a
general superpotential at the renormalizable level (Wess-Zumino model [15]),

K =90, (2.25)

W =co + 1@ + %2@2 v %@3. (2.26)

There are no reasons to restrict to the minimal Kahler potential at this stage, but a consistent
discussion are given below. The potential up to the quadratic order is

Vquad = (|C2|2 — 3\co|2) |®|> + 2Re (c‘103®2) — 3Re (0_002@2) . (2.27)

Note that the terms proportional to |ci|?*|®|? are cancelled each other: The coefficient of
canonical kinetic term (1) from e a binomial coefficient (2) in the |Wg + KW |* part,
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and the coefficient of |WW|* term (-3) add up to vanish, 1 + 2 — 3 = 0. Barring tuning, the
quadratic terms are eliminated by requiring cg, ¢o, and ¢; or ¢z vanish. One can eliminate
Co, C2, and c3 with the assumption of R-symmetry under which ® is charged. Higher order
terms in the superpotential are irrelevant for the mass term at the origin, and higher order
terms in the Kahler potential are also irrelevant thanks to the R-symmetry.

The R-symmetry is not necessarily a continuous one, and we here take it as a discrete 7,
symmetry. The continuous U(1) R-symmetry may be realized as an accidental symmetry.
The discrete Z,, R-symmetry n > 2 is sufficient to forbid the terms of zeroth, second, and
third power. Instead, it brings U(1)g breaking terms like ®*1, ®2"*1  _into the super-
potential. The general Kahler potential and superpotential under the discrete R-symmetry
are

K=Y a,," (®9)" + Hc., (2.28)
p,q
W=>Y bomt (2.29)

The higher order terms proportional to a, o have negligible effects on inflationary dynamics
as long as they are not large, |aso| < 3/8n(n + 1) and |a,o| S O(1) for p > 3 [60]. The
terms proportional to a,, with ¢ > 1 are even higher terms and we neglect them. We take
the terms in the superpotential up to the next to leading order oc ®"*! because we expect
higher order terms are suppressed by higher powers of the parameter (o< b;) that breaks
the U(1)g symmetry. In summary, we consider the minimal K&hler potential (2.25) and the
superpotential W = by® 4 b; " 1. We can take these two coefficients as real without loss of
generality. Then, the scalar potential reads

V =e™ (03 (1= |0 + @) + | ((n + 1)* + (20— 1)| D[ + @)
+2bob1 (Re®™) (n+ 1+ (n — 1)|@|* + |@|*)). (2.30)

Assuming all the dimensionful parameters in the superpotential are scaled by a single di-
mensionful parameter v(< Mg) with order 1 coefficients (in contrast to the terms in Kahler
potential whose dimensionality is compensated by the reduced Planck mass M¢), the poten-
tial can be approximated at |®| < v < Mg as

V = b2 + 2bgby (n + 1) (Re®™). (2.31)

The quartic term has been neglected assuming a suitable initial condition for n > 5 [60].
The potential is very flat near the origin, and it can be used as a hilltop-type new inflation
model. Note that the quartic hilltop model (n = 4) is consistent with the Planck constraint.
See Figs. 12 and 54 of Ref. [3]. A complete analysis of the above model would require
two-field analysis because the potential near the origin is so flat that both scalar degrees
of freedom in ® are light. Indeed, the mass squared eigenvalues for the real and imaginary

parts, ® = (¢ +ix)/V/2, are

m2 = 3v2(n + 1)bobs (¢> /5% — 2ox + X2> , (2.32)

and these are suppressed by the small field values during inflation. We will not go into detail
of the multi-field behavior, and we neglect the imaginary part assuming that it is located
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at the minimum as an initial condition along the lines of Ref. [60]. Balancing the (Re®")
term in eq. (2.31) with the b2|®|*" term in eq. (2.30), the location of the minimum (VEV),
v, along the real axis is derived as

v~ (—(nfﬁ)m. (2.33)

Note that the F-term of the inflaton ® vanishes at the vacuum. Also, the value of the full
potential (2.30) is negative at the vacuum,

2
Ve~ -3 <n Z 1>\v3) , (2.34)

where we have defined by = Av?, so uplifting of the potential is necessary. In Ref. [60],
D-term symmetry breaking with FI term® [91] was used to uplift the potential. This does
not affect the inflationary dynamics constructed by F-term. On the other hand, uplifting
by a constant term in the superpotential, which breaks the R-symmetry, was discussed in
Refs. [62, 36]. The constant to be added to the superpotential is W, = —HLH/\U?’. This
induces a mass contribution —2|W;|2|®|? and also the linear term —2by(W,® + Wy®). In
our case (as in Ref. [60]), this just perturbs the potential, but in the case of Refs. [62, 36] in
which b; is assumed to be suppressed not by v but by Mg,? the effect is significant so that
inflation no longer happens. In such a case, the D-term uplifting is a solution to maintain
inflation.

2.2.3 Inflection point inflation

In small field inflation, one does not have to tune the flatness of the potential along a very
long trajectory. One can utilize an (accidental) extremal point such as a maximum, saddle
point, or inflection point to realize inflation around the point. At the inflection point, the
second derivative of the potential vanishes by definition, leading to a vanishing 7 parameter.
If we tune parameters so that the first derivative also vanishes at the inflection point, the
other slow-roll parameter € also vanishes.

Sets of parameters of the superpotential that lead to inflection point inflation was numer-
ically obtained in Ref. [36] as an existence proof of working models of small field sGoldstino
inflation. They used five parameters taken to be real, which are the coefficients of the zeroth
to fifth power in the superpotential, to satisfy five constraints: (1, 2) The first and second
derivatives of the potential with respect to the inflaton vanish at a point, which was taken
to be the origin, (3) the height of the potential at the point is determined by the so-called
COBE normalization, (4) There exists a minimum the inflaton settles in after the end of
inflation, and (5) the cosmological constant vanishes there. In addition, is was checked that
(6) the inflaton has a positive mass at the vacuum, (7) the non-inflaton field sits at its mini-
mum and does not mix with the inflaton along the trajectory, and (8) its mass is larger than
the Hubble scale, for the obtained parameter sets.

One of the parameter set results in a SUSY preserving vacuum, but the other set leads
to a SUSY breaking vacuum. For both of the parameter sets, the point where the e-folding

4 Some issues on the FI term in supergravity are discussed in Refs. [88, 89, 90] and references therein.
5 The reason of the Planck suppressed terms are because of the expectation that all global symmetries are broken
by quantum gravity effects. See e.g. Ref. [92] and references therein.
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is gained was found to be the inflection point. Inflection point inflation predicts the scalar
spectral index too low (ns < 0.92) [36] to reproduce the results of recent CMB observations
(see the end of Section 2.1). If one further tune the parameter to suppress the cubic term at
the inflection point, it can be modified to become a maximal point, and the upper bound of
the spectral index is pushed to a larger value, ng < 0.95 [36]. This is allowed at the 20 level.

The tensor-to-scalar ratio is much suppressed by the almost vanishing e parameter.

2.3 Shift symmetry and a stabilizer superfield

We review the standard method to describe inflation in supergravity in this Section. The
approach based on a symmetry is introduced in Subsection 2.3.1. An additional superfield
to the inflaton superfield is introduced to avoid negative potential in Subsection 2.3.2.

2.3.1 Shift symmetry

The main difficulty of embedding a positive and flat inflationary potential into supergravity
comes from the exponential factor depending on the Kahler potential in the scalar poten-
tial (2.2). The minimal K&hler potential leads to the exponential function and it is too steep.
Making the coefficient of the exponent does not help because it is always one after canonical
normalization. One can take a logarithmic Kihler potential to make the eX factor non-
exponential, but the potential gets back to exponential form after canonical normalization.
See the discussion around eq. (3.26). Even if one could find a good Kahler potential that does
not have exponential dependence after canonical normalization, one still has to make sure
that the potential is flat enough to avoid the Hubble-induced mass (the n problem). Such a
successful potential also receive radiative corrections and will be destroyed. The almost only
way around this is to use symmetries to protect the structure of the Kéahler potential.

The clever way is to completely eliminate an inflaton candidate from the Kéahler potential
by virtue of a shift symmetry [30]. Let us consider the following shift symmetry,

d— d = —ia, (2.35)

where a is a real transformation parameter. This is a matter of convention, and one can
always change the direction of the shift in the complex field space. A function invariant
under this symmetry must be a function only of the real part, K(®,®) = K(® + ®). In
particular, the inflaton candidate (the imaginary part) does not appear in the exponential
factor. We take this symmetry as a global symmetry. Note that this axionic symmetry is
also used in natural inflation [93, 94]. It may have the origin like U(1) symmetry at a higher
energy scale, but we do not specify the origin of the shift symmetry.

If the symmetry is exact, the superpotential must be a constant up to a factor absorbable
by the Kahler potential, and the scalar potential becomes just a constant. Therefore, we
must break the shift symmetry softly. It should be an approximate symmetry of the Planck
scale perturbed at the inflationary scale. It is a good idea to break the shift symmetry by
the superpotential since it is more useful for generating interesting scalar potentials than
the Kéhler potential is. Smallness of parameters breaking the shift symmetry are natural in
't Hooft’s sense [31], i.e. the symmetry breaking is controlled by the small parameters such
as inflationary scale in the superpotential, and symmetries are enhanced (the exact shift
symmetry appears) in the vanishing limit of the parameters. We assume that inflation can
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be described supersymmetrically, i.e. SUSY is not broken above the inflationary scale. In
other words, we assume that the constant term in the superpotential, which respects the shift
symmetry, is at most as large as the inflationary scale. For typical models of chaotic inflation
such as the quadratic model and Starobinsky model, the magnitude of the superpotential
(the inflaton mass scale m) is fixed to match the amplitude of CMB anisotropy, and it is of
order m ~ O(107°).

There are no reasons why shift-symmetry breaking is present only in the superpotential.
For example, quantum corrections produce shift-symmetry breaking terms in the Kahler po-
tential. The lowest order term of such kind is AK ~ m?®®. More generally, shift-symmetry
breaking in the Kahler potential may have a different origin from the superpotential. For ex-
ample, let us consider a shift-symmetry breaking term AK = —%((ID —®)2 following Ref. [95].
Suppose that the original theory without AK leads to an effective single field potential Vj(x)
where y = V2Im®. The deformed potential is

V o~ XV (y). (2.36)

The scalar spectral index and the tensor-to-scalar ratio are given by
ns(x) =nso(x) + 4€ — \/ng 4E%\2, (2.37)
r(x) =ro(x) + 8v/2ro(x)Ex + 32EX, (2.38)

where the subscript 0 denotes the quantity in the absence of AK. Precisely speaking, the
field value that corresponds to an e-folding number changes to induce same order corrections
to the above formulae. We neglect this effect since we are now interested in the order of
magnitude. Requiring that the corrections to the spectral index ng are much smaller than the
current uncertainty of order 6 x 1072 (see Appendix B), the constraint on the shift-symmetry
breaking parameter £ in the Kéahler potential is

£<2x1073 (2.39)

assuming ro < 1073, If we require that the corrections to the tensor-to-scalar ratio r are
much smaller than the current upper bound of order 107!, the constraint is not as strong
as above, £ < 4 x 1073 (for x = 15). But, if we require that the corrections to r are much
smaller than e.g. 1073, the constraint becomes severer, £ < 4 x 107* (for y = 15) and
E < 1x1073 (for x =5).

These constrains not only parameters of inflaton potential but also coupling constants
between inflaton and other fields, which inflaton may decay into to reheat the universe.
This is because such couplings generate corrections to the inflaton potential in the effective
Lagrangian after integrating out high momentum modes. For example, Coupling like W' ~

c®H, H, induces the effective Kihler potential AK = £OP with £ ~ (—ﬂ) In ( ) where A
is the cut-off scale such as the reduced Planck scale Mg, and p is the energy scale of the
effective Lagrangian. For concreteness, we take £ < 1073 and (ﬁ)an (%) ~ 107!. Then,
the constraint on the coupling constant c is

c< 107 (2.40)

For further discussion on the shift-symmetry breaking in the Kéhler potential, see Refs. [96,
97, 95]. We conclude this topic here, and neglect the shift-symmetry breaking in the Kéhler
potential in the following.
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Before proceeding to Subsection 2.3.2, we comment on variants of shift symmetry in the
literature. We have imposed a shift symmetry on one real scalar field in ® above, but what
will happen if we impose two shift symmetries on the two real scalar fields in ®7? Then,
the potential on the entire complex plane of ® becomes ‘flat’ since the factor eX is just a
constant number. The kinetic term for these fields are absent, and they are auxiliary fields.
However, kinetic terms for ® can be restored by introducing a higher-derivative term in the
Kéhler potential without breaking the shift symmetries. This is exactly the situation studied
in Ref. [98].

Li et al. proposed helical phase inflation in Ref. [99]. They considered theories with a
global U(1) symmetry, and used the phase direction of a complex field in a chiral superfield
as an inflaton. U(1) symmetry can be regarded as a special type of shift symmetry. The
transformation is not a shift in the real or imaginary direction but the phase direction. In
fact, U(1) transformation becomes the usual shift symmetry by field redefinition:

D = ¢?, (2.41)
o — e (U(1) transformation) (2.49)
¢ — ¢+if  (shift transformation) '
A U(1) invariant combination becomesa shift invariant combination,
OP = 0. (2.43)

We will come back to these models after we introduce the stabilizer superfield.

2.3.2 Stabilizer superfield

The story does not end with the shift symmetry. Once we impose the shift symmetry on
the Kahler potential, the potential tends to become negative in the large field region of the
imaginary part (inflaton). This is because the Kéhler potential appears not only in the
exponential factor e but also in the form of the inverse of the Kihler metric K®® and the
first derivative Kg. Let us look into it more in detail. Take the minimal Kéhler symmetry
with shift symmetry.

=\ 2

K=-(2+9)". (2.44)

N | —

Note that this leads to the canonical kinetic term for both the real and imaginary parts of
the inflaton ®. Now, the scalar potential is

V=0 (Jw + (04 ) W' - 3w P?). (2.45)

In this expression, Ws and W depend on both the real and imaginary part of ®. The
point is that Kg = (® + ®), which is the coefficient of W in the F-term SUSY breaking
part, does not depend on the imaginary part (inflaton) due to the very shift symmetry. If
it depended on the imaginary part, the strongest power of the imaginary part would be
contained in the KW part. Here and hereafter, we assume that the superpotential obeys a
simple dimensional analysis Wg ~ W/® in the large inflaton field ® (or Im®). Without the
inflaton in the Kg factor, the strongest power of the inflaton comes from two |[W|? terms.
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Neglecting the subdominant term Wg, the potential possesses an approximate Z; symmetry,
(® + ®) — —(® + ). Thus, its expectation value vanishes. In conclusion, the potential
becomes negative and unbounded below, V' ~ —3|W|?, in the large inflaton region, |®| > 1.

This problem seems generic for other choices of Kahler potential. As far as the strongest
dependence of the real part comes from the exponential factor, it is a good approximation
to minimize the exponential factor instead of the whole potential to obtain the effective
single field potential of the inflaton. The stationary condition of the real part approximately
minimize the Kéahler potential, and K also becomes stationary with respect to the real part,
K¢ ~ 0. This is the same conclusion as above. The effective potential for the imaginary
part becomes negative.

A solution to this problem is to eliminate the negative definite term |I¥|? by introduction
of a field S whose VEV vanishes, (S) = 0 [30, 32, 33]. This field is sometimes called the
stabilizer field or the sGoldstino field because it stabilize the inflationary potential to be
positive, and its F-term breaks SUSY during inflation. The superpotential is taken to be
proportional to this field S.

W(®,5) =S5f(®), (2.46)
where f(®) is a holomorphic function of ®. Because of the vanishing value of S, the superpo-
tential W and its derivative Wg with respect to the inflaton ® vanish too. The only nonzero
part is what involves the derivative of the superpotential with respect to the stabilizer S.

V= 6K((<I>+<T>),S,§)|S:§:0 KS'S |f((1))|2 (247)

§=5=0
With this form, it is possible to describe almost arbitrary positive semidefinite scalar poten-
tials in supergravity utilizing the functional freedom to choose f(®).
This method was used first by Kawasaki, Yamaguchi, and Yanagida in Refs. [30] for a
Kahler potential and a superpotential,

1 _ _
K=2(®+ ®)? + S8, (2.48)
W =mS®, (2.49)

and developed in Ref. [96]. These potentials are obtained by imposing a Z, symmetry under
which both & and S are odd, and the U(1)g symmetry under which only the S field is
charged, in addition to the shift symmetry. The possible m3S®? has negligible effects [96].
The real part has larger mass than the inflaton during large field inflation, and is rapidly
damped. On the other hand, the real and imaginary parts of S field have comparable masses
to the inflaton, but their effects to observables are negligible compared to the inflaton (the
imaginary part of ®) [30, 96].

There are many works on inflationary model building etc. following Refs. [30, 96]. See
e.g. Refs. [100, 101, 102, 103, 104, 105, 106, 107] and references therein. Among others,
Kallosh and Linde generalized the method to general superpotentials and Kéahler potentials
in Refs. [32, 33], and studied the consequences of coupling the inflaton sector to the SUSY
breaking sector (the KL model [108, 109]) in Ref. [110]. Here we review the discussion in
Ref [33]. Let us impose the following three symmetries.

S—-=5 (Zy for 9), (2.50)
P —— O (Zy for Re®), (2.51)
& =P +ia (shift symmetry for Im®), (2.52)

18



CHAPTER 2. REVIEW OF INFLATION IN SUPERGRAVITY

where a is a real parameter. The superpotential (2.46) respects Zy for S because the sign
change of the superpotential does not affect the potential, but breaks the other symmetries.
Because of the Z5 symmetry for S, the point S = 0 is an extremum of the potential. We will
derive the condition that it is a minimum. At S = 0, there are no kinetic mixing between ®
and S, Kgg = Kgg = 0, and the potential becomes

V = M@+ )5=0.5=0) irSS((§ 4 )2 S = 0,5 = 0)|f(D)|*. (2.53)

The inflaton ® enters in the Kihler potential in the combination (® + ®)? because of the
shift symmetry and the Z, for Re®. We assume the function f(®) = f(i®/v/2) is a real
holomorphic function, i.e. all the coefficients of its Taylor series expansion are real up to an
overall phase. Then, |f(®)|* preserves the Z, symmetry for Re® too. The scalar potential
at S = 0 preserves Z; for Re®, so Re® = 0 is an extremum of the potential. We will derive
the condition that it is a minimum of the potential. The potential reduces to

V =K ©0000 35(0 0,0, 0)|f({Im®)|?, (2.54)

where we have set ® and ® to 0 (implying Im® = 0) in the Kihler potential because it
does not depend on the imaginary part, for simplicity of expression. It is always possible
to normalize K(0,0,0,0) to 1 by a Kéhler transformation. The factor is absorbed by the
superpotential. Also, K°9(0,0,0,0) is normalized to 1 for canonically normalized fields.
Therefore, in terms of the canonically normalized field y = /2Im®, the potential finally
becomes

V=200, (2.55)

Let us compute the mass of the fields other than the inflaton at Re® = .S = S = 0. The
first derivatives with respect to S vanish so the mass matrix factorizes to the ® block and
S block. Moreover, because ¢ = v/2Re® has the Z, symmetry, the mixing between the real
and imaginary part of ® is absent. The mass of ¢ is

g 1
Voo =2V (Kq@ — Ksspa K 4 ¢ — 577) ; (2.56)

where the slow-roll parameters are given by

_1 VX 2 B JF/ 2 _VXX B JF// JF/ 2

The second derivatives of the S sector at Re® =S = S = 0 are
Vss =V (3Kss — Kggs5K %), (2.58)
Vss =V (~Kssss K 4 ¢) (2.59)

The mass eigenvalues are obtained by diagonalizing these. In the simplest case in which
Kéahler potential depends on S and S only through SS, we can neglect the off diagonal
component Vsg and Vgg. In such a case, the condition Vi, Vgg 2 H? that other fields than
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2.3. SHIFT SYMMETRY AND A STABILIZER SUPERFIELD

the inflaton y is rapidly damped to the minimum (origin) is recast in the following condition
on the fourth derivative of the Kahler potential (curvature of the Ké&hler manifold).

< - (2.60)

Wl =

5
Ksses ,56, Kgsss

Here we have assumed canonical normalization Kgg = K% = 1, neglected slow-roll param-
eters, and used the Friedmann equation, V = 3H?2.

In more general cases such that some of the symmetries in egs. (2.50), (2.51), and (2.52)
are not applicable, separate investigations are required model by model to confirm stability
of other fields than the inflaton in the theory.

Let us reconsider two variants of shift symmetry mentioned at the last of Subsection 2.3.1.
The first is higher-superderivative theory obtained by imposing shift symmetries in both real

and imaginary directions. The higher-derivative term introduced in Ref. [98] is (in the global
SUSY notation)

/ d#*e¢D*®D,SD,dDAS, (2.61)

where ¢ is a coupling constant, and S is the stabilizer (sGoldstino). The kinetic term of @ is
generated when S breaks SUSY. Its F-term SUSY breaking is the coefficient of the kinetic
term of ®. With the superpotential W = Sf(®), they obtained the Lagrangian density of
the following form after setting S = 0 (actually they used Akulov-Volkov SUSY S? = 0, see
Subsection 2.3.3) and field redefinition ¢ = 4y/c [ f(®)d®, [98]

P ;R 1 C 1) (2_ 1 (262)
L= 7@

2 1 = = .
(1~ tamorpine) 1T @RS e 0 POue )

This expression is not valid at f(®) = 0. Assuming slow-roll inflation and neglecting deriva-
tives, the leading derivative term is the canonical form, —0"¢d,p, and the potential is the
dominant term, £ ~ —|f(®(¢))|?. This looks similar to the standard case (2.53), but the
field redefinition may drastically change the shape of the potential. In fact, the superpo-
tential of a monomial with an arbitrary power, f(®) = \,®", leads to a fractional power
potential, V = [\, ®"2 = \2¢*"/ (1) where ¢ = v/2|g| is the approximately canonically
normalized inflaton, and A2 = (27"(16¢) ™" (n + 1)>*X2)//(**1)_ The power of the potential is
bounded as 0 < 2n/(n + 1) < 2 for non-negative n.

Next, we translate helical phase inflation [99] into shift symmetric inflation reviewed in
this Section. They studied a model with its Kahler potential and superpotential given by

K =d® + 55 — ((599)?, (2.63)
W —a% In®, (2.64)

where a is a coupling constant, and the quartic term of S is to stabilize the potential of S.
The idea of the quartic term was present from early days [100, 111, 112]. Its importance was
recognized in inflationary context in Refs. [113, 114]. This kind of the quartic term is often
introduced in SUSY description of inflation [115, 116]. Also, the quartic term is the key to
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CHAPTER 2. REVIEW OF INFLATION IN SUPERGRAVITY

realize large field inflation in supergravity without the field ‘S’, which will be extensively
discussed in Chapter 3. Setting S=0, the scalar potential is

V= az(f2i ((In r)? + 6%) (2.65)

r2

where ® = re?. At the minimum of the radial part, (r) = 1, its mass is larger than the

Hubble parameter H. Therefore, the potential of the phase part becomes
V = a’e*0%. (2.66)

Thus, a simple quadratic term has been obtained. Modification of the superpotential leads
to other potentials. Now we redefine the inflaton as in eq. (2.41), ® = e®. In terms of 7 and
6, the new (super)field is ¢ = Inr+i6. The Kéhler potential (2.63) and superpotential (2.64)
are now

K =% 1 55 — ((85)?, (2.67)
W =aSe %¢. (2.68)

The Kahler potential for ¢ is now shift-symmetric in the imaginary direction though the
whole combination ¢+ ¢ is exponentiated. The exponential factor in the superpotential does
not affect the potential for the imaginary part # because the inflaton dependent part in the
exponential is the unphysical overall phase of the superpotential. Thus, the superpotential
is essentially linear in the inflaton. This is why these K and W reproduces the quadratic
potential. Results in Ref. [99] can be interpreted in terms of the shift symmetry. Both
descriptions represented by egs. (2.63) and (2.64) or egs. (2.67) and (2.68) are equivalent.
The question is which description is simpler or more natural.

2.3.3 Nilpotent stabilizer superfield

The stabilizer field S discussed in Subsection 2.3.2 is also the sGoldstino field, whose auxil-
iary F-term breaks SUSY. If SUSY is non-linearly realized (during and after inflation), the
sGoldstino field obeys the nilpotency condition (¢f. (2.20) in Subsection 2.2.1),

S? =0. (2.69)

This removes the fundamental scalar from the superfield S, and the leading component is
replaced by the Goldstino bilinear (see eq. (2.21)). Along with this nilpotent stabilizer,
inflationary cosmology becomes simplified because the bosonic sector contains the inflaton
field but not the stabilizing scalar S. Such consideration was recently made in Ref. [81] in
the context of the SUSY Starobinsky model, and it was promoted to more general cases
in Ref. [82]. The idea was applied to uplifting the Minkowski vacuum to de Sitter one in
Refs. [117, 118, 119]. Relations to superstring theory were discussed in Refs. [82, 120].

In the standard linear SUSY case, i.e. the case in which S is not nilpotent, its scalar
component may obtain a finite value. It has to be checked that such a nonzero value of
S does not affect the inflationary dynamics along the course of inflationary trajectory. To
stabilize it to the origin to simplify the scalar potential, the quartic term of S is often
introduced in the Kéhler potential [113, 116]. This kind of care is not required if S is
nilpotent simply because there are no dynamical scalar degrees of freedom in S. Because its
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2.3. SHIFT SYMMETRY AND A STABILIZER SUPERFIELD

leading component becomes fermion bilinear, it is irrelevant in the bosonic action, which is
the essential part to describe inflation. Thus, after the standard calculation of supergravity,
one may simply set S = 0 as if the scalar component of S vanishes as far as the purely
bosonic action is involved in the question [82].

The fermionic part would be complicated because of the non-linearity. The nilpotency
condition leads to the Volkov-Akulov non-linear Goldstino action [14, 121] with higher deriva-
tive and higher fermion corrections [85]. On the relation between the nilpotency condi-
tion (2.20) and the non-linear SUSY, see also Refs. [122, 123, 124, 125]. Though it is
complicated, the non-linear Goldstino terms are absent in the unitary gauge, in which the
Goldstino is absorbed by gravitino and becomes its “longitudinal” components provided that
we ensure that SUSY breaking is triggered solely by the sGoldstino direction, Gg # 0 and
Gr =0 (I #5). This is the super-Higgs effect in supergravity [126, 127].

An interesting feature of this class of models is that there are no higher terms in sGoldstino
like S3 or S2S because of the nilpotency (2.69). The holomorphic terms S and S in the Kéhler
potential can be moved to the superpotential by the Kahler transformation. Therefore, the
most general form of the super- and Kahler potentials are

K =Ky(®,®) + K,(®,®)SS, (2.70)
W =Wy (®) + W1 (®)S, (2.71)

where ® here denotes other superfields than S collectively. For simplicity, we consider the
case ¢ denotes one chiral superfield. The scalar potential of these general models is

V =" (K s Woe + Koo Wo|” + K7W |? — 3[Wo[?) . (2.72)

We require DegW = Wye + KgoWy = 0 and DgW =W, = e*KO/QKll/zM # 0 at the vacuum.
Then, the cosmological constant is V' = Vj = M? — 3m; /2 and this should be a quite small
number, Vy ~ 1072°, It is obtained by fine-tuning.

The nilpotency (2.69) can be implemented by the method of Lagrange multiplier by
adding the following term to the superpotential, W — W + AW

AW = AS?, (2.73)

where A is a Lagrange multiplier chiral superfield. The equation of motion of this superfield
reproduces eq. (2.69).

Following Refs. [33, 119], let us simplify the analysis by assuming Ky = Ko((® + ®)?)
and K; = K,((® 4+ ®)?), and that Wy(®) = Wo(i®//2) and W, = W, (i®/\/2) are real
holomorphic functions. The assumption about K; could be weakened because it is not
exponentiated in contrast to Ky, but it ensures the symmetry (2.51). The point Re® = 0
is always an extremum. Let us first assume it is actually a minimum, and later check the
condition. We can also take K((0) = 0 (rescale of the superpotential), K;(0) = 1 (rescale
of S), and Kype = 1 (rescale of @), without loss of generality since these functions does not
depend on the inflaton value. The potential at ¢ = Re® = 5 =5 =0 is

V =|Woe|* + |W1]? — 3|Wo|?, (2.74)
=2W*(x) + W (x) — 305 (), (2.75)
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where y = v/2Im® is the inflaton. The first term in each line vanishes at the vacuum because
of the assumption DgW = 0 at the vacuum and the Z; symmetry. The first derivative of
the potential with respect to the inflaton at ¢ = Re® =5 =5=01s

V, =AWIW 4 20, W] — 6WW,. (2.76)

This is small during inflation and has to vanish, V) = 0, at the vacuum after the end of

inflation. It is satisfied if we take Wé = W/ = 0(= Woe = Wie) at the vacuum. Because of
the Z; symmetry, the real and imaginary parts of the inflaton do not mix with each other.
The mass of the imaginary part (inflaton) y = Im® at ¢ = Re® =S =5 =01is

V,, =4 (’Wg’? + Wg’vﬁ;") 42 (’Wf + ’Wﬁf) 6 (’Wg? + ’W{Wg’) . (2.77)
The slow-roll parameters can be calculated straightforwardly, but they are not as simple as

egs. (2.57). The mass of the real part (non-inflaton) ¢ = Re® at ¢ = Re® = S = S5 =0 is

0P

3 _
V¢¢ :2K0¢§>V + eKO <(—2K2 Koqxi)q)(i) - 3) |W0(1>|2 - 5 (W()@(I)WO + HC)

1 _
+ Ko_<1>lci> ((Ko2q><i> + | Kova|* + Kops (Koss + Koéci)) |Wol? + 3 (Wg¢¢¢WO(§ + H.c.)
+ (2Kop5 + Kova + Koga) [Wos|” + [Woss|* + ((Koes + Kosa) WoWose + H.c.))
1 _
—2K K 95| WAl + K Wiel” + §K1_1 (W1¢¢W1 + Hc))
=2V — (4K o505 — 2) Wi + AWE + AWE? — 2W Wy — AW W'
- 2K1q>i>/Wv12 + QW{Z - 2W{/W1
~AWE + AW — 2W!' W — 2K 105 W2 — 2WI'WA, (2.78)

where we have used the fact Kooeo = Kops = Kogp = 1 efc. in the second equality, and the
last equality is valid only at the vacuum since we have used V' ~ 0 and Wj = W{ = 0 (see
eq. (2.76) and the texts after it). To consistently neglect the real part, this mass should be
larger than the Hubble scale during inflation. The mass squared has to be positive at the
vacuum too. Let us turn to the fermion masses. The gravitino mass is

€G/2 = €K0/2|W0’ = |W0|, (279)

where we have followed the convention Ky = 0 at the vacuum in the second equality. The
inflatino mass (at the vacuum) is

1
GG/2 V@ch + gG@G@

= ‘—QW{ + WoKooa |, (2.80)

where we have applied assumptions that ® does not break SUSY at all at the vacuum,
and Z, symmetry of Re®, i.e. Koo = Wye = 0. When we restrict ourselves to the case
Ko = 3(®+ ®)? and K, = 1, these formulae reduce to the results in Ref. [119]. The roles of
the real and imaginary parts are opposite between ours and the reference.

As we discussed in Subsection 2.3.2; originally the models with W, = 0 had been studied
extensively in the literature with or without the nilpotency constraint (2.69). A tiny SUSY
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breaking or cosmological constant parametrically much suppressed compared to the infla-
tionary scale can be realized if we introduce another sector unrelated to the inflation sector
provided the inflation sector does not break SUSY in the Minkowski vacuum after infla-
tion. For the purpose of describing both the inflation and present acceleration of the cosmic
expansion in one sector, a single function W; is not flexible enough because separation of

scales is not easy. For example, one may try to describe a simple potential, V = V + %2 2,
2

with a simple function W; = /V{ — %@2 [119], but the coefficient of the second term

is enormously large because of the enormously small parameter V; ~ 10712, Perturbation

breaks down. Also, when the second term is dominant over the first one, the (iluartic term in
: . . . 2 4

the potential is more important than the quadratic one, V =V, + mez + 167 Y~ l’é‘—vox4.

The situation is changed when we introduce a new function Wy(®) which is not multiplied

by the nilpotent stabilizer S. Take the same W; with another parametrization, W, = M —

4

%@2, and a constant Wy. Then, the potential is V = (M? — 3W}) + %QXQ + X
If we take M somewhat larger than m, M > 15m/2v/2, the quartic term is subdominant
compared to the quadratic term during the last 50 or 60 e-foldings of accelerated expansion.
The cosmological constant can be cancelled by tuning the difference between M? and 3W§.
In this argument, the nilpotency of S is important because S may develop a finite value
when we arbitrarily introduce W, though it could be stabilized by the higher dimensional
term in the Kahler potential. In contrast, if S is nilpotent, its scalar component does not
have a nonzero value unless the gravitino bilinear condensates (Subsection 2.5.2).

__ Similarly to our discussion above, the generic cases with a real holomorphic function
Wy and W, were studied in Ref. [119] where examples Wy(®) = const. [117], Wy(P) =
const. x Wi(®) [118], and Wy(P) = const. + const. x W;(P) were presented. The above
example with Wy(®) = Wy (const.) and W;(P) = M — %@2 falls into the first class. Let
us comment on the second class, Wi (®) = bWy(P) with b a (real) constant. The scalar
potential (2.75) becomes

V = 2W2 + (b® - 3)W2, (2.81)
so if we take b = /3, the second term vanishes,
vV =2Wp (2.82)

Interestingly, this potential discussed in Ref. [118] is completely same as the one in our
work [39], which will extensively discussed in Section 3.2 of this thesis, up to notational
difference although the mechanisms to obtain the potential are different. As we saw above,
the SUSY breaking scale is generically within an order of magnitude from the inflaton mass
scale. This is because the gravitino mass, which is related to the magnitude of SUSY breaking
at the vacuum by the condition of vanishing of the cosmological constant, is determined by
the scale in Wy (see eq. (2.79)). To separate the scale of inflation and SUSY breaking,
separation of the scales between W7, which would drive inflation, and Wj, which would
trigger SUSY breaking, is implied. However, it is non-trivial since these scales coincides at
the vacuum, |[W;|? ~ 3|[Wy|? (see eq. (2.75)). In the case of the models in Ref. [118] and
Ref. [39], the potential depends only on the derivative of a function, so it is easy to adjust the
SUSY breaking at the vacuum to any desirable value by adding a constant in the function,
which does not change the potential itself.
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2.3.4 Example: Higgs inflation in (SM, MSSM, and) NMSSM

As an example of the mechanism employing shift symmetry and the stabilizer superfield, and
for preparation for an application in Section 3.6 of our mechanism presented in Chapter 3,
we review Higgs inflation in the next-to-minimal supersymmetric standard model (NMSSM).

There many other examples and applications in the literature, and we do not cover
them all. But it is worth mentioning in passing that there are particularly interesting class
of models called “cosmological attractors”. These do not refer to attractor solutions of a
theory but to classes of theories whose predictions on inflationary observables (like ng and )
converges to some values in some limits of parameters in the theories. There are “attractor
models” in theory space. We refer the interested readers to a recent paper [128] on a unified
understanding of attractor theories and references therein. The Higgs inflation we will discuss
now is also at the attractor point.

We start discussion on Higgs inflation in the standard model. The potential of the Higgs
is controlled by SU(2),xU(1)y, and its quartic term, which is dominant in the large field
region, is not suitable for inflation consistent with observation. This would not be improved
by simply adding higher order gauge invariant terms like (HH)? or (HH)* since these are
steeper than the quartic term. Instead, the potential is flattened by non-minimal coupling to
gravity like EH H R [129], or by modification of the kinetic term of Higgs [130, 131] (running
kinetic inflation [107, 132]). We would like to emphasize that these two approaches are
related. For example, in Higgs inflation with non-minimal coupling to gravity, the kinetic
term of the Higgs becomes non-canonical after transition from the Jordan frame to the
Einstein frame. In supergravity, these non-minimal coupling to gravity or non-minimal
kinetic term are described by non-minimal Kahler potential. This fact was also clarified in
Ref. [133].

We begin with the Higgs inflation of the non-minimal coupling type [129].

L=— % (1+2¢HH)R— 0"HO,H — N(HH — v*/2)?

1 A

=—-(1+¢n*)R— %8“h6uh - (=07, (2.83)

\)

where £ is the non-minimal coupling constant between the Higgs H and Ricci scalar R,
A is the quartic coupling constant, and v is the VEV of the Higgs. Since three would-be
Nambu-Goldstone bosons are eaten by the gauge fields, we have rewritten it in terms of the
physical Higgs, H = h/+/2. Under the Weyl transformation, field combinations transform as

G = G €™, (2.84)

(e =)vV—g =v~ge", (2.85)
3

eR —eRe* + 5666"@6’208"6’20 —3e*70,, (eg"e*d,e7%) . (2.86)

Choosing e727 = 1 + £h?, eq. (2.83) becomes

2 272 2 . 2\2
fo g lEEREOeR N =)
> 2(1 + £n2)2 4(1 + €n2)?
1. 1~ ~ ~
= _ M _
= — SR = 50hd,h V(h), (2.87)
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where we defined the canonical normalized inflaton h = /6 smh (vE(1 4+ 6£)h)

V6tanh ™ (V6ER/ (/1 + £(1 + 6£)h2) and its potential V (ﬁ) In the large field h > /€ and
large /€, this behaves as h ~ /3/2In(1 + £h2), or h% ~ (eV2/3" —1)/¢. The potential

behaves as

~ A 2
V(R = 5 (1= e V2 2.88
OEFe (289)

Since we want to embed the Higgs inflation with non-minimal coupling to gravity into
supergravity, we consider non-minimal coupling of Higgs superfields to supergravity. It can
be written as an F-term invariant or a D-term invariant,

/ d*026RH, Hy+H.c. = — é / d’026(29 — 8R)H,H, + H.c.
1 _ _
T / 1°028(29 — 8R)(H,Hy+ H,Hy) + He.  (2.89)

The operand of the chiral projection operator in the last line can be regarded as the “frame
function” or the exponential of a Kéahler potential. Motivated by this fact, we consider the
following Kéhler potential.

K=-3In (1 - % (|Hu|* + [Hal?) + g (H,Hq + Hqu)) , (2.90)

where x is the constant parameter characterizing the non-minimal coupling.

Einhorn and Jones tried to embed the Higgs inflation with non-minimal coupling into
MSSM, but they fount that the potential becomes negative [134]. In the same paper, they
proposed to embed it into NMSSM. Although the tachyonic mass problem of the singlet
was subsequently pointed out [113, 135], it is easily solved by adding a quartic term of the
singlet [113, 114]. Variants of Higgs inflation have been discussed e.g. in Refs. [136, 130, 131].

Let us briefly discuss the MSSM case. We do not repeat the original discussion, but
provide a somewhat heuristic explanation. The reason why the model fails to realize large
field inflation is essentially similar to the previous discussion in Section 2.3, but it is not
directly compared since we have now several superfields. It becomes clear by the following
argument. In the strong coupling limit, > 1, the Kahler potential is dominated by the
non-minimal coupling terms. We define a composite chiral superfield ® = +/3zH,H,/2.
Neglecting the canonical terms, the Kahler potential and the MSSM superpotential become

1 _
K ~—3In (1+ﬁ(@+@)) : (2.91)

W:— D+ Wy. 2.92
\/_Ilflu 0 ( )

The scalar potential following from these potentials is
41 2 - W
- AN (1——(<I>—|—¢>)—3Rex °>
22(V3 4+ (@ + D))?) V3 It
V322(® + @)’

12

(2.93)
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where the second equality holds in the large field limit, and the asymptotic expression re-
produces the result in Ref. [134].% The potential becomes negative in the large field region.
In the NMSSM, we consider the following Kéahler potential and superpotential,

1 _
K=-3n (1 -3 ([Hu|” + [Hal* + |S]?) + g (H.Hq+ H,Hy) + é\S\‘*) , (2.94)
W =NSH,H, + §53 + W (2.95)

The quartic term of S is introduced to cure the tachyonic mass of the singlet S. Note that the
singlet .S of NMSSM can be naturally identified with the stabilizer superfield .S for inflation.
We neglect the constant term W, in the superpotential to simplify the analysis. This is
valid when SUSY breaking scale is lower than the inflation scale. Since S is stabilized at the
origin, the pS? has no effect on the inflaton potential. Similarly to the previous exercise, we
focus on the large  limit where only S and ® = \/3zH,H,/2 are relevant. Although S does
not have factors of x, we should keep it since inflation is driven by its F-term. After these
simplification, the Kahler potential and the superpotential become

o~ L o@rd) — g Sgp
K ~ 31n<1+\/§(<1>+<1>) 3|S|+9|S\), (2.96)

2 /
N S, (2.97)

Vi3

The resultant scalar potential is

W ~

4)\/2|(I)|2
—\2’
322 (1+ 5 (¢ + 8))

X (1- emi)z, (2.98)

X

V ~

where we have set In® = 0 and canonically normalized the real part, 2Re® = /3 (e\/ﬁ$ — 1)

in the second equality. The potential of Higgs inflation or Starobinsky inflation has been
successfully reproduced. Detailed analyses including masses of other fields we neglected here
are found in Refs. [134, 135, 114]. We will use the method of replacing H, Hy with ® also in
Section 3.6, where we will discuss some more justification of the method.

2.4 Inflation with a linear or real superfield

In the previous Section, we see the framework utilizing a chiral stabilizer superfield. There is
another method to embed inflation into supergravity without tuning. We review a framework
utilizing a real linear or real superfield in this Section.

Farakos, Kehagias, and Riotto revisited in Ref. [34] a supersymmetric version of R+ aR?
(Starobinsky) model in the new-minimal supergravity [137] in the inflationary context. They
consider the higher derivative new-minimal supergravity action and discuss its relation to a
standard supergravity with a real (vector) superfields. The chiral multiplet and the massless

6 Tt seems that eq. (3.10) in Ref. [134] misses a factor 2.
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2.4. INFLATION WITH A LINEAR OR REAL SUPERFIELD

vector multiplet merges into a massive vector multiplet. This is a SUSY version of the Higgs
mechanism. The imaginary part of the complex scalar in the chiral superfield is eaten by
the gauge field in the real superfield. Thus, after Higgsing, there is only one real scalar field
in the mass spectrum. This situation is desirable for inflationary applications because we
do not have to worry about the stability along other scalars than the inflaton. Although
we have to eventually check it when we couple the inflaton sector to other sectors, but it is
surely an advantage that the real and imaginary part in the same multiplet is separated (and
the latter is eaten). The resultant potential of the scalar is that of the Starobinsky model,
V = 3m? (1 — em‘f’)Q /4 where the inflaton mass is given by m = v/6gM¢ with the gauge
coupling constant ¢ and the reduced Planck mass M. They also considered the effects of
higher derivative corrections corresponding to the R* term. The coefficients of such terms
have to be suppressed enough so that the sufficient e-foldings are obtained.

Seemingly inspired by their work, Ferrara, Kallosh, Linde, and Porrati proposed four
types of theories [35], two of which is old-minimal and the other new-minimal, and each two
includes a theory of vector and a theory of tensor. These theories are related by a web of
dualities and equivalent. To see applications to inflation, we first focus on one of the theories
(old-minimal with vector multiplet), and later discuss other theories and their relations.

2.4.1 Model with a massive vector multiplet

Let us consider the following theory [35],
R - 1
L= =5 [SoSoQgV + A+ N)| , + 7 V)WV, (2.99)

where Sy is the chiral compensator, g is a gauge coupling constant, W(V) is the field strength
of a real supermultiplet V', and A is a chiral supermultiplet. This has a gauge symmetry,
V -V -Y—-%and A = A+ ¢gX. Gauge fixing A = 0, the theory contains only the real
supermultiplet as well as the compensator,

L= —g [5050Q2(gV)] , + i WW),, (2.100)

Setting SySpf2 = 1, the bosonic part becomes Van Proeyen’s massive vector multiplet La-
grangian density [138].
1 1 v 92 " 1 " 92 12

L=— ER — ZF“”FM + EJ (C)B,B" + §J (o, Co'C — EJ , (2.101)
where F},, is the field strength of the vector boson B, C is a real scalar, and J = %an +
const. For the scalar kinetic term to have the physical sign, the second derivative of the
function J must be negative, J” < 0. Here, the gauge D-term is equal to J' (primes denote
differentiation with respect to the argument), and the scalar potential is its square.

To discuss inflation, let us neglect (integrate out) the massive vector with mass gv/—J".
The scalar and gravity part of the Lagrangian density is

L= —%R + %J”(C)(@MO)Q —V(0), (2.102)
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with J” < 0. The potential and its derivatives are

2 2
vV :%(J’)Q _ %DQ, (2.103)
V' =¢g*J']" = ¢’DD, (2.104)
V"' =g*(J") +g*J'J" = g*(D')* + g°DD", (2.105)

so the stationary condition V' = 0 imply J’ = 0 at the vacuum, which in turn tells us that
the potential vanishes at the vacuum V' = 0. It is remarkable that the cosmological constant
in this sector vanishes without fine tuning. Moreover, the mass squared of the scalar at
the vacuum V' = 0 is given by V" = (¢gJ”)*> > 0, so it is not tachyonic. The potential is
proportional to the gauge coupling squared, so it must be small ¢ < 1 to reproduce the
amplitude of the fluctuation of CMB. Then, the quantum corrections are suppressed by the
same small factor g2. This is another advantage of this class of theories.

The potential increases from zero when we go away form the vacuum. J’ decreases from
zero because J” is negative. The first derivative of the potential thus keeps being positive.
The potential is a monotonously increasing function provided that J” < 0 continues to be
valid. If the first derivative vanishes at some point, it indicates J” = 0 at the point because
J' has been decreasing until that point from zero at the vacuum. At the point, the kinetic
term of the scalar vanishes, and it becomes the unphysical sign when we proceed further.
Therefore, the point where V' = 0 other than the vacuum is where the description of the
theory breaks down. Turning it around, in the field range of validity of the theory, the
potential is monotonously increasing away from the minimum.

The scalar C' is not canonically normalized. The canonically normalized scalar ¢ is
determined by (de/dC)? = —d*J/dC?. It can be rewritten as

dp  dD
ac - dy
One can begin with the function J(C') and derive the canonical field ¢ = ¢(C) and the

D-term potential D(C(p)). Also, one may begin with a desired D-term D(y) and obtain
C = C(p) and the function J(¢(C)). Let us see examples in Ref. [35].

(2.106)

Example 1: quadratic potential Consider a quadratic potential,

2
V= %902, (2.107)

in terms of the canonically normalized field ¢ with D-term D = %gp. Using eq. (2.106), the
relation between ¢ and C' is obtained,

m
—(

v=7 C — o), (2.108)

where () is an integration constant corresponding to a choice of the origin of C'. The function
m2

J is obtained by integration of D since J' = D = %gp =

2

m

J = —2—92(0 —Co) + Jo, (2.109)
where Jj is another integration constant corresponding to a conf2ormal frame. One can easily
confirm that the sign of the kinetic term is canonical, J” = —7;—2 < 0.

29



2.4. INFLATION WITH A LINEAR OR REAL SUPERFIELD

Example 2: Starobinsky-like potential Consider a Starobinsky-like potential,
g° 2
V=5 (c(1—ae™™))". (2.110)

The D-term is given by D = ¢(1 — ae~*). Using eq. (2.106), the relation between ¢ and C
is obtained,

1
C—-0Cy= e ((:) p=7 In(—ab?c(C — C’o))) , (2.111)

where Cj is an integration constant. The function J is

1
J= C(C — Co) -+ ﬁ ID(C — OO) + Jo, (2112)
where Jy is another integration constant. It is easily checked that J” = —@ < 0, so the

kinetic term has the physical sign.
Higher order corrections to the theories were studied in Ref. [139] by the same authors.
They considered the following generic correction terms,

e e e AR A
el (2(gV)56S,) (E (Q(gV)§050)2> (2 (Q(gV)SOSO)2> (Q(gv)éoso) LnlgV) D’
(2.113)

where ay,;, is a real coefficient, ¥ is the chiral projection operator, ¥,(¢gV') is a Hermitian
function, and indices satisfy n = 4 + 2K + 2l + p with k,I,p > 0 (n > 4). The chiral
compensator is inserted to make the total Weyl weight 2. This superconformal expression
leads to the bosonic component Lagrangian density of the following form,

LHP = 4y 10" (F = DY)H(F = D)DPY, (4C), (2.114)

where F'* and F~ are self-dual and anti-self dual part of the field strength. The part of the
bosonic Lagrangian density depending on the auxiliary D field is of the form

1
L=5D"+gJ(C)D+) &g Vu(9C)D", (2.115)

and the equation of motion of D gives the potential
2
V=L (O = Y &g WalgC) (=g (C))" + ... (2.116)

If we assume J(C') and J'(C) is of order one, the gauge coupling ¢ is the scale of the
inflaton mass (in units of the reduced Planck mass). To match the normalization of CMB
fluctuation, it should be of order 107°. Unless &,¥,(gC) = 101"~V the correction terms
are subdominant, and the tree-level analysis can be believed.
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2.4.2 Web of dualities

Now, let us move on other theories related to the previous theory. What was called a
superconformal master model in Ref. [35] is
3 = 3 1

L= [BoSi0)] , + 5 (LU = gV)lp + 3 VVIWW)]p, (2117)
where Sy and L are the chiral compensator and a linear supermultiplet, while U and V' are
real supermultiplets. Variation of this Lagrangian density with respect to the linear multiplet
L yields an equation U = gV +A+ A with A chiral. That is, the above theory (2.117) reduces
to the previous theory (2.99) after elimination of L and U. They are classically equivalent
theories. On the other hand, if we variate it with respect to the real multiplet U, we obtain
an equation

L = 5,5, (U). (2.118)
Substituting this into eq. (2.117), it becomes

L
5’05()

L= g [S’OSOF ( ) - gLV]D + i WV WW)|,., (2.119)

where F' is the Legendre transform of €2,
L /
Fl=—)=9W0)U-QU), (2.120)
S0
evaluated with eq. (2.118). In contrast to a real linear supermultiplet whose vector compo-

nent is constrained, a chiral supermultiplet can be variated freely. The real linear supermul-
tiplet L can be expressed in terms of a spinor chiral supermultiplet L, as

L= D“Lo + DsL*. (2.121)

In terms of these, —g[LV]p is expressed as 29[ LW)|r. Defining a new chiral spinor supermul-
tiplet as Xo = W+6gLa, —3g[LV]p+1[WW]p can be rewritten as —9¢%[L*La]+ [ XX, | p.
The latter term [X X]r is decoupled from other terms and has no kinetic terms. Therefore
we neglect it. Finally, the theory becomes

3|5 DL, + DgL?
L= |5SF — — 9% [L* Lo - 2.122
2[0 ’ < 5050 ):|D 91 el (2122)
Gauge fixing the compensator, the bosonic part becomes
1 1 2 1 2
L=—ZR—=(J")" (0B’ - LB,,2 + = J"0,c0"C — L(J)?, (2.123)
2 2 4 2 2
where [...]| denotes antisymmetrization. This is a theory of a real scalar C' and a massive

tensor B, as well as gravity. This is equivalent to the Lagrangian density in eq. (2.101) [140,
35].

As we have seen above, the superconformal master model (2.117) is classically equivalent
to the theories (2.99) and (2.123). It generates the former when we variate it with respect
to L and the latter when we variate it with respect to U. Interestingly, the superconformal
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master model (2.117) is equivalent to another superconformal master model with a linear
compensator. The master Lagrangian density is given by

=3 [LO In ( Lo ) + i gy s LW - gV)} + i W), (2.124)

2 3

where Ly is the real linear compensator, L is another real linear supermultiplet, Sy is a chiral
supermultiplet, and U and V' are real supermultiplets. To show the equivalence between the
master models (2.117) and (2.124), let us rewrite the first two terms in eq. (2.124) since the
latter two terms are also present in the old minimal version (2.117).

£=3 [LO In ( z 50> + %LOJ(U) +iLo(yp — @)} , (2.125)

where L is now an unconstrained real superfield. Variation of this with respect to ¢ ensures
Ly is linear. On the other hand, variation of the Lagrangian density with respect to Lq gives

Lo = SySpe 137 W)—ile=0), (2.126)

Substituting this into eq. (2.125), and redefining the chiral supermultiplets as Sy — i t3 5,
and Sy — e~%*3 S, it becomes

3 [Sosoe—%J <U>} (2.127)

5 o :

Relating J(U) and Q(U) by an equation Q = e™7/% or J = —31n{Q, equivalence of the two

master actions are proven. ~

The new-minimal master model, when variated with respect to L, yields U = gV + A+ A,
and reduces to a vector theory,

£=5 [ (g2 ) + 3TV + 48] S TV@INVYL. a2

If we instead variate it with respect to U, the relation between U, Ly and L is determined,
1
L= —§Loj’(U). (2.129)

Substituting this into eq. (2.124), it becomes a theory of the linear multiplet,

3 Ly L 2o
e=2 () enor(£)] —opwns, e

where the function M is the Legendre transform of 7,

M (L%) _ %(j(U) _UTWY), (2.131)

with U evaluated with eq. (2.129). The theories (2.128) and (2.130) are equivalent because
these are derived from one master theory (2.124).
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To summarize this Section, we reviewed minimal inflationary models (2.99) and (2.123),
both derivable from the master model (2.117) in the old-minimal supergravity, and mod-
els (2.128) and (2.130), both derivable from the master model (2.124) in the new-minimal
supergravity, which are all equivalent at least classically [35]. In particular, we studied the
scalar sector of the model (2.99), and discussed the characteristics of the potential, canonical
normalization, and relations between the D-term and the function J present in the action.
A distinguishing feature of these models is that there is only one scalar in the theory, so
once we construct a suitable inflationary potential, we do not have to worry about stability
of other scalars in the inflaton sector. Moreover, we have seen that the inflaton potential is
monotonously increasing function away from the minimum, where the cosmological constant
vanishes without tuning, as far as the sign of the kinetic term of the inflaton is canonical.
The higher order corrections to the action [35] are typically subdominant because of the tiny
gauge coupling constant. See also related models [141] discussed after BICEP2 [142].

2.5 Purely supergravitational theories

Our proposal in Chapter 3 is to remove the stabilizer superfield to decrease the necessary
degrees of freedom for inflation in supergravity without giving up possibilities to describe
various kinds of inflationary models. By decreasing the degrees of freedom to one supermul-
tiplet, we can have a minimal theory of inflation in supergravity as in Section 2.2, but we
will see that we can describe large field inflation as well as small field inflation in Chapter 3.
We here discuss other inflationary models from a bit different perspective on minimality.

When we put something ‘by hand’ into a theory, it is often not natural or minimal. It is
also the case for inflation. People put a scalar field, ‘inflaton’, by hand to explain accelerated
expansion of the universe. It is elegant, however, if the theory of spacetime, (super)gravity
and/or universe automatically explain the phenomenon. In this Section, we review such a
kind of minimalistic approaches in gravity and supergravity though the number of degrees
of freedom in the theory is not necessarily minimal.

2.5.1 Starobinsky model and its SUSY extension

An important example is the Starobinsky model [4, 143, 144, 145]. Quantum corrections
by matter loop generates higher order gravitational terms in the action. The second order
curvature invariants are R*, R R,,,,, and R’ R, ,,, but one combination can be eliminated
by the Gauss-Bonnet theorem. Also, Weyl tensor vanishes in FLRW spacetime, so the higher
curvature terms up to quadratic order are expressed solely by R? term [146]. Then, the
Starobinsky model is expressed as

1 1
—1 2
L=——R+——=R 2.132
‘ 2 w2 (2.132)
where m is a mass dimensional parameter of order m ~ 1075, A propagating degree of
freedom has been added to the General Relativity, in which two helicity states of graviton
propagate. This higher derivative purely gravitational theory can be recast into the form of
the Einstein gravity plus a real scalar field [147, 148],

-1 __1 _lu _3_m2 EPENVCTEA
eTIL = —SR— 0" 00,0 — = (1 e ) (2.133)
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The degrees of freedom match between the original and the new form of the theory. The
scalar is sometimes called the scalaron.

The equivalence between the Starobinsky model (2.132) and the model (2.133) is a partic-
ular case of equivalence between f(R) gravity and scalar-tensor theories [149, 150]. We will
discuss generalization of the equivalence in supergravity below, so let us review the bosonic
case now. Consider an f(R) theory,

L=—ef(R). (2.134)
As in the previous Section, we consider a ‘master action’,

L=—-e(f(Q)+A(R-Q)), (2.135)

where () is a scalar field, and A is a Lagrange multiplier scalar field. The equation of motion
of the Lagrange multiplier is @) = R, and the Lagrangian density (2.135) reduces to that of
the original f(R) model (2.134). The point is that R is now linear in eq. (2.135). We may
use the equation of motion of @, i.e. A = f'(Q). The Lagrangian density is now

L=—e(f(QR+[(Q)—f(QQ). (2.136)

Next, we rescale the metric (or vierbein) to move to the Einstein frame. Under the Weyl
transformation, fields transform as in eqs. (2.84), (2.85), and (2.86). Choosing it as €*7 =
(2f'(Q))™", we can go to the Einstein frame with an emergent dynamical scalar.

1 3 b AN 1 , B
£ (3R 1 PO (@) = i (FQQ - £QD)

e (57 3000, — VIR (Lo Q) - (@) ). (2130

The canonically normalized scalaron ¢ is determined by the equation f'(Q) = %em(‘b*%),
where ¢g is an integration constant, and it corresponds to the freedom of the choice of
the origin of ¢. In the case of the Starobinsky model, f(R) = %R — ﬁR{ the scalar-
tensor Lagrangian density (2.137) becomes eq. (2.133) with the choice ¢y = 0. In this way,
equivalence between f(R) theories (2.134) and scalar-tensor theories (2.137) is established.
Although f(R) gravity is a higher derivative theory, it is clear that it does not have a ghost
state (a state with unphysical sign of its kinetic term) in the scalar-tensor side.

We will consider a supersymmetric version of the Starobinsky model from now on as
one of the minimalistic way of describing inflation in supersymmetric theories. Since the
Starobinsky model is a higher curvature (hence higher derivative) modified theory of gravity,
its supersymmtrized version is necessarily a supergravity model, a local (gauged) version of
SUSY. The Starobinsky was embedded in the old-minimal supergravity by Cecotti [151], and
in the new-minimal supergravity by Cecotti et al. [137]. Equivalence between these higher
curvature (higher derivative) supergravity theories and standard supergravity theories (with
additional matter) was also established in each reference. These SUSY Starobinsky model
was revisited after the Planck 2013 result [152, 50] in Ref. [115] for the old-minimal case and
in Ref. [34] for the new-minimal case. We will discuss these models later in this subsection.

Cecotti developed rather general higher curvature action of the old-minimal supergravity,
depending on supercurvature R, its conjugate R, and superderivatives LR etc., already
in Ref. [151], and vacuum structure of generic higher curvature models, depending on R
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and R, was studied by Hindawi et al. [153]. They also studied SUSY breaking in this
extended supergravity sector and its mediation to the visible sector (like the MSSM sector) in
Ref. [154]. Generally, interactions among various fields take place at least with gravitational
strength in supergravity even if super- and Kahler potentials are decoupled. In the modified
supergravity case studied by Hindawi et al., however, soft SUSY breaking in the visible
sector can be suppressed if one can ensure decoupling between matter sector and higher
derivative supergravity sector in the D-term action (~ Kéahler potential). This possibility,
SUSY breaking in the SUSY (supergravity) sector, is conceptually elegant and minimalistic,
and was recently revisited in the inflationary context in Ref. [155].

Years later, a reduced class of modified supergravity theories depending on chiral super-
curvature R was rediscovered by Gates and Ketov [156]. The Lagrangian density is [153, 156]

L= / d’026F(R) + H.c., (2.138)

and it was dubbed as F(R) supergravity (similarly to f(R) gravity). Developments of
F(R) supergravity is reviewed in Ref. [157]. The present author with Ketov considered a
generalization to include a spinor chiral superfield W containing Weyl tensor (', and a bosonic
f(R,C) modified gravity [158]. The former is the general holomorphic pure supergravity
theory in the old-minimal supergravity up to (super)derivatives.

Analogously to the bosonic case, it is shown that this F'(R) supergravity is equivalent to
the standard supergravity with an additional chiral superfield. First, we extend the theory
with a Lagrange multiplier 7',

L— / 2026 (F(Q) + T(Q — R)) + Hee., (2.139)
where () and T are chiral superfields. The equation of motion of 7" let it back to the original

theory. On the other hand, the equation of motion of @ tells us ' = —F'(Q). We implicitly
solve the inverse @Q = Q(T'), and the theory becomes

L :/d2@2<§’ <é (29 —8R) T + W(T)) + Hec.
= / d’e2¢ (g (22 — 8R) e /% + W(T)) +H.c., (2.140)

where we have used the fact that [d*2& (22 — 8R) (S — S) + H.c. is a total derivative for
any superfield S [153, 127]. The superpotential of the ‘scalaron superfield’ T is given by the
Legendre transform of F(Q), W(T) = F(Q(T)) + Q(T)T', and the Kéahler potential of T is

T+T)

K =-3In < (2.141)

This is the standard supergravity with a chiral superfield 7' of the no-scale type Kéahler
potential. Therefore, the number of bosonic and fermionic degrees of freedom of the standard
supergravity, 16 + 16 off-shell and 2 4 2 on-shell, has been increased to 20 + 20 off-shell and
4 + 4 on-shell. Also, there are no ghost states in the theory.

Unfortunately, large-field inflation (of the Starobinsky-model type) in this theory is found
to be difficult. Discussions [116, 159, 160, 161] are compelling, though not exact proofs.
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Simply summarizing, the reason is as follows: to obtain an asymptotically flat (scale invari-
ant) potential, the power of the superpotential (assumed to be dominated by a monomial
term) must be 3/2 in the “scalar-tensor supergravity” side (or equivalently F(R) ~ R?),
but the resultant scalar potential is negative, or a negative norm state (the unphysical ki-
netic sign) appears. Extensions including superderivatives of supercurvature R involve ghost
states [151, 160], so not promising.

A successful supergravity embedding of the Starobinsky model is found in generic higher
order pure supergravity depending on R and R [151, 153, 160],

L= /d2®2@‘" (—é (29 — 8R) N(R,R) + F(R)) + H.c. (2.142)

The bosonic part of the action was studied in Refs. [153, 160]. See also Ref. [162] where the
simple case N o< RR + const. was studied at linearized level, and propagating degrees of
freedom were identified. The above higher derivative supergravity theory (2.142) is equivalent
to the standard supergravity with two additional superfields. The procedures to show the
equivalence are similar to the previous examples, so we skip them and refer the readers to
e.g. Refs. [151, 163]. The number of the bosonic and fermionic degrees of freedom is now
24 + 24 off-shell and 6 4 6 on-shell. In spite of the higher derivative action, it is a ghost-free
theory, and the absence of ghosts are clearly shown by the fact that it is equivalent to the
standard supergravity with the standard chiral matter. The latter Lagrangian density is
given by

L= / d’02& (g (22 —8R) e /3 + W(T, S)) + H.c., (2.143)
where T" and S are the two chiral superfields. Their super- and Kahler potentials are given
by

K:—31H<T+T_62N(S’S)), (2.144)
W =ST + F(S). (2.145)

The origin of T is the Lagrange multiplier. In the application to the Starobinsky model of
inflation, S plays the role of the sGoldstino (stabilizer) in Section 2.3. It is remarkable that
the dependence on T is completely fixed by the structure of the theory. For example, it
appears linearly both in the super- and Kahler potentials. This feature is preserved even
when we couple this higher supergravity sector to other matter sectors [154, 164]. On the
other hand, S enters in the super- and Kahler potentials with generic functional forms. The
functions N and F' in eqgs. (2.144) and (2.145) are same as these in eq. (2.142).

One may naively expect that generic functions N(R,R) and F(R) result various pow-
ers of Ricci scalar R. This is not true, and the schematic form of the Lagrangian is
L~ Cy(X)+ Ci(X)R+ Co( X)R?, where C;(X) denotes field dependent coefficients, and X
collectively denotes other fields in the theory. This is because Ricci scalar R is contained
not in the leading component but in the ©© component of the superfield R. Therefore
there are at most second powers of R unless one introduces superderivatives of R and R.
Here is an interesting and important point. The generic higher (super)curvature supergrav-
ity theories (2.142) without superderivatives on R and R lead to the quadratic curvature
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gravity, which can be a suitable arena to realize the Starobinsky model. But why do the
superderivative terms vanish? This is the SUSY version of the question in the original
(bosonic) Starobinsky model: why do higher order curvature terms R™ with n > 3 van-
ish? This is a weak point in the Starobinsky model. In the context of asymptotic safety
scenario of quantum gravity [165], smallness of the inverse of the coefficient of the second
order term R? can be understood as a consequence of existence of asymptotically free UV
fixed point [166]. Or perhaps the smallness is just by accident. But there are in general no
known reasons or mechanisms for an expansion series continued to some order (second order
in our case) with an expansion parameter (the large m=2 ~ 10 in our case) stops there’
except in the cases of quantum anomaly and renormalization of the gauge kinetic function
in SUSY theories. If one take an optimistic attitude, it may be argued that we after all do
not understand naturalness and tuning issues much in view of the problems of cosmological
constant, Higgs self-energy, and strong CP, so we may be also looking in a wrong direction to
the unnaturalness problem of the Starobinsky model. Anyway, it can be said that data are
suggesting and favoring the Starobinsky-like flat inflationary potential, and it is interpreted,
in the purely (super)gravitational approach, that the series are somehow truncated at the
appropriate order. It is phenomenological, and the mechanism, if exists at all, should be
understood eventually.
A particular choice of the functions N and F suitable for realization of the Starobinsky
model was studied by Kallosh and Linde [115]. It is specified by
N=-3+ %RR - %(7‘272)2, (2.146)
F =0, (2.147)

where m is a mass dimensional parameter of order 10~° corresponding to the inflaton mass.
The constant term is the same as the Einstein supergravity whereas the quadratic term
generates the R? term. We will explain the role of the quartic term below. The role of
the inflaton is played by the real part of T. This is essentially the scalaron in the original
Starobinsky model. In the absence of the quartic term in eq. (2.146), S becomes tachyonic
in the large inflaton region. It is stabilized by the SUSY breaking mass term ~ (GsGgSS
since the sGoldstino S breaks SUSY during inflation. This is the reason to introduce the
quartic term. Then, S can be integrated out, and the mass of the imaginary part of 7" is also
larger than the Hubble parameter during inflation. The inflationary trajectory is effectively
of the single-field type, and the Starobinsky model is reproduced.

In the above example, we have not exploited degrees of freedom in the theory. There
are possibilities to use other fields, Im7T" and the real and imaginary parts of S, to describe
different inflationary scenarios or the present accelerating expansion of the universe (dark
energy). Supersymmetrization of some bosonic inflationary models or modified theories of
gravity not just adds fermionic superpartners, but also provides scalar superpartners and
sometimes additional multiplets too. The SUSY Starobinsky model is an example of this.
Inspired by the announcement of detection of B-mode polarization of CMB of the primordial
origin by BICEP2 [142], several people including the author examined the possibility to
realize quadratic inflation in the SUSY Starobinsky model [167, 168, 169, 170]. We noticed
that the potential in the Im7T" direction is quadratic, which looks suitable for chaotic inflation
generating the tensor-to-scalar ratio of order 0.1. The potential of S is unstable without the

T These points were stressed to the author by T. Kawano and K. Kohri.
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stabilization, but it becomes so steep in the large ReT domain after the stabilization without
tuning that S quickly settles to the origin. In the smaller region of ReT’, modification of
the super- and Kéhler potentials of S leads to curved inflationary trajectories and/or local
minima with cosmological constants. Note in passing that this feature is positively accepted
in Ref. [155] in which the Starobinsky-type inflationary model leading to a SUSY breaking
vacuum with the vanishing cosmological constant with tuning. We found it not so easy to
produce the quadratic potential in the S sector, so let us focus on the complex T sector.
For simplicity, we stabilize S strongly enough so that it vanishes and decouple from the
inflation sector. Alternatively, the same effective theory can be described by Akulov-Volkov
supergravity [81], where the sGoldstino S obeys the nilpotency condition, S? = 0 [85]. The
two-field analyses of the model were performed in Refs. [168, 169, 170]. In contrast to
the apparent quadratic potential, inflationary dynamics is not the quadratic type, but the
Starobinsky type. This is because the real and imaginary parts are mixed to and interact
with each other. The steep exponential potential of ReT" in the finite Im7 region strongly
drives the field to too large ReT" direction for canonically normalized Im7T to drives quadratic
inflation. For quadratic inflation to take place, the potential should be modified so that the
real part is strongly stabilized at a constant value [168, 169, 167]. With such a modification,
however, the theory is no longer related to the pure higher derivative supergravity [168] (but
see Ref. [167] too). Finally we mention that the stabilization mechanism is also employed in
our proposal in Chapter 3.

As mentioned at the beginning of Section 2.4, the counterpart on the SUSY Starobinsky
model in the new-minimal supergravity was studied by Farakos et al. [34]. They considered
the following pure supergravity.

3 A2

L= 3 [LoVR]p + T W)W (V)] -, (2.148)

where the real supermultiplet V5 is defined in terms of the linear compensator Ly as follows

(cf. eq. (A.8)),

Ly
Ve=In| = . 2.149
w=tn (o) (2.149)
This multiplet contains graviton, gravitino, and “would-be-auxiliary fields” in the new-
minimal supergravity. Fixing the superconformal gauge freedom, the Lagrangian density
in terms of curved superspace is [34]

L= /d2@25 (—%@@VR + %W(VR)W(VRO + H.c. (2.150)

The former term is the FI term of Vg, which is the Einstein supergravity term containing R,
and the latter term is the kinetic term of Vi, which produces the R? correction.

Similarly to the previous examples we have seen many times, it can be rewritten as the
standard supergravity with additional matter. In the intermediate (or “master”) theory,
W(Vg) is replaced by W(V), and the term [L'(V — V)], is added, where V' is real and L' is
real linear. The equation of motion of L’ equates V' and Vi up to shift (gauge transformation)
by the real part of a chiral supermultiplet, V = Vz —In ® —In ® with ® chiral. Eliminating V'
reproduces eq. (2.148), while eliminating L via eq. (2.149) gives us an alternative expression,

L= —% [SoSo®e” @ In (Pe¥'®)] ) + % W(VR)W(VR)] . (2.151)
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This is the standard matter-coupled gauged supergravity with the Kahler potential

1_ _
K =-3In <—§<I>eVCI>ln (CIDeVCI))) . (2.152)

2.5.2 Inflation driven by gravitino condensation

All of the above examples in this Section are about Starobinsky model and its SUSY ex-
tension, and the role of the inflaton is played by the scalar mode (scalaron) in metric. In
supergravity, the bound state of gravitinos can be an inflaton [171, 172, 173] (see also a
review [174]). In this novel scenario, the gravitino meson field ¢ rolls down on a one-loop
effective potential. During the slow-roll, the meson develops a finite value, and it represents
gravitino condensation. Inflation is a process of phase transition to the vacuum with nonzero
gravitino condensation. The bound state of a pair of gravitinos as an inflaton is thus absent
before the phase transition, and inflation is actually the process of emergence of the inflaton.
The torsion term in supergravity is the four-gravitino interaction term, [174]

1 B B
Liorsion = — ] ((WV“W) (%%ﬂﬂu + 2%%%))

= 2 = 2 — 2

=Xs (V"1,)" + Aps (VP7510,)" + Aav (¥7157:0) (2.153)
where we have used Fierz identities in the second equality, and the coefficients are constrained
so that A\s — Aps + Aay = —3/4. There are two remaining ambiguous degrees of freedom

in the parametrization above, and this issue was discussed in Ref. [174]. The above terms
are dimension six operators, and they are implicitly multiplied by the inverse square of the
reduced Planck mass. This coupling constant £ can be made larger than « = Mg Lif we
introduce a dilaton ¢ while keeping the coefficient of the Einstein term unchanged. Actually,
this is required for the Hubble scale during inflation to match the observational bound,
H < O(10%) GeV. A typical value in Refs. [171, 172, 173, 174] is & = e %k ~ (103 ~ 10%)x,
and the dilaton is supposed to be stabilized by an unspecified mechanism. Let us focus on the
scalar bilinear part since it is relevant for cosmological discussion. To linearize the gravitino
bilinear, we introduce an auxiliary field o, which will eventually becomes a propagating
degree of freedom — inflaton, like

L) ~ o (0, — o (2151)

Substituting the equation of motion of ¢ in the right-hand side reproduces the left-hand side.
Nonzero value of o is interpreted as a dynamically generated mass contribution.
The effective Lagrangian density describing the meson o is given by [174]

Log = —@aﬂaaﬂ — Vialo), (2.155)

where Z (o) is the so-called wave-function renormalization factor, schematically represented
as

1 ( o? )
Z~—n(~), (2.156)
272 Mé
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where we have identified the cut-off scale as the reduced Planck mass Mg, and the effective
potential Vg integrating out graviton and gravitino at one-loop is of the form of the standard
“wine bottle” or “Mexican hat” symmetry-breaking potential consisting of positive quartic
term and negative quadratic term with some logarithmic terms. The exact expression in-
volves many numerical factors, and we refer readers to the original papers [172, 174]. The
wave-function renormalization factor is of order one at the minimum, but it is tremendously
large near the origin. It helps flattening of the potential in terms of the canonically normal-
ized inflaton, & ~ v/Zo. Expanding the potential around the origin of ¢, it is approximated
as the tree-level one,

Vig=f2=0"+..., (2.157)

where f is the SUSY breaking order parameter, which is the vestige of Volkov-Akulov La-
grangian [14, 121] after the super-Higgs effect [126, 127], and dots represent loop-induced
higher order terms. SUSY breaking mechanism is not specified here. It may be triggered by
F- or D-term of some matter superfields. Inflation is driven by the SUSY breaking energy
f2, and it is classified as hill-top inflation.

To summarize this Chapter, the score sheet of the methods for inflation in supergravity
discussed in this Chapter is presented as Table 2.1.

Table 2.1: Score sheet of various ways of inflation in supergravity. A check mark indicates that the
method can describe a small or large field inflationary model, or an arbitrary potential depending
on the column. The column of F'/D shows that inflation is driven by the F or D-term. Our
new method discussed in Chapter 3 as well as the standard D-term inflationary models are also
included for comparison. MD, broken(*), and preserved(*) denote model-dependent, generically
broken, and preserved by tuning, respectively.

section | method small | large | arbitrary | number of | F//D | SUSY after
field | field | potential | scalar d.o.f. inflation
2.2.1 | sGoldstino inflation v 2 F broken
2.2.3 | (inflection point inflation) v 2 F MD
2.2.2 | discrete R symmetry v 2 F preserved

shift symmetry and

2.3.2 stabilizer superfield v v v 4 F preserved
2.3.3 stabilizer (nilpotent) v v v 2 F broken
2.4 vector or linear multiplet v v v 1 D preserved
2.5.1 | SUSY Starobinsky v 4 F preserved
2.5.2 | gravitino condensation v 1 MD broken

- D-term inflation v v MD D preserved

quartic term

3.1 in generic K v v v 2 F broken(*)

3.2 in no-scale-like K v v v 2 F | preserved(*)
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Chapter 3

Inflation in Supergravity with a Single
Chiral Superfield

In this Chapter, we discuss our new alternative framework to embed inflation (including large
field models) into supergravity without using the stabilizer superfield. Thus, the proposed
class of models requires only a single chiral matter superfield, i.e. one including the inflaton
in its lowest bosonic component. In contrast to many existing attempts for inflation in
supergravity with a single chiral superfield, we utilize the quartic term in the Kéhler potential
to stabilize the non-inflaton part of the complex scalar field which includes the inflaton. The
stabilization mechanism is similar to the case of stabilization of the stabilizer superfield in the
double superfield approach. Our method invokes renewed interests to the single superfield
models of inflation. Because of the stabilization mechanism, it effectively reduces to single
field inflationary models. When tuning is allowed, it is possible to approximately embed
arbitrary positive semi-definite scalar potentials of a real scalar field into supergravity.

3.1 Basic strategy and implementations

As we saw in the previous Chapter, two difficulties of implementation of positive flat potential
in supergravity are the exponential factor and the negative definite term. We impose shift
symmetry in the Kahler potential as in the usual approach in the literature. Once imposing
the shift symmetry, the potential tends to become negative in the large field region of the
inflaton. In the standard approach, one introduces a vanishing field to suppress (actually
eliminate) the negative definite term proportional to the superpotential squared in the scalar
potential. It is also possible to enhance the positive definite term (F-term SUSY breaking
part) in the scalar potential so that it becomes larger than the absolute value of the negative
term.

From naive dimensional consideration, the superpotential term |W|? dominates its deriva-
tives |Wg|? in the large field region. For example, polynomial super potentials W = "7 ¢;®"
generically have this property. Therefore, we require that the coefficient of the former term
be positive,

K* KoK > 3. (3.1)

This is a crucial condition, and may be the most important equation in this thesis. We have
to satisfy this inequality by somehow adjusting the expectation value of the non-inflaton
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field ¢ = (® + ®)//2 to have a positive potential in the large field region. In the follow-
ing, we consider two representative forms of Kéahler potential, namely the minimal one and
logarithmic one, and their deformations.

3.1.1 Minimal Kahler potential

Consider the following Kéhler potential,

K= (o+®)". (3.2)

N | —

Its derivative is Ko = ® + ®. If we can ensure that the expectation value of the non-inflaton
¢ = (® 4+ ®)/V/2 is large enough to satisfy (3.1), the potential becomes positive. Suppose
that ¢’s value is somehow fixed to v2®, during inflation as we provide such a mechanism
later, the scalar potential becomes

V =% (|Wy + 20,W[* — 3|W[)
=0 (|Wo|? + 200 (WWe + WWg) + (402 — 3) [W]?) . (3.3)
Now, the superpotential is the function of ® = ® + iy/v/2, where x = (® — ®)/2i is the

imaginary part (inflaton). The condition (3.1) reduces to & > v/3/2.
For illustration, let us take a monomial superpotential,

W = ¢, ®". (3.4)
Then, the scalar potential becomes
292 2 2 1 ! 2 2 g 1 2 2
V = e*®c,| 5+ 5X n +<I>0+4<I>0+§(4<I>0—3)X : (3.5)

In the case of a generic polynomial,

the potential becomes

2

V=e | |3 nd" !t 4200 (e, @O + He) + (405 — 3) | ¢, 0"
(3.7)
For example, if we take a linear (Polonyi-like) superpotential,
W =Wy + m®, (38)
the potential is
1 — —
V =% |m|? (5 (402 - 3) (x — x0)* + ((4@3 — )W + (8D3 — 2d0) Wy + 405 + P + 1)) .
(3.9)
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where xo = —v2Im(W,/m) is the VEV of y and Wy = Re(W,/m). When one first fix the
phase of ® so that the Kihler potential becomes the function of the real part ¢ = (®+®)/v/2,
one can not rotate away the relative phase of m and W, so the yo may be a nonzero
value. The cosmological constant can be eliminated by tuning the constant term Wy in the
superpotential as follows,

~  —49i+ Do+ V3

W, 3.10
0 492 — 3 (3.10)
Redefining the origin of the inflaton as y — xo = X, the potential finally becomes
1
= —m*Y?, (3.11)

where m? = €226 (4®2 — 3)m? is the mass of the (canonically normalized) inflaton Y. This
quadratic potential can be used in the chaotic inflation scenario. After inflation, SUSY is
broken by inflaton’s F-term. Therefore, SUSY breaking scale coincides with the inflation-
ary scale. The inflationary scale of quadratic inflation (as well as Starobinsky inflation) is
about 10'® GeV, and such a high scale SUSY breaking gives large quantum correction to
Higgs mass [175]. It may be marginally allowed assuming anomaly mediation of gravitino
mass into gaugino mass and gaugino mediation of gaugino mass into squark and slepton
mass taking into account large uncertainty in the strong coupling constant and top quark
mass. Alternatively, particles beyond the MSSM may partially cancel the Higgs self energy
correction. In addition to the Higgs mass concern, high energy SUSY breaking typically
leads to too much energy density of dark matter because the neutralinos are heavy. They
may be diluted by thermal inflation [176] or decay through R-parity violating interactions.
Although these problems are present, it is interesting possibility that the inflaton breaks
supersymmetry at the inflationary scale.

It is possible to embed other inflationary scalar potentials. To show the wide capacity of

2
the mechanism, let us consider the potential of Starobinsky model, V' (x) = 2m? (1 —e V¥ 3X> .

Its prediction of the small tensor-to-scalar ratio is in sharp contrast to the quadratic poten-
tial we have just discussed above. The potential has a very flat plateau and its embedding
into supergravity is a priori non-trivial. Let us consider the superpotential

W =m (b - eﬁai@’—‘l’@) . (3.12)
Provided the real part is stabilized at ¢ = v/2®,, the scalar potential of the inflaton y is
2 232 2 —ax\?2 —ax ) 2
V = [m[2e2% ( (402 — 3) (Reb— e~) + (2<I>OImb— V2ae X) ~3(mb)?) . (3.13)

When @2 > 3/4 or 3 < (3 —a?)/4, there are two solutions of b for the potential to coincide
with the form V o (1 — e*“X)Q, where the proportionality coefficient is a constant. The
latter choice leads to the negative potential, and hence we disregard it. The exact forms of
the solutions, b = b(®y,a), are lengthy, and it is not worth reproducing it here. When we
satisfy the condition, the potential reads

V = [m|2e?®8 (402 — 3+ a?) (1 — e~ )7, (3.14)
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-1

Figure 3.1: The deformed Starobinsky potential (3.14). The parameter a is set to 0.1,0.3,/2/3
(Starobinsky), 3, and 10 from bottom to top. The height of the potential is normalized to one.
This Figure is from our paper [39].

This potential is plotted in Fig. 3.1. The Starobinsky potential corresponds to the case
a = 4/2/3. Other values of a are also viable. SUSY is broken at the vacuum, and the SUSY
breaking scale is the inflationary scale.

Now, we specify the mechanism of the stabilization of the non-inflaton part ¢. We use
the quartic term of the non-inflaton part in the Kahler potential.

%(CI>+<I>)2—§(<I>+<I>—2<I>0)4- (3.15)

The second term gives ¢ = (& + ®)/+/2 the SUSY breaking mass during inflation, when the
inflaton ® breaks SUSY by its F-term, m? ~ (| F3|?, but does not give x = (®—®)/+/2i mass.
Note that the quartic term preserves the shift symmetry. A similar stabilization term was
first proposed in Ref. [177] in a no-scale model. The quartic term (without shift symmetry)
of the stabilizer superfield is often used in the literature. See e.g. Refs. [113, 114, 115] and
also Ref. [111]. It is instructive to write derivatives of the K&hler potential,

K =

Ko =(®+®) — ¢ (0+P—20)°, (3.16)
Kop =1 -3¢ (D + & — 20)° . (3.17)

The sign of the Kahler metric, which is the coefficient of the kinetic term, changes when
®+ P goes far from 2®,. Thus, the theory described by the Kihler potential (3.15) should be
understood as an effective theory valid only in the limited field range, |®+® —2®,| < 1/4/3(,
otherwise the kinetic term has the unphysical sign. It is possible that higher order terms
modify this property near the boundary of the field space, but the truncated theory is a good
starting point with the characteristic feature. We have argued that K¢ tend to be suppressed.
The argument assumed the strongest dependence of the scalar potential on the non-inflaton
¢ is in the exponential factor e. The trick in the current situation is that the inverse of
the Kihler metric K®® diverges in the boundary of the theory |® + ® — 2®| — 1/4/3(
where the kinetic term vanishes. Thus, K®® also strongly depends on the value of ¢. The
general formula of scalar mass term in supergravity contains the curvature of the Kéhler
manifold, V;; = —e“R;;G*G' + - -+ (even without using the conditions V = 0 or V; = 0),
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where G = K +1In |W|? is the Kéhler-Weyl invariant potential. This is nothing but the above
mentioned SUSY breaking mass term. In our case, Rp3e5 =~ Gogad =~ —6(. In reality, the
holomorphic mass term V;; is also relevant because of the shift symmetric Kéhler potential,
i.e. 0/0® = 0/0® on K(®+ ®). It has the similar contribution, Vae = —eGGijkl—GkGl +-ee
In our case, Voo ~ Vas ~ Vs =~ 6(c“G®G®. The masses of the real and imaginary parts
are proportional to Ve + Vs = 2Vps respectively, and the terms we are talking about
(proportional to () cancel for the imaginary part. In this way, we give SUSY breaking
mass to stabilize the real part, but not the imaginary part. Detailed analysis and numerical
confirmation of the stabilization mechanism are presented in Section 3.3.

It might be easier to understand the mechanism if we redefine the origin of the inflaton

so that its VEV vanishes, & = & — ®&;. Then, the nonzero value of K¢ = ¢ is provided by
the linear term in the Kahler potential.

K=c(®+@)+ 0 (@+8) 5 (@) (3.18)

where ¢ = 2@, and we have omitted tildes on the new field. The constant term in the Kéahler
potential, 203, has been absorbed by the superpotential. But the linear and quadratic terms
are not enough, and the quartic term plays the crucial role. If there is no quartic term, there
is no guarantee that Kp = ¢ + (® + ®) is equal to ¢, and the field value tends to cancel the
constant c.

3.1.2 Logarithmic Kéahler potential

The condition (3.1), K®*®*KyKg > 3, can be satisfied by using other special forms of Kihler
potentials. The no-scale-like Kahler potential,

K =—aln <1+%(<I>+<T>)), (3.19)

is such an example, where a is a constant parameter. Here, the square root factor has been
inserted to obtain the canonically normalized kinetic term under a condition (see below).
The case of a = 3 corresponds to the Kéahler potential of the no-scale model. Possible values
of a are 1, 2, and 3 in the string models [37], but we consider values larger than 3 too to
explore more general possibilities in the general field theory context. Because derivatives

of the Kahler potential are K¢ = H(<I>_+—\§)/\/a and Kzp = W, the combination
satisfies
K* KoKz = a, (3.20)

independently of the value of ®. This implies the coefficient of the |[W|? term is positive
if we take a > 3 without introducing the stabilization mechanism such as the quartic term
in the Kihler potential. However, we assume again the real part (® + ®) is somehow fixed
so that we can separate out the dynamics of the imaginary part (inflaton). In fact, if
the real part is not stabilized at some value, the kinetic mixing effect makes the dynamics
complicated [168, 169, 170]. The kinetic term and the scalar potential resulting from the
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Kéhler potential (3.19) and a superpotential W (®) are

Liin = — 1_ 50, 00" D, (3.21)
(1+ (®+®)/Va)
V(4 (@4 ®) va) " [ (14 (04 8) jva)? wcp—H(q)ﬂ))/ﬁw 3P
(3.22)

Suppose that (® + ®) is stabilized at some value. After the shift of the field ® and renormal-
ization of the Newton constant, it is possible to keep the form of eq. (3.19) with vanishing
(® + @) in terms of the redefined variables. With this in mind, we assume that (® + ®) is
fixed at the origin. For example, it can be accomplished by the following quartic term.

1 - ¢ —\4
K = aln(1+ﬁ(¢+®)+a2(@+®)). (3.23)
This kind of modification of the no-scale model was proposed in Ref. [177], and recently
used in Refs. [116, 167, 169]. The key term in the fourth derivative of the Kéhler potential
is Kogos ~ —24(C/a), so the mass of the stabilized part is roughly m? ~ 24((/a)e“G*G®.
Once the real part is fixed to the origin, the kinetic term of the imaginary part (as well as
the real part) is canonically normalized, and the scalar potential is

V= |Ws> = Va(WWe + WWs) + (a — 3)|W[. (3.24)

As discussed above, a > 3 generically allows the potential to be positive in the large field
region (|®| > 1), whereas a < 3 gives rise to a potential unbounded below. Another
interesting possibility is a = 3. In this case, the cross term generically has phase directions
some of which becomes positive and other negative in the large field region. We will study
a special case in which the cross term as well as the |[T¥|? term vanishes in the next Section.

One may guess that the shift symmetry is not needed for a logarithmic Kahler potential,
because the exponential of the logarithm does not change drastically with respect to the field
variables. However, it is not true unless the superpotential takes a special form. Let us take
the following Kihler potential,®

K =-3In (1 — %ci@) . (3.25)

The Kahler metric is Kgp5 = m, and diverges in the limit |®| — v/3. To simplify the
analysis, let us assume that the real or imaginary part is fixed at the origin. For concreteness,

we fix the imaginary part and neglect its dynamics just to see the shape of the potential of
the real part. The real part is stretched exponentially upon canonical normalization, and the

canonically normalized field is ® = \/g In gjg (implicitly neglecting the imaginary part).

! This leads to the minimal kinetic term in the original (Jordan) frame, which is determined by the supergravity
action, in contrast to the case of the so-called minimal Kahler potential, in which the kinetic term is minimal in the
FEinstein frame.

46



CHAPTER 3. INFLATION IN SUPERGRAVITY WITH A SINGLE CHIRAL SUPERFIELD

The scalar potential is
1 - 1 . -
V= (1 — §|<I>\2) |Wq>\2 + (1 — g\CI)\Q) (WW4><I> +WWsd — 3|W|2)
1 . -
— (1 — g|<1>|2> (WWe® + WWzd — 3|W|?), (as |®]* — 3) (3.26)

where the last line expresses the large field behavior. In terms of the canonically normalized
field, the factor (1 — %|<I>|2)_2 = cosh? ® grows exponentially.
Now, let us impose shift symmetry on the previous Kéahler potential (3.25),

K=-3In (1 - é (®+ <I>)2> . (3.27)

The scalar potential following from the above Kéhler potential (3.27) is

1 = _
V=t (A_|Wa|* + (@ + @) (WWe + WWg) — 3|W|?), (3.28)
+ —
where
1 =\ 2
Ay = (1ig(<1>+¢>) ) (3.29)
— =\ 2
The combination K**KsKg = % can not exceed 3 as long as the sign of the

kinetic term of gravity is canonical. The latter condition is equivalent to the positivity of
the argument in the logarithm in the Kihler potential (3.27), i.e. (® + ®)? < 6. Thus, it
is impossible to obtain a positive coefficient of |[W|* with a single chiral superfield and its
Kéhler potential (3.27).

Let us go back to the no-scale-like case (3.19) in which the inflaton superfield enters
linearly in the logarithm, and see some example models. First, let us set a = 4, and the
effective single field potential (3.24) becomes

V= |Wsl> =2 (WWe + WWg) + W] (3.30)

The potential is generically dominated by the last term, |IW|?. Let us take a simple super-
potential, W = m® + W, where m is taken as a real mass parameter. Then, the potential
becomes

V:

2
m? (x = x0)* +m* — 4mReW, + (ReWp)”, (3.31)

where xo = —v/2(ImW;)/m. Tuning the parameters so that they satisfy ReWW, = (24+/3)m,
the cosmological constant vanishes. The quadratic potential is suitable for chaotic inflation.
Again, SUSY is broken at the vacuum, and its scale is that of inflation.

Next, we set a = 3. This time, the effective single field potential becomes

V= |Wsl> — V3 (WWs + WWg) . (3.32)
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The |[W|? terms are cancelled by the no-scale Kahler potential. To see the basic features,
let us consider a monomial superpotential (3.4), W = ¢,®". The potential is very simple,
because the second and third terms cancel due to the vanishing VEV of the real part.

n—1
V = n?lc,|? (X—Q) (3.33)
=n’leal” (5 : :

The case n = 2 leads to the quadratic potential. In this case, SUSY is preserved at the vac-
uum. When we add terms in the superpotential, the cancellation does not work generically.
As we have seen above, there are many possible embedding of a potential into supergravity
with a single chiral superfield.

It is worth noting that the real part can also be used as an inflaton in the case of the no-
scale Kahler potential, if we take a suitable superpotential, because of exponential stretching
of the field due to canonical normalization. Consider the following Kéahler potential.

K= =3I ((®+®) + ¢ (i (® - ) —200)"). (3.34)
The effect of the quartic term is to stabilize the imaginary part around ®y. The kinetic term
is given by
3

Ekin - —m@fb@“@ (335)

The canonically normalized inflaton field is ¢ = V3/2Ing (<= ¢ = e\/ﬁ‘g), with ¢ =

V2Re®. In this case, not the real part but the imaginary part is fixed, so the effective single
field potential is given by

V=

1 D+ P _ _

— Wal? — (WWe + WW; ) : 3.36
(® + B)° ( 3 ( ) (3.3
Let us first try with a monomial superpotential (3.4), W = ¢,®". The potential is now

n(n — 3)|c,|?

3(P+ @) 2]
—3)|e,|? ; 1 AN
:%‘QVmb (@3 + §e2m¢) : (3.37)

Note that the potential vanishes when n = 0 or 3. This is the property of no-scale models.
Moreover, the potential becomes positive when n > 3 or n < 0, and becomes negative when
0 < n < 3. Also, the potential of the canonically normalized inflaton has an exponential
form. To obtain a flat potential we have to take a fractional value n = 3/2 so that the
exponential factors cancel in the large field region, but then the potential becomes negative.

Now, we have to choose more general superpotentials to obtain flat potentials. The key
idea is to take a polynomial superpotential and use cross terms. To explain this point, we
take the following binomial superpotential,

W =, @™ + ¢, 9", (3.38)
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with m < n without loss of generality. The scalar potential for this superpotential is
1 (¢+@
2

V:
3

n(n — 3)|cal?| P22 + m(m — 3)|e, 2| PP 2

@+ 9) (n( )len|”| @] ( ) em| [P
+2nmRe (cmc;q)m’l@”’l)) — 2nRe (cnc;,L(I)”’l(T)m) —2mRe (cmc_anmlfi)")) .

(3.39)

The first lines are just the sum of the monomial potentials. To have a flat (asymptotically
constant) potential, the powers of the cross terms m + n — 3 must vanish. We can satisfy
this constraint keeping the first line vanishing with the choice n = 3 and m = 0,

W = Cco + ng)g. (340)

Then, the potential reduces to

_ 3 o (enls B _ Im (e36p) ? o (enie) — (Im (c360)) )
V= 2(Re®)? ( Re (esco) <R ¢ Re (CSCO)CDO) * (R (cs%) Re (c360) ) CbO) ’
(3.41)

where we have set Im® = ®;. Note that the masses of the real and imaginary parts have
different signs, so either one is tachyonic. The imaginary part has the negative mass contri-
bution but we assume that it is stabilized by the quartic term. The cosmological constant
vanishes with the choice Re(cséy) = Im(csép). The potential finally becomes that of the
Starobinsky model,

_ N 2
lfzznf<1—v5®w_¢%w), (3.42)
with
m? = —2Re (c36p) - (3.43)

The coefficient of the second term, V/2®, can be absorbed by the redefinition of the origin
of ¢ unless &y = 0, so it does not affect physical observables. This model also breaks SUSY
at the vacuum, and the SUSY breaking scale coincides with the inflationary scale.

The case of vanishing ®; was studied in our paper [38]. Substituting ®; = 0 into the
above scalar potential (3.41) or (3.42), the potential becomes just a constant. It is flat and
can be chosen as positive, but useless for slow-roll inflation. It is a starting point for further
modification. Emulating the above success due to the nonzero VEV of the imaginary part,
we shift the field ® in the superpotential to make the cancellation of eV2/39 factor incomplete.

W =co+c3 (P — D). (3.44)

This @, has nothing to do with the previous @, in (3.34) which is the expectation value of
the imaginary part. (The latter is taken as 0 currently.) The scalar potential is

V zzmQ (1 — e_\/m‘i’f + g®3|03|2 (1 — e_\/md;r 62\/%(2), (3.45)
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Figure 3.2: The deformed Starobinsky potential (3.45). The relative magnitude of the correction
2®3|c3]2/m? is set to 1075,1075, and 1076 for the blue solid, red dotted, and yellow dashed
lines, respectively.

where m? is given by eq. (3.43), and we have redefined the origin of the field as V2Dge V23
e~V2/3¢_ The first term is the Starobinsky potential, and the second term is a correction to it.
The cross terms of the cubic and quadratic terms in the superpotential generate ®? = e2V/2/39
behavior in the large field region. The potential is shown in Fig. 3.2. We started from the
prototypical model (3.40) with the flat feature, and modified it as eq. (3.44), eventually
obtaining an exponential correction. But we need flatness only in the field range which cor-
responds to the observable sky of 50 or 60 e-foldings. For that purpose, tuning of ®g|cs|? to
be small enough is needed to maintain the flatness of the potential while keeping the value
of m? = —2Re(c36p) to be consistent with the amplitude of the fluctuation of CMB. This
model also breaks SUSY at the vacuum. The SUSY breaking scale is determined by |co|?
and it is larger than the inflation scale Re(c3cp).

Let us consider one more modification of the model specified by the Kéhler potential (3.34)
and the superpotential (3.40). Let us consider the following superpotential,

W =c_,® "+ cy+ c39°. (3.46)

We have introduced a negative power in the superpotential because it does not affect the
large field behavior, i7.e. it keeps flatness. The effective single field scalar potential for
Im® = &7 = 0 is the following form

V =a 4 be V2B | cem(nt3V2/36 4 go—(2n+8)v/2/36 (3.47)
where
81 —27(3 27 In(3
a = ——Re(co3), b= MRe(c_nc’g), c= —nRe(c_ncI)), d= M|c_n|2.
2 2 2 2
(3.48)

If we take @ = —b = —c = d > 0, the potential satisfies both V' = 0 and V; = 0 at the

vacuum ¢ = 0 for an arbitrary n. It is satisfied by the choice, ¢g = —(n + 3/n)cs and
c_n = (3/n)cs. The potential in this case is plotted in Fig. 3.3. The mass squared at the
vacuum is given by m? = bn?+c(n+3)? +d(2n+3)2. Although we do not present the origin
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Figure 3.3: The deformed Starobinsky potential (3.47). The power n is —0.03, —0.1, —0.3, —1, —3,
and —10 from bottom to top. The parameter values are taken as a = —b = —c = d = 1. This
Figure is from our paper [39].

of the negative power, it is remarkable that all of the models in this class (3.46) lead to very
flat potentials. Moreover, these models preserve SUSY at the vacuum.

The differences of the predictions of these deformed Starobinsky potentials on the infla-
tionary observables, the spectral index and the tensor-to-scalar ratio, are shown in Fig. 3.4.
This Figure is just to compare different modification of the Starobinsky potential, and do
not imply our method is restricted to the small r region indicated in the Figure.

We have seen that various Kahler potential and superpotential leads to potentials suitable
for large field inflation assuming the non-inflaton field is fixed some value due to the quartic
stabilization term in the Kéahler potential. In the next Section, we focus on a special Kahler
potential which is useful to embed almost arbitrary positive semidefinite scalar potential into
supergravity with a single chiral superfield.

3.2 Embedding arbitrary scalar potentials

Many models in the previous Section have complicated expression for the scalar potential,
and breaks SUSY even after inflation. Moreover, we had to search superpotential that leads
to the desired scalar potential by trials and errors. In this Section, we concentrate on a
special subset of the proposed class of single superfield inflationary models. The models in
the subset allow us to easily specify the superpotential, and also to easily make the vacuum
supersymmetric. Consider the following Kahler potential,

1 _
K=-3In(1+4+— (I>—|—<I>) 3.49
(1+ 5@+ (349
This is eq. (3.19) with @ = 3. The kinetic term and the scalar potential are given by
egs. (3.21) and (3.22) with a = 3, respectively. We assume that the real part is fixed to its
origin by some mechanism. Any such mechanism could be used, but to be specific, we again
call for the quartic term in the Kéhler potential.

K:—3ln(1+%(®+¢)+g(<b+@)4>. (3.50)
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Figure 3.4: The spectral index and the tensor-to-scalar ratio of some deformations of the Starobin-
sky model, (3.14), (3.45) and (3.47). The prediction of (3.14) corresponds to blue points (N, = 50)
and red points (N. = 60) lined vertically. The lowest point in each case is the prediction of the
Starobinsky model (a = /2/3), and the above points correspond to a = 0.7,0.6, and 0.5 from
bottom to top. The prediction of (3.45) corresponds to blue points (N, = 50) and red points
(N, = 60) lined horizontally. The most left point in each case is the prediction of the Starobinsky
model. The relative coefficient —c3/3co of the correction term is set to 1078, 1077810776 ..
from left to right. We take real parameters and ®, = 1. The prediction of (3.47) corresponds to
the yellow (V. = 50) and green (N, = 60) points with the same parameters as in Fig. 3.3. The
power —n is taken as —1, —2, and —3 from top to bottom. The 1o and 20 contours of the Planck
TT+lowP+BKP+lensing+BAO+JLA+H constraints (traced from Fig. 21 in Ref. [2]) are also
shown by light green shading.
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Assuming we can set ® + ® = 0 (we examine it in Section 3.3), the kinetic term becomes
canonical, and the potential becomes (cf. (3.32))

V= [Ws|* = V3(WWe + WWg) . (3.51)

Note that the |W|* terms are cancelled by the no-scale structure.

At this stage, it is possible to examine model by model whether inflation occurs or not
by specifying the superpotential. Here, we impose a constraint on the superpotential: Every
coefficients of Taylor series expansion of the superpotential has the same phase, so that they
are all real up to an overall phase, which is unphysical. We do not mean by this that the
superpotential is not a holomorphic function. It is just a constraint on coefficients. Now we
parametrize the superpotential as

1 — .
= EW(—ﬂzcb). (3.52)

The potential reduces to the very simple form like the global SUSY F-term,

W(®)

V= (W’m)z , (3.53)

where Yy = v/2Im®, and the prime denotes differentiation with respect to the argument.
This potential is very convenient to embed one’s favorite scalar potential. Substituting the
desired scalar potential into the left-hand side (3.53), taking the square root, and integrating
with respect to the inflaton, one can obtain the superpotential that leads to the desired
scalar potential. It may be difficult or impossible to obtain an exact analytic formula of the
superpotential, but approximating the function by a polynomial function, it is always possible
to solve the superpotential. In this sense, it is possible to realize almost arbitrary positive
semidefinite scalar potential in supergravity with a single chiral superfield. Our method is
as powerful as the existing methods to realize arbitrary scalar potentials [32, 33, 35], but is
minimal and does not rely on the stabilizer superfield.

It is not difficult to choose the superpotential so that the cosmological constant vanishes
at the vacuum. It is always possible to tune the constant term in the superpotential so that
the F-term of the inflaton, DeW = Wg + KW, vanishes. The derivative W vanishes
at the vacuum because its square is the potential, and Ky = —+/3 so W must vanish
at the vacuum to preserve SUSY. This is possible because the potential (3.53) depends
only on the derivative of the superpotential, and does not depend on the constant term in
the superpotential. Therefore we can always tune the constant so that W vanishes at the
vacuum. In this scenario, SUSY should be broken by some other sector. It is consistent with
the low-energy SUSY scenario.

By the way, the above ‘reality condition’ may seem a strong condition, but a similar
condition is used in the two-superfield case [32, 33]. The condition is automatically satisfied in
the case of the monomial superpotential. Also, once the condition is satisfied, it continues to
be satisfied because of the non-renormalization theorem of the superpotential [178, 179, 180].

3.2.1 Examples of the (super)potential

Let us see some examples below.
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(b) Example 2: Starobinsky-like

1.0
0.8 -
0.6 -

0.4

L L L L L L L L L L L L L L L L
-4 -2 2 4

(d) Example 4: sinusoidal

1.0

TS S S S S S |
-10 =5 5 10

(e) Example 5: polynomial (f) Example 6: T-model

Figure 3.5: Examples of the scalar potentials. For (b), o = 2/3,1, and 4/3 for the blue, red, and
yellow line, respectively. For (c), n = 2,3, and 4 for the blue, red, and yellow line, respectively.
For (e), b = 0.01 for all the line, and a = 0.16,0.172,0.2, and 0.25 for the blue, red, yellow, and
green line, respectively.
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Example 1: monomial potential The monomial scalar potential V' = n?|c,|*x*"~2 follows
from the superpotential function

W(x) = cax" (3.54)

1 2

In particular, the quadratic potential, V = §m2 x*, follows from the quadratic superpotential,

W(x) = 55mx*
Example 2: Starobinsky-like potential A set of modified Starobinsky potential,

3 2
V= Z&m2 <1 e 2/3%) , (3.55)

parametrized by «, is derived from the following superpotential,

W(y) = @m (X + \/? (e’ 2/3ex _ 1>> : (3.56)

The original Starobinsky potential corresponds to a = 1.

Example 3: “symmetry breaking”-type potential The potential often used for a new [7,
8], chaotic [181], or topological [182, 183, 184] inflationary model (see a review [22]),

V=x(2-v?)7, (3.57)

follows from a binomial superpotential,

W(x) = VA (%XS - vzx) . (3.58)

Its generalization, V' = X\ (x" — v”)Q, was studied in Ref. [32]. This potential is generated
from the superpotential
1

W(x) = VA (n—Hx"H - U"X) . (3.59)

Example 4: sinusoidal potential The sinusoidal scalar potential, V' = V; (1 — cosny) /2,
which appears in natural inflation [93, 94] follows from the following superpotential,

—~ 2V V¢
W(x) = \7/1_0\/1 — cosny cot % (3.60)

Example 5: polynomial chaotic model The following polynomial potential,
V = )2 (1 —ax + bx2)2 , (3.61)

studied in Ref. [35] follows from the quite simple polynomial superpotential,

_ 22 _ = Zbv?
W(x) = ex (2 Fax + 7bx ) : (3.62)
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Example 6: T-model A Starobinsky-like potential, V = V; tanh® (\%), looks like a letter

‘T’, and is called T-model [185]. It follows from the superpotential,

W(x) = v/6VpIn <Cosh %) . (3.63)

These potentials are depicted in Figure 3.5.

3.3 Effects of the finite stabilization term

In the previous Sections, we studied effective single field models with an implicit assumption
of the ideal stabilization. We study deviation from the ideal case and how large the correc-
tions are. Below we examine the models considered above one by one taking the effect of the
stabilization term into account. We will see that the previous treatments are approximately
true with a sufficiently large coefficient of the stabilization term.

The kinetic term and the scalar potential following from the minimal shift-symmetric
Kaéhler potential augmented with the quartic term (3.15),

(@+8)° S (@ +@—22,)",

are

1 _
- 59,00"D, (3.64)
1 — 3¢ (2Re® — 20)

202 — < (2Re®—2d¢)*

*Ckin =

(&
1 -3¢ (2Re® — 2dy)

1 o
. <|qu|2 +2 (Re@ — 5 (2Red — 2@0)3> (WoW + WaW)
1 3 2 2 (¢ 4
+4 (Req> — 5 (2Re® — 20 ) W2 | — 3e2Po-d(Re®=220)7 71712 (3 65)

There are no cancellations in the potential unlike the case of no-scale models, so the small
deviation of the real part from ®; merely perturbs the potential, which will be confirmed
below. We solve the VEV of the real part ¢ = v/2Re® by Taylor expanding the potential
around ¢ = /2®, up to the order O(¢?). Since it is hard to deal with general superpotentials,
we neglect derivatives of the superpotential for dimensional reasons, OW/0® ~ W/® and
O*W/0®* ~ W/P? etc. This approximation is somewhat crude but is valid for generic
polynomial superpotential during large field inflation. After all, it is generally impossible to
solve the field value analytically and exactly. The field deviation is

Do (40— 1) ~ O (1071¢7Y). (3.66)

Re®) — g ~ — ~
(Re®) = @0 = — 5 g7+ 160) T 802 — 1

The mass squared of the real (stabilized) part is

6 (1602 + (24¢ 4 8) P2 — 1)

H?, (3.67)
192 — 3

Vd)q& ~
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& (stabilized)
0.05 ™

0.10

Figure 3.6: The scalar potential of the stabilized quadratic model. The mass scale and the
coefficients of the linear and quartic terms are set to m = 107°, ¢ = 2, and ¢ = 10, respectively.

where H is the Hubble parameter, and we have used the Friedmann equation 3H? ~ V ~
€?®3 (492 — 3) |W|?. This has been evaluated at ¢ = /2®, to avoid the complicated ex-
pression: we just want to know the leading order value of the mass to see how strong it is
stabilized in contrast to the cases of field value (eq. (3.66)) and potential (see eq. (3.68) be-
low) in which we want to examine the corrections themselves. The mass easily becomes larger
than the Hubble scale, so the real part is indeed stabilized at the value of eq. (3.66). Then,
the kinetic term becomes a constant, and approximately canonically normalized. Compared
to the approximate potential Vy = 2% (402 — 3) [IW|2 up to the leading order O(¢°), the
potential up to O(¢?) evaluated with eq. (3.66) is modified as

3205 — 48%5 — 6DF + 4
C (96®F — 72P2) + 48PF — 2492 — 1)

V="V (1 + (3.68)
The correction term goes to 1 in the limit ( — oco. In this sense, the model of the minimal
shift-symmetric Kéhler potential (3.2) with Re® set to @y is not drastically modified when
including the effects of Re® # ®,. Numerically, the second term in the parenthesis is
—0.38,—0.19, and —0.068 for ¢ = 1,3, and 10, setting ®; = 1. Thus, the stabilization
parameter ¢ of O(10) is required to sustain the original prediction of the model.

Let us take some examples of superpotential to discuss it quantitatively without relying
on the dimensional estimation like OW/0® ~ W/®d. We take the models of quadratic po-
tential (3.8) and the Starobinsky potential (3.12) as benchmark models 2. The potentials

2 As can be seen from Figs. 3.7 and 3.9, the fields deviate from the origin at the end of inflation. If we adopt the
same parameters for these models as we discussed in Section 3.1, the potentials at the vacuum have a small negative
value. To uplift the potential, we added a small constant to the superpotentials. For the quadratic case, we take

W=m (<1> - m> , (3.69)

where the 0.01 is inserted to make the cosmological constant a tiny positive value. Similarly we tune b in eq. (3.12)
to obtain a small positive cosmological constant at the vacuum for the Starobinsky case. In the above argument,
“small” means that it is smaller by order of magnitudes than the typical inflationary scale, V ~ m?M&.
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10

x (inflaton)

0

-0.10  -005 0.00 005
¢ (stabilized)

|
0.10

Figure 3.7: The inflaton trajectory (green) in the stabilized quadratic model. The initial con-

ditions are ¢ = 0.1, x = 15, ¢ = 0, and y = 0. The model parameters are same as those in
Figure 3.6. The contour plot of logarithm of the potential is shown in purple.

) v (inflaton)

o (stabilized)

Figure 3.8: The scalar potential of the stabilized Starobinsky model. The mass scale, the co-
efficients of the linear and quartic terms, and the parameters in the superpotential are set to
m=10"°c=2, (=10, a = \/2/3, and b = 1.53414 + 0.3460621, respectively.
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x (inflaton)

[ Y I r 1 i i i 1
-0.10 -0.05 0.00 0.05 0.10
¢ (stabilized)

Figure 3.9: The inflaton trajectory (green) in the stabilized Starobinsky model. The initial
conditions are ¢ = 0.1, x = 5.7, ¢ = 0, and x = 0. The model parameters are same as those in
Figure 3.8. The contour plot of logarithm of the potential is shown in purple.

on the complex ® plane are shown in Figs. 3.6 and 3.8 for the quadratic and Starobinsky
models, and examples of inflaton trajectories obtained by numerical calculation are shown
in Figs. 3.7 and 3.9 for the quadratic and Starobinsky models, respectively.

Note that the scales of axes are different for ¢ (non-inflaton) and x (inflaton). It can
be seen from Figs. 3.6 and 3.8 of the potentials that ¢ is stabilized near the origin. From
Figs. 3.7 and 3.9, large parts of the trajectories can be seen as those of single field inflation.
As we set the initial conditions away from the instantaneous minimum, ¢ rapidly oscillates
around the origin at the first stage. After the rapid oscillation damps, the value of ¢ is
approximately a constant of order O(1072). Here, the stabilization parameter ¢ is taken
as ( = 10, and it is consistent with eq. (3.66). At the final stage when inflation ends, the
trajectories get curved, and the fields settle to a point away from the origin.

Let us move on to the no-scale type Kéhler potential (3.34),
K= =3 ((+®) +¢ (i (®— @) —209)").

where the imaginary part is fixed and the real part becomes the inflaton. The kinetic term
and the scalar potential are
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1
3[® + B + ((—i® +i® — 2dp)1]”
1
s 12¢ (@ + @) (—i® + id — 200)2 + 4C2 (—i® + i® — 20"
X [(® + D+ ((—i® +i® — 280)") [We|* — 3 (WWe + WWp)
+12i((—i® 4 i® — 200)* (WWg — WWs) + 108((—i® + i® — 200)*|W|*] . (3.71)

V:

The deviation of Im® from P, is evaluated as

~i -3 (WW.:I)q) - WW&,&)) + 2Re® (W@Wq;@ - W@W@@)
864¢|W? — 576¢Re® (WWq + WWg) + 384(Re®)2(|Wo|?
~iO(1072¢ " (Re®) ?). (3.72)

(Im®) — By

It is somewhat suppressed more than the previous case. For example, it is also suppressed
by the inflaton value, and becomes small during large field inflation. The mass squared
of the imaginary (stabilized) part x = 1/3/2Im®/ (Re®) (evaluated at Im® = P and the
instantaneous expectation value Re®) is

64
+_

Vi =€ (48\W|2 — 32Re® (WWe + WW5) 3 (Re®)” |Wq>|2> : (3.73)

This is expected to be O(10%¢(Re®)?) times larger than H?. The potential Vj at the leading
approximation (3.36) is modified as

AQ
V ~ Vb (1 + W) (3.74)

where we have introduced shorthand notations

A =2Re® (W'W' = W'W') +3 (WW" —= WW"),
B =2Re®|W'|> =3 (WW'+ WW'),
C =8(Re®)*|W'|> — 6Re® (WW' + WW') + 9|W|*.

Here, primes denote differentiation with respect to the argument, e.g. W’ = 0W/0® and
W' = OW /0® etc. The correction factor in the potential vanishes in the large ¢ limit. In
addition, the dimensional counting like W’ ~ W /® tells us that the correction factor behaves
as ®3 in the large field region ® > 1. Thus, the correction is well suppressed during large
field inflation. The actual value depends on parameters of the model, but it is about of order
107* to 1075 using values like 1 < ¢ < 10 and 3 < Re® < 10.

Next, we consider the Kéahler potential (3.23),

K:—aln(1+%(¢+®)+%(<b+®)4).

The constant a is inserted in the logarithm (just as a convention). The first a in the logarithm
is for approximate canonical normalization, and the second is due to the expectation that
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higher terms appear with the same expansion coefficient. The kinetic and potential terms
are

1_12g D+ )2 T3
(1+¢%(<1>+<I>) 5 (0 +®) )
V= (BQ\%P - B (ﬁ+ ;C (® + @) ) (T Wa + W) + cwmz)  (376)
with
. 12¢ s 4C _.5 42 e
A=l— == (248) — == (2+0) + 5 (2 +9), (3.77)
B:1+i(@+@)+%(‘b+@)4a (3.78)

NG
C:(a—3)+%(®+<b)2+ <\§_ a15_> (®+®)° + (1—2—2) C(e+d)".
(3.79)

In the generic case of a > 3, we neglect the derivatives of superpotential by the dimensional
argument. The shift of the real part from its origin is evaluated as

vala —3)
V2 (24¢ 4+ a2 —2a —3)

¢ o~ (3.80)

It is suppressed by the stabilization parameter (. The mass squared evaluated at the origin
is
6(24C+a2—2a—3)H2

V"~
a—3 ’

(3.81)

where we have used 3H? =V =~ (a — 3)|W|?. Tt is easy to increase the mass so that the real
part becomes heavier than the Hubble scale. The correction to the potential is as follows,

a(a —3)
Vg%(1_2(24c+a2—2a—3)>’ (3.82)

where Vy = (a — 3)|W|? is the leading order potential. Setting a = 4, the numerical value of
the second term in the parenthesis is 0.069,0.026, and 0.0082 for ¢ =1, 3, and 10.

In the case of a = 3 and a generic superpotential (for which we use naive dimensional
analysis like OW/0® ~ W/®), the expectation value of ¢ is

1 w' W

This is suppressed by the parameter ¢ and the linear power of the field ®, but a care should
be taken because even a small value destroys the cancellation working in the no-scale type
model. That is, » = 0 is a special point in the moduli space. Before looking at the corrections
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to the potential, let us check the stabilization strength, 7.e. mass of the real part. It is given
by
Vo = 48C|W 2. (3.84)
It can be larger than the Hubble scale. The corrected potential is
(WWa + WTTg)*
ACIW 2

The second term, which is the subleading term in the uncorrected potential, is the same
order (up to the ¢ factor) to the third term, which is the leading correction term. Once
again, the relative value of the correction becomes small in the limit of the large ¢ and the
large inflaton field.

We are also interested in the special case discussed in the previous Section: the reality
condition on the coefficients of the superpotential. When we assume it, various expressions

are simplified, and we do not need to use the approximation like OW/0® ~ W/®. The
expectation value of ¢ is derived as

Vo VB (WWe + WWs) + [Wal* + (3.85)

a/2 (a(a — W2 +4(a— 1)W? - QCLWW”)

T a(24C + a? — 20— 3)W? + (48¢ + Ta® — 13a + W — a(5a — TYWW" + 2aW"2 — 2aW' W™
V2a (a(a —3)E+4(a—1) — a\/2€_E>

T 2a(24C + a2 — 2a — 3)E + 2(48¢ + Ta2 — 13a + 4) — a(5a — 7)V/2eE

where the slow-roll parameters are given by

—~ 2 —~ 2 —
1 VI WI/ V// W// WI//
=3 (7>:2<m) ’ (T <w> ) (357

so that (/Wv/”//ﬂv/’) = 4/€/2 and (/I/Iv/’”//W’) = (n — €)/2. We have introduced an enhancement

factor
B —~ 2
E(x) = (—NI> ) (3.88)

(3.86)

In the case of a monomial potential, £ = (%)2 and it is large (E > 1) during large
field inflation (x > 1) for n not too large. In the case of the Starobinsky potential,

2
E = <¢ — L§> and it is also large during large field inflation. Typically, E is

1—e—V2/3x 2
of the order x2, so the combination veE is roughly of the order one. The first equality in
eq. (3.86) holds both during and after inflation, whereas the second equality is valid during
inflation since slow roll parameters not accompanied by the enhancement factor £ have been
neglected. The mass squared is

V¢¢:(24§+a2—2a—3)w2+1

a

(48¢ + 7a> —13a + 4) W — (50 — T\WW" + 2W"2 — 2W'W""

~3H? <(24g +a®—2a—3)E+ % (48¢ + 7a* — 13a + 4) — (5a — 7)\/6E/2> : (3.89)
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where the same approximation has been used in the second equality as above. The mass
easily becomes larger than the Hubble scale. The corrected potential is of the form

V=W e
N — —_\2
<a(a —3)W?2+4(a—1)W"? — 2aWW"> /4

a(24C + a? — 2a — 3)W2 + (48C + Ta? — 13a + W2 — a(5a — TYWW" + 2aW" — 2aW'W"’
(3.90)

The correction (second line) is only suppressed by a numerical factor including ¢ for a > 3.
When we set a = 3, the field expectation value, the mass squared, and the corrected potential
are

NG (4W'2 - 3W’W")
CT2CWR 4 A(12¢ + TYW2 — 24WW + 6W"2 — 6W/ W™

J5(1-3y7)

~ , (3.91)
T2E +4(12¢ +7) — 24\ /B2
. 4 _ — __ —
Vis 2ACW2 + 5 (12 + ) W — SWIW" 4217 — 21 "
~H? (72§E L4120+ 7) — 24 eE/2> , (3.92)
—~ —~ 2
N (4W’2 - 3WW”>
V1o — _ _ Y —
o2 (36CW2 F2(12¢ + T) W2 — 12WW" 4+ 32 — 3W’W”’>
2
_ (4-3VeER)
~W?[1- (3.93)
2 (36cE +2(120+7) — 12 eE/Z)

In the second lines of these expressions, we have neglected slow-roll parameters unless it
appears with the enhancement factor E (eq. (3.88)), so the second lines are valid only
during (large field) inflation. The value of the real field is well suppressed, its mass can
be easily larger than the Hubble scale, and the correction to the potential is subdominant.
Numerically, the second term in the parenthesis of the scalar potential is —0.046, —0.0081,
and -0.00046 for (F,¢,¢) = (3,0.01,1),(5,0.03,3), and (10, 0.1, 10).

In the following, we examine stabilization quality numerically. Take the special Kahler
potential (3.50) that can lead to arbitrary positive semidefinite scalar potentials. We take two
benchmarks as inflationary models: chaotic inflation with the quadratic potential and chaotic
inflation with the Starobinsky potential. The potentials in the complex plane are shown in
Figs. 3.10 and 3.12. The scales of the axes are different for the illustration purpose. As we
discussed it above, the stabilization becomes stronger when the inflaton takes a larger value.
Examples of the inflaton trajectory are shown in Figs. 3.11 and 3.13 for the quadratic and
Starobinsky potential cases, respectively. The green trajectories are superimposed on purple
logarithmic contours of the potentials. We take initial conditions such that the inflaton is
displaced from the instantaneous minimum (stabilization valley) with vanishing velocity. As
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X (inflaton)

 (stabilized)

Figure 3.10: The scalar potential of the stabilized quadratic model. The mass scale and the
stabilization strength are set to m = 107° and ¢ = 3+/3, respectively. This Figure is from our
paper [39].
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Figure 3.11: The inflaton trajectory (green) in the stabilized quadratic model. The initial condi-
tions are ¢ = 0.14, x = 15, ¢ = 0, and x = 0. The mass scale and the stabilization strength are set
to m = 107° and ¢ = 3+/3, respectively. The contour plot of logarithm of the potential is shown
in purple. This Figure is from our paper [39].
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¥ (inflaton)

Figure 3.12: The scalar potential of the stabilized Starobinsky model. The mass scale and sta-
bilization strength are set to m = 107° and ¢ = 3v/3, respectively. This Figure is from our
paper [39].
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Figure 3.13: The inflaton trajectory (green) in the stabilized Starobinsky model. The initial
conditions are ¢ = 0.14, x = 5.7, gb =0, and x = 0. The mass scale and the stabilization strength
are set to m = 107° and ¢ = 3+/3, respectively. The contour plot of logarithm of the potential is
shown in purple. This Figure is from our paper [39].
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can be seen from the Figures, the inflaton rapidly oscillates and is damped to the bottom of
the stabilization valley. It seems that the inflaton is damped more efficiently in the quadratic
potential (Fig. 3.11) than in the Starobinsky potential (Fig. 3.13). This is because the inflaton
takes larger values in the former model than in the latter model, and the large inflaton value,
implying large enhancement factor E in eq. (3.88), suppress the value of the real field via
the enhanced mass term (3.92). Afterward, the trajectories are essentially that of single field
inflationary models. Interestingly, the trajectories slightly deviate from the imaginary axis
at the end of inflation, leading to final oscillation phase where the decay of inflaton reheats
the universe. The fractional difference between the usual potential (ideally stabilized case)
and the actual potential value in our setup along the inflaton trajectory is within only 1.4%
for the quadratic case, and within 2.2% for the Starobinsky case. These values are taken
near the end of inflation corresponding to the maximum of the real part ¢ before the final
oscillation. In most of the time, the fractional differences are much suppressed.

3.3.1 Robustness of SUSY preservation

The models of the no-scale-like (a = 3) Kéahler potential have two favorable features as we
discussed in Section 3.2. We can approximately embed arbitrary positive semidefinite scalar
potentials into supergravity using the Kahler potential, and we can also tune the constant
term in the superpotential to preserve SUSY after inflation. These features are clear when
the stabilization is ideal i.e. in the ( — oo limit. In the above, we have analyzed how the
former statement is modified quantitatively (eqs. (3.91), (3.92), and (3.93)). Now, let us
examine whether the latter feature is preserved or not considering the effect of the finite
stabilization term. In terms of the non-inflaton ¢ and the inflaton x, the potential (3.76) is

written as
2 2 2 4.4 -2
+12¢o° [ 1 + B(b +—C¢" | B

_\[g< 8V6 @s) ' (59 + (=i + x) — W (=6 + )T (36 + )

2

V=A"'B" W (—i¢ + x)

[W/(=ig+x)

(3.94)
where
A=1 - 8¢ ?c& o (3.95)
2 4,
B =1+ \/;qb + §§¢ . (3.96)

The first derivatives of the potential have long expressions. Those evaluated at ¢ = 0 as
an ansatz are

Vilemo =/ 2 (—I7/(00 + SO0 (0) (397)
Vilo=o =2 ()W (). (3.98)

Note that these equations are independent of ( since we substituted ¢ = 0. Now we search
a solution of Vy|,—o = V,|s=o = 0 for x. If it exists, say at x = xo, the point (¢ =0, x = xo)
is a stationary point.
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Remember that the potential becomes V() = W (x)? in the ideal ({ — o0) case. Sup-
pose we construct an inflationary model such that this potential V() vanishes at the vacuum
X = Xo Where we tune the constant term in the superpotential such that SUSY is preserved,
1.e.

W' (xo) =0, and W (xo) =0. (3.99)

Note that this is automatically a solution of Vy|s—o = Vy|s=o = 0 with an arbitrary (.
Therefore, the point (¢ = 0, x = xo) is a stationary point. At the point, the potential
coincides with the ideal one, V' = W’(xq)2.

Is the stationary point a maximum, minimum, or saddle point? In the inflaton ()
direction, it is a minimum if the 1nﬂat10nary model is meaningful. Since SUSY is preserved
(V = W =W = 0) at the point, the masses of ¢ and x are same. It follows that the
stationary point is actually a minimum (vacuum) of the potential. Thus, the consistency
of the ansatz ¢ = 0 has been shown. In conclusion, the cosmological constant and SUSY
breaking can be both eliminated at the vacuum by tuning with an arbitrary stabilization
parameter (.

3.3.2 Comments on small field inflation

We are primarily interested in large field inflation since our method enables us to realize it
without the stabilizer superfield for the first time. It is also interesting to study whether
our method is also applicable to small field inflation or not. In the above, we have seen
that stabilization is strong enough at the large field region but it becomes loose near the
end of inflation where inflaton has a smaller value. One might have an impression that it
is not suitable for small field inflation. However, the essence of the stabilization mechanism
is that the effective mass for the scalar superpartner of the inflaton is given by the inflaton
F-term, which drives inflation. Therefore, it is generally expected that the stabilization
works during inflation. If the SUSY is broken also at the vacuum, the stabilization still
works. Quantitative details depends on the value of the coefficient (.

We take the model of Example 3 in Subsection 3.2.1 (the Kéahler potential (3.50) and
the superpotential (3.59)) as an explicit example,

Oy

K:_31H(1+i(q>+ci>)+

NG (@ + cI>)4) , (3.100)
W =vx (

'— o' +c v"“), (3.101)

n—l—l n+1

where we have added a constant term to the superpotential, and c is the coefficient. Since we
are interested in small field inflation, we take v < 1. When we take ¢c=1, SUSY is preserved
at the vacuum at xy = v. The relevant derivatives are

W=V =", W VA, T —a - DV (3.102)

Inflation begins with a small inflaton value x < v, so let us take the limit x — 0.
Then, the constant terms in the superpotential and its first derivative remains, W (0) =
eV A(n/n + o™ and W'(0) = —vAv", while the second and third derivatives vanish,
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w (0) = W"(0) = 0. If we take the coefficient ¢ as an order one parameter, the superpoten-
tial is smaller than its first derivative because of the higher power of v. So, we also neglect
W(0) to obtain simple formulae. The egs. (3.91), (3.92), and (3.93) become

V6

4
lx=0 T+

120+ 7

Vipheo =4(12¢ + T)H?,  V(0) =W'(0)? (1 ) . (3.103)

As we have argued above, the mass of the non-inflaton ¢ is larger than the Hubble scale.
So, it is a good approximation to describe the model as a single field inflationary model.
The value of ¢ is also less than one, so the perturbation in ¢ used to obtain egs. (3.91),
(3.92), and (3.93) is consistent. However, the correction to the effective single field potential
V' is not so small for a small value of (, e.g. 12§+7 ~ (.2 for ( = 1. This level of change of
the potential can not be neglected especially for small field inflation. The first and second
derivatives of the potential are affected and inflationary observables change accordingly. But
the effect decreases when we increase the strength of stabilization (. We show the corrected

potential in Fig. 3.14.
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Figure 3.14: The corrected potential V(x) (3.93) for the small field model (3.59) with n = 4. The
blue (bottom), red (middle), and green (top) lines correspond to ¢ = 1,3v/3, and ¢ — co. Other
parameters are set to A =1 and v = 0.1.

Although we have examined only one example, we have reasons to think other models
share the same qualitative features. During inflation, regardless of small field or large field,
the slow-roll parameters should be small, so W” and W can be neglected. The value of
the superpotential depends on the functional form including the constant term. Unless it is
larger than its first derivative (F > 1), its effect is subdominant (see eq. (3.93)). Thus, our
framework is also applicable for small field inflationary models although a larger stabilization
term is required.

3.3.3 Comments on the unitarity bound

Our method utilizes the quartic stabilization term instead of the stabilizer superfield. We
have checked that the coefficient ¢ of order one is sufficient for the large-field models of the
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no-scale-like Kéhler potential (3.50), but ¢ of order ten or larger is needed for small-field
cases and generic models of the minimal (polynomial) Kéhler potential (3.15).

Generally, a large coupling constant implies a low cut off scale. In the context of the
Starobinsky model and Higgs inflation with non-minimal coupling to gravity, the unitarity
was questioned [186, 187, 188, 189] since these models introduce a coupling constant of
order 10%. Due to the standard effective field theory analyses around the vacuum, the cut
off is apparently 107*Mg, and it is too low for these inflationary models to be reliably
described. This is an illusion caused by the fact that only the physics around the vacuum
was considered [190], and the unitarity bound is not violated during inflation taking the full
form of the potential [114] or background scalar field value [191]. The cut off is inflaton
field-dependent, and it is higher than the typical energy scale of inflation.

In contrast to these models, a somewhat large parameter  in our case appears in front
of the self-coupling term of not the inflaton x but its scalar superpartner ¢. The latter
is fixed to the vacuum value, so the simple estimate of the cut off suffices. The cut off is
inversely proportional to the square root of the stabilization parameter, A ~ 1/4/C. For
example, the field displacement d¢ from the VEV at which the kinetic term vanishes and
the scalar potential diverges is d¢) = 1/4/6( for the polynomial Kihler potential (3.15) (or
(3.18)) and d¢ ~ /a/24( for the logarithmic Kéhler potential (3.23). Conservatively, we
take A = 1/4/10C as the typical cut off scale.

The Hubble scale for the typical chaotic inflation models such as the quadratic and
Starobinsky models are of order 107 in the reduced Planck unit, and the energy density
scale Fiyr == VY% is 1072°. Even if we take ¢ ~ 102, the cut off scale A ~ 10~ is one order
of magnitude larger than the energy scale of inflation Fi;. When we take ¢ ~ 10%, these
scales become comparable A ~ FE, and the theory enters a strong coupling phase. Then,
the inflaton potential is significantly affected by couplings between the inflaton x and the
strongly coupled ¢. The condition A > E}; is rewritten in terms of ( as

ME Mg
10E2, ~— 10m,’

inf

(<

(3.104)

where m,, is the inflaton mass, and we have used Ei,; = V/* ~ \/m, M.

3.4 Effects of other terms in the Kahler potential

We are using higher order terms in the Kahler potential for the sake of stabilization of the
scalar superpartner of the inflaton. So, the following questions arise: “Can we neglect other
(lower or even higher) terms in the Kéhler potential?”, or “What are the effects of such
terms, if they can not be simply neglected?” In this Section, we consider the effects of terms
that we have not considered until now.

We only consider shift-symmetric terms in the Kahler potential since the effects of symme-
try breaking terms are higher orders in symmetry breaking parameter, which is proportional
to inflation scale. For simplicity of notation, we define X = ®+®. Then, the shift-symmetric
Kéhler potential or its exponential (so-called frame function) is expanded as a series of X.
To consistently neglect higher than quartic terms, we consider the parametrization in which
X is stabilized near the origin. This is understood as follows. Suppose that X is anyway
stabilized by effects of Kahler potential at some point in the field space X = X,. Then we
shift X by X, by redefining the origin of X: X — X = X —X,. In terms of X, it is stabilized
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at the origin and higher order terms are well controlled by higher powers of (approximately)
vanishing value of X. With this understanding, we will omit the tilde in the following.

The mechanism of the stabilization we considered is based on the quartic term. We
proposed it as just an example, and it may be replaced with some alternative, perturbative
or non-perturbative mechanism. At the same time, it is also true that the simplest and
effective way of stabilization is due to the quartic term if we can expand the Kéhler potential
with respect to X around the origin, which we always assume. Actually the quartic term
is the unique term which generates mass of (the scalar component of) X using its SUSY
breaking F-term like |F®|?X?2.3 See the discussion around eq. (3.17).

In summary, we expand the Kahler potential or the frame function with respect to X =
® 4+ @ around the origin, and utilize the quartic term for stabilization as we studied until
now. We will study effects of lower order terms. If X is still stabilized at or near the origin,
effects from higher order terms can be consistently neglected. In the following, we first study
the “minimal” Kahler potential, and then move on to the logarithmic Kéahler potential, in
which case we expand the argument of the logarithm.

3.4.1 Minimal Kahler potential

Consider the following generic Kahler potential,

K=Y c,X"=co+aX +aX+0X +oX +. . (3.105)
n=0

where X = ® + ® with ® chiral, and dots represent higher order terms. The ¢, can be
absorbed by the superpotential by Kéahler transformation, and ¢; is primarily related to the
value of the first derivative K¢ at X = 0. The ¢, changes the normalization of the fields,
and the ¢, is the strength of stabilization. To understand the role of ¢, it is useful to rewrite
eq. (3.105) as follows,

4 3 2 4
C3 C3 3c; 9 C3
K= — — X ——1 X X +— ..
(CO 256043 ) + (Cl 16042 ) + (CQ 8C4 > + “ ( + 404 ) +

=G +aX + X2+ a(X — X))t +. ... (3.106)

In this form, it is clear from our studies in the previous Sections that —c3/4c, represents
the VEV of X. We interpret c3 as the parameter that controls deviation of the VEV of X
from its origin. This should be so because X? is odd under the sign flip of X and it makes
gradient at the origin. From the discussion at the beginning of this Section, the VEV of X
has to be small for consistent truncation of higher order terms such as ¢ X?, ¢s X®,.... This
immediately places a condition |Xo| < 1, i.e. |c3] < 4|cy].

This may not be so restrictive condition analogously with the following argument for a
scalar potential. Consider an arbitrary smooth scalar potential. Its shape may be concave or
convex. It may increase and sometimes decrease. In a certain domain of field range, one may
find a minimum or some minima. Wherever they are, the gradient of the potential vanishes
there, and the mass (curvature of the potential) is positive. Our situation is similar. If the
field is stabilized at all by the K&hler potential and the F-term SUSY breaking of ¢, and

3 If there are SUSY breaking sources other than the inflaton during inflation, X may be stabilized by coupling
them. The term like ¢ X?|z|*> works similarly where z denotes the SUSY breaking field. Also, effects of higher order
terms such as X® and X® become important in the field region away from the origin.
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wherever the point is, the third derivative of the Kahler potential vanishes there, and the
mass is provided by the fourth derivative and F-term SUSY breaking of ®.
Now we approximately canonically normalize ® by ® = ®/+/2¢,, which leads to

1~
A X4 oX ( — V26X )
\/202 2 462 20

s 1y !
=G+ aX + 53X+ 4 (X—XO) , (3.107)

K_C()+

where X = ® + ®. In terms of the original parameters, these new parameters are

4 _ cs® 2
R C3 R C1 = T6c,2 R Cy =~ C3 33
Cop =Coh— ——, C] = Cp=—————, Xog=— —4 /2 ——).
0 0 256043’ 1 , <C 3C§>7 4 4( ﬁ)27 0 404 ( 2 804)
27 Bey 8cy
(3.108)

It is more appropriate to impose the consistent truncation condition on the canonically
normalized field. The condition |X| < 1 is replaced with

))?0’ <1 (3.109)

Basically, this tells us that |c3| should be much smaller than |c4|. If it is the case, differences
between ¢, and ¢, for lower n are smaller because it involves higher order of X,. One
might hope that the VEV X, can be suppressed accidentally by cancellation between c,
and 3c3?/8cy (see eq. (3.108)). But this is not the case because ¢, is negative for positive
stabilizing mass, while ¢, is positive for the physically viable kinetic term. The constant
term ¢, (and also the linear term ¢; X if one wishes) can be transferred to the superpotential,
W — e%/21¥. Thus, the generic Kihler potential with the only requirement (3.109) is now
almost the same form as eq. (3.18) with identification ¢ = ¢ and ( = —4¢;. This means
that in the parametrization of eq. (3.15), higher order terms are understood to be expanded
around )?0 like é},()? — )?0)5 + ég(f( — XO)G +.... We summarize the meaning of parameters
in Table 3.1.

Table 3.1: Interpretation of parameters in the Kéhler potential (3.105).
co | normalization of the superpotential
c1 | magnitude of Kg

¢ | normalization of the field

cs | deviation of the VEV from the origin
¢4 | strength of stabilization

3.4.2 Logarithmic Kahler potential
Consider the following Kahler potential,

K:—aln(d0+d1X—|—d2X2—|—d3X3—l—d4X4—l—...), (3110)
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where dots represent higher order terms. Similarly to the previous case, we transform the
d; X? term into the shift of the center of stabilization. Then we separate out the overall
constant in the logarithm. After that we normalize X such that the linear term has the
coefficient 1/+y/a. It becomes of the form

e dy S A .
K =—alhn <1+%X+d2x2+d—§<x—xo> > —alnd,, (3.111)
a a
with
~ \/a (dl - LSQ) ~ \/—dg (dl )
X = X, K= 16:‘4 , (3.112)
dO T 256d43 4d4 (do 256d )
1 dy — 352 (dy — 5 dy (dy — 255)
~ ds ~ 27 8y 0~ 256d4 ~ 4\ %0 ™ 2564,
do :do - y dg == 5 d4 - . (3113)
256d,” 2\ XY
(dl 16d4 ) (dl 16d4 )

Consistent truncation of higher order terms requires
’)?0‘ <1 (3.114)

The Kéhler potential (3.111) looks similar to eq. (3.23) after we transfer the constant

term —alnc/lz) to the superpotential by Kahler transformation as W — c/l; a/QW. However,
there is a notable difference. The c/l;X 2 term is a new element. In the case of @ = 3 in
particular, this term drastically changes the structure of the potential breaking the no-scale
cancellation K®*®KsKg — 3 = 0. Also, )/(\'0, even small, can not be neglected in contrast
to the minimal Kéhler case (Subsection 3.4.1). So, instead of quantifying bearable amount
of these parameters to keep the results of undeformed model (3.50), we establish necessary
conditions for viable large field inflationary model.

The Kahler metric and the key combination K % g 3 ; — 3 evaluated at X = )?0 are

1 — 2ady + 2y/ads Xo + 2ady X2

K35 = it o 3 ; (3.115)
(5520259
~ ~ o~ ~2 ~
33 -3 6ad da — 6)/ads X 4a? — 6a)d, X2
K g, — g — oot bads + (= 6)adoXy + (0" — Ga)dy Xo (3.116)
1 — 2ady + 2v/ady Xy + 2ady X2
For the case of a = 3, these expressions reduce to
~ ~ o~ ~D o~
1 — 6dy + 2v/3dy X + 6dy X2
Ko = V3dao + 6y Xf (3.117)

~ ~ ~\2
(1 + 5 Xo + d2X3>
_ 6> (3+ V3%, + 34, X3)
K*Kz;K- —3 = - — ——. (3.118)
1 — 6dy + 2v/3dy X + 6dy X2
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The Kahler metric must be positive to avoid the negative norm states, while the latter
combination is the coefficient of the |[W|? term and should be positive for large field inflation.

The contour plot of these constraints Kzz > 0 and K ‘NA)K@K% — 3 > 0 on the parameters

c?z and )/(\'0 is shown in Fig. 3.15. The colored regions are excluded. In the blue region, the
sign of the kinetic term is unphysical, and the three contours correspond to a = 3,4, and 5
from inside to outside. In the red region, the coefficient of the superpotential squared term
is negative, and the three contours correspond to a = 3,4, and 5 from outside to inside.

deformation parameter d,

-10 05 00 05 10
VEV shift X,

Figure 3.15: Constraints on the deformation parameters dg and XO in the Kéhler potential (3.111).
The horizontal axis is Xo, and the vertical axis is dg The theory is plagued by the ghost state
(K3z < 0) and hence excluded in the blue region. Large field inflation is improbable (K ‘M)K a5 —
3 < 0) in the red region. In the blue region, both constraints are not satisfied. For the blue reglon
the three contours correspond to a = 3,4, and 5 from inside to outside, while for the red region,
the three contours correspond to a = 3,4, and 5 from outside to inside.

Our undeformed model in the previous Sections sits at the origin (c;l; = X, = 0) in
Fig. 3.15. Small deviation away from the origin destroys the structure of the Kahler potential
(the no-scale structure for a = 3) and changes the theory significantly entering the blue or

red region in the Figure. For example, —% + i <dy < % is required to be in the white

region at )?0 = 0. Thus, the logarithmic models with quartic stabilization term (3.50) should
be regarded as tuned models. Note that an infinitesimal negative 672 leads to the negative
|W|? term in the large field region for generic superpotentials in the case of the no-scale
type models (a = 3). This does not immediately lead to the conclusion that such cases are
excluded for inflationary application. This is because it is enough that the potential has a
suitable form only in the field region correspon(/i\ing to 50 to 60 e-foldings. Another comment
is that there is a narrow allowed band near d, ~ 0. This can be understood as follows.
When we set dy = 0 in the Kéhler potential (3.111), the shift of X by X does not generate
quadratic or cubic term in X and does not change the coefficient of the linear and quartic
term. It changes the constant term, but it can be again absorbed by the superpotential by
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Kahler transformation. Thus, the Kéahler potential keeps the same form but now without
)A(O. One should keep track of the field redefinition since it also change the functional form
of the superpotential. However, we can not reliably shift the X when the shift is large as
we have discussed at the beginning of this Section. That is why we restrict the domain of

)?0 to ‘)A(O‘ < 1 in Figure 3.15. We summarize the meanings of parameters in the Kéahler
potential (3.110) in Table 3.2.

Table 3.2: Interpretation of parameters in the Kéhler potential (3.110).
dy | normalization of the superpotential
dy | normalization of the field

do | deformation of the Kéhler structure
ds | deviation of the VEV from the origin
dy | strength of stabilization

3.5 Matter coupling and inflaton decay

We have established that inflation can occur with a single chiral superfield in supergravity,
without the aid of other superfields. But we have to consider other matter superfields
possibly present in the theory at the end of the day. After all, there should be Standard
Model particle contents, and some SUSY breaking fields in our supergravity framework.
These matter are not introduced to realize inflation itself, but to describe our real world
and a realistic cosmological history. After inflation, the inflaton has to decay into particles
to reheat the universe. The energy stored in the inflaton field is converted to kinetic and
potential energy of lighter particles and finally to thermal energy of radiation. It is the
beginning of the hot Big-Bang universe. So, let us consider coupling of the inflaton sector to
other matter sector in the theory. If they are decoupled at the global SUSY level, coupling
among various fields with gravitational strength are generically induced in supergravity. We
consider some examples of coupling, and study potential effects of inflaton on other sectors
and vice versa.

For simplicity, we consider the minimal coupling between the inflaton and other sectors
in the superpotential,

W(®,¢") = WiD(d) + W) (i), (3.119)

where Wf{(®) and Wo™(¢?) are the superpotentials of the inflaton ® and other fields col-
lectively denoted by ¢*. This separation is preserved in the renormalization group running
by the non-renormalization theorem [178, 179, 180].
First, consider the “minimal” inflaton Kéhler potential (3.15) and its minimal coupling
to other superfields,
P — 1 = - J—
K(®,¢',9,¢) =5 (®+ @) — % (®+ @ —20,)" + KOW(¢i, &), (3.120)
where K™ (¢, $7) is the Kihler potential of other superfields. This separation in the Kéhler
potential is not ensured by any symmetrical reasons. For example, there may be shift
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symmetric terms like £(® + ®)]¢!|?, which affects the following results. The choice of the
minimal Kahler potential is based on simplicity, and we take it just as an example. The
situation may be realized accidentally at some renormalization scale (hopefully at the energy
scale of inflation or reheating) during renormalization group running. An advantage of the
minimal Kahler potential is that there is no kinetic mixing between ® and ¢'.

The scalar potential following from eqgs. (3.119) and (3.120) is

V = 20K (ywq)\? +20) (WWg + WWe) + K™ D,WD;W + (492 — 3) \WP) :
(3.121)

Derivatives of ® or ¢* imply they are the quantity depending solely on each sector, e.g. Wg =
W and K; = K™ because of the assumption of minimal coupling. Beware that D;W =
W, + K;W contains W) We have substituted ® + ® = 2®,, but it should be kept in mind
that the stabilization becomes loose when the SUSY breaking due to inflaton, which drives
inflationary expansion of spacetime, becomes small. If the minimum where the inflaton
reaches at the end of inflation is supersymmetric, both the real and imaginary components
of the inflaton have the same mass. In other cases, it has to be checked that the minimum is
stable in both directions. We consider the effective theory after integrating out heavier SUSY
preserving fields than inflaton. If lighter fields than the inflaton are present, its displacement
from the low-energy values may cause moduli problem. But they acquire Hubble induced
masses. The Hubble induced mass squared m? of ¢' is, assuming the minimal K#hler potential
for ¢,
»  3H 2

m* ~ 107 — 3 (3.122)
where we have used the Friedmann equation 3H? = V ~ ¢?%3(4®2 —3)|W|2. We take 492 — 3
positive to have the positive |[W|? term, but if we increase it so that 4®2 —3 > 3, the Hubble
induced mass becomes smaller than the Hubble scale. When the Hubble-induced mass is
larger than the Hubble scale, the otherwise light fields are frozen near the origin.

These arguments are somewhat rough, so let us look at eq. (3.121) more carefully. A
term proportional to |[W|? is present in the KW D,WD;W term in the form K;K‘|W|>.
This kind of term is in quite contrast to the framework based on the stabilizer superfield S
(Section 2.3) in which W9 o S vanishes during inflation. If there are fields whose VEVs
are of order the Planck scale, this term affects the inflationary dynamics since it is the same
order of the dominant term in the inflaton potential, (4®3 — 3)|WW|?. But the VEVs of fields
are expected to be suppressed by the Hubble induced masses, so the inflaton potential is not
affected by the term. If it is a good approximation to regard the last term in eq. (3.121)
as the dominant contribution to the inflaton potential, |Wg| should be small compared to
|W| during inflation because otherwise the slow-roll condition is not satisfied. So, the second
term in eq. (3.121) does not have a large effect. These remarks are less applicable when
the scale of the coupled sector are not much below the inflation scale. In particular, SUSY
breaking sector may have not small VEVs and F-term, K, # 0 and/or W, # 0. Moreover,
we can not integrate out SUSY breaking sector and keep SUSY description for the resultant
effective theory. When the SUSY breaking scale is larger than the inflation scale, it can
significantly affect the inflationary potential e.g. through the terms 2®oRe(W ™MW g) and
Re(D,W K*W ) This feature that SUSY breaking scale higher than the inflation scale
spoils inflationary dynamics is similar to the case of the framework using the stabilizer
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superfield [192, 193]. Some aspects of effects of SUSY breaking sector on the inflaton sector
are easily understood from the superconformal approach [193]. The scalar potential is scaled
when we move from Jordan frame to Einstein frame by a conformal factor. The conformal
factor is a power of the frame function (2/3) = e~%/3. When this factor contains inflaton, the
inflaton potential can be drastically (exponentially) changed via the rescaling of the SUSY
breaking term. In our case, the Kahler potential is shift symmetric and does not depend
on the inflaton, and there are no effects of the conformal rescaling in such cases [193]. One
still have to examine direct couplings already present in the Jordan frame, as we have done
above.

One of the distinguishing features of our framework is that the first derivative of the
Kahler potential with respect to the inflaton Kg is not suppressed. This implies that the
particle production from inflaton decay is not suppressed [194, 195]. The reheating is effi-
cient, but production of unwanted long-lived particle, gravitino, is also not suppressed. The
two-body decay rate into scalars or spinors, and the three-body decay rate into three scalars
or a scalar plus two spinors are [195]

2,3 2
F(2—b0dy) ~ (I)ngmX F(3—b0dy) NéomX’y‘

~ ~_— X" 3.123
27?Mé ’ 647T3Mé ’ ( )

where m and m, are the mass of the final state particles and the inflaton, and y is the
relevant trilinear coupling constant (Yukawa coupling). When there are heavy fields such
as SUSY breaking field or right-handed neutrinos, decay into these particles are enhanced.
Concerning three-body decay, the top Yukawa coupling is the largest in the visible sector
and it is of order one. The three-body decay rate can be regarded as the lower bound of the
decay rate.

In passing, let us introduce a direct coupling between inflaton and matter fields like

W = ¢(® — ®,)AB, (3.124)

where ¢ is the coupling constant, and A and B are chiral superfields such as Higgses H, and
H, or right-handed neutrinos N. The coupling constant ¢ is bounded as eq. (2.40), so the

decay rate [(direct) ~ 024% is also bounded from above. Combining with the lower bound in the
1/4

previous paragraph, we can constrain the reheating temperature Ty = (#((]TR)) VMgTD

as

3 1
8 M 2 - 13 My 2
2% 10°GeV (1o )’ S Th < 7x 10%GeV (12— ) (3.125)

where we took g, = 240 and ®, = 1. This range of the reheating temperature is consistent
with thermal leptogenesis [196].

Corresponding to the anomaly of the shift symmetry, the following coupling may be
present [197]

1
1 /d2®cq)WAWA + He., (3.126)

where c is the real coupling constant, and W* is a gauge field strength chiral superfield. The
shift in the imaginary direction generates a total derivative, and the symmetry is broken
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non-perturbatively. The decay rate into gauge bosons and gauginos through this coupling is

2,3
[(sauge) ~ Ng|c| N

~ B x 12
1287 M2’ (3.127)

where N, is the number of generators of the gauge algebra. If the imaginary part continues
to be a mass eigenstate at the time of decay, or mixing with the real part is ineffective,
the inflaton can not decay through super-Weyl-Kahler and sigma model anomaly-induced
channel [198; 199] into gauge bosons and gauginos. Whether it continues to be a mass
eigenstate depends on phases in the superpotential. When it becomes no longer a mass
eigenstate and mix with the real part, oscillation time scale mg /12 should be compared to the
decay time scale I'"!. Here, oscillation time scale is determined by mass splitting and it is
due to SUSY breaking, hence the gravitino mass mg/, = eX/2|W| is relevant. For the inflaton
whose decay is due to Planck-suppressed operators and inflaton mass of O(10'*) GeV, the
typical threshold for gravitino mass above which mixing is effective is O(1) GeV [200, 164].
The super-Weyl-Kahler and sigma model anomaly-induced decay rate depends on the first
derivative of the Ké&hler potential with respect to the parent particle [199, 195], so the rate
from the imaginary part (inflaton) vanishes. This feature is same for all shift symmetric
models [39, 164].

Let us see whether inflaton decay into gravitinos are kinematically possible or not for
models in Section 3.1 which break SUSY after inflation. In both of the quadratic mod-
els (3.9) and (3.31) for the polynomial Kéhler potential (3.15) and logarithmic one (3.23)
with a = 4, gravitino mass ms/, is related to the inflaton mass m, as ms,; = 12 + \/§\mx
The origin of the sign options is two solutions of the condition V' = 0 with respect to the
constant term in the superpotential. Choosing the upper sign results in the heavier gravitino
into which inflaton cannot decay. On the other hand, the lower sign results in the lighter
gravitino into which inflaton can decay. Similarly, in the case of the model of the Starobinsky
potential (3.12) with polynomial Kéhler potential, inflaton decays into gravitinos depending
on the choice of the parameter b. In the case of the Kéhler potential (3.34) and the super-
potential (3.40), which is another realization of the Starobinsky potential, the inflaton mass
is given by eq. (3.43) while the gravitino mass is given by (|co| + 2v/2|c3|®0)?/8P3 where we
have used Re(cs3¢y) = Im(c3cy) < 0 (see the texts after eq. (3.40)). In this case, the decay is
forbidden. For the Starobinsky-like model of the Kahler potential (3.34) with &5 = 0 and
the superpotential (3.44), the inflaton mass scale squared is given by Re(c3¢y) while that for
gravitino is given by |cy|®. Since |c3] has to be much smaller than |c| in this model to ob-
tain sufficiently flat Starobinsky-like potential, the gravitino mass is larger than the inflaton
mass. Again the decay is impossible. Thus, inflaton can decay in some models but cannot
in other models.

Let us consider the case in which the inflaton breaks SUSY also after inflation, G6G® =
3. In such a case, gravitino is copiously pair-produced by inflaton decay, if kinematically
possible, with the rate [201, 202]

mS> m3

F(gravitino) ~ X

o M
- 96mm3,, MG 6mME

(3.128)

where we have substituted ms,, ~ m,/4 in the last equality since gravitino mass ms/, is
of the order the inflation scale when the inflaton breaks SUSY after inflation, but it is less
than the half of the inflaton mass when the decay is kinematically possible. Actually, the
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above rate (3.128) is obtained using the known result with approximation m, > ms/,, but
the order of magnitude is expected to be same in the case m, ~ mg/,. It is just the typical
Planck-suppressed decay rate. Thus, gravitino becomes a main component of the universe.
Since the decay rate of gravitino is comparable to that of inflaton, gravitino decays shortly.
The lightest supersymmetric particle (LSP) are copiously produced by the gravitino decay,
and its abundance is way too large to be consistent with the observed dark matter abundance.
R-parity breaking or thermal inflation [176] is needed to decrease the LSP abundance.

On the other hand, if inflaton preserves SUSY at the vacuum, gravitino production
is less significant, but they are still produced by mixing effects with the SUSY breaking
field [203, 204]. The rate in such a case is given by

eff)|2, 5
[ (gravitino) G s (3.129)
288mm2 , M2’

where the effective coupling constant Qieﬂ) [204, 205] is evaluated in our minimal coupling
case as

2
2
|Q§fff>|2:36<1>3< Tap )2> : (3.130)

2 _ 2
my (mX m;

where m, is the mass of the SUSY breaking field z. When we introduce non-minimal coupling
like £(® + ®)|¢'|?, these decay rates change, but the above rates are thought to be the
lower bound of decay rates since unless cancellation occurs the order of magnitude does not
decrease. The gravitino yield, }g(;i;red) = ny/2/s where ngy and s are the gravitino number
density and the entropy density, following from the above decay rate into gravitinos is

1 7

: 240 \7 /1 B\’ /108GeV\2 /1 m, \*
Y(dlrect) ~ 9 10—36 =0 - <—z> 3.131
3/2 X 9. (Tr) Crot 1 my 105GeV/ '’ ( )

where we have defined the total decay rate of inflaton as I'y,; = C?j%. The thermal gravitino
vield is known to be [206, 207, 208, 209, 210]

_ T
ythermal) o qg-13 (T R 132
2 AN 5, ) Viogev ) (3.132)

where m; is the gluino mass at zero temperature. Thus, the thermal gravitino is dominant
over the direct decay products from inflaton in our current setup. From big-bang nucleosyn-
thesis (BBN), the reheating temperature (gravitino yield) is constrained as Tx < 10°GeV ~
10°GeV (Y32 S 10717 ~ 107'?) depending on the gravitino mass [210]. For complete analy-
sis, gravitino production from the SUSY breaking sector should also be taken into account,
but we do not go into these details. See Refs. [211, 212, 200, 164]. Also, when gravitino is
heavier than about 30TeV, constraints on gravitino decay itself is absent, but the LSP abun-
dance from gravitino decay is constrained not to exceed the observed dark matter abundance,
Y — 5 % 10723 (108GeV /mepw ), where CDM denotes cold dark matter. The LSP dark
matter can pair-annihilate to decrease its number, so Yigp is at most of order of Y5/, if order
one LSPs are produced from one gravitino. The actual value of Y;gp is model-dependent, so
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we stop our general discussion here. The bottom line is that the low-energy SUSY break-
ing scenario m, > ms/, in our single superfield inflation is consistent with (or saying more
conservatively, not immediately excluded by) these observational constraints.

We have also used the logarithmic Kéhler potential for single superfield inflation, so let
us next consider the following coupling,

K(®,¢',@,¢/) = —3In (1+% (@+ @)+

This again leads to no kinetic mixing, and we can easily write down the scalar potential,

Ol

(®+ cI>)4> + KO (g ). (3.133)

V=K (\Wq>]2 — V3 (WWs + W) + K("th)ﬁDiWD;W) . (3.134)

We have again substitute the expectation value of the real part ® + ® = 0. At the end of
inflation, the stabilization is loosened. If we impose the phase alignment condition (Sub-
section 3.2) on the inflaton superpotential, W and its conjugate in the second term reduces
to W™ and its conjugate. If we further impose it on the full superpotential, the second
term —v/3 (WW&, + WWq,) vanishes. The Hubble induced mass for fields ¢* whose Kéhler

potential is minimal is
m? ~ 3H? + WD, (3.135)

where we have used Friedmann equation 3H* = V ~ |[W3|?, and we have added the term
W D)2 omitted in Ref. [164]. The fields are fixed near the origin during inflation. Various
features are qualitatively similar to the minimal Kéahler case above except the absence of the
last [W]? term in eq. (3.121). For example, Ky ~ —+/3 is not suppressed unless its value
changes much at the end of inflation. Various partial decay rates are the same order as the
minimal Kéhler case. The effective coupling (3.129) for the rate into a pair of gravitinos is

2
(eff) |2 MM
GED|" ~ 27 (mx (2 — m%)) . (3.136)

This is the same order as eq. (3.130), and the gravitino is mainly produced thermally.
Finally, consider the minimal coupling inside the logarithm,

P s Ty 1 A F\4 _ ploth) (i 77
K(®,¢',®,¢) = 31n(1+\/§(<13+@)+9((19+<1>) J (¢>,¢)), (3.137)

where JCM (g7, ¢/) is a Hermitian kinetic function. This is the form of conformal or geomet-
rical sequestering [213]. The Kéhler metric and its inverse are obtained as

1 1 —LJ ; Q/3+1J.00 LJi
o1 vii i _ R ONE i
B =tay <—¢%Ji (9/3)Jij+%JiJj>’ " (9/3)( v J”)’ (3138)

where (©/3) = e7%/3 is the frame function characterizing the original Jordan frame, indices
I, J,... run over both the inflaton ® and other fields i, j,.... Indices of the matter “Kahler
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potential” J are lowered (raised) by the “Kihler metric” .J;; (its inverse J7%). The scalar
potential is

:<Q/13)2 ((9/3 + %JZJ") Wel?> — V3 (WWs + WiWs)

1 R S e
o (sziwa, + J’W;Wq>> + Jﬂmwj) . (3.139)

Many points are qualitatively similar to the previous cases, but there are no terms propor-
tional to |W|% In particular, no coupling between |[W |2 and other fields exists. The
Hubble induced mass squared for fields ¢ is

m? ~ 2H?, (3.140)

so the field rapidly settle to the origin and fixed there. Then VEVs of fields vanish, and J;J*
term in the first line and the first term in the second line can be neglected. Again, if the
SUSY breaking scale is low enough, the inflationary dynamics is not affected.

Regarding partial decay rates, three body decay rates are suppressed by the structure
of the Kéahler potential [195, 164]. The two-body decay rate into scalars and spinors is of
the order [J;;|*m?/Mg. The holomorphic bilinear term Ji;¢'¢’ is motivated by Giudice-
Masiero mechanism to yield the effective p term [214]. The effective coupling of gravitino
pair production is

21, 2\

g0 = (|4 25| ) (3.141)
my | m? —m?
This leads to the gravitino yield of
1 3
- 240 \* [/ 1 1083GeV\2 / mgm 2

Y(dlrect) ~ 6 10—25 _ ( 3/ > 3.142
3/2 % 9+(TR) Crot My 103GeV/ '’ ( )

and again negligible compared to the thermal yield (3.132).

Before concluding this Section, we briefly discuss possible non-minimal couplings like
E(® + @)|¢')? and \(P + ®)2|4|*>. The former coupling enhance the partial decay rate into a
pair of ¢ particles. If it is a right-handed (s)neutrino, it may help leptogenesis [196] via its
decay. If it is the SUSY breaking field, it enhances gravitino production [201, 202, 203, 204].
The latter coupling more strongly stabilize the ¢ field during inflation provided A < 0 in
the case of the minimal Kahler potential and A > 0 in the case of the logarithmic Kahler
potential.

We have seen in this Section that fields are stabilized near the origin by the Hubble
induced masses. They do not affect the inflaton potential unless SUSY breaking scale is
comparable or higher than the inflation scale. In such a case, SUSY breaking effects manifest
itself as W and W,. Actually, W is not necessarily related to SUSY breaking scale in de
Sitter spacetime, and other fields that makes W large if present should be also taken into
account.

3.6 Generalization to charged superfields: MSSM Higgs inflation

Now that we have studied basic features, stabilization mechanism, and inflationary dynamics
of the sGoldstino inflation in supergravity, let us explore some generalizations of our results.
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All of the above examinations are based on the assumption that the inflaton is a gauge
singlet. We now consider an inflaton charged under some symmetries. Examples of such
inflationary models include Higgs inflation [129], inflection point inflation in an MSSM flat
direction [215], and D-term chaotic inflation [71]. For Higgs inflation, the Higgs field is
charged under SU(2). For MSSM-flat-direction inflation, the flat direction is gauge invariant
combination of charged fields. For D-term chaotic inflation, inflaton is a combination of
some charged fields. Among these inflationary models, Higgs inflation is embedded into
supergravity with the aid of a stabilizer superfield, which can be naturally identified with
the singlet in NMSSM [134, 113, 135, 114, 136]. So, let us study the possibility to remove
the singlet stabilizer. We thus consider Higgs inflation in MSSM rather than in NMSSM.

We first remember some necessary conditions to reproduce appropriate low-energy elec-
troweak theory after Higgs inflation. The inflaton should settle to SUSY preserving vacuum
after inflation since SUSY breaking is supposed to happen in a hidden sector. The mass and
VEV of the Higgs have to vanish approximately after inflation since these are electroweak
scale and supposed to be much lower than the inflation scale.

As we have discussed in Subsection 2.3.4, all the known models of Higgs inflation in super-
gravity are based on some non-minimal Kahler potential. We will also consider non-minimal
Kéhler potentials to try to embed Higgs inflation in MSSM, while we take the superpotential
same as that in MSSM with a constant to cancel the cosmological constant,

W = puH,H, + W,. (3.143)

The possibility of Higgs inflation in MSSM was discussed by Einhorn and Jones for log-
arithmic K&hler potential [134] and by Ben-Dayan and Einhorn for minimal Kéhler poten-
tial [136]. Tt was found that Higgs inflation does not occur in both cases since the potential
becomes negative. We revisit MSSM Higgs inflation in supergravity, with a stabilization
term in the Kahler potential.

The formulations and results in the previous Sections can not be straightforwardly reused
in the case of charged fields. For example, one will immediately face troubles in using the
stabilization terms in egs. (3.15) and (3.23) with a charged field C. The combination

C(C+C—Cy)t

is not invariant with respect to the symmetry under which C' is charged unless the repre-
sentation of C' is equivalent to its complex conjugate representation. Moreover, the constant
Cp must vanish unless C' is a singlet. The shift symmetry has been generalized in the litera-
ture [107, 136], whose results are applicable to charged fields. One way is as follows, [130]

H,— H,+c, Hy — H,; —io4¢, (3.144)
where ¢ is a constant SU(2) doublet, and o5 is the Pauli matrix. A combination,
H=H,—ioyH,, (3.145)

transforms coherently as a doublet 2. The gauge invariant can be formed as HH. This
is possible because the fundamental representation 2 of SU(2) is equivalent to its complex
conjugate representation 2. Note that this H is not a (left) chiral superfield (in the narrow
sense; it is a sum of left chiral (chiral) and right chiral (anti-chiral) superfields). Another
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way to implement a shift symmetry is [107, 133] *
(H,Hy)" — (H,Hy)" + ic, (3.148)

where n is an integer, and c is a constant. The doublets are contracted as usual: it is more
precisely written as H,iocoHy, = HfH; — H)HS. We can generalize this further by replacing
(H,H;)" with an arbitrary holomorphic function J(—H,H,;) of —H,H,. If we take c real,
the invariant combination is the real part, ReJ(—H,H,). The two shift symmetries (3.144)
and (3.148) are not compatible with each other.

Because we do not want Higgs fields to have larger VEVs than the electroweak scale,
we are led to the stabilization at the origin. We can not have gauge invariants linear in
Higgs fields, so it is non-trivial to have nonzero first derivatives of the Kéhler potential so
that the condition (3.1), i.e. KYK,;Kj, is satisfied. Notice the fact that the no-scale type
Kéhler potential (3.23) or (3.50) does not require nonzero VEVs to satisfy the condition
(3.1). One may consider to use a no-scale modulus 7' to realize K'7 Ky K¢ = 3 so that the
superpotential squared terms cancel. But if it preserves SUSY at the inflation scale, which
we suppose to describe inflation in the supersymmetry language, the negative superpotential
terms of the inflaton sector is regenerated after one introduce the inflaton sector. That is,
the the supersymmetrically stabilized Kéhler modulus shifts so that its F-term vanishes,
and it destroys the no-scale cancellation. This fact was pointed out in Ref. [192]. Also, if
one introduce another superfield at all, the NMSSM model [134, 113, 135, 114, 136] is more
elegant.

Although we can not use linear Higgs terms since it breaks the gauge symmetry, we
can obtain a nonzero first derivative of the Kahler potential using the inflaton value during
inflation if we take a suitable Kahler potential. Consider the following Kahler potential,

K =|H,|* + |Ha|* + ¢ (J(H,Hy) + J(H,Hy))

+ % (J(H,Hy) + J(H,Hy))" — g (J(H,H,) + J(H,Hy))" (3.149)
where ¢ and ¢ are real constants, and J(X) is an arbitrary holomorphic function of X. We
will consider a class of function J(H,H,) that is much larger than the canonical terms |H,|*
and |Hy|? in the field domain corresponding to inflation. Thus, this Kahler potential has an
approximate shift symmetry of (the generalized version of) the second type (3.148).

Neglecting the canonical terms and defining a composite chiral superfield ® = J(H,H,),
the above Kéahler potential becomes

K>~c(®+®)+ (0 + P)* — 2(d+ D)~ (3.150)

H, — H, NN 3.146

- SIH T (3.146)
UQE

H H, —_— 3.147

a— Hq+ 2|Hu|20+ ) ( )

where dots denote higher order terms in the transformation parameter ¢, and they can be solved order by order.
This highly non-linear transformation forbids the remaining building blocks, |H,|?> and |Hg4|?, of gauge invariant
combinations in the Kéhler potential. We do not want to forbid these terms exactly, but we want the symmetry to
appear approximately at a high energy scale as an “accidental” symmetry.
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CHAPTER 3. INFLATION IN SUPERGRAVITY WITH A SINGLE CHIRAL SUPERFIELD

This is the same as eq. (3.18) for single superfield models of inflation! In terms of @, the
superpotential is

W = uJ H(®) + W, (3.151)

where J~! is the inverse function of the arbitrary holomorphic function .J but not the recip-
rocal of the value of J.

Let us first consider a simple example, ® = J(X) = xX. Its inverse is X = J }(®) =
k~1®. Plugging this into the MSSM superpotential (3.143), it becomes

W = ps~'® 4+ W, (3.152)

This is the superpotential of the Polonyi model [216]. The scalar potential is

2
B (@ = 3) (X 4 i, V2 _ 3(RelT)?
V—\K ((c 3)< \/5+Imwo> + (1 4 cReWp) 3(ReW0)>
4 (195 + 0 e -5 (3153
o K 2 0 0 |> .

where Wy = Wy(u/k)™!, and we have required that it is real in the second equality. Oth-
erwise, the Higgs inflation ends with the inflationary scale VEV, and the electroweak scale
becomes too large.

At this stage, we comment on the relation between the electroweak scale and the inflation
scale. For the above Kéhler potential (3.149) with J(X) = kX, the holomorphic term
in the logarithm induces a contribution to the effective p term through Giudice-Masiero
mechanism [214]. The mechanism is tightly related to SUSY breaking. The effective u
term contributions originates from the F-term of the SUSY breaking field z and the F-term
of the compensator (in the superconformal formalism) or the auxiliary field of the gravity
supermultiplet (in the curved superspace formalism). Combining it with the original p term,
the effective p term is,

Ut = U+ KudWO — KudZKEZDZW (3154)

where we have used (W) = W,. To reproduce the electroweak scale, we have to satisfy the
following constraint among the fieg, and soft SUSY breaking masses m3; , m%[d, and B g

|m%1d - m%‘lu| 2

2 2
N T

(3.155)

2 _
mZ_

where

2Blueff
myy, + mi, + 2| per]*

sin® 28 = (3.156)
That is, we reduce the u-problem by taking i as large as the inflation scale but enhance the
little hierarchy problem to a hierarchy problem. This fine-tuning is the necessary cost we
have to pay to realize F-term Higgs inflation in MSSM.

We assume that couplings between the inflaton superfield and the SUSY breaking field
respect the shift symmetry allowing terms like 2(® + @), [2|>(® + ®), and [z|*(® + ®)? ete.
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3.6. GENERALIZATION TO CHARGED SUPERFIELDS: MSSM HIGGS INFLATION

The first term induces the kinetic mixing between z and ®, so it should be suppressed to
some extent. If we take parameters so that these terms do not change the value of ® + ®
much during inflation, its supersymmetric effects (e.g. change of field normalization) on the
SUSY breaking field z is negligible aside from the above mentioned kinetic mixing effect.
Similarly, the effects from the SUSY breaking field to the non-inflaton is negligible provided
that the VEV of z is suppressed. On the other hand, these fields give masses to each other
vie their SUSY breaking F-terms helping stabilization of each field. Because of the shift
symmetry, the inflaton potential is not affected as far as the value of ® + ® is suppressed
enough. In contrast, these couplings give us some freedom to satisfy the phenomenological
constraint (3.155) at the vacuum. So, we just assume, at the current level of investigation,
that it is satisfied, and continue further to explore possibilities of MSSM Higgs inflation.

We need to cancel the cosmological constant at the vacuum, and it implies the SUSY
breaking scale is the same as W, and hence the inflation scale. So, we can not simply neglect
the SUSY breaking sector. A complete analysis involves the dynamics of the SUSY breaking
field, but it depends on the SUSY breaking model. One may want to take advantage of the
nilpotent field to eliminate the dynamical scalar z from the theory (see Section 2.3.3). But
in our case, inflaton also breaks SUSY during inflation, and the consistency of the nilpotency
condition only on z is doubtful. For simplicity, we add the following terms to the Kéahler
potential and the superpotential,

AK =|z|> - &|z|*, (3.157)
AW =lz, (3.158)

where the ¢ term is introduced to freeze the dynamics of z near the origin. The mass of
2 is proportional to v/€. The VEV of z is inversely proportional to &, so we neglect it by
taking a large £(> 1). Thus, we have dynamical z, but it is decoupled and the results are
similar to the nilpotent case. As discussed in the previous paragraph, there may be coupling
terms between z and ®, but we assume that their effects are insignificant during inflation
because of their small VEVs ensured by the large stabilization parameters ¢ and . At the
vacuum (K ~ H, ~ H, ~ 0), the condition V' = 0 implies |I|* ~ 3W} = 3u?/c*k?. In our
approximation, the W,W term or its conjugate is absent since it is proportional to K or its
conjugate but they in turn are proportional to z or z. So we have to add

AV = B KW, + K,W|? = X|I]? = 3" |Wy|?. (3.159)

With this uplift, the potential (3.153) becomes

vz)ﬁ

K

2 ((c2 - 3)’%2 +(1+ CWO)2) . (3.160)

In this expression, the cosmological constant does not vanish at the origin, but the description
in terms of ® is not valid in the small field region. In terms of H, and Hy, it is clear that it
actually vanishes. N

Although we must impose the phase alignment condition ImW, = 0 for inflaton to go to
the origin and the Z mass condition (3.155) around the origin to reproduce the electroweak
scale, It is remarkable that the simple quadratic potential for the Higgs-inflaton emerges in
MSSM. It is implied that our strategy can be more easily applied to other charged superfields
not necessarily related to the visible standard model sector.
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CHAPTER 3. INFLATION IN SUPERGRAVITY WITH A SINGLE CHIRAL SUPERFIELD

Let us consider radiative corrections to the inflaton potential.” During inflation, SUSY
must be broken. Masses of bosons and fermions typically split by the Hubble scale H. If
couplings between these supermultiplets and Higgses are not suppressed, self-energy correc-
tions to the Higgses are of order the Hubble scale H. It means that the slow-roll parameter
n is affected significantly. This ruins the inflationary scenario of the model. In the standard
case with the stabilizer superfield S, for example, SUSY breaking of S is indeed the same
scale as the Hubble scale, 3H? = V = |Ws|?. Also in our case, SUSY breaking of the inflaton
® is the same scale as the Hubble scale, 3H? =V ~ |W|* ~ |DeW|~|Wg + KW |?. Since
the couplings between the inflaton and other fields break the shift symmetry, such couplings
are supposed to be suppressed by the parameter governing the shift symmetry breaking,
which is typically the energy scale of inflation or inflaton mass scale. However, in our case,
the inflaton as the Higgses apparently has unsuppressed couplings to the MSSM sector. Ac-
tually, this is not the case if we take into canonical normalization into account. If we call
the coupling constant of the Higgs H, or H, to some particle y (e.g. Yukawa coupling), the
coupling between the particle and the inflaton & = kH,H, is scaled as y/k. Since we assume
k is large k > 1, the quantum correction is suppressed by x and the loop factor such as
(167)~*.

Let us revive the canonical terms in the Kéhler potential, and study the property of
running kinetic term. We first neglect the stabilization term and consider the remaining
part. Furthermore, we truncate the theory to the neutral sector along the lines of Refs. [134,
135, 114, 136]. We will come back to these points later.

K =[HP + [H) + ¢ (J(~HRHS) + J(~HIHS)
¢

b5 (~aEEy) + JCHTE) - (H-HE + TCHAD), (316)

The first derivatives in the K-flat direction [136] (J + J = 0) are K, = HY — cHYJ', and
H,; = H} — cH?.J'. The Kédhler metric and its inverse in the K-flat direction are

02| 7712 0z70| 7712
iy = (M H LT ) (3162
HyHa|T® 14 [Hy [T
L+ (HP A [HYP) P\ —HJHGT P 1+ [HGPLT)? '
The eigenvalues of the Kéahler metric are
L+ ([HJP + | Hy)?) | TP, and 1 (3.164)

and the corresponding eigenvectors are

(@) (@) e

respectively. In the large J limit, the latter eigenvalue becomes large, and this fact exactly
match that the theory apparently depends only on ® in the J — oo limit. So, we identify
the latter mode with the inflaton.

5 Some of the following points became clear in discussion with T. Kitahara, K. Mukaida, and M. Takimoto.
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Now, we parametrize the neutral Higgs fields as follows,
H? =hcos 3, HY =hsin e, (3.166)

where we have taken into account the fact that one phase degree of freedom is eaten by the
gauge boson (Higgs mechanism), and we take 0 < § < 7/2. The mode corresponding to ®
is

u= <sin ﬂem> h cos 3 + (cos B) hsin Be™ ~ hsin 23e™, (3.167)
and the mode perpendicular to it is
v = (cos B) hcos f — <sin ﬁe"""> hsin Be'™ ~ hcos 2. (3.168)

Let us express the K- and D-flat directions in terms of the parametrization (3.166). For
simplicity, we take J = (—xHCHY)", but other cases can be treated similarly. The stabi-
lization term has the form (k" ((—HOHY)" + (—HOHY)")* = ¢(2x™h*" sin™ 3 cos™ 3 cos na)*.
Thus, the K-flat direction in which field (approximately) does not experience the e’ factor
is

sin” B cos™ S cosna =0 (K-flat direction). (3.169)

The D-term potential

2+ 12
Vo =) (o gy

8
2 /2
—(g%gg)h‘* cos? 2, (3.170)
defines the D-flat direction,
cos2f =0 (D-flat direction). (3.171)

In the above, we have assumed that the gauge kinetic function is minimal, H gz = d4p.

The joint subspace of the K- and D-flat directions (3.169) and (3.171) is the inflaton
candidate direction, f = /4 and «a = £7/2n. Substituting these into eqgs. (3.166), (3.167),
and (3.168), we can extract the inflaton component,

, h ,
o =t _ YU wim/n HO =L prin/zn — U (3.172)

in the K- and D-flat direction. Note that v = 0 in the D-flat direction.

After the angular modes (and the charged fields) are stabilized, the inflaton is identified
with the radial mode. Substituting eq. (3.172) and J = (—xHHYJ)"™ into the eigenvalues of
the Kahler metric, they become 1 and 1+ 2n?k?"(h/2)*"~2. The kinetic term of the inflaton
is

(14 4262 (h/2)" ) ha,h = —%aﬂﬁaﬂﬁ, (3.173)

where we have defined the canonically normalized inflaton h. When the field is sufficiently
large, 4n’k®"(h/2)*=2 > 1, the canonically normalized inflaton is h ~ 2v/2x™(h/2)*".
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Taking n = 1, this is identified with the canonically normalized inflaton y = v/2Im® =
V2ImJ(—HCHY) = kh?/+/2 in eq. (3.153) justifying our previous treatment.

We now move on to the inflationary potentials originating from more generic J(—HYHY).
We can not differentiate the inverse function of an arbitrary function, and have to assume the
functional form of J. For simple choices such as a polynomial, its inverse function has poles
and branch cuts in the field space of ®. If the original function J were such a function with
poles and branch cuts, observables such as the effective gravitational coupling (or precisely
the corresponding cross sections or rates) change when the phase of the Higgs rotate 2m. The
Riemann surfaces of the Higgses would be physically inequivalent. If it could be justified,
one can obtain some holomorphic functions J~!. We do not pursue this further, and assume
a legitimate holomorphic function J. In contrast to the above discussion, poles and branch
cuts are not necessarily a problem in terms of a composite superfield ®. The inequivalent
Riemann surfaces are artifacts of field redefinition ® = J(—HYHY). This comment can be
applied to the superpotentials in Section 3.2, if we assume the singlet inflaton ® in the
Section is also originated from some composite chiral superfields.

As the next example, we take J = (kH,H,;)". The qualitative feature is the same if
we take an mn-th order polynomial which also contains terms of powers less than n if the
largest power term is dominant in the large field region. We identify the inflaton superfield
® with J = (—=kHYHY)". The inverse function is H,H,; = J~(®) = ®¥"/k. That is, the
superpotential (3.151) is

W= gqﬁ + W, (3.174)

The scalar potential is

2 1
2 n " _ T L __
V= ‘% (> —3) ((%) +2 (%) (ReWO co8 - + ImW, sin %> + |W0|2>
2 (2 wl 1 "2
PP X \" = 7 = X \"
+ ‘E c (E (E) (ReWO sm% — ImW, cos %) + e (E) ) . (3.175)

It seems that the terms in the second line blow up at the origin, but it is an artifact of invalid
extrapolation of description in terms of ® into the small field region where that in terms of
H, and H, is appropriate. The description in terms of ® is valid in the region satisfying
ck®D/m > 1. The SUSY breaking vacuum energy AV = 3|u/k|?|Wy|? is to be added to
the above potential to cancel the cosmological constant at the vacuum. We have obtained a
fractional power potential exploiting the mechanism of running kinetic term.

Next, we consider the following logarithmic Kéahler potential,

1 o
K=—-aln (1 + 7 (J(H,Hq) + J(H,Hy))
1 S
LA ) + S () J(Hqu>)4) | (3.176)
Defining a chiral superfield ® as ® = J(H,H,), it becomes K = —aln(1+(®+®)/\/a+...).

Similarly to the previous, minimal Kéhler case, we first neglect the canonical |H,|* and |Hy|?
terms. In terms of the composite chiral superfield ®, the resulting Kahler potential is the
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3.6. GENERALIZATION TO CHARGED SUPERFIELDS: MSSM HIGGS INFLATION

same as eq. (3.50). So the superpotential squared term is cancelled (a = 3) or made positive
(a > 4) because of K**KyKg = a, see eq. (3.1). The MSSM superpotential (3.143) morphs
again into eq. (3.151).

Let us take a polynomial ® = J(H,H,) = (kH,H)", or H,Hy = J~}(®) = ®¥/"/k. The
superpotential is given by eq. (3.174), W = (u/k)®Y/™ +W,. Plugging this into the potential
obtained in the previous Section, eq. (3.24), the potential becomes

2 1
a— X\ XN\ (Rl o —= T\ T
(a—3) ((ﬁ) + 2 (ﬂ) (ReWO cos o + ImW, sin 2n> + Wy

’ <¥ (%) (17 cos o — RelFy sin ;) + % (%)Z_j . (3.177)

where W, = Wo(p/k)~t. For the no-scale like case (a = 3), the first line vanishes. Let us
take n = 1 for example. The above potential reduces to

I = 3) ((%) + 2l (ﬁ) n |W0|2> n

For the case of a > 3, the potential becomes quadratic as in the previous n = 1 example for
the minimal K&hler potential. For the no-scale like case (a = 3), the non-trivial potential
vanishes and just a constant remains. When we take n > 1, the power of the leading term is
—2(n—1)/n (negative fractional; run-away) and 2/n (positive fractional) for a = 3 and a > 3
respectively. That is, the qualitative behavior of the potential for the case of the logarithmic
Kéhler potential of a > 3 is same as the counterpart for the minimal Kéahler potential. On
the other hand, the situation in the no-scale like case is worse due to the absence of the
superpotential squared term. If we take some non-trivial function J, the no-scale case may
also be able to realize positive power potential.

Actually, we should be careful about canonical normalization since exponential stretching
occurs for the logarithmic Kahler potential. Similarly to the previous exercise with the
minimal Kahler potential, we truncate the theory to the neutral sector.

(—QﬁReWO + %) .
(3.178)

K=—aln (1 + % (J(—HgHg) + J(—Fgﬁg)) - é (|1L13|2 + }Hg\z)) . (3.179)

The first derivatives in the ReJ(—H?HY) direction (“K-flat direction” [136]) are

HY — \JaH} ) (HHY) Hy — \/aHyJ (HH])
5 Kd = )
(€2/3) (€2/3)

where /3 denotes the argument of the logarithm, /3 = e %/3. The Kihler metric in the
K-flat direction is

1 1 1 .
K.=—/|1 N2 - Z ) |HY? + — (HHY +~ HOHOJ 181
=g (1 (177 = 3) 1P+ 2 (emgr + FEDT) ) (sas)
1 1 1 2
K= "2 HYH? HO J'+ HY T 182
“d«mV«”’ ) + 7 (AT + JD (3.182)
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K,z and Kg4; are obtained by exchanging u and d in these expressions. After the angular
modes (and the charged fields) are stabilized, the inflaton is identified with the radial mode.
Of the two eigenvalues of the Kahler metric, the coefficient of the kinetic term of the inflaton
is the one that grows larger in the large J limit. In the K-flat direction, the eigenvalue and
the corresponding eigenvector are

(HHSP + [HYP) 1P + 1+ & (HOHO + HIHYT )
(1 SO HP + Y1)

0 0 7/
w . (3.184)
HY + \/aH)J"

: (3.183)

The condition for neglecting canonical terms is

1 2 —
Ve (1 7 (HBHSJ’ - HgHgJ')) < |HY? + [H)P < a. (3.185)

The left inequality comes from the numerator of eq. (3.183) and the right inequality comes
from the denominator. Egs. (3.177) and (3.178) are valid in this range (3.185). We also
record the other eigenvalue and the corresponding eigenvector of the Kahler metric,

1 HY + \/aHOJ'
e, —L_O_,l (3.186)
(R + [Hg) HO + \/aHY.J'

When the function J can be approximated as a monomial during inflation, the last term
in the numerator of the eigenvalue (3.183) vanishes in the K-flat direction. In the large field
region satisfying the left inequality of eq. (3.185), and using eqgs. (3.172), the inflaton kinetic
term is approximately

n 2n—1\ 2 ~ o~
B (Qnml (h/12h)2 ) Do, h =~ —%8“h3uh. (3.187)

Integrating eq. (3.173), we can express the canonical inflaton using a hypergeometric func-
tion. Restricting ourselves to the case of n = 1, we have

~ akK 1
he~e— —ZIn(1— =h? h ~ 1 — e—V2h/ar ), 3.188
ﬂn( " >, or \/a< e ) ( )

Hence, the conformal factor (2/3)71 = eX/3 = = ¢V2h/ar blows the potential up. The descrip-
tion in terms of ® is valid in the region 5 > < h? < a. If we take k large, the exponential

deformation happens at the very large point h ~ ar /+/2 for the canonical inflaton so that the
relevant inflationary regime can be described by the composite superfield ®. In fact, when
the field is not too large, h < ar/v/2, eq. (3.188) reduces to the previous result, i ~ /{hz/\/_

Finally, let us check stability of non-inflaton scalar fields along the 1nﬂat10nary trajectory.
We first truncate it to the neutral sector, and deal with charged fields later. The real
part of the inflaton ® = J = (—xHYH9)" is stabilized by the ((® + ®)* term, while its
imaginary part plays the role of inflaton. The masses of these degrees of freedom during
inflation is more easily understood in terms of ® than in terms of h, o or . It is similar
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3.6. GENERALIZATION TO CHARGED SUPERFIELDS: MSSM HIGGS INFLATION

to the previous Sections, and the stabilized component has mass squared proportional to
the stabilization coefficient (. It can be easily made heavier than the Hubble scale during
inflation (Section 3.3).

The eigenvectors (3.184) and (3.186) for the logarithmic Kéhler potential coincide with
those for the minimal Kéhler potential, eq. (3.165), in the large filed (large J) limit. So, we
consider the mass of the non-inflaton field v in eq. (3.168). In the case of the logarithmic
Kéahler potentials, the Kahler metric and the D-term potential have the conformal factor
(©2/3). During inflation, this factor should play a subdominant role, so we set them one.
Then, the mass term of the canonically normalized v, ¥ = v/2v, in the D-term (3.170) is

1 2 12
Voo (%iﬂ) 7, (3.189)

where h? = |u|?> + v? is identified with the value of inflaton Y = h?/2v/2 during inflation.
The mass of v can be readily read off from this expression. The expression of the Hubble
parameter depends on the model, but its scale is determined by px~!. Thus, the condition
for neglecting v during inflation is roughly

2 12
Tre S # (3.190)
KR K

in the reduced Planck unit. We have used h ~ x~*/2. The right hand side of the inequal-
ity (3.190) is to be fixed to the inflationary scale, so the x can not become arbitrarily large.
This defines the upper bound on x. Combining with eq. (3.185), the inflationary trajectory
can not be arbitrarily extended.

We confirm stability of charged fields H and H;. A half of degrees of freedom are eaten
by gauge fields, so we keep only H" = H; and set H; = 0. We assume that the mass scale
of D-term is larger than that of F-term. In the D-flat direction, the D-term including the
charged Higgs mass term is

1 (g°h?
Vo =3 <92 ) | (3.191)

The condition that this mass is larger than the Hubble scale is also given by the inequal-
ity (3.190).

We have checked the conditions that other field directions than the inflaton are stable
against fluctuations perpendicular to the inflaton trajectory. When these are satisfied, our
analysis is consistent.

In conclusion, we have constructed the models of Higgs inflation in the MSSM for the
first time at the cost of giving up naturalness of the electroweak scale. The construction
in this Section can be readily applied to building of composite or running-kinetic inflaton
models not involving the MSSM Higgses where the issue on the electroweak naturalness is
irrelevant.
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Chapter 4

Conclusion

In this thesis, we have constructed the new classes of inflationary models in supergravity
without the stabilizer superfield, which does not contain the inflaton. Moreover, the partic-
ular class of models discussed in Section 3.2 can be used to embed approximately arbitrary
positive semidefinite scalar potentials for inflation into supergravity. The mechanism we
employed for stabilization of the inflaton potential utilizes the inflaton quartic term in the
Kahler potential. The quartic stabilization term ensures the positivity of the inflaton po-
tential in the large field region, and fixes the scalar superpartner of the inflaton to a certain
value making its heavy enough to decouple from the theory during inflation. We extensively
studied the effects of the stabilization term in Section 3.3 such as the deviation of the non-
inflaton scalar value, its mass, and the resultant correction to the inflaton scalar potential.
We have checked analytically and numerically that the stabilization mechanism works in-
deed. In the numerical examples, we found that the stabilization parameter ¢ of order one or
ten is enough (we used ¢ = 3/3). The mechanism respects the approximate shift symmetry
of the theory, and any terms preserving the symmetry generically appear in the effective field
theory. We discussed the naturalness and tuning issue in Section 3.4, i.e. we studied effects
of other terms allowed by the shift symmetry in the Kahler potential. For the “minimal”
Kéhler potential, no fine tuning is required provided that if the non-inflaton scalar is sta-
bilized at all. That is, perturbation to the Kahler potential or superpotential just perturbs
the kinetic terms and the scalar potential. For the no-scale type Kahler potential, on the
other hand, the theory is to be regarded as a fine tuned one, because a small perturbation to
the Kahler potential breaks cancellation among terms and drastically change the structure
of the theory. It does not mean inflation is not possible in the perturbed theory, but it just
means that one has to check again whether inflation occurs or not in the new theory. We
also briefly studied coupling of the inflaton sector and other sectors possibly present in the
theory and inflaton decay into particles in these sectors in Section 3.5. As a generalization
and application of our technique, we constructed models of Higgs inflation in MSSM in Sec-
tion 3.6. Although it requires fine-tuning, potentials of Higgses that are suitable for inflation
have been constructed in MSSM for the first time. Our approach is more easily applied for
charged or composite superfields not directly related to the MSSM sector.

Related to the tuning issue of cubic term in the logarithmic Kahler potential, one would
ask a question: “What is the origin of the stabilization term if any?” This is unanswered
in this thesis and an open question. The simplest answer is it requires no answer. That
is, the quartic term is present from the beginning at the tree-level action. There are no
practical problems, and the QFT with such a term is consistent at the same level with other
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QFT models. A more ambitious attitude is to seek a possible origin in some UV-completed
fundamental theory, but this is beyond the scope of this thesis. An intermediate answer is
that such a term can be generated integrating out heavy fields that couples to the inflaton
superfield. Although we can demonstrate that the effective quartic term as well as other
terms like quadratic or cubic terms appears from such a procedure, but we have not found
a way of coupling that improves naturalness or tuning status. So, we will not go into these
details. Interested readers are referred to Appendix C of Ref. [39].

How about predictions or falsifiability of our framework? Generally speaking, it is difficult
to pin down a particular model of inflation because of the number of inflationary observables
we have is limited. Even if we could pin down an inflationary model, it is again very
difficult to prove it is embedded in supergravity theory because the fermionic sector does
not play a major role in the inflationary context. So, it is far more difficult to distinguish
several embedding mechanisms of the inflationary model into supergravity. If we would have
infinite power to probe high-energy or microscopic physics, we could in principle exclude the
model/framework or confirm its consistency. Of course, we do not such power unfortunately.

However, if non-Gaussianity is discovered, our scenario is excluded or at least disfavored
or constrained! because the scalar superpartner ¢ of inflaton y is stabilized and inflation
is triggered effectively by a single field x. Also, in some (not all) of our models, inflaton
breaks SUSY not only during but also after inflation. Without tuning, the gravitino mass
s as high as the inflaton mass scale. This has a huge impact on particle phenomenology.
The standard lore of low-energy SUSY suppose SUSY particles are at around TeV scale for
the naturalness of Higgs mass. The mass of the Higgs, 126 GeV, implies SUSY scale may
be as high as 10 or 100 TeV. Such scales of SUSY breaking can explain the Higgs mass and
keep gauge coupling unification. The SUSY breaking scale in our scenario is much higher
than this. Because of such a high scale SUSY breaking, no SUSY particles will be found
at the LHC for our generic models in Section 3.1. On the other hand, the special class of
models in Section 3.2 does not break SUSY after the end of inflation provided the constant
in the superpotential is tuned, so the scale of SUSY breaking, which is supposed to take
place in a hidden sector, can be much lower than the inflation scale. As other examples of
promising directions, relations between our single superfield models and baryon asymmetry
of the universe, dark matter, or dark energy are interesting topics so to be studied in future.

Regarding dark energy, a work by Linde et al. [217] appeared recently in the finalizing
process of this thesis. They studied a possibility of realizing both the primordial (inflation)
and current (dark energy) accelerating expansion of the universe in our single superfield
framework. They found that the following naive guess is wrong: since some of our models,
in particular the models accommodating arbitrary positive semidefinite potentials, do not
break SUSY at the vacuum with the cosmological constant zero, it would be easy to obtain
dark energy V' ~ 107" M by an infinitesimal deformation of parameters of the theory. In
fact, when one adds a small term to the superpotential, the vacuum energy goes negative.
Increasing the effect of the term, the vacuum energy decrease more, turn to increase at some
point, and eventually cross zero to become positive. But near the zero point, deformation
of the original model is so large that SUSY breaking becomes of order of more or less the
inflaton mass scale. They pointed out that it is a manifestation of a theorem:

“a supersymmetric Minkowski vacuum without flat directions cannot be continu-
ously deformed into a non-supersymmetric vacuum.” [218]

! Decreasing the stabilization paramter ¢, multi-field dynamics may be possible.
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CHAPTER 4. CONCLUSION

Although it would be more desirable to describe both inflation and dark energy by a single
superfield, the fact that it is impossible is not really a problem. We can just add a SUSY
breaking sector to explain SUSY breaking, and assume usual fine-tuning of the cancellation
between SUSY breaking K#?|D,W|* and “gravitino mass” 3|[W|? to reproduce the tiny cos-
mological constant, as they also commented in their conclusions [217]. For more ambitious
approach to describe both inflation and dark energy, one may use nilpotent superfields. See
Subsection 2.3.3.

We point out some new possibilities. First, our technique to embed arbitrary positive
semidefinite scalar potentials in to supergravity without the stabilizer superfield is not neces-
sarily restricted to inflation. When one want to design a single field potential in supergravity,
it becomes a useful tool. Second, we have enlarged the viable domain of applicability of single
superfield inflation (sGoldstino inflation) from small field inflation to small and large field
inflation, so a new possibility naturally emerges. It might be possible to realize hybrid infla-
tion entirely relying on two scalar components of the single superfield modifying its Kahler
potential. This may deserve the name of “self-hybrid inflation”. To construct it or exclude
its possibility is another possible future work.

In conclusion, we have pioneered an entirely new branch of inflation in supergravity,
which enables us to realize inflation, in particular large field inflation, without the need for
the stabilizer superfield. We have reduced the number of degrees of freedom required for
(large field) inflation by half. Our framework is minimal in this sense, but at the same time
powerful since various kinds of scalar potentials can be realized. This is theoretically exciting
and phenomenological or cosmological consequences are to be further explored in future.
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Appendix A

Bird’s-eye Review of Supergravity

Supergravity [16, 17] (see also textbooks and reviews [40, 42, 43, 44, 41]) is the local or
gauged version of supersymmetry (SUSY) [15]. It includes gravitation as a consequence of
gauging of SUSY. We are not intended to present a self-contained and detailed review of
this large subject. Instead, we give a bird’s-eye view of some formulations of supergravity in
preparation of discussion in the subsequent Chapters.

Conformal and Poincaré supergravity

The standard supergravity is also called Poincaré supergravity, because the supergravity
symmetry group contains Poincaré group as its subgroup. The symmetry algebra is gener-
ated by the generators of translation P,, Lorentz transformation M,,, and supersymmetry
(). Corresponding to these generators, there are gauge fields, vierbein (graviton) e,*, spin
connection w,”, and gravitino . The spin connection can be fixed by imposing a constraint.

One of the standard formalism is based on curved superspace. As General Relativity can
be formulated as a deffeomorphism invariant gauge theory in curved spacetime with a local
Lorentz gauge group, Poincaré supergravity can be formulated as a deffeomorphism invariant
gauge theory in curved superspace with a local Lorentz gauge group. In short, supergravity
is General Relativity on curved superspace.

There is a formulation called conformal supergravity or superconformal tensor calculus
(see Refs. [219, 220, 221] and references therein), whose bosonic part of the symmetry group
is conformal group, a larger group containing Poincaré group. More concretely, the super-
conformal algebra is generated by the generators of dilatation D, conformal supersymmetry
or ‘S-supersymmetry’ S, U(1)r symmetry 7', and conformal boost K, in addition to those
of Poincaré supergravity. Correspondingly, there are gauge fields, b,, ¢,, A,, and f,*. The
gauge fields of S-supersymmetry ¢, and conformal boost f,* as well as Lorentz symmetry
w, are fixed by constraints. The purpose of the enhancement of the symmetry in conformal
supergravity is to describe the same physics as Poincaré supergravity more simply and ele-
gantly. These additional symmetries are “gauge fixed” to reproduce the action of Poincaré
supergravity. When one constructs an action, compensator superfields are employed to make
an original action superconformally invariant. In contrast to the formalism in curved super-
space, the superconformal approach is not based superspace, and the action is given in terms
of invariant action formulae.

The closure of the supergravity algebra off-shell requires introduction of auxiliary fields
in the supergravity multiplet. The choice of the auxiliary fields are not unique, and there
are two minimal formulations: the old-minimal [222, 223, 224] and the new-minimal [225]
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formulations.

Old-minimal supergravity

For the old-minimal choice of auxiliary field, the supergravity supermultiplet is composed of
the graviton e,”, gravitino v,, a real vector A,, and a complex scalar h. Taking the gauge
fixing of local Lorentz symmetry into account, these have 10, 16, 4, and 2 degrees of freedom
off-shell. These reduce to 2, 2, 0, and 0 on-shell. The bosonic and fermionic number of
degrees of freedom match both off- and on-shell.

The latter two, auxiliary fields have the following origin in the curved superspace for-
malism. The basic ingredients of the formalism are the vierbein superfield Ey*(x,6,6) and
the superfield of the connection of the local Lorentz symmetry ¢y 4”(z,6,0). The action
is constructed in terms of (super)geometric objects like torsion T4 = ZE4 and curva-
ture R4? = doa® + ¢p4écP. These satisfy the Bianchi identities: 274 = EPRp4 and
PR,B = 0. These superfields have too many independent components, so we put con-
straints on the torsion to reduce the number of independent components. The constraints
are T,* = " = Tyg" = T&B“ =Typ*=0 and T%B“ = 210, where a = a, &. Consistency
with these constraints and the Bianchi identities tells us that all the components of the tor-
sion and curvature are written in terms of the three Lorentz-irreducible superfields, R, G,,
and W,3,. The auxiliary field A, is the lowest component of G,,, and h is the lowest compo-
nent of R, up to a constant coefficient. The three superfields obey the following constraints
as consequences of the Bianchi identities: IR = .@Wam =0 (R and W are chiral), g’u =G,
(G, is Hermitian), 2°Gg; = DR, and 2*W,n5 = i2("Gp)p- R, Gy, and W contain Ricci
scalar, Ricci tensor, and Weyl tensor, respectively.

The minimal supergravity Lagrangian density that leads to Einstein-Hilbert Lagrangian
density as the bosonic part is (see e.g. Ref. [153] and earlier works [226, 227])

L= —3/d49E, (A1)

where F is the density of superspace [226], which is the analogue of the invariant measure
e = dete,* = /—g in supergravity. Remarkably, the action is just an integration of a
constant (times the density) over full superspace. It is convenient to rewrite this in chiral
superspace.

L=— /d2®2£372 + H.c.

—e (—%R + %e“”p" (VuGv Dtbs — 0, Dptbs) — %hh + %A“Aa> ) (A.2)
where © is the so-called new theta variable [228, 229], and & is the chiral density [228].
Variation of the auxiliary fields eliminates themselves, and the Einstein-Hilbert action and
the gravitino kinetic term remains. The equivalence between eqs. (A.1) and (A.2) can be
seen as a generalization of the formula [ d'zd'¢F = —1 [ d'zd®6F + H.c. for any Hermitian
F in global SUSY [40]. When coupled to matter, the Lagrangian density is of the following
form in superspace,

_ 1
L= / 4’026 (% (2% —8R) e "+ W + ZHABWAWB) +He, (A.3)
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where K is the Kahler potential, W is the superpotential, H 45 is the gauge kinetic function,
and W = 1(29 — 8R)e?Y Ze~?V is the field strength of gauge superfields. This Lagrangian
density in terms of component fields and details of the above arguments are found in Ref. [40].

In the conformal supergravity, the old-minimal formulation utilize a chiral compensator,
So = [z, X, h]. The gauge freedom of the conformal boost (K-gauge) is used to eliminate the
gauge field of dilatation, b, = 0. Similarly, one can eliminate the fermionic component of the
compensator supermultiplet x and set the complex scalar component z to 1 by the gauge
choice of the conformal supersymmetry (S-gauge) and dilatation/U(1)r (D- and T-gauge),
respectively. The auxiliary field in the old-minimal supergravity, A, and h, can thus be
interpreted as the gauge field of U(1)g symmetry and the auxiliary field of the chiral com-
pensator multiplet. After gauge fixing, the superconformal theory reduces to the Poincaré
one.

For example, the pure supergravity (A.2) has a superconformal form

L= 58], (A4)

This is analogous to eq. (A.1), and the matter-coupled supergravity corresponding to eq. (A.3)
is described by

3
2

1

L= =5 [SoSoe™™ ] )+ [SSW] o+ 5 [HapW WP (A.5)

New-minimal supergravity

In the case of the new-minimal supergravity, the supergravity multiplet is composed of
the graviton e,”, gravitino v,, a real vector A,, and a real two-form field a,,. The last
one only appears in the combination V), ~ €,,,,0"a”?, so this real vector is constrained
to be divergenceless, 0"V, = 0. It has three independent components. The new-minimal
supergravity has a gauged R-symmetry, and its gauge fixes a component of A,. The numbers
of degrees of freedom are thus 10, 16, 3, and 3, respectively off-shell. On-shell, these reduce
to 2, 2, 0, and 0, and the spectrum of the theory coincides with that of the old-minimal
supergravity. In fact, the component Lagrangian is given by

L =e (—%R + %EWU (VuT0 Dy — Vw0 Dids) — (24, + VH)V“> (A.6)

up to surface terms. The gauge transformation of A, — A, 4+ d,A produces only a surface
term because of the constraint 9,V*. The auxiliary fields A, and V|, vanish on-shell, and
then the Lagrangian becomes the same as that in the old-minimal one.

In curved superspace, basic superfields in the new-minimal supergravity are a chiral
superfield W,,, which contains Ricci scalar, a real linear superfield" &€, (or chiral one Z£),
which contains Ricci tensor, and a chiral superfield W, (or Wy, = i(a“”)agwﬂw), which

! Linear superfields do not appear as often as chiral and real superfields in the literature, so we here let the
reader remember the definition. These superfields are constrained ones. For example, a (left-)chiral super field ®
is characterized by Ds® = 0, and a real superfield V is characterized by V = V. A (complex) linear superfield £
is characterized by (DD + DD)L = 0, and a real linear superfield L is characterized by DDL = DDL = 0. The
operator %(DD + DD) is the chiral projection operator such that a general superfield S operated by the operator
becomes chiral (in a broad sense; the sum of chiral and anti-chiral superfields in a narrow sense) S’ = i(DDJr DD)S.
Thus, a linear superfield is such a superfield that its chiral projection vanishes. A real linear superfield contains a real
scalar C' and a divergenceless real scalar V,, as independent bosonic fields, and a Weyl spinor w and its conjugate w as
independent fermionic fields. These are four bosonic plus four fermionic degrees of freedom off-shell, which reduces
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contains Weyl tensor. The Bianchi identities imply 2, W, =0, W,, = —%.@d&m, .@@Walgﬂ, =
0, and %JV“M = %8(,3@5@7) + %Q(BWW)-

In the superconformal tensor calculus, the choice of the compensator for the new-minimal
supergravity is a real linear supermultiplet, Ly = [C,w, V,]. We can eliminate the gauge field
of dilatation b, and the spinor component of the linear compensator w by K-gauge. We
are also able to fix the real scalar component of the compensator C' to 1 by D-gauge. This
reduces the superconformal theory to the Poincaré version.

The pure supergravity Lagrangian density is expressed by [230]

e (L)) a9

where Sy is an auxiliary chiral supermultiplet in the sense that the Lagrangian density
does not depend on the value of Sy. In fact, transforming it as S, — Spe® with A chiral
supermultiplet, the variation term —[L(A + A)]p = [(linear) x (chiral)]p vanishes. This is
called “the additional gauge symmetry” [231]. Because the compensator is not chiral but
linear in the new-minimal case, the superpotential term can be incorporated in the theory
only if it is superconformal with itself. The matter-coupled general Lagrangian density is

L= § {L (ln (st ) + gRVR)] + W] + 1 {HABWAWB]F + ;1 [HRWRWR}F7 (A.9)

2 4

where Vg is a real supermultiplet which has an FI term, and f is a Hermitian function (like
Kaéhler potential) of the linear compensator and matter.

It has been proven that the matter-coupled old-minimal supergravity (A.5) is equivalent
to (can be rewritten in the language of) the matter-coupled new-minimal supergravity (A.9)
if and only if the superpotential of the old-minimal side respects R-symmetry [231]. However,
this equivalence no longer holds when one consider higher order terms in supergravity (like
terms containing Ricci scalar squared R?).

to 2 + 2 on-shell. The expansion of a real linear superfield is as follows,

L=C+ifw— il — 00"V, +.... (A7)
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Appendix B

Minimal Review of Inflation

We consider single field canonically normalized slow-roll inflation in the Einstein frame de-
scribed by the Lagrangian density

£ =75 (3R 50,006 - V(0)) (B.1)

where ¢ is the determinant of the metric, R is the Ricci scalar curvature, ¢ is the inflaton,
and V is its potential. The equations of motion for the metric (Einstein equation) and the
scalar are

1
- Ry + §QWR =T, (B.2)

=0, (V=i9"0.) = V' =0 (B3)

where R, is the Ricci tensor, T}, is the energy momentum tensor, and the prime denotes
differentiation with respect to the inflaton ¢. The energy momentum tensor is given by

T = 91" ¢ + g <—%g” G0, — V(qs)) . (B.4)

Neglecting spatial derivatives in the homogeneous and isotropic background (Friedmann-
Lemaitre-Robertson-Walker spacetime), the equation of motion for the scalar becomes

d+3Hp+V' =0, (B.5)

where H is the Hubble variable. '
In the slow-roll approximation, we neglect the first term leading to 3H¢ + V' = 0. The
Einstein equation reduces to slow-roll Friedmann equations,

2%
3H? = ;“ —V. (B.6)
Slow-roll parameters are defined as
1/ 2 v ) VAV
‘73 <v> ’ =y SE (B7)
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The slow-roll approximation is expressed as € < 1. To keep inflationary expansion sufficiently
long, another condition is usually required, |n| < 1. The e-folding number N, for a mode of
wavenumber k, from its horizon crossing to the end of inflation is

tend (o 1 ( )
M:/ AH = [ dp——, B.8
123 Pend \/Z

and its value corresponding to the mode we observe today should be in the range 50 < N, <
60 depending on the details of reheating.

Quantum fluctuation of the inflaton is approximately Gaussian and scale invariant. It
is expanded by inflation and becomes the seed of density perturbation. A part of inflaton
fluctuation is converted to fluctuation of the scalar part of the metric called curvature pertur-
bation. Similarly, the transverse traceless part of the metric produces quantum fluctuation
called tensor perturbation. The power spectra of these perturbations are parameterized as

(k) =4 (’“) (B9)
Ps(k) =As | — , B.9
k.
k? nH—%%ln%—}—...

where A; (i = s,t) are the amplitudes, n; are the spectral indices, and dn;/dInk are the
runnings of the spectral indices. They are given by

V 2V

= 7 A =——, B.11
24m2e * T 3n2 ( )
ns — 1 = — 6e + 2n, ny = — 2e, (B.12)
dn, dn
* —16en — 246> — 2¢* L —4en — 8¢, B.1

dn e 1060 = 24e =28, dinfe e B (B-13)

The tensor-to-scalar ratio of the amplitudes of the power spectra is
r = 16e. (B.14)

Let us look at some inflationary model predictions. For the monomial potential case,

V =c,o", (B.15)
where ¢, is a constant, the the first two slow-roll parameters are
n? n(n —1)
The scalar amplitude, the scalar spectral index, and the tensor-to-scalar ratio are
n+2
W07 e (2n(N+7)) 7
AS:C ¢ :C ( n( 4)) : (B.17)
1272n? 1272n?
2 2
1—mzmnj): nte (B.18)
¢ 2(N+12)
8n? 4n
o (B.19)
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where we have defined the end of inflation as the time when € becomes one, €,q = (n?/2¢2,4) =

1, so that the e-folding number is N = ¢—2 -1
In the case of the Starobinsky-like model

V=1V, (1—e ), (B.20)
where V; and a are constants, the slow-roll parameters are
92q2e—200 —2a2e % (1 — 2 9¢
. p = 2w (1 = 2e7) (B.21)
(1 — ea9)2 (1 — ea9)2

The amplitude, the spectral index and the tensor-to-scalar ratio are

%62a¢(1 _ 6—a¢)4 CLQNZ% (1 _ ;)4

_ 202N
A= g - 1272 ’ (B.22)
. :4a26‘“¢(1 +e) 2 (1+ 55%) (B.23)
s _ p—ad)2 - 27 )
(1 ¢ ) N (]' - 2a2N)
32a%e2¢ 8
' :(1 — e—%)?2 = N 1 \2’ (B.24)
a*N (1 o 2a2N)
where the e-folding number is
1 " a¢
:@<e¢—a¢ (1+\/_a)+ln(1+\/_a)>N2a2 (B.25)

Inflation ends at Genq = a~ ' In(1 + v/2a) where €qq = 1.
Inflationary models must be confronted with data. According to the Planck 2015 data |2,
3], the amplitude of the curvature perturbation and the scalar spectral index are

A, =2.198T0058 x 1077 (68%CL, Planck TT + lowP), (B.26)
ns =0.9655 =+ 0.0062 (68%CL, Planck TT + lowP), (B.27)

in the ACDM model with the pivot scale kg = 0.05Mpc™'. Allowing tensor perturbation,
the spectral index and the tensor-to-scalar ratio are constrained with various data sets as

n, =0.9666 £ 0.0062 1o <0.103  (Planck TT + lowP), (B.28)
ns =0.9688 £ 0.0061, T0.002 <0.114 (Planck TT + lowP + lensing), (B.29)
ng =0.9680 £ 0.0045, 1o <0.113  (Planck TT + lowP + BAO), (B.30)
ne =0.9652 £ 0.0047,  roe2 <0.099  (Planck TT, TE, EE + lowP).  (B.31)

where the confidence levels of the constraints are 68% and 95% for ng and r, respectively,
and the tensor-to-scalar ratios are evaluated at the pivot scale 0.002Mpc .

The tensor-to-scalar ratio is independently constrained by the joint analysis of BICEP2/Keck
Array-Planck (BKP) [232] as

ro.05 <0.12 (95%CL, BKP), (B.32)

where 7,05 is the tensor-to-scale evaluated at the pivot scale 0.05Mpc~*. Combined with the
above Planck data, it is more severely constrained as [3]

ro.002 <0.08 (95%CL, Planck TT + lowP + BKP). (B.33)

Using other data sets or allowing more free parameters, these constraints become milder.
See Refs. [232, 2, 3] for more details.
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