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Abstract

In this thesis, we perform ab-initio lattice simulations of the nonrelativistic and relativistic

Bose-Einstein condensates under strong external fields such as the electric field, the magnetic

field, and the rotation. All the lattice actions discussed in this thesis are complex, so that the

conventional Monte Carlo method su↵ers from the notorious sign problem. The path integral

measure is complex due to the complex action, so that the important sampling algorithm cannot

be applied. To overcome this di�culty, we adopt the complex Langevin method, which has

been developed in the context of finite density quantum chromodynamics to attack the fermion

sign problem.

In particular, we perform ab-initio simulation of the quantum vortex nucleation by the

magnetic field or the rotation. In dilute and low temperature system, quantum and thermal

fluctuations are negligible. The system can be remarkably well described by the mean field

approximation. However, when quantum or thermal fluctuation becomes large, it is highly

nontrivial how the quantized vortices behave. Around the critical values of temperature, chem-

ical potential, magnetic field, or angular velocity, the fluctuation grows and the mean-field

description inevitably breaks down. To understand the quantum vortex nucleation in such

situations, the ab-initio simulation is necessary as discussed in this thesis.

The direct evidence of the quantum vortex nucleation is the quantization of circulation. We

show that the circulation is quantized in the superconducting (superfluid) phase far from the

critical chemical potential, but it is not just above the critical chemical potential. We observe

that the quantized circulation is blurred by the quantum fluctuation as the chemical potential is

getting close to its critical value. In our simulation, the quantum fluctuation of vortex number

is observed, while the averaged circulation is clearly quantized. At first glance, these two facts

seem to be incompatible. However, we show that the fluctuation of vortex number behaves as

Gaussian and, as a result of cancellation, the average circulation becomes exact integer.
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Chapter 1

Introduction

The Bose-Einstein condensation attracts lots of attention in various areas of physics. It is

a novel state of bose gases, in which the macroscopic number of bosons occupies the same

quantum state, and thus the quanta scaled by the Planck constant become apparent even in

the macroscopic scale. The first direct observation of Bose-Einstein condensation has been

achieved in the experiments of liquid helium [1, 2, 3] (reviewed in Ref. [4]). Later, it has also

been realized in weakly interacting atomic gases [5, 6, 7] (for a review, see Ref. [8]). The Bose-

Einstein condensate created in the cold atom experiments is very close to the original notion

of one proposed by Einstein. We show schematic phase diagrams of systems exhibiting the

Bose-Einstein condensation in Fig. 1.1(a, b, and c), where the superfluid or superconducting

phase appears at very low temperatures.

In solid state physics, the superconductivity of metals results from the condensation of

Cooper pair, which is a bound state of electrons in momentum space [11]. There are various

types of pair condensation in the context of high temperature superconductors [12, 13, 14].

Similarly, the condensation of quasi bosonic-particles such as the exciton, which is a bound

state of electron and hole pairs [15, 16, 17], or the magnon [18, 19], which is a collective

excitation in spin system, has been actively analyzed both from theories and experiments.

The Bose-Einstein condensation occurs also in nuclear and elementary particle physics

(Fig. 1.1(d)). In the core of neutron stars, it is considered that the condensate of the Cooper

pairs of nucleons or quarks exists [20, 21] (see also Ref. [22]). The nucleons may exhibit

anisotropic superfluidity such as the triplet superfluidity because of the spin-orbit coupling [23,

24, 25]. The quarks exhibit the superconductivity in terms of color degrees of freedom [26, 27,

28, 29, 30, 31]. Because of the complexity of the nonabelian gauge interaction and the inter-

nal degrees of freedom, the color superconductivity enriches the phase structure of quantum

chromodynamics [21]. Also, the condensation of Higgs boson results in the dynamical mass

generation of gauge bosons in the Standard Model of particle physics [32, 33, 34]. The Higgs

boson has been recently observed at the Large Hadron Collider in CERN 48 years after from

its theoretical prediction in 1964 [35, 36]. Now it has been started to analyze the detailed

properties of Higgs boson.
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well-ordered surfaces whose size and growth rate are
controlled by steps with nonzero energies. For a com-
plete understanding of the properties of facets, it is im-
portant to know not only the energy of steps at this
surface, but also their width, fluctuations, and mutual
interactions. Here again, helium crystals have allowed
precise measurements of all the above properties of
steps, while with ordinary crystals measurement is usu-
ally rather difficult.

Helium crystals have thus provided an interesting
model system for the general study of crystal growth and
shapes. No less interesting are the quantum mechanisms
underlying many aspects of their dynamics. A classical
crystal grows or melts more slowly as temperature de-
creases. This is because the microscopic processes are
thermally activated, so that, as temperature decreases,
they become exponentially slow. With helium at low
temperature, atoms can go through energy barriers by
quantum tunneling !Andreev and Parshin, 1978". As a
result, the growth dynamics of crystals are limited only
by the scattering of the moving crystal surface with ther-
mal excitations, on either side of the liquid-solid inter-
face !Andreev and Parshin, 1978; Andreev and Knizh-
nik, 1982; Bowley and Edwards, 1983". At low
temperature, where the dominant thermal excitations
are phonons, the resistance of 4He crystals to growth has
been predicted to vanish proportionally to T4 !Andreev
and Parshin, 1978; Andreev and Knizhnik, 1982; Bowley
and Edwards, 1983". This behavior was observed experi-
mentally by Keshishev et al. !1979, 1981". It is reminis-
cent of the electrical resistivity of a metallic crystal at
low temperature. Electrons tunnel through the lattice of
positive ions and, in a certain temperature range, their
mobility is limited by collisions with phonons, so that the
resistivity decreases as temperature goes down.

It was also predicted !Andreev and Parshin, 1978;
Puech et al., 1986a", and observed later !Graner et al.,
1989" that, in 3He, the scattering of Fermi quasiparticles
leads to a much higher growth resistance than in 4He.
The study of the growth dynamics of helium crystals has
illustrated another general problem, the motion of sur-
faces in quantum systems. Below 1 mK, where liquid
3He is superfluid and solid 3He is a nuclear antiferro-
magnet, new properties are currently under investiga-
tion.

For most of these studies, it has proven very useful to
be able to vary the temperature over a substantial range.
This is possible in helium because of particular features
of its phase diagram. As shown in Figs. 3 and 4, there is
no triple point in helium where the liquid, solid, and gas
phases would coexist. Instead, the liquid exists down to
absolute zero and the solid is stable only above about 25
bars in 4He !30–35 bars in 3He". As a result, the crystal
surface that we consider in this review is a liquid-solid
interface. Experiments have been performed in a tem-
perature domain that extends over nearly four decades,
from 5!10−4 K to 2 K, without much change in pressure
or density. Liquid 4He is superfluid below 2.17 K, while
liquid 3He becomes superfluid at temperatures a thou-

sand times lower. There is a transition from the
hexagonal-close-packed !hcp" structure to the body-
centered-cubic !bcc" one in 4He at 1.46 K. At low tem-
perature, 3He crystals have a bcc structure, with a
nuclear antiferromagnetic phase below TN=0.93 mK
!see Fig. 4".

This review article is organized as follows. In Sec. II,
we describe experimental techniques that have been de-
veloped for the study of helium crystals. Section III is
devoted to the roughening transitions. We present vari-
ous theories with special emphasis on the Nozières RG
theory. We then describe various measurements of quan-
tities such as the surface tension, crystal curvature, step
energy, and surface mobility, and compare experimental
results with theoretical predictions. We continue with
other aspects of crystal shapes, in particular, with step-
step interactions. This section ends with a discussion of

FIG. 3. !Color in online edition" Phase diagram of 4He. There
is no triple point where the liquid, solid, and gas phases would
meet. On the melting curve at low temperature, solid 4He has
a hcp structure; between 1.46 and 1.76 K, it is bcc.

FIG. 4. !Color in online edition" Phase diagram of 3He. As in
4He, there is no liquid-solid-gas triple point. Two distinct su-
perfluid phases exist below Tc=2.5 mK, and the bcc crystal is
antiferromagnetic below TN=0.93 mK.

320 Balibar, Alles, and Parshin: The surface of helium crystals
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Figure 1.1: Bose-Einstein condensate in branches of physics. (a) Phase diagram of 4He [4]. (b)

Phase diagram of Bose-Hubbuard model [8]. (c) Phase diagram of high temperature supercon-

ductors [9]. (d) Phase diagram of quantum chromodynamics at finite densities [10]

In the presence of external gauge fields, the Bose-Einstein condensate exhibits topological

solitons or topological defects. The topological solitons are solutions of nonlinear field equations

homotopically distinct from the trivial vacuum. They are classified by boundary conditions and

carry the topological charge. In this sense, the topological solitons are countable like ordinary

particles. For example, in type-II superconductors under magnetic field, the penetrating mag-

netic flux is quantized due to the macroscopic coherence of Bose-Einstein condensate and the

quanta form the lattice structure [37, 38, 39, 40], which is referred to as the Abrikosov lattice.

As understood from the analogy between magnetism and rotation, the same quantization of

vortices and the Abrikosov lattice have been observed in the rotating Bose-Einstein condensate

[41, 42, 43, 44, 45]. It has been investigated in detail both from theories and experiments (for

a review, see Ref. [46]).

The topological solitons have been analyzed in detail also in the relativistic Bose-Einstein

condensate. Our universe has started from extremely hot and dense state, and has been cooled
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by its expansion [47, 48, 49]. It has experienced a series of phase transition in the early stage of

the expansion [50, 51, 52, 53, 54, 55]. Various topological solitons are considered to be formed

when the phase transitions have occurred. Due to their topological nature, these solitons are

stable, and thus can be utilized as probes of the phase transitions. Some examples include

domain walls [56], magnetic monopoles [57], cosmic strings [58, 59] and so on. Any such

topological solitons have not been discovered yet in astronomical observations [60, 61, 62, 63,

64, 65]: Nevertheless, these experiments have been provided strong constraints to the condition

of the early universe.

In dilute and low temperature systems, quantum and thermal fluctuations can be negligible,

and thus the mean-field approximation works well. Quantum vortex nucleation in such systems

can be described by using the Gross-Pitaevskii equation [66, 67]. By numerically solving the

real-time evolution of the Gross-Pitaevskii equation, as shown in Fig. 1.2 [68], the authors have

analyzed the dynamical mechanism of formation of the Abrikosov lattice in the rotating Bose-

Einstein condensate, and they have compared the result with cold atom experiments. However,

We first prepare an equilibrium condensate with C
!1400 trapped in a stationary potential. Figure 1 shows the
typical dynamics of the condensate density !!(r,t)!2 after
the potential begins to rotate suddenly with "!0.7#! $15%.
The condensate is elongated along the x axis because of the
small anisotropy of V tr $Eq. &2'%, and the elliptic cloud oscil-
lates. Then, the boundary surface of the condensate becomes
unstable, exciting the surface waves, which propagate along
the surface. The excitations are likely to occur on the surface
whose curvature is low, i.e., parallel to the longer axis of the
ellipse. The ripples on the surface develop into the vortex
cores around which superflow circulates. Subject to the dis-
sipative vortex dynamics, some vortices enter the conden-
sate, forming a vortex lattice. As the vortex lattice is being
formed, the axial symmetry of the condensate is recovered
by transferring angular momentum into quantized vortices.
This peculiar dynamics is understood by investigating the

phase of !(r,t) as shown in Fig. 2. There are some lines
where the phase changes discontinuously from black to

white, which corresponds to the branch cuts between the
phases 0 and 2( . Their ends represent phase defects, i.e.,
vortices. As soon as the rotation starts, some defects begin to
enter. When the defects are on the outskirts of the condensate
where the amplitude !!(r,t)! is almost negligible, they nei-
ther contribute to the energy nor the angular momentum of
the system. These defects come into the boundary surface of
the condensate within which the amplitude grows up. Then,
the defects compete with each other and induce the above
surface waves due to interference. There the selection of the
defects starts, because their further invasion into the conden-
sate costs the energy and the angular momentum. As is well
known in the study of rotating superfluid helium $14%, the
rotating drive pulls vortices into the rotation axis, while re-
pulsive interaction tends to push them apart; this competition
yields a vortex lattice whose vortex density depends on the
rotation frequency. In our case, some vortices enter the con-
densate and form a lattice dependent on " , while excessive

FIG. 3. Time evolution of the distortion parameter ) &solid line'
and the angular momentum l z /* per atom &dashed line' corre-
sponding to the dynamics of Fig. 1.

FIG. 1. Time development of the condensate density !!!2 after the trapping potential begins to rotate suddenly with "!0.7#! . The time
is t!0 msec &a', 21 msec &b', 107 msec &c', 114 msec &d', 123 msec &e', and 262 msec &f'. The unit for length is aHO!!*/2m#!

!0.512 +m and the period of the trap 4.57 msec.

FIG. 2. Phase profile of !: &a' and &b' correspond to Figs. 1&c'
and 1&f'. The value of the phase varies continuously from 0 &black'
to 2( &white'. The unit for length is the same as that of Fig. 1.

MAKOTO TSUBOTA, KENICHI KASAMATSU, AND MASAHITO UEDA PHYSICAL REVIEW A 65 023603

023603-2

Figure 1.2: Time evolution of condensate density in the rotating trapping potential at t = 0

[(a)], 21 [(b)], 107 [(c)], 114 [(d)], 123 [(e)], and 262 ms [(f)]. The figure is taken from Ref. [68].

when quantum or thermal fluctuation cannot be negligible, it is highly nontrivial how such topo-

logical solitons behave. Around the critical values of temperature, chemical potential, magnetic

field, or angular velocity, the fluctuation grows and the mean-field description inevitably breaks
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down [69, 70]. Since high precision measurements are possible in cold atomic experiments, the

deviation from the mean-field approximation can be detectable in experiments. Therefore, the

ab-initio simulation of quantum vortex nucleation is necessary for definite theoretical prediction

without uncertainty.

In this thesis, we present the first ab-initio simulations of such quantum vortex nucleation in

the Bose-Einstein condensate under strong external fields [71]. For this purpose, we adopt the

complex Langevin method to both nonrelativistic and relativistic boson field theories. This is

because, as explicitly shown in the following chapters, the conventional Monte Carlo simulations

on the lattice [72, 73, 74, 75, 76, 77] su↵er from the notorious sign problem. The Monte Carlo

simulation is based on the importance sampling algorithm [78, 79, 80]: We evaluate the path

integral in equilibrium states

hOi = 1

Z

Z
d'⇤d' e�SlatO(','⇤), (1.1)

by means of the ensemble average, which is randomly generated by the probability density

e�Slat/Z with Z being the normalization factor. Its applicability is in some cases very limited,

which is referred to as the sign problem. For example, when the lattice action becomes complex,

the probability interpretation of the weight e�Slat/Z breaks down and thus the importance

sampling cannot be applied. The complex Langevin method has been developed in relativistic

field theories to attack such complex action problem e.g., nonequilibrium system [81, 82, 83],

and the phase diagram at finite quark number density [84, 85, 86, 87, 88] (for a review, see

Ref. [89]). It is based on the stochastic quantization formalism, instead of the path integral

one, and does not necessarily require the action to be real.

We analyze nonrelativistic and relativistic bosons interacting by a repulsive contact interac-

tion under strong external fields such as the electric field, the magnetic field, and the rotation

by adopting the complex Langevin method, in which all quantum fluctuations can be properly

taken into account. We formulate the nonrelativistic lattice action under rotation in which the

chemical potential is introduced on the basis of standard lattice techniques [90, 91], and the

angular velocity is introduced by the same manner as magnetic fields [92] with the local cen-

trifugal potential. We numerically show that the superfluid transition occurs as the chemical

potential increases. The condensation is calculated from the o↵-diagonal long-range order of

two-point correlation function. The quantization of circulation is clearly seen, which indicates

that the vortices are successfully generated in our simulation. To get more information for

vortex structure, the size dependence of circulation is calculated, from which we can estimate

the typical size of vortex lattice.

This thesis is organized as follows. In Chap. 2, we review the lattice field theory, and how

to study the spontaneous symmetry breaking in lattice simulations. In Chap. 3, we review the

stochastic quantization using the example of free theory. We summarize the basics to perform

the complex Langevin simulation. Application to the nonrelativistic �'4 is also discussed, where

we demonstrate the long-range order analysis discussed in Chap. 2. In Chap. 4, we study the
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nonrelativisitic Bose-Einstein condensate under strong external fields. First, we discuss how

to apply external electromagnetic fields on the lattice. Then, the spontaneous U(1) symmetry

breaking by the electric field is analyzed. Next, we analyze the quantum vortex nucleation

by the magnetic field and by the rotation. We study the e↵ect of quantum fluctuation to the

vortex nucleation. In Chap. 5, we study the relativisitic Bose-Einstein condensate under strong

electromagnetic fields. We show that the particle production by the electric field occurs via

the Schwinger mechanism. We also analyze the associated U(1) symmetry breaking. Then, we

show the quantum vortex nucleation by the magnetic field in the relativistic system. Chapter 6

is devoted to summary and concluding remarks. In Appendices, we summarize the higher order

algorithm to numerically solve the Langevin equation, and the jackknife method to estimate

the statistical errors.

Numerical simulations presented in sections 3.4, 4.2.2, 4.3.3, 4.4.2, 5.2, and 5.3 are based

on our original work [71] in collaboration with Arata Yamamoto.
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Chapter 2

Lattice field theory

In this chapter, we review the formulation of quantum field theories on the lattice. The partition

function in the grand canonical ensemble is represented by the path integral over field variables

on the lattice. We also review how to discuss the spontaneous symmetry breaking in practical

simulations. The spontaneous symmetry breaking occurs only in the thermodynamic limit and

thus the order parameter always vanishes unless the symmetry is explicitly broken [93]. Since

it is not easy to manage the noncommutative thermodynamic and zero external field limits

in practical simulations, we introduce an alternative way to study the spontaneous symmetry

breaking, that is, observing the nonvanishing long-range order [94]. We also show that the

Bose-Einstein condensate implies the spontaneous U(1) symmetry breaking.

2.1 Path integral formalism

We start with the partition function in the grand canonical ensemble,

Z = tr e��( ˆH�µ ˆQ), (2.1)

where � = 1/T and µ are inverse temperature and chemical potential, respectively. H is the

Hamiltonian of the system and Q is a charge. We use the hat symbol to indicate quantum

operators. As an example, let us consider bosons interacting by a repulsive contact interaction.

The Hamiltonian and charge (particle number) operators are, respectively, given as

Ĥ =

Z
d3x '̂†

x

✓
�r2

2m

◆
'̂
x

+
�

4
'̂†
x

'̂†
x

'̂
x

'̂
x

, (2.2)

Q̂ =

Z
d3x '̂†

x

'̂
x

, (2.3)

where '̂
x

and '̂†
x

are annihilation and creation operators of bosons and satisfy

['̂
x

, '̂†
x

0 ] = �(x� x

0). (2.4)

7
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We rewrite the partition function (2.1) by using the coherent states |'i, which are eigenstates

of annihilation operators:

'̂
x

|'i = '
x

|'i, (2.5)

h'|'̂†
x

= h'|'⇤
x

, (2.6)

and are given explicitly as

|'i = e
R
d3x '

x

'̂†
x |0i, (2.7)

where |0i is the Fock vacuum. The coherent states are over completed, so that the closure

relation is di↵erent from that of the standard complete set and reads

Z Y

x

d'⇤
x

d'
x

2⇡i
e�

R
d3x '⇤

x

'
x |'ih'| = 1. (2.8)

Eq. (2.8) can be easily checked by applying it to a coherent state |'0i:
 Z Y

x

d'⇤
x

d'
x

2⇡i
e�

R
d3x '⇤

x

'
x |'ih'|

!
|'0i = |'0i. (2.9)

By using the coherent states, we have

tr Ô =
X

n

hn|Ô|ni

=

Z Y

x

d'⇤
x

d'
x

2⇡i
e�

R
d3x '⇤

x

'
xh'|Ô|'i, (2.10)

where |ni is a complete set and we used the closure relation
P

n |nihn| = 1 to obtain the last

line. Then, the partition function (2.1) reads

Z = tr
NY

j=1

e��⌧j( ˆH�µ ˆQ)

=

NY

j=1

Z Y

x

d'⇤
jxd'jx

2⇡i
e�

R
d3x '⇤

jx'jx

⇥ h'N |e��⌧N (

ˆH�µ ˆQ)|'N�1

i · · · h'
1

|e��⌧1( ˆH�µ ˆQ)|'Ni
(2.11)

where �⌧j(= �⌧) = �/N . We consider the N ! 1 (�⌧ ! 0) limit and then the matrix

elements are evaluated as

h'j|e��⌧( ˆH�µ ˆQ)|'j�1

i = h'j|
⇣
1��⌧(Ĥ � µQ̂)

⌘
|'j�1

i+O(�⌧ 2)

= h'j|'j�1

i (1��⌧(Hj,j�1

� µQj,j�1

)) +O(�⌧ 2)

= e
R
d3x '⇤

jx'j�1xe��⌧(Hj,j�µQj,j) +O(�⌧ 2), (2.12)
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where '
0x

= 'Nx

and

Hj,j�1

� µQj,j�1

=

Z
d3x '⇤

jx

✓
�r2

2m
� µ

◆
'j�1x

+
�

4
'⇤
jx'

⇤
jx'j�1x

'j�1x

= Hj,j � µQj,j +O(�⌧). (2.13)

We used the inner product between coherent states

h'|'0i = e
R
d3x '⇤

x

'0
x , (2.14)

which is obtained from Eqs. (2.4) and (2.7). Finally, we have

Z =

Z Y

j,x

d'⇤
jxd'jx

2⇡i
e��⌧

P
j

R
d3x '⇤

jx('jx�'j�1x)/�⌧+Hj,j�µQj,j +O(�⌧ 2). (2.15)

Therefore, the partition function (2.1) reads

Z = N
Z

D' e�S, (2.16)

S =

Z �

0

d⌧d3x '⇤
⌧,x

✓
@⌧ � r2

2m
� µ

◆
'⌧,x +

�

4
'⇤
⌧,x'

⇤
⌧,x'⌧,x'⌧,x, (2.17)

in the limit of N ! 1 with D' =
Q

⌧,x d'
⇤
⌧,xd'⌧,x, and N being the normalization factor. The

condition '
0x

= 'Nx

imposes the periodic boundary condition, '
0x

= '�x, to Eq. (2.16).

Expectation values can also be written in the path integral form. For example, charge

density, which is defined as

n = lim
V!1

tr e��( ˆH�µ ˆQ)Q̂/V

tr e��( ˆH�µ ˆQ)

= lim
V!1

1

�V

@

@µ
logZ, (2.18)

reads

n = lim
V!1

1

Z

Z
D' e�S 1

�V

Z �

0

d⌧d3x '⇤
⌧,x'⌧,x, (2.19)

where V is the spatial volume. The expectation value in the ground state can be obtained by

taking the � ! 1 (T ! 0) limit in addition to the thermodynamic limit, V ! 1. In the

following discussions, we calculate various type of propagators, which are defined as

G(⌧,x; ⌧ 0y) = hT[Ô(⌧,x), Ô†(⌧ 0,x0)]i
=

1

Z

Z
D' e�SO⌧,xO

†
⌧ 0,y,

(2.20)

where T denotes a time ordered product and O is some local operator. The most simple

propagator is obtained by O = '. In the free theory, it is given explicitly as

hT['(⌧,x),'⇤(⌧ 0,x0)]i = 1

@⌧ � µ�r2/2m
�(⌧ � ⌧ 0) �(3)(x� x

0). (2.21)
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We can calculate the free boson propagator as follows. First, we define the generating functional

Z(j⇤, j) as

Z(j⇤, j) = N
Z

D' e�S+
R
d⌧d3x (j⇤⌧,x'⌧,x+'⇤

⌧,xj⌧,x). (2.22)

In the free theory, we have

S �
Z

d⌧d3x
�
j⇤⌧,x'⌧,x + '⇤

⌧,xj⌧,x
�

=

Z
d⌧d3xd⌧ 0d3y

⇣
'⇤
⌧,x � (j⇤�F )⌧,x

⌘
D⌧,x;⌧ 0,y

⇣
'⌧ 0,y � (�F j)⌧ 0,y

⌘

� j⇤⌧,x�F (⌧,x; ⌧
0,y)j⌧ 0,y,

(2.23)

where D is a matrix operator:

D⌧,x;⌧ 0,y =

✓
@⌧ � r2

2m
� µ

◆
�(⌧ � ⌧ 0)�(3)(x� y). (2.24)

�F is the inverse of D and satisfies
Z

d⌧ 00d3z D⌧,x;⌧ 00,z�F (⌧
00, z; ⌧ 0,y) = �(⌧ � ⌧ 0)�(3)(x� y), (2.25)

or equivalently,
✓
@⌧ � r2

2m
� µ

◆
�F (⌧,x; ⌧

0,y) = �(⌧ � ⌧ 0)�(3)(x� y). (2.26)

(j⇤�F ) and (�F j) are

(j⇤�F )⌧,x =

Z
d⌧ 0d3z j⇤⌧ 0,z�F (⌧

0, z; ⌧,x), (2.27)

(�F j)⌧,x =

Z
d⌧ 0d3z �F (⌧,x; ⌧

0, z)j⌧ 0,z. (2.28)

Thus, the path integral in Eq. (2.22) is Gaussian integral and can be calculated exactly:

Z(j⇤, j) = N 0e
R
d⌧d3xd⌧ 0d3y j⇤⌧,x�F j⌧ 0,y . (2.29)

The boson propagator is obtained by taking the functional derivatives:

hT['(⌧,x),'⇤(⌧ 0,y)]i =
1

Z(j⇤, j)

�2

�j⇤⌧,x�j⌧ 0,y
Z(j⇤, j)

= �F (⌧,x; ⌧
0,y), (2.30)

and then we obtain Eq. (2.21).

Now, we formulate Eqs. (2.16) and (2.17) on the lattice. '⌧,x and '⇤
⌧,x are defined on the

four-dimensional hypercubic lattice, where ⌧ and x are discretized as (x, ⌧) = (ixa, iya, iza, i⌧a)

with a being the lattice spacing. The total number of lattice sites is NxNyNz ⇥N⌧ . We impose
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the periodic boundary conditions to all four directions. The partition function is given by the

integral over all field variables on the lattices:

Z = N
Z Y

⌧,x

d'⇤
⌧,xd'⌧,x e�Slat . (2.31)

The lattice-discretized action S
lat

reads

S
lat

= a3
X

⌧,x

h
'⇤
⌧,x ('⌧,x � eµa'⌧�a,x)

� 1

2ma

X

i

⇣
'⇤
⌧,x+ˆia

'⌧,x + '⇤
⌧,x'⌧,x+ˆia � 2|'⌧,x|2

⌘
+

1

2

�

a2
a3|'⌧,x|4

i
, (2.32)

where î denote unit vectors in the xi direction. Then, the continuum theory is defined as the

a ! 0 limit. The thermodynamic limit is obtained by Ni=x,y,z ! 1 with fixed a. Also, the

zero temperature theory is obtained by N⌧ ! 1 with fixed a.

To discretize Eq. (2.17), there are several choices of lattice actions, which have the same

continuum limit (2.17). This variety comes from the choice of forward, backward, and central

di↵erences, how to apply external fields on the lattice, and so on. We employ the backward

di↵erence. We apply external fields, so as for the lattice action to keep the symmetry of the

continuum action. For example, we can introduce the chemical potential by adding �µ'⇤
⌧,x'⌧,x

to the lattice action, instead of exponential term in Eq. (2.32). They correspond to each other

in the limit of a ! 0. Since the chemical potential is an external field coupled to the U(1)

symmetry (the particle number symmetry), we should introduce it as (a kind of) U(1) gauge

field on the lattice, which is the exponential term in Eq. (2.32). The same problem appears in

the case of other external fields such as electric or magnetic field, which will be discussed in

detail in the following chapters. We remark here that these choices of external fields a↵ects the

renormalization of numerical results, not just a formal problem.

2.2 Spontaneous symmetry breaking

In finite dimensional systems, the spontaneous symmetry breaking does not occur and thus

its order parameter vanishes [93]. To study the spontaneous symmetry breaking, we need to

introduce an external field, which explicitly breaks the symmetry and consider the zero external

field limit after taking the extrapolation to the thermodynamic limit. More specifically, the

order parameter h is defined as

lim
J!0

lim
V!1

h0J |[iQ̂,  ̂]|0Ji = h 6= 0, (2.33)

where Q is the broken charge and  is some local orator, which is referred to as symmetry break-

ing operator. |0Ji is the groundstate at finite external field J . If these limits are commutable,

the order parameter vanishes because the ground state is singlet at zero external field, that is,
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Q|0i = 0. Therefore, non-analyticity with respect to J , which comes from the thermodynamic

limit, characterizes the spontaneous symmetry breaking. The spontaneous symmetry breaking

at finite temperature can also be discussed in the same way, where the vacuum expectation

value is replaced by the ensemble average with the density matrix exp(��Ĥ � �J ̂). We note

that the symmetry breaking operator  is not unique and thus h is also not.

We need to manage these two noncommutative limits carefully and thus it is not easy to

calculate the order parameter in practical simulations. In the following numerical simulation,

instead of directly calculating Eq. (2.33), we define the spontaneous symmetry breaking by the

long range order [94]. In the Monte Carlo or complex Langevin simulation, all the infinitely

degenerate vacua appear in the ensemble unless the symmetry is explicitly broken. Then, the

order parameter is averaged over them:

h0|ĥ|0i ⇠
Z

d✓ P✓h0✓|ĥ|0✓i/
Z

d✓ P✓

=

Z
d✓ P✓|h|ei✓/

Z
d✓ P✓,

(2.34)

where ✓ is the phase of order parameter and |0✓i is one of the degenerate vacua in which

the order parameter has the phase ✓. The ✓ depedence is canceled over the ensemble average

(the degenerate vacua) and Eq. (2.34) goes to zero since there is no preferred ✓ direction in

the numerical simulations. To avoid this, we calculate the two point correlation function of

order parameter field h. Because of the cluster decomposition principle [95, 96], the long-range

behavior of correlation function reads

h0|ĥ(x)ĥ†(y)|0i ! |h0|ĥ|0i|2 (2.35)

in the limit of |x � y| ! 1, where we assume the translational symmetry of vacuum. Now,

since the right hand side is independent of ✓, it does not vanish by taking the average over the

degenerate vacua:

|h0|ĥ|0i|2 ⇠
Z

d✓P✓|h0✓|ĥ|0✓i|2/
Z

d✓P✓

= |h|2
(2.36)

Thus, we can define the spontaneous symmetry breaking whether the two point correlation

function of order parameter fields goes to zero or goes to finite constant value, which is directly

checked on the lattice simulations.

In the case of the spontaneous U(1) symmetry breaking, the long range order also means

the macroscopic occupation of ground state, that is, the Bose-Einstein condensation. This is
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because the two point correlation function of the order parameter field ' is written as

G(x,y) = h0|'̂†(x)'̂(y)|0i
=

1

V

X

k,k0

e�ik·x+ik0·yh0|a†
k

a
k

0 |0i

=
1

V
h0|a†

k=0

a
k=0

|0i+ 1

V

X

k 6=0

e�ik·(x�y)h0|a†
k

a
k

|0i, (2.37)

where a
k

and a†
k

are, respectively, the annihilation and creation operator of particles with

momentum k. Here, we assume the translational invariance of the vacuum, so that

h0|a†
k

a
k

0 |0i = �
kk

0h0|a†
k

a
k

|0i. (2.38)

The second term in Eq. (2.37) rapidly oscillates in the limit of |x� y| ! 1 and goes to zero.

Then, if the U(1) symmetry is spontaneously broken, we have

hN̂
k=0

i
V

= |'|2 6= 0, (2.39)

where N̂
k=0

is number operator, which counts the number of particles with momentum k = 0.

This means that the zero momentum state is occupied by the number of particles comparable

to the system size, that is, hN
k=0

i ⇠ V . Therefore, the Bose-Einstein condensation occurs

when the U(1) symmetry is spontaneously broken.
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Chapter 3

Complex Langevin method

In this chapter, we first review the stochastic quantization formalism, namely, the formulation

of quantum field theories on the basis of the classical Langevin equation along the fictitious time

direction, which was proposed by Parisi and Wu in 1981 [97, 98, 99] (for a review, see Ref. [100]).

Based on Ref. [99], we also review the general relation between the stochastic and path integral

formalisms from which we can understand how the Langevin method reproduces the standard

Monte Carlo simulation. Then, we summarize the basis to perform the complex Langevin

simulation in which the quantization procedure in the stochastic quantization formalism is

numerically performed on the lattice. As an example of numerical simulation, we present our

original work [71] in which we have applied the complex Langevin method to the nonrelativistic

bose system interacting by a repulsive contact interaction. This is the first application of the

complex Langevin method to a condensed matter system, which su↵ers from the sign problem.

We show that the Silver Blaze phenomena [101] is correctly managed in our simulation. Also,

we analyze the spontaneous breaking of U(1) symmetry by performing the long-range order

analysis discussed in Sec. 2.2.

3.1 Stochastic quantization

We start with the nonrelativistic free boson propagator in (1 + 3)-dimensional Euclid space,

which is given explicitly as

hT['(⌧,x),'⇤(⌧ 0,x0)]i = 1

@⌧ �r2/2m
�(⌧ � ⌧ 0) �(3)(x� x

0), (3.1)

where T denotes a time ordered product. In the stochastic quantization formalism [97, 98, 99]

(for a review, see Ref. [100]), the propagator (3.1) is retrieved by the noise average of the

solution of the Langevin equation along the fictitious time direction. We solve the Langevin

equation along the fifth direction ✓:

@✓'⌧,x(✓) = � @S

@'⇤
⌧,x

+ ⌘⌧,x(✓), (3.2)

15
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where S is the action in (1 + 3)-dimensional Euclid space, which is given explicitly as

S =

Z
d⌧d3x '⇤ �@⌧ �r2/2m

�
', (3.3)

in the case of free theory. ⌘⌧,x(✓) are Gaussian noises and the average over ⌘⌧,x(✓) satisfies

h⌘⌧,x(✓)i⌘ = h⌘⇤⌧,x(✓)i⌘ = 0,

h⌘⌧,x(✓)⌘⌧ 0,x0(✓0)i⌘ = h⌘⇤⌧,x(✓)⌘⇤⌧ 0,x0(✓0)i⌘ = 0,

h⌘⌧,x(✓)⌘⇤⌧ 0,x0(✓0)i⌘ = 2�(✓ � ✓0)�(⌧ � ⌧ 0) �(3)(x� x

0). (3.4)

In the free theory, we can formally solve Eq. (3.2) and obtain

'⌧,x(✓) =

Z ✓

0

d✓0 e�[@⌧�r2/2m](✓�✓0) ⌘⌧,x(✓
0), (3.5)

where we chose '⌧,x(0) = 0 as an initial condition to solve Eq. (3.2). After taking the stochastic

average, the two point correlation of '⌧,x(✓) reads

h'⌧,x(✓)'
⇤
⌧ 0,x0(✓)i⌘ = 1

@⌧ �r2/2m

h
1� e�2(@⌧�r2/2m)✓

i
�(⌧ � ⌧ 0) �(3)(x� x

0). (3.6)

The exponential term monotonically drops o↵ as ✓ increases, so that Eq. (3.6) recovers the

free boson propagator (3.1) in the limit of ✓ ! 1. Since Eq. (3.2) is a di↵usion equation

along ✓ direction, this limit is nothing but the equilibrium solution of Eq. (3.2). Multiple-point

correlation functions are also obtained from equal stochastic-time correlation functions as

hT['(⌧
1

,x
1

), . . . ,'(⌧n,xn),'
⇤(⌧ 0

1

,x0
1

), . . . ,'⇤(⌧ 0n,x
0
n)]i

= lim
✓!1

h'⌧1,x1(✓) · · ·'⌧n,xn(✓)'
⇤
⌧ 01,x

0
1
(✓) . . .'⇤

⌧ 0n,x
0
n
(✓)i⌘. (3.7)

The generalization to interacting theories is straightforward. Now we solve the Langevin

equation (3.2) with interaction terms. For example, in the nonrelativistic bose gas interacting

by a repulsive contact interaction, the Langevin equation reads

@✓'⌧,x = � �@⌧ �r2/2m
�
'⌧,x � �'⇤

⌧,x'
2

⌧,x + ⌘⌧,x. (3.8)

The noise terms are the same as those in the free theory and satisfy Eq. (3.4). The expectation

value of observable is obtained by using the equilibrium solution of Eq. (3.2) or (3.8) as

hOi = lim
✓!1

hO('⇤,')i⌘, (3.9)

where the operator is written in terms of ' with the fictitious time ✓. Although the noise is

trivial Gaussian, because of interactions, non-linear contractions between ⌘ are generated by

solving the evolution along the ✓ direction, and thus we can completely recover correlation

functions in interacting quantum field theories.
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We remark here that as in the case of Monte Carlo simulation, some observables are not

able to be directly calculated by using the complex Langevin method. As is clear from our in-

troduction of the stochastic quantization, we can only calculate correlation functions by using

the stochastic average of solutions of classical equation of motion. Therefore, the generating

functional (the integral measure in terms of path integral formalism) and thus the thermody-

namic quantities such as free energy, or pressure are not easy to calculate also in the complex

Langevin simulation.

3.2 Fokker-Planck equation

Now that we have reached a stochastic description of the correlation functions, let us deepen

our insight from the general relation between this formalism and the path integral formalism.

We show that the path integral measure of Euclid field theory is retrieved by the stochastic

formalism through the Focker-Planck equation. From that, we can see that the (complex)

Langevin method is an alternative way to generate the ensemble of equilibrium states.

Let us define a distribution P (✓,'⇤,'), which reproduces the stochastic average of O at

finite ✓ as

hO('⇤ = '⇤
⌘(✓),' = '⌘(✓))i⌘ =

Z
d'⇤d' P (✓,'⇤,')O('⇤,'), (3.10)

where '⌘ denotes a solution of the Langevin equation (3.2). The ✓ dependence of hOi⌘ reads

@

@✓
hOi⌘ = h

✓
@✓'⌘

@

@'
+ @✓'

⇤
⌘

@

@'⇤

◆
Oi⌘

= h
✓✓

� @S

@'⇤ + ⌘

◆
@

@'
+

✓
�@S
@'

+ ⌘⇤
◆

@

@'⇤

◆
Oi⌘

= h
✓✓

� @S

@'⇤ +
@

@'⇤

◆
@

@'
+

✓
�@S
@'

+
@

@'

◆
@

@'⇤

◆
Oi⌘. (3.11)

To obtain the last line, we used the following equations:

h⌘ @

@'⌘

Oi⌘ =

Z
d⌘⇤d⌘ e�⌘⇤⌘⌘

@

@'
O('⇤ = '⇤

⌘,' = '⌘)

=

Z
d⌘⇤d⌘ (�@⌘⇤)e�⌘⇤⌘ @

@'
O

=

Z
d⌘⇤d⌘ e�⌘⇤⌘

✓
@'⇤

⌘

@⌘⇤
@

@'⇤

◆
@

@'
O

= h @

@'⇤
@

@'
Oi⌘, (3.12)

and
@'⌘

@⌘
=
@'⇤

⌘

@⌘⇤
= 1, (3.13)
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which is a prescription of stochastic derivatives and our convention is clear from Eq. (3.5). By

using P (✓,'), Eq. (3.12) is written as :

@

@✓
hOi⌘ =

Z
d'⇤d' P

✓✓
� @S

@'⇤ +
@

@'⇤

◆
@

@'
+

✓
�@S
@'

+
@

@'

◆
@

@'⇤

◆
O

=

Z
d'⇤d'

✓
2
@2S

@'⇤@'
+

@S

@'⇤
@

@'
+
@S

@'

@

@'⇤ + 2
@2

@'⇤@'

◆
PO

=

Z
d'⇤d'

✓
@

@'

✓
@S

@'⇤ +
@

@'⇤

◆
+

@

@'⇤

✓
@S

@'
+

@

@'

◆◆
PO. (3.14)

Now, the ✓ dependence of P (✓,') reads

@✓P =

✓
@

@'

✓
@

@'⇤ +
@S

@'⇤

◆
+

@

@'⇤

✓
@

@'
+
@S

@'

◆◆
P. (3.15)

This is the so called Focker-Planck equation. Eq.(3.15) is written as

@✓P̃ = �
✓

� @

@'⇤ +
1

2

@S

@'⇤

◆✓
@

@'
+

1

2

@S

@'

◆
+

✓
� @

@'
+

1

2

@S

@'

◆✓
@

@'⇤ +
1

2

@S

@'⇤

◆�
P̃ , (3.16)

where P = P̃ e�S/2. Let us assume the action is real, that is, S = S† and then the stochastic

time evolution operator of P̃ ,

H =

✓
� @

@'⇤ +
1

2

@S

@'⇤

◆✓
@

@'
+

1

2

@S

@'

◆
+

✓
� @

@'
+

1

2

@S

@'

◆✓
@

@'⇤ +
1

2

@S

@'⇤

◆
, (3.17)

becomes semi-positive definite, since H = H†. Therefore, without depending on initial condi-

tions, the asymptotic behavior of P̃ in the limit of ✓ ! 1 is given by the eigenstate of H with

zero eigenvalue, which is obtained from
✓
@

@'
+

1

2

@S

@'

◆
 = 0, (3.18)

✓
@

@'⇤ +
1

2

@S

@'⇤

◆
 = 0, (3.19)

and we have  = e�S/2. Now, we find that the distribution P behaves as

P = P̃ e�S/2 / e�S, (3.20)

at ✓ ! 1. The ensemble of '(✓ ! 1), which is obtained by repeatedly solving the Langevin

equation reproduces the one randomly generated by the Path integral measure e�S, and thus

the ensemble average of O over them reproduces the expectation value (1.1). Now, we find

that when the action is real, to generate the ensemble by solving the Langevin equation is

completely equivalent to generate it by the importance sampling method.

This is no longer true in the situation where the action is not real, that is, S 6= S†, and

the Monte Carlo simulation su↵ers from the sign problem. Even in such a case, we can still
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solve the Langevin equation and obtain the ensemble of the equilibrium solutions '(✓ ! 1).

Since H is not positive semi-definete if S 6= S†, it is not obvious whether there exists a unique

equilibrium distribution in Eq. (3.15) in any kind of field theories. Even though, at least, if

the real part of all eigenvalues of H is semi-positive, the above argument still holds and thus

the ensemble average over '(✓ ! 1) gives the expectation value (1.1). Therefore, there is a

possibility that by using the Langevin method, we can attack the problem which cannot be

handled by the Monte Carlo method.

We remark here that it is not easy to show whether the real part of all eigenvalues are positive

or not. Moreover, even if we assume it, there still exist di�culties of slow convergence towards

equilibrium solutions and of instability caused by the discretization of fictitious time [102, 103,

104, 105]. These di�culties originate from the complexification of P and hinder numerical

simulations in practice. The condition to avoid such practical problems is still unclear and we

need to check whether the method works well or not by performing numerical simulations. The

practical criterion to judge the applicability of complex Langevin method is an still important

open question [104, 105].

3.3 Complex Langevin equation

In this section, we summarize the basics to perform the complex Langevin simulation. As

an example, let us consider the nonrelativistic �'4 theory at finite chemical potential. The

lattice-discretized action S
lat

is

S
lat

= a3
X

⌧,x

h
'⇤
⌧,x ('⌧,x � eµa'⌧�a,x)

� 1

2ma

X

i

⇣
'⇤
⌧,x+ˆia

'⌧,x + '⇤
⌧,x'⌧,x+ˆia � 2|'⌧,x|2

⌘
+

1

4

�

a2
a3|'⌧,x|4

i
,

(3.21)

or equivalently,

S
lat

= a3
X

⌧,x

h
�eµa

�
'a
⌧,x'

a
⌧�a,x + i✏ab'

a
⌧,x'

b
⌧�a,x

�

� 1

ma

X

i

'a
⌧,x+ˆia

'a
⌧,x +

✓
1 +

3

ma

◆
'a
⌧,x'

a
⌧,x +

1

4

�

a2
a3('a

⌧,x'
a
⌧,x)

2

i
,

(3.22)

where ' = '1 + i'2 with 'a=1,2 being real scalar fields. The Einstein convention is understood

for repeated indices. ✏ab are completely antisymmetric tensor with ✏
12

= 1. We impose the

periodic boundary conditions to all directions. The chemical potential is introduced on the

basis of the standard lattice techniques [90, 91, 106]: On the lattice, the covariant derivatives

are replaced with the link variables and thus the chemical potential is introduced by the same

manner as the abelian link variables. This point will be discussed in detail in the next chapter.

We absorb the lattice spacing into the definition of the field and parameters, a3/2� ! �,
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ma ! m, µa ! µ, and �/a2 ! �. Then, in the following discussion, all dimensional quantities

are scaled by the lattice spacing a.

It is clear from Eq. (3.22) that the lattice action is in general complex in the nonrelativistic

boson regardless of zero or finite chemical potential, which causes the sign problem in the

standard lattice simulations. In the Langevin method, we need to solve

@✓'
a
⌧,x(✓) = � @S

lat

@'a
⌧,x

+ ⌘a⌧,x(✓), (3.23)

where ⌘a are real Gaussians noises and satisfy

h⌘ax(✓)i = 0, (3.24)

h⌘ax(✓)⌘by(✓0)i = 2�ab�xy�(✓ � ✓0). (3.25)

The complex lattice action makes the right hand side of Eq. (3.23) complex. Thus, we need to

complexify the left hand side, namely, the two real fields 'a as well. They are complexified as

'aC = 'aR + i'aI and this is the reason why this method is called complex Langevin method.

Then, Eq. (3.2) becomes complex stochastic di↵erential equation for the two complex fields

'aC in which the Gaussian noises are applied only to the real parts [87, 97, 98]. By discretizing

the fictitious time ✓ as ✓ = "n with " being the auxiliary time step, we numerically solve the

following equations:

'aR
⌧,x(n+ 1) = 'aR

⌧,x(n)� "Re


@S

lat

@'a
⌧,x

�
+
p
"⌘a⌧,x(n), (3.26)

'aI
⌧,x(n+ 1) = 'aI

⌧,x(n)� "Im


@S

lat

@'a
⌧,x

�
. (3.27)

The drift terms are given explicitly as

Re


@S

lat

@'a
⌧,x

�
= �eµ

�
'aR
⌧+1,x + 'aR

⌧�1,x

�� eµ✏ab
�
'bI
⌧+1,x � 'bI

⌧�1,x

�

� 1

m

X

i

⇣
'aR
⌧,x+ˆi

+ 'aR
⌧,x�ˆi

⌘
+ 2

✓
1 +

3

m

◆
'aR
⌧,x

+�
�
'bR
⌧,x'

bR
⌧,x � 'bI

⌧,x'
bI
⌧,x

�
'aR
⌧,x � 2�'bR

⌧,x'
bI
⌧,x'

aI
⌧,x, (3.28)

Im


@S

lat

@'a
x

�
= �eµ

�
'aI
⌧+1,x + 'aI

⌧�1,x

�
+ eµ✏ab

�
'bR
⌧+1,x + 'bR

⌧�1,x

�

� 1

m

X

i

⇣
'aI
⌧,x+ˆi

+ 'aI
⌧,x�ˆi

⌘
+ 2

✓
1 +

3

m

◆
'aI
⌧,x

+�
�
'bR
⌧,x'

bR
⌧,x � 'bI

⌧,x'
bI
⌧,x

�
'aI
⌧,x + 2�'bR

⌧,x'
bI
⌧,x'

aR
⌧,x. (3.29)

The expectation value is obtained by using the solution of Eqs. (3.26) and (3.27) as

hOi = lim
n!1

hO('a = 'aC(n))i⌘, (3.30)
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where the operator is written in terms of the complx fields 'aC. For example, the number

density operator, n⌧,x = @L/@µ with L being the lattice Lagrangian density, is given by

n⌧,x = eµ (�ab + i✏ab)'
aC
⌧,x'

bC
⌧�1,x

= eµ (�ab + i✏ab)
⇣
'aR
⌧,x'

bR
⌧�1,x � 'aI

⌧,x'
bI
⌧�1,x + i

�
'aR
⌧,x'

bI
⌧�1,x + 'aI

⌧,x'
bR
⌧�1,x

�⌘
. (3.31)

We note that all observables are complexified in the same manner and have both real and

imaginary parts. Of course, the imaginary parts should be zero after the ensemble average.

In the following numerical simulation, we adopt a higher order algorithm [107] to improve the

step size dependence [108], which is summarized in Appendix A. Moreover, instead of repeatedly

solving the Langevin equation, by assuming the ergodicity of stochastic evolution, we calculate

observables as the long time average over the Langevin trajectories. More specifically, the

ensemble 'aC is taken from every step after updating the Langevin processes N
step

times (the

Langevin time interval �✓ = "N
step

), where we discard the early-stage of Langevin evolution

before reaching equilibrium solutions. Then, the expectation value is given as

hÔi = 1

N
stat

X

'aC

O('aC), (3.32)

with N
stat

being the total number of field configurations taken from the Langevin trajectories.

Statistical errors are estimated by using the standard jackknife method, which is summarized

in Appendix B.

3.4 Numerical simulation

As an example, we perform the complex Langevin simulation of the lattice action (3.21). We

have numerically solved Eqs. (3.26) and (3.27) by adopting the higher order algorithm [107, 108]

with " = 5.0⇥10�4a. The total number of lattice sites is V = NxNyNzN⌧ = 64, 84, and 104. The

periodic boundary condition was imposed to all directions. We set ma = 1.0 and �/a2 = 1.0.

We have updated the Langevin evolution 1.5⇥106 times after discarding the equilibration stage

to obtain the data shown below. Errors were estimated by using the jackknife method. We

show the early stage of the Langevin evolution towards the equilibration in Fig. 3.1, where we

show the number density

n =
1

V

X

⌧,x

n⌧,x, (3.33)

obatined from each Langevin step in the case of N4 = 104 and µa = 0.5. We can clearly see that

the number density reaches the equilibrium value after 2.5⇥ 104 times updated. The ensemble

used below is taken from the Langevin steps after 5.0⇥ 104 times updated.

Now, we will show the numerical result. First, we show the number density (3.33) as

a function of chemical potential for the lattice size V = 64 (circle), 84 (triangle), and 104
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Figure 3.1: Number density n as a function of the Langevin time evolution in the case of

N4 = 104, and µa = 0.5. Blue and red open curves denote real and imaginary parts of number

density, respectively.

(diamond) in Fig. 3.2. We can clearly see a transition from zero density phase to finite density

phase. We note that non-linear behavior above µa ⇠ 0.8 would be a lattice artifact, which comes

from exponentiating the chemical potential as in Eq. (3.21) or (3.31). The chemical potential

should be small enough, so that the exponential term can be expanded, that is, eµa ⇠ 1 + µa

is numerically satisfied. We show the number density near the transition region in Fig. 3.3.

Imaginary part of the number density was consistent with zero within error bars in both figures.

At strictly zero temperature and in the thermodynamic limit, all physical observables are in-

dependent of chemical potential until the lowest lying mode is excited by the chemical potential.

Therefore, even though it is manifestly introduced in the density matrix as exp(��(H �µN)),

the µ-dependence should be exactly canceled over the ensemble average below the critical value

of µ, and this exact cancelation is referred to as the Silver Blaze problem [101]. In Fig. 3.3,

with increasing the lattice volume V = N4, the transition becomes sharper and sharper and

the density goes to zero below the critical value µca ⇠ 0.20, so that the Silver Blaze problem

can be correctly handled in our simulation.

At zero temperature, as shown in Chap. 2, the nonvanishing number density means the

macroscopic occupation of the lowest quantum state, which is comparable to the spatial volume

of the system and thus the Bose-Einstein condensation may occur above the critical chemical

potential. To show this, we have calculated the two-point correlation function G(x � y) =

h�⇤(⌧,x)�(⌧,y)i and checked the long range order. We show the two-point correlation function
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Figure 3.2: Number density n as a function of chemical potential µ at N = 6 (circle), 8

(triangle) and 10 (diamond). Blue and red symbols denote real and imaginary parts of number

density. All the scales are measured in the unit of the lattice spacing a.
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Figure 3.3: Number density n near the transition region at N = 6 (circle), 8 (triangle) and 10

(diamond). Blue and red symbols denote real and imaginary parts of number density. All the

scales are measured in the unit of the lattice spacing a.
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Figure 3.4: Boson propagator G(r) as a function of r at µa = 0.1 (circle), 0.3 (triangle) and

0.6 (diamond). Blue and red symbols denote real and imaginary parts of propagator. All the

scales are measured in the unit of the lattice spacing a.

Á Á Á

Á

Á

Á
Á Á Á Á Á

Á Á

Á

Á

Á

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

m

R

Figure 3.5: Condensate fraction R as a function of the chemical potential µ. The chemical

potential µ is measured in the unit of the lattice spacing a.
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as a function of r:

G(r) =
1

N⌧NxNy

X

⌧,x,y

h�⇤(⌧, x, y, r)�(⌧, x, y, 0)i, (3.34)

at µa = 0.1 (circle), 0.3 (triangle) and 0.5 (diamond) in Fig. 3.4. The lattice size was fixed

with N4 = 104. Below the critical value of the chemical potential (circle), the boson propagator

exponentially drops to zero. On the other hand, above the critical chemical potential (triangle

and diamond), it goes to a constant value and thus the signature of long range order has been

clearly observed. We show the condensate fraction R as a function of chemical potential in

Fig. 3.5, which is defined as

R = Re[G(Nza/2)]/Re[G(0)], (3.35)

where Nz is an extent along the z direction (Nz = 10 in our simulation). From Fig. 3.5, we

find that the superfluid transition occurs simultaneously at the critical value of the Silver Blaze

problem µc, and thus µc can also be interpreted as the critical value of the spontaneous U(1)

symmetry breaking.
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Chapter 4

Nonrelativistic Bose-Einstein

condensate

In this chapter, we present our original work [71]. We perform ab-initio simulations of the

nonrelativistic Bose-Einstein condensate under strong external fields such as the electric field,

the magnetic field, and the rotation. All the lattice actions discussed in this chapter are

complex, so that the conventional Monte Carlo method su↵ers from the sign problem. To

overcome this di�culty, we adopt the complex Langevin method, which can take into account

quantum fluctuations exactly even for such complex actions.

First, in Sec. 4.1, we discuss how to apply such external fields on the lattice . This is the

review part based on Refs. [90, 91, 92, 106]. On the lattice, the naive discretization does not

maintain the local U(1) symmetry. Thus, we improve the lattice action by adding higher order

terms in terms of the lattice spacing, so as the lattice action to have the lattice version of the

local U(1) symmetry.

Then, in Sec. 4.2, we analyze the Bose-Einstein condensate in the presence of electric fields:

In Euclid simulation, two types of electric fields are possible, that is, the Euclid and Minkowski

electric fields (See e.g., Ref. [109]). In our work, we apply the Minkowski electric field, so that

we can directly calculate observables without performing the analytic continuation. We show

that the non-uniform charge distribution is generated according to the vector potential. We also

analyze the associated U(1) symmetry breaking by performing the long-range order analysis.

Next, in Sec. 4.3, we analyze the Bose-Einstein condensate in the presence of magnetic

field. As explicitly shown in the free theory in Sec. 4.3.1, the Bose-Einsein condensate is

destroyed by the magnetic field due to the formation of Landau levels. The derivation is based

on Refs. [110, 111]. We numerically show that it occurs even in the interacting theory. The

Bose-Einstein condensate becomes inhomogeneous, where the quantum vortex is generated. We

show that the vortex is quantized far from the critical chemical potential, but it is blurred by

quantum fluctuation as the chemical potential is getting close to its critical value.

Finally, in Sec. 4.4, we analyze the rotating Bose-Einstein condensate. We formulate the

rotating lattice through the e↵ective magnetic field induced in the rotating frame in Ref. [71].

27
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The direct evidence of the quantum vortex nucleation is the quantized circulation. In our

simulation, the quantization of the average circulation is clearly seen, and at the same time

the quantum fluctuation of vortex number is also seen. At first glance, these two facts seem

contradicting or counterintuitive. However, we show that the fluctuation behaves as Gaussian

and, as a result of cancellation, the average circulation becomes integer.

4.1 Electromagnetic fields on the lattice

In this section, we discuss how to apply external electromagnetic fields on the lattice. Let us

start with the local U(1) symmetry in the Minkowski space in continuum theories. The action

of charged boson is

iS
con

= i

Z
dtd3x

h
'⇤iDt'� 1

2m
|Di'|2 � 1

4
�|'|4

i
, (4.1)

where Dµ=t,x = @µ � iqAM
µ . This action is invariant under the local U(1) transformation:

'! ei✓', (4.2)

qAM
µ ! qAM

µ � @µ✓. (4.3)

The analytic continuation of gauge fields is given as

AM
t ! iAE

⌧ , (4.4)

AM
i=x,y,z ! AE

i , (4.5)

with t ! �i⌧ , and then the Euclid action is

�S
con

= �
Z

d⌧d3x
h
'⇤D⌧'+

1

2m
|Di'|2 + 1

4
�|'|4

i
, (4.6)

where Dµ=⌧,x = @µ � iqAE
µ . Here and below, the Minkowki and Euclid gauge field are, respec-

tively, denoted as AM
µ and AE

µ . The Euclid action is invariant under Eqs. (4.2) and (4.3) with

replacing AM
µ by AE

µ . We discretize the Euclid action (4.6) on the hypercubic lattice. In the

discretized action, the derivatives are replaced by finite di↵erences,

@⌧'⌧,x ! ('⌧,x � '⌧�a,x) /a, (4.7)

@i'⌧,x ! �
'⌧,x � '⌧,x�ˆia

�
/a. (4.8)

Then, the lattice action reads

S
lattice

= a4
X

⌧,x

h1
a
'⇤
⌧,x

�
'⌧,x � '⌧�a,x � iqaAE

⌧ '⌧,x

�

+
1

2ma2

X

i

⇣
'⇤
⌧,x � '⇤

⌧,x�ˆia + iqaAE
i '

⇤
⌧,x

⌘ �
'⌧,x � '⌧,x�ˆia � iqaAE

i '⌧,x

�
+

1

4
�|'|4

i
.

(4.9)
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The problem is that this lattice action is not invariant under the lattice version of U(1) gauge

transformation,

'! ei✓', (4.10)

qAE
⌧ ! eAE

⌧ � (✓⌧,x � ✓⌧�a,x) /a, (4.11)

qAE
i ! eAE

i � �✓⌧,x � ✓⌧,x�ˆia
�
/a. (4.12)

Therefore, even if we replace AE
µ by external fields, they cannot induce proper Noether currents

on the lattice. To obtain the U(1) symmetric lattice action, we need to cancel the phase shift

of ' by the local shift of AE
µ . For this purpose, we improve the lattice action as

S
lattice

= a4
X

⌧,x

h1
a
'⇤
⌧,x

⇣
'⌧,x � e�ieaAE

⌧ '⌧�a,x

⌘

+
1

2ma2

X

i

⇣
'⇤
⌧,x � e�iqaAE

i '⇤
⌧,x�ˆia

⌘⇣
'⌧,x � eiqaA

E
i '⌧,x�ˆia

⌘
+

1

4
�|'|4

i
.

(4.13)

By imposing the periodic boundary conditions, we have [92]

S
lattice

= a4
X

⌧,x

h1
a
'⇤
⌧,x

⇣
'⌧,x � e�iqaAE

⌧ '⌧�a,x

⌘

+
1

2ma2

X

i

⇣
2'⇤

⌧,x'⌧,x � '⇤
⌧,x�ˆiae

�iqaAE
i '⌧,x � '⇤

⌧,xe
iqaAE

i '⌧,x�ˆia

⌘
+

1

4
�|'|4

i
,

(4.14)

or equivalently,

S
lattice

= a4
X

⌧,x

h1
a
'⇤
⌧,x ('⌧,x � u⌧'⌧�a,x)

+
1

2ma2

X

i

⇣
2'⇤

⌧,x'⌧,x � '⇤
⌧,xui'⌧,x+ˆia � '⇤

⌧,x+ˆia
u†
i'⌧,x

⌘
+

1

4
�|'|4

i
,

(4.15)

where uµ=⌧,x = exp(�iaqAE
µ (x)). The improved lattice action (4.15) is apparently invariant

under Eqs. (4.10), (4.11) and (4.12). In Eq. (4.13) and (4.14), the covariant derivatives are

discretized as

�
@
0

� iqAE
⌧

�
'⌧,x ! �

'⌧,x � '⌧�a,x � iqaAE
⌧ '⌧,x

�
/a

! �
'⌧,x � '⌧�a,x � iqaAE

⌧ '⌧�a,x +O(a2)
�
/a

!
⇣
'⌧,x � eiqaA

E
⌧ '⌧�a,x +O(a2)

⌘
/a, (4.16)

�
@i � iqAE

i

�
'⌧,x ! �

'⌧,x � '⌧,x�ˆia � iqaAE
i '⌧,x

�
/a

!
⇣
'⌧,x � eiqaA

E
i '⌧,x�ˆia +O(a2)

⌘
/a. (4.17)

In the action (4.15), we recover the U(1) symmetry by adding higher order terms with respect

to the lattice spacing a, and thus the lattice actions (4.9) and (4.15) are equivalent to each

other in the limit of a ! 0.
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In summary, in lattice simulations, external U(1) fields can be introduced as abelian phase

factors, which respect the local U(1) symmetry on the lattice. We remark here that the chemical

potential can be applied as the constant AE
⌧ . Also, the lattice simulation in co-moving frame

can be performed by introducing a constant AE
i .

4.2 Electric field

4.2.1 Minkowski and Euclid electric fields

In this section, we discuss external electric fields in Euclid simulations. The magnetic field does

not change its sign in the analytic continuation between the Minkowski and Euclid theory, but

the electric field does. Therefore, two types of external electric fields are possible in lattice

simulations, that is, the Minkowski electric field EM and the Euclid electric field EE. These

two are related to each other by the analytic continuation EM ! iEE. For Euclid electric field,

it can be introduced as

S
con

=

Z
d⌧d3x

h
'⇤D⌧'+

1

2m
|@i'|2 + 1

4
�|'|4

i
, (4.18)

by using the Euclid gauge field AE
⌧ , where we take the spatial components of gauge fields zero,

i.e, AE
i = 0. The Euclid electric field is given as EE

i = �@iAE
⌧ . The Euclid gauge field can

induce only the imaginary shift of particle energy " as

"! "� iqAE
⌧ , (4.19)

not the real energy shift. Therefore, the Euclid electric field does not cause neither the insta-

bility of the vacuum nor particle creations. This is the same as the case of imaginary chemical

potential. Also, since the real physics is given by the Minkowski electric field, the analytic

continuation of electric field is needed to obtain the physical result, when we use the Euclid

electric field.

On the other hand, the Minkowski electric field can be introduced by the replacement

AE
⌧ ! �iAM

⌧ in the same action (4.18). We take the spatial components of gauge fields zero

again, so that the Minkowski electric field is given as EM
i = �@iAM

⌧ . Now, the Minkowski

electric field induces the real energy shift as

"! "� qAM
⌧ , (4.20)

and causes the vacuum instability. In relativistic theories, particle creations can occur above

the critical electric field via the so called Schwinger mechanism [112]. The external Minkowski

electric field can be introduced in the Euclidian simulations, however, causes the sign problem.

Thus, it is in general hard to apply the Minkowski electric field in lattice simulations. The

situation is exactly the same as the case of real chemical potential.
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4.2.2 Numerical simulation

In Euclid simulations, the real-time dynamics induced by the electric field cannot be followed.

What we can calculate is the expectation value in equilibrium state, which minimizes the free

energy in the presence of the electric field. The equilibrium state is realized when the charged

particles distribute according to the electric potential. In other words, particles concentrate on

the highest voltage region. Also, there is no finite (dissipative) current in the equilibrium state.

At zero electric field, the equilibrium state favours the uniform condensation due to the

bose statics, namely, the macroscopic occupation of zero momentum state is realized. On the

other hand, non-uniform charge distribution is favored at finite electric field, which makes the

condensation non-uniform. There must be crossover between these uniform and non-uniform

Bose-Einstein condensate.

L0

AM
�E

z

Figure 4.1: Schematic configuration of vector potential AM
⌧ and associated electric field EM .

The periodic boundary condition is imposed along the z direction.

To show this crossover, we have applied the Minkowski electric field to the interacting

charged bose gas. Below, we consider only the Minkowski electric field and omit the upper

script M . The lattice action is

S
lat

= a3
X

x

h
'⇤
⌧,x ('⌧,x � u⌧'⌧�a,x)

� 1

2ma

X

i

⇣
'⇤
⌧,x+ˆia

'⌧,x + '⇤
⌧,x'⌧,x+ˆia � 2|'⌧,x|2

⌘
+

1

4

�

a2
a3|'⌧,x|4

i
, (4.21)

where u⌧ (x) = exp(�qaA⌧ (x)) is the real (not complex) link variable. The lattice volume is

NxNyNz ⇥N⌧ . We take all spatial components of gauge potentials zero, i.e., Ai = 0. We also

impose periodic boundary conditions to all directions. The gauge potential and the associated

electric field are shown in Fig. 4.1. We consider the electric field along z direction. To satisfy

the periodic boundary condition, we set the vector potential as

A⌧ (z) =

8
<

:
�E(z � L/4) (0  z < L/2)

E(z � 3L/4) (L/2  z < L),
(4.22)
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where L = Nza, and we divided finite lattice into two regions. The electric field in each region

is given as

Ez = �@zA⌧ (z) =

8
<

:
+E (0  z < L/2)

�E (L/2  z < L).
(4.23)
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Figure 4.2: Number density n as a function of electric field a2qE. Blue and red symbols denote

real and imaginary parts of number density, respectively. All the scales are measured in the

unit of the lattice spacing a.

We analyze the spontaneous U(1) symmetry breaking by the electric field. We have nu-

merically calculated Eqs. (3.26) and (3.27) with the lattice action (4.21), by adopting the

higher order algorithm [107, 108] with " = 2.0 ⇥ 10�4a. The total number of lattice sites is

V = NxNyNzN⌧ = 104. The periodic boundary condition was imposed to all directions. We

set ma = 1.0 and �/a2 = 1.0. Errors were estimated by using the jackknife method. We note

that imaginary parts of observables were found to be consistent with zero within error bars.

We show the charge density

n =
1

V

X

⌧,x

n⌧,x, (4.24)

n⌧,x = (�ab + i✏ab)
⇣
'aR
⌧,x'

bR
⌧�1,x � 'aI

⌧,x'
bI
⌧�1,x + i

�
'aR
⌧,x'

bI
⌧�1,x + 'aI

⌧,x'
bR
⌧�1,x

�⌘
, (4.25)

as a function of the electric field in Fig 4.2. Below the critical value of electric field, the charge

density is completely independent of E as in the case of chemical potential. Above the critical

value, the charge density shows the linear dependence, which is also consistent with that in the
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case of chemical potential shown in Fig. 3.3. To see the di↵erence between the electric field and

the chemical potential, we show the charge density distribution along the parallel direction to

the electric field in Fig. 4.3:

n(z) =
1

N⌧NxNy

X

⌧,x,y

n⌧,x. (4.26)

Above the critical electric field, we can clearly see that the particles accumulate in the highest
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Figure 4.3: Number density n as a function of z at a2qE = 0.1 (circle), 0.2 (triangle) and 0.4

(diamond). All the scales are measured in the unit of the lattice spacing a.

voltage region shown in Fig. 4.1, as expected. The charge density becomes zero in the region,

where �qAM
⌧ is smaller than the critical chemical potential. It shows the linear z dependence

in the region, where �qAM
⌧ is larger than the critical chemical potential. This behavior is

completely consistent with the configuration of the vector potential shown in Fig. 4.1.

As discussed in Sec. 3, the nonvanishing number density is accompanied by the spontaneous

U(1) symmetry breaking at zero (or su�ciently low) temperature. To see non-uniform U(1)

symmetry breaking induced by the non-uniform charge distribution, we have performed the

o↵-diagonal long-range order analysis. We have calculated the two-point correlation function

in the plane perpendicular to the electric field:

G(r, z) =
1

N⌧Ny

X

⌧,y

h�⇤(⌧, r, y, z)�(⌧, 0, y, z)i. (4.27)

In Fig. 4.4, we show the two-point correlation function in the perpendicular plane at z = 5 in
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Figure 4.4: Boson propagator G(r) as a function of r at z = 5, and a2qE = 0.1 (circle), 0.2

(triangle) and 0.4 (diamond). All the scales are measured in the unit of the lattice spacing a.
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Figure 4.5: Condensate fraction R at z = 5 as a function of a2qE. All the scales are measured

in the unit of the lattice spacing a.
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Figure 4.6: Condensate fraction R as a function of z at a2qE = 0.1 (circle), 0.2 (triangle) and

0.4 (diamond). All the scales are measured in the unit of the lattice spacing a.

the case of a2qE = 0.1 (circle), 0.2 (triangle) and 0.5 (diamond). The signature of long-range

order is clearly observed above the critical electric field (triangle and diamond). We have also

calculated the condensate fraction R:

R(z) = Re[G(Nxa/2, z)]/Re[G(0, z)], (4.28)

where Nx is an extent along the x direction (Nx = 10 in our simulation). We show the

condensate fraction as a function of the electric field at the highest voltage point (z = 5a)

in Fig. 4.5. We can see the transition from the U(1) symmetric to the U(1) broken phase at

a2qE ⇠ 0.15. To see the inhomogeneity of symmetry breaking, we show the condensate fraction

as a function of z at a2qE = 0.1 (circle), 0.2 (triangle) and 0.4 (diamond) in Fig. 4.6. Reflecting

the inhomogeneity of the charge density, the condensate fraction becomes also inhomogeneous.

4.3 Magnetic field

4.3.1 Landau level

We start with the free charged scalar field � in a uniform magnetic field Aµ. The equation of

motion reads ✓
iD

0

� 1

2m
D2

i

◆
�(x) = 0, (4.29)
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with the background covariant derivative Dµ = @µ � ieAM
µ . We choose the symmetric gauge

AM
µ = (0, By/2,�Bx/2, 0), and rewrite Eq. (4.29) with an ansatz �(x) = f(xk)'(x?) as

✓
i@

0

� 1

2m
@2z

◆
f(xk) = ��f(xk), (4.30)

� 1

2m

�
(D

1

)2 + (D
2

)2
�
'(x?) = �'(x?). (4.31)

We use the convention of xk = (x0, x3) = (t, z) and x? = (x1, x2) = (x, y). From Eq. (4.30), we

have

f(xk) = exp(�i"t+ ip3z), (4.32)

� = "� (p3)2

2m
. (4.33)

Also, we can solve Eq. (4.31) by rewriting it in the Dirac bracket form,

eB

2m
H|'i = �|'i, (4.34)

where H ⌘ �((D
1

)2 + (D
2

)2)/eB. We introduce new position and momentum operators as

X ⌘ 1p
eB

(i@y + xeB/2), (4.35)

PX ⌘ 1p
eB

(�i@x + yeB/2), (4.36)

Y ⌘ 1p
eB

(i@x + yeB/2), (4.37)

PY ⌘ 1p
eB

(�i@y + xeB/2). (4.38)

We can easily check that they satisfy the canonical commutation relations

[X,PX ] = [Y, PY ] = i, (4.39)

and others become zero. Then, H reads

H = P 2

X +X2. (4.40)

The transverse motion of charged scalar field is given by a harmonic oscillator and thus quan-

tized, which is the so-called Landau quantization. Now, the creation and annihilation operators

of harmonic oscillator are

a ⌘ 1p
2
(X + iPX), (4.41)

a† ⌘ 1p
2
(X � iPX), (4.42)

b ⌘ 1p
2
(Y + iPY ), (4.43)
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b† ⌘ 1p
2
(Y � iPY ), (4.44)

where

[a, a†] = [b, b†] = 1, (4.45)

and other commutation relations vanish. Using these operators, the Hamiltonian is given as

H = 2a†a+ 1. (4.46)

Since the eigenvalues of H are 2n + 1 with integer n, the energy eigenvalues of charged scalar

field read

"(n, p3) =
1

2m
(p3)2 +

eB

2m
(2n+ 1). (4.47)

Therefore, in the case of spinless boson, all Landau levels including the lowest ones acquire

the gap proportional to the magnetic field as given in Eq. (4.47). The energy of ground state

increases as the magnetic field does, which causes the restoration of the U(1) symmetry at strong

magnetic fields, that is, the superfluidity of charged boson (superconductivity) is destroyed by

the magnetic field. This is because the chemical potential must be larger than the gap of lowest

excitation to reach the condensed phase. We will numerically show that it occurs even in the

interacting theory.

We remark here that the situation is totally di↵erent in the case of finite-spin particles,

where the lowest Landau levels can be gapless, and thus the order parameter is not necessarily

destroyed by the magnetic field. In fact, the opposite behavior, namely, the enhancement of

symmetry breaking by the magnetic field, which is referred to as the magnetic catalysis, has

been proposed in literatures [113, 114] (for a review, see Ref. [115]).

In the symmetric gauge, the angular momentum Lz reads

Lz = b†b� a†a, (4.48)

and it apparently commutes with H. Therefore, the eigenstates of Eq. (4.34) are labeled by

the Landau level n and the angular momentum l as

|n, li = 1p
n!(n+ l)!

(a†)n(b†)n+l|0, 0i, (4.49)

where |0, 0i is the Fock vacuum defined by a and b, and satisfies

a|0, 0i = b|0, 0i = 0. (4.50)

We note that l has the minimum l = �n, but it is not bounded from above by n.

Let us now derive the wave function of |n, li in the coordinate space. We define the complex

coordinates

⇠ ⌘
r

eB

2
(x+ iy), (4.51)
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⇠̄ ⌘
r

eB

2
(x� iy). (4.52)

The creation and annihilation operators read

a =
⇠

2
+ @

¯⇠, a† =
⇠̄

2
� @⇠, (4.53)

b =
⇠̄

2
+ @⇠, b† =

⇠

2
� @

¯⇠. (4.54)

The lowest Landau level wave function with l = 0 are obtained by a|0, 0i = b|0, 0i = 0, which

are ✓
⇠

2
+ @

¯⇠

◆
'
0,0(⇠, ⇠̄) = 0, (4.55)

✓
⇠̄

2
+ @⇠

◆
'
0,0(⇠, ⇠̄) = 0 (4.56)

in the coordinate space. Here '
0,0(⇠, ⇠̄) ⌘ h⇠, ⇠̄|0, 0i. The solution is

'
0,0(⇠, ⇠̄) =

r
eB

2⇡
e�

|⇠|2
2 , (4.57)

where the normalization of the wave function is chosen asZ
d⇠d⇠̄

eB
'⇤
n,l(⇠, ⇠̄)'n,l(⇠, ⇠̄) = 1. (4.58)

The wave function of |n, li in the complex coordinates reads

'n,l(⇠, ⇠̄) ⌘ h⇠, ⇠̄|n, li = 1p
n!(n+ l)!

h⇠, ⇠̄|(a†)n(b†)n+l|0, 0i

=
1p

n!(n+ l)!

✓
⇠̄

2
� @⇠

◆n✓
⇠

2
� @

¯⇠

◆n+l

'
0,0(⇠, ⇠̄)

=
1p

n!(n+ l)!
e

|⇠|2
2 (�@⇠)n

��@
¯⇠

�n+l
e�

|⇠|2
2 '

0,0(⇠, ⇠̄)

=
1p

n!(n+ l)!
e

|⇠|2
2 (�1)n

1

⇠̄l

✓
@

@|⇠|2
◆n

|⇠|2(n+l)e�
|⇠|2
2 '

0,0(⇠, ⇠̄)

=

r
eB

2⇡

s
n!

(n+ l)!
(�1)n⇠le�

|⇠|2
2 L(l)

n (|⇠|2), (4.59)

where we used the generalized Laguerre polynomials

L(l)
n (x) =

exx�l

n!

dn

dxn
xn+le�x. (4.60)

Taking n = 0, we obtain the lowest Landau level wave functions

'l(x?) =

r
eB

2⇡l!

✓
eB

2

◆ l
2

(x+ iy)le�
eB
4 (x2

+y2). (4.61)

The longitudinal part is given by f(xk) and behaves as the plane wave. The important fact is

that the transverse dynamics of all the Landau levels is suppressed if (p?)2 ⌘ (p1)2+(p2)2 ⌧ eB,

because the transverse momentum is scaled as (p?)2/eB. Thus, the theory is e↵ectively reduced

to (1 + 1) dimensions by strong magnetic field.
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4.3.2 Magnetic flux quantization

As we have shown in the free theory, the magnetic field can destroy the Bose-Einstein conden-

sate. Therefore, the system energetically disfavors the uniform condensation in the presence

of magnetic field. The condensation becomes inhomogeneous and then the topological defect

may appear, which is quantized due to the single validness of macroscopic wave function of

the Bose-Einstein condensate. In the case of superconductors, it can be observed through the

quantization of penetrating magnetic flux. To show this, let us consider a situation where the

B

J

Figure 4.7: Schematic configuration of penetrating magnetic flux.

magnetic field penetrates a defect in superconductor as schematically shown in Fig. 4.7. The

electric current is defined as ji = @L/@Ai with the Lagrangian (4.1) or (4.6) and reads

ĵi =
q

2m

�
i@i'̂†'̂� i'̂†@'̂

�� q2

m
Ai'̂†'̂, (4.62)

where m and q are mass and charge of condensed boson, respectively. We use hats to indicate

quantum operators. In the mean field approximation, the expectation value of observable is

obtained by neglecting quantum fluctuation of ', that is, '̂ = h'̂i+ �'̂ ⇠ h'̂i ⌘  , where  is

a macroscopic wave function. Then, the expectation value of electric current is given as

hĵii = q

m
| |2@i✓ � q2

m
Ai| |2, (4.63)

with ✓ being the U(1) phase of  . Su�ciently far from the defect, | | would be uniform.

Also, there is no electric current. Therefore, by integrating Eq. (4.63) along a large closed loop

enclosing the defect, we have

0 =

I
dl ·r✓ � q

I
dl ·A, (4.64)

or equivalently,

q� ⌘ q

I
dl ·A = 2⇡n. (4.65)

with n being an integer, where we used the single validness of  .



40 Chapter 4. Nonrelativistic Bose-Einstein condensate

In dilute and low temperature systems, quantum and thermal fluctuations are negligible, and

then the above argument holds. In such systems, the quantum vortex nucleation is described

by the Gross-Pitaevskii equation [66, 67]. However, when quantum or thermal fluctuation

becomes large, it is highly nontrivial how the quantum vortex behaves. For example, the flux

quantization may not occur in the presence of strong quantum fluctuation. As mentioned in

the introduction, around the critical values of temperature, chemical potential, or magnetic

field, the fluctuation grows and then the mean-field description necessariliy breaks down. In

the following section, we numerically analyze the quantum vortex under in such situations, and

show that the magnetic flux quantization actually breaks down when the chemical potential is

getting close to its critical value.

4.3.3 Numerical simulation

To see the e↵ect of Landau levels to the Bose-Einstein condensate and also see the quantum

vortex nucleation by magnetic field, we have performed the complex Langevin simulation of

charged scalar theory in the presence of magnetic field. In the Euclid simulation, although we

cannot follow the real-time dynamics of vortex nucleation, which can be studied in the real-time

Gross-Pitaevskii simulation [68], we can still study its nonperturbative mechanism.

The lattice action of a two-component boson field '(⌧,x) = '1(⌧,x) + i'2(⌧,x) in the

presence of magnetic field is [71, 116]

S
lat

['1,'2] = a3
X

x

h
'⇤
⌧,x ('⌧,x � eµa'⌧�a,x)

� 1

2ma

X

i

⇣
'⇤
⌧,x+ˆia

u†
i'⌧,x + '⇤

⌧,xui'⌧,x+ˆia � 2|'⌧,x|2
⌘
+

1

4

�

a2
a3|'⌧,x|4

i
,

(4.66)

where the abelian phase ui are

ui = exp(�iaqAi), (4.67)

with

Ai =

✓
�1

2
By,

1

2
Bx, 0

◆
. (4.68)

The total number of lattice sites is V = NxNy ⇥ NzN⌧ = 112 ⇥ 102. x and y are ranged to

[�5a, 5a]. To compare the quantum vortex nucleation by the magnetic field with that by the

rotation, we impose the Dirichlet boundary conditions to x and y directions, instead of the

conventional periodic boundary conditions, while the periodic boundary condition is imposed

to ⌧ and z directions. The chemical potential is introduced on the basis of the standard lattice

formulation [90, 91, 106] as discussed in Sec. 4.1. We have applied the magnetic field to the

superconducting phase just above (µa = 0.30) and far above (µa = 0.50) the critical chemical

potential µca ⇠ 0.25. We have numerically solved Eqs. (3.26) and (3.27) with the lattice

action (4.66) by adopting the higher order algorithm [107, 108] with the fictitious time step
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" = 1.0 ⇥ 10�4a. Errors were estimated by using the jackknife method. We note that the

imaginary parts of observables were found to be consistent with zero within error bars.

First, we show the charge density at µa = 0.30 and 0.50 as a function of magnetic field in

Fig. 4.8. As discussed in Sec. 4.3.1, the magnetic field e↵ectively screens the chemical potential
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Figure 4.8: Number density n at µa = 0.30 (triangle) and 0.50 (circle) as a function of

magnetic field a2qB. All the scales are measured in the unit of the lattice spacing a.

due to the Landau levels, and thus the charge density decreases as the magnetic field increases.

In Fig. 4.9, we show the condensate fraction at (x, y) = (0, 0), which is defined as

R = Re[G(0, 0, Nza/2)]/Re[G(0, 0, 0)], (4.69)

with

G(x, y, z) =
1

N⌧

X

⌧

h�⇤(⌧, x, y, z)�(⌧, x, y, 0)i. (4.70)

At µa = 0.50 (circle), we can see the clear plateaux, which reflect the vortex nucleation as

we find from the quantized circulation shown in Fig. 4.10. On the other hand, at µa = 0.30

(triangle), the condensate fraction monotonically decreases as the magnetic field increases.

Next, we analyze the quantum vortex nucleation by magnetic field. The direct evidence

of quantum vortex nucleation is the quantization of circulation. The circulation of a vortex is

defined as the phase integral around it. On the hypercubic lattice, the circulation is written

as the integration along the square loop. Thus, we have calculated the circulation of the O(2)

angle (U(1) phase) of '1R and '2R, which is given explicitly as

�̂(l) =
1

2⇡

I

l⇥l

dx


tan�1

✓
'2R

⌧,x+j

'1R

⌧,x+j

◆
� tan�1

✓
'2R

⌧,x

'1R

⌧,x

◆�
, (4.71)
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Figure 4.9: Condensate fraction R at (x, y) = (0, 0), and µa = 0.30 (triangle) and 0.50 (circle)

as a function of magnetic field a2qB. All the scales are measured in the unit of the lattice

spacing a.

where j is unit vector along the loop. The size of the loop is l⇥ l (2  l  10 in our simulation)

and the center of the loop is placed at (x, y) = (0, 0). In each configuration of the ensemble, �̂(l)

must be integer because of the single-valuedness of wave functions, but is not necessarily the

same in di↵erent configurations. Therefore, the expectation value of circulation �(l) ⌘ h�̂(l)i
becomes in general non-integer when the number of vortices strongly fluctuates. The mean-

field approximation, where the circulation takes an exact integer value, works well when the

fluctuation is negligible.

In Fig. 4.10, we show the circulation as a function of magnetic field in the superconducting

phase slightly above (µa = 0.3) and far above (µa = 0.5) the critical chemical potential. We

can see the clear plateaux at µa = 0.5, although it does not take exact integer value. On the

other hand, at µa = 0.3, it is not quantized and linearly increases, namely, it behaves like a

classical vortex. The result indicates the breakdown of the mean-field approximation as the

chemical potential getting close to its critical value.

The spatial positions of vortices can be estimated from the l-dependence of �(l) shown in

Fig. 4.11. At a2qB = 0.20 (triangle), �(l) = 1, and it is almost independent of l in l � 2. Thus,

one vortex exists inside the 2⇥2 loop, i.e., in |x|  a and |y|  a. At a⌦ = 0.20 (diamond), �(l)

increases at l = 4. Thus, 3/2 (or 2) vortices exist in average in a  |x|  2a and a  |y|  2a

(a  |x|  3a and a  |y|  3a). By calculating two-point or three-point correlation functions

of loops, we can obtain more detailed information such as intervortex distance or the lattice
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Figure 4.10: Circulation �(8) as a function of magnetic field qB at µa = 0.3 (triangle) and 0.5

(circle). The magnetic field qB is measured in the unit of the lattice spacing a.
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Figure 4.11: Circulation �(l) as a function of loop size l at µa = 0.5, and a2qB = 0.08 (circle),

0.20 (triangle) and 0.40 (diamond).
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structure, although we must use finer lattice than the present one.

Here, instead of such correlation functions of loops, by using the charge density and con-

densate fraction, we analyze the vortex structure. As seen in Figs. 4.8 and 4.9, the quantized

vortex is reflected in the magnetic field dependence of the charge density and the condensate

fraction. In Fig. 4.12, we show the charge density as a function of x at µa = 0.50 by changing

magnetic fields:

n(x) =
1

N⌧Nz

X

⌧,z

n⌧,x,0,z. (4.72)

Also, in Fig. 4.13, we show the condensate fraction as a function of x at µa = 0.50:

R(x) = Re[G(x, 0, Nza/2)]/Re[G(x, 0, 0)], (4.73)

where the boson propagator G is given by Eq. (4.82). In both figures, the number of valleys

corresponds to the number of vortices. At a2qB = 0.08 (circle), �(l) = 0, both charge density

and condensate fractions are homogeneous. We note that we imposed the Dirichlet boundary

condition to x and y directions, so that all observables drop o↵ near the boundaries as seen in

Figs. 4.12 and 4.13. At a2qB = 0.20 (triangle), �(l) = 1, both charge density and condensate

fraction are inhomogeneous. The U(1) symmetry is almost restored at (x, y) = (0, 0) and thus

the vortex is localized around this point. The typical size of vortex is 2a in the lattice unit,

which is consistent with that estimated from the size dependence of the circulation shown in

Fig. 4.11. At a2qB = 0.40 (diamond), �(l) = 3/2� 2, the U(1) symmetry is partially broken at

(x, y) = (0, 0) and there are two valleys at |x| = a. Two vortices are separated by the distance

2a in lattice unit, which is consistent with the size dependence of the circulation shown in

Fig. 4.11. The valleys in Figs. 4.12 and 4.13 are not so deep and thus the vortices are not

localized around the valleys. This may be the reason why the circulation shown in Fig. 4.10 is

not clearly quantized.

For comparison, we show the charge density (4.72) and the condensate fraction (4.73) at

µa = 0.30 in Figs. 4.14 and 4.15. We do not see clear spatial structures and the U(1) symmetry

is homogeneously restored as the magnetic field increases.
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Figure 4.12: Number density n as a function of x at a2qB = 0.08 (circle), 0.2 (triangle) and

0.4 (diamond). All the scales are measured in the unit of the lattice spacing a.
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Figure 4.13: Condensate fraction R as a function of x at a2qB = 0.08 (circle), 0.2 (triangle)

and 0.4 (diamond). All the scales are measured in the unit of the lattice spacing a.



46 Chapter 4. Nonrelativistic Bose-Einstein condensate

Á

Á

Á

Á

Á Á
Á

Á

Á

Á

Á

Û

Û
Û

Û
Û Û Û

Û
Û

Û
Û

Ì
Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì

-4 -2 0 2 4
0.00

0.02

0.04

0.06

0.08

0.10

x

n

Figure 4.14: Number density n as a function of x at a2qB = 0.08 (circle), 0.2 (triangle) and

0.4 (diamond). All the scales are measured in the unit of the lattice spacing a.
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Figure 4.15: Condensate fraction R as a function of x at a2qB = 0.08 (circle), 0.2 (triangle)

and 0.4 (diamond). All the scales are measured in the unit of the lattice spacing a.
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4.4 Rotation

4.4.1 Bose gas under rotation

Let us consider the situation where the particles are confined in some region by an external

potential, and we start to rotate the potential by a constant angular velocity ⌦ at very low

temperatures. After a su�ciently long time, the system is in equilibrium with finite angular

momentum, and the rotating Bose-Einstein condensate is created. Standard method to analyze

such equilibration process is to solve the real-time dynamics of the Bose-Einstein condensate by

using the real-time Gross-Pitaevskii equation as discussed in e.g., Ref. [68]. Another method

which can go beyond the mean-field approximation is the Euclid simulation discussed below.

We consider rotations around the z axis: Then in rotating frame, the partition function of

the equilibrium state is obtained by replacing H with H � ⌦Lz as

Z = tr e��( ˆH�µ ˆQ�⌦

ˆLz), (4.74)

where Lz is angular momentum along the z direction and given explicitly as

Lz = xPy � yPx = i

Z
d3x '⇤ (�x@y + y@x)', (4.75)

where Px(y) is momentum along the x (y) direction. By using the path integral, the partition

function reads

Z = N
Z Y

⌧,x

d'⇤
⌧,xd'⌧,x e�S. (4.76)

The continuum action of a two-component boson field '(⌧,x) = '1(⌧,x)+ i'2(⌧,x) in rotating

frame is [116]

S
con

['1,'2] =

Z
d⌧d3x

h
'⇤(@⌧ � µ)'+

1

2m
|r'|2

+
1

4
�|'|4 � ⌦i'⇤ (�x@y + y@x)'

i
,

(4.77)

or equivalently,

S
con

['1,'2] =

Z
d⌧d3x

h
'⇤(@⌧ � µ)'+

1

2m
|(r� im⌦⇥ x)'|2

� 1

2
m(x2 + y2)⌦2|'|2 + 1

4
�|'|4

i
,

(4.78)

where ⌦ = ⌦ẑ. (̂i denotes a unit vector in the i direction.)

We remark here that, except for the centrifugal potential �1

2

m(x2 + y2)⌦2|'|2, the ac-

tion (4.78) is mathematically equivalent to the action of the spinless charged bosons un-

der magnetic field. In rotating frame, particles e↵ectively couple to the “magnetic field”

qB = qr ⇥ A = 2m⌦ẑ with A = ⌦ ⇥ x. Therefore, the quantization of vortices should
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be and has been observed also in the rotating Bose-Einstein condensate [41, 42, 43, 44, 45] (See

also Ref. [46]).

To perform lattice simulations, we discretize the continuum action (4.78) on the hypercubic

lattice. The corresponding lattice action is [71]

S
lat

['1,'2] = a3
X

x

h
'⇤
⌧,x ('⌧,x � eµa'⌧�a,x)

� 1

2ma

X

i

⇣
'⇤
⌧,x+ˆia

u†
i'⌧,x + '⇤

⌧,xui'⌧,x+ˆia � 2|'⌧,x|2
⌘

� 1

2
ma(x2 + y2)⌦2|'⌧,x|2 + 1

4

�

a2
a3|'⌧,x|4

i
.

(4.79)

The e↵ective gauge field of rotation is introduced by the same manner as the electromagnetic

gauge field [92]

ui = exp(�iaqAi) = exp(�iam(⌦⇥ x)i). (4.80)

The chemical potential is introduced on the basis of the standard lattice formulation [90, 91,

106], which is discussed in Sec. 4.1.

We note that we have introduced the rotation as an e↵ective magnetic field, not as an ex-

ternal field, which directly couples to the Noether charge of the rotation (angular momentum).

Since we cannot maintain the rotational symmetry on the hypercubic lattice, the angular mo-

mentum is not obvious. One way to resolve this problem and directly formulate the rotating

lattice is to perform lattice simulations on the cylindrical coordinates x = (r, ✓, z). However,

on the cylindrical lattice, there is an apparent singularity at r = 0, and thus we have to remove

the region around the rotational axis. Also, the cylindrical lattice has the problem of renor-

malization similar to the case of the anisotropic lattice [117, 118]. Those problems are beyond

the scope of this thesis, but we remark here that it is essential when we analyze the quantum

vortex nucleation by the roation in the relativistic Bose-Einstein condensate, where we cannot

introduce the rotation as the e↵ective magnetic field.

4.4.2 Numerical simulation

We have numerically solved Eqs. (3.26) and (3.27) with the acton (4.79) by adopting the higher

order algorithm [107, 108] with the fictitious time step " = 1.0 ⇥ 10�4a. The total number

of lattice sites is V = NxNy ⇥ NzN⌧ = 112 ⇥ 102. x and y are ranged to [�5a, 5a], and the

position of rotational axis is set to (x, y) = (0, 0). We take the Dirichlet boundary condition

in x and y directions, and take the periodic boundary condition in z and ⌧ directions. We set

ma = �/a2 = 1.0. Errors were estimated by using the jackknife method. We note that the

imaginary parts of observables were found to be consistent with zero within error bars.

First, we show the charge density at superfluid phase just above (µa = 0.30) and far above

(µa = 0.50) the critical chemical potential µca = 0.25 as a function of angular velocity ⌦ in

Fig. 4.16. In contrast to the magnetic field, the rotation enhances the charge density. This
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Figure 4.16: Number density n at µa = 0.30 (triangle) and 0.50 (circle) as a function of

angular velocity ⌦. All the scales are measured in the unit of the lattice spacing a.

is because the centrifugal potential in Eq. (4.78) or (4.79) e↵ectively plays a role of chemical

potential. In Fig. 4.17, we show the condensate fraction at (x, y) = (0, 0), which is defined as

R = Re[G(0, 0, Nz/2)]/Re[G(0, 0, 0)], (4.81)

with

G(x, y, z) =
1

N⌧

X

⌧

h�⇤(⌧, x, y, z)�(⌧, x, y, 0)i. (4.82)

At µa = 0.50 (circle), we can see that the oscillatory behavior between the U(1) symmetry

breaking and the U(1) restoration takes place as the angular velocity increases. On the other

hand, at µa = 0.30 (triangle), the condensate fraction decreases as the angular velocity in-

creases, although it shows a non-monotonic behavior around a⌦ = 0.22 as seen in Fig. 4.17:

This is di↵erent from the case of magnetic field shown in Fig. 4.9.

Next, we analyze the quantum vortex nucleation by rotation. The direct evidence of a

quantum vortex is the quantized circulation. On the hypercubic lattice, the circulation is given

by integrating the phase di↵erence along the square loop as in Eq. (4.71). The size of the loop

is l ⇥ l (2  l  10 in our simulation) and the center of the loop is placed at (x, y) = (0, 0).

The ensemble average �(l) ⌘ h�̂(l)i becomes non-integer if the number of vortices strongly

fluctuates, although �̂(l) is exact integer in each configuration, because of the single-valuedness

of wave functions.
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Figure 4.17: Condensate fraction R at (x, y) = (0, 0), and µa = 0.30 (triangle) and 0.50

(circle) as a function of angular velocity ⌦. The angular velocity ⌦ is measured in the unit of

the lattice spacing a.

In Fig. 4.18, we show the circulation as a function of angular velocity in the superfluid

phase at µa = 0.3 and µa = 0.5. The circulation is clearly quantized to exact integer at

µa = 0.5, in contrast to the case of magnetic field. On the other hand, it is not quantized

at µa = 0.3, which indicates the breakdown of the mean-field approximation as the chemical

potential getting close to its critical value. To see the fluctuation of vortices, we show the

profile of circulation �̂ obtained from each configuration at µa = 0.3 and µa = 0.5 in Figs. 4.19

and 4.20, respectively. When the chemical potential is slightly above the critical chemical

potential (µa = 0.3), at a small angular velocity, the profile shows broad Gaussian distribution.

As ⌦ increases, the profile becomes sharper and finally becomes like a single peak. On the

other hand, when the chemical potential is far from the critical chemical potential (µa = 0.5),

the profile shows a very sharp Gaussian distribution.

The spatial positions of vortices can be estimated from the l-dependence of �(l) shown in

Fig. 4.22. At a⌦ = 0.08 (circle), �(l) = 1 and it is almost independent of l in l � 2. Thus,

one vortex exists inside the 2 ⇥ 2 loop, i.e., in |x|  a and |y|  a. At a⌦ = 0.16 (triangle),

�(l) = 2, �(l) increases at l = 4, and thus two vortices exist in a  |x|  2a and a  |y|  2a.

At a⌦ = 0.20 (diamond), �(l) = 4, two vortices exist in a  |x|  2a and a  |y|  2a, and

another two vortices exist inside 2a  |x|  3a and 2a  |y|  3a. From two-point or more

higher-point correlation functions of loops, we can analyze the more detailed information on

the vortex structure, although we need finer lattice than the present one.
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Figure 4.18: Circulation �(8) as a function of angular velocity ⌦ at µa = 0.3 (triangle) and

0.5 (circle). The angular velocity ⌦ is measured in the unit of the lattice spacing a.

Now, we analyze the vortex structure in an alternative way by using the charge density and

condensate fraction. In Figs. 4.22 and 4.23, we show the charge density and the condensate

fraction as a function of x in the superfluid phase far from the critical chemical potential (µa =

0.50), at a⌦ = 0 (circle), 0.08 (triangle), 0.16 (diamond), and 0.20 (square). Although we

impose the Dirichlet boundary condition in x and y directions, observables shown in Figs. 4.22

and 4.23 do not drop o↵ at the boundaries. This is because particles concentrate on the corners

at large angular velocity due to the centrifugal potential. At a⌦ = 0 (square), �(l) = 0, both

charge density and condensate fraction are homogeneous. At a⌦ = 0.08 (circle), �(l) = 1,

both charge density and condensate fraction are inhomogeneous. From Fig. 4.23, we find that

the U(1) symmetry is restored at (x, y) = (0, 0) and the vortex is localized around this point.

The healing length of condensate fraction is 2a in lattice unit, which is consistent with the

position of vortex estimated from the size dependence of the circulation shown in Fig. 4.18.

At a⌦ = 0.16 (triangle), �(l) = 2, the condensate fraction is flat around (x, y) = (0, 0), which

indicates that two vortices are inside |x|  4a, not localized around (x, y) = (0, 0). At a⌦ = 0.2

(diamond), �(l) = 4, there are two valleys at |x| = 2a, which indicates that two vortices are in

each valley and is consistent with Fig. 4.18.

For comparison, we show the charge density (4.72) and the condensate fraction (4.73) in the

superfluid phase at µa = 0.30, and a⌦ = 0 (circle), 0.08 (triangle), 0.16 (diamond), and 0.20

(square) in Figs. 4.24 and 4.25. As the angular velocity increases, particles strongly concentrate

on the corners, in contrast to the case of µa = 0.50, shown in Fig. 4.22. We do not see clear
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Figure 4.19: Profile of the circulation �̂(8) at µa = 0.3.
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Figure 4.20: Profile of the circulation �̂(8) at µa = 0.5.
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Figure 4.21: Circulation �(l) as a function of loop size l at µa = 0.5, and a⌦ = 0.08 (circle),

0.16 (triangle) and 0.20 (diamond).

spatial structure associated with quantum vortex nucleation and the density distribution is

consistent with that of classical particles under the rotation, although the system is in the

superfluid phase at zero angular velocity.
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Figure 4.22: Number density n as a function of x at a⌦ = 0 (square), 0.08 (circle), 0.16

(triangle) and 0.2 (diamond). All the scales are measured in the unit of the lattice spacing a.
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Figure 4.23: Condensate fraction R as a function of x at a⌦ = 0 (square), 0.08 (circle), 0.16

(triangle) and 0.2 (diamond). All the scales are measured in the unit of the lattice spacing a.
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Figure 4.24: Number density n as a function of x at a⌦ = 0 (square), 0.08 (circle), 0.16

(triangle) and 0.2 (diamond). All the scales are measured in the unit of the lattice spacing a.
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Figure 4.25: Condensate fraction R as a function of x at a⌦ = 0 (square), 0.08 (circle), 0.16

(triangle) and 0.2 (diamond). All the scales are measured in the unit of the lattice spacing a.



56 Chapter 4. Nonrelativistic Bose-Einstein condensate



Chapter 5

Relativistic Bose-Einstein condensate

In this chapter, we perform ab-initio simulations of the relativistic Bose-Einstein condensate

under strong electromagnetic fields. We adopt the complex Langevin method, instead of the

conventional quantum Monte Carlo method, which su↵ers from the sign problem.

First, in Sec. 5.1, we reproduce the previous study given in Ref. [87]. We perform the

complex Langevin simulation of relativistic scalar field theory at finite chemical potential. We

show that the Silver Blaze problem [101] is resolved by using the complex Langevin method [87].

Moreover, we perform the long-range order analysis, which was not done in Ref. [87], and analyze

the spontaneous U(1) symmetry breaking.

Then, in Sec. 5.2, we analyze the Bose-Einstein condensate in the presence of Minkowski

electric field, which is our original work. Contrary to the nonrelativistic theories, in relativistic

theories, the particle production in the vacuum can occur via the Schwinger mechanism [112].

As mentioned in Sec. 4.2.1, the Minkowski electric field can be introduced as a coordinate-

depedent real chemical potential. Therefore, the sign problem, in general, occurs in the presence

of electric field. We perform the first ab-initio simulation of particle production in such general

system by using the complex Langevin method. We show that the charge distribution is

generated according to the vector potential. We also analyze the associated U(1) symmetry

breaking by performing the long-range order analysis.

Finally, in Sec. 5.3, we analyze the relativistic Bose-Einstein condensate in the presence

of magnetic field. We numerically show, as in the case of nonrelativistic theories, that the

Bose-Einstein condensate is destroyed by the magnetic field due to the formation of Landau

levels. We also analyze the quantum vortex nucleation by the magnetic field. We show that the

vortex is quantized far from the critical chemical potential, but it is not just above the critical

chemical potential. We also analyze the fluctuation of vortices by performing the same analysis

given in the previous chapter.

57
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5.1 Chemical potential

We consider relativistic complex scalar field ' in the presence of external electromagnetic fields.

The continuum Euclid action is

S
con

=

Z
d⌧d3x

h
| �@µ � iqAE

µ

�
'|2 +m2|'|2 + �|'|4

i
, (5.1)

where AE
µ are external Euclid gauge fields. In this chapter, we use the convention of xµ =

(x0, x1, x2, x3) = (⌧,x) and xµ = (x
0

, x
1

, x
2

, x
3

) = (⌧,x). The Einstein convention is understood

for repeated indices, i.e., AµBµ = A
0

B
0

+ A
1

B
1

+ A
2

B
2

+ A
3

B
3

. We note that the coupling

constant � is dimensionless in (1+3) dimensional relativistic field theory, but it is not in (1+3)

dimensional nonrelativistic theory.

To perform lattice simulations, we discretize the continuum action (5.1) on the hyper cubic

lattice. The corresponding lattice action is

S
lat

= a4
X

x

h
� 1

a2

X

µ

�
'⇤
x+µ̂au

†
µ'x + '⇤

xuµ'x+µ̂a � 2|'x|2
�

+
1

a2
m2a2|'x|2 + �|'x|4

i
,

(5.2)

or equivalently,

S
lat

= a4
X

x

h
� 1

a2

X

µ

�
cosAE

µ'
a
x+µ̂a'

a
⌧,x � sinAE

µ ✏ab'
a
x+µ̂a'

b
x � 2|'⌧,x|2

�

+
1

2a2
m2a2|'x|2 + 1

4
�|'x|4

i
,

(5.3)

where ' = ('1 + i'2)/
p
2, and uµ(x) = exp(�iaqAE

µ (x)). Here, as discussed in Sec. 4.1, we

discretized the derivative terms as

�
@µ � iqAE

µ

�
'x !

⇣
'x � eiqaA

E
µ'x�µ̂a +O(a2)

⌘
/a. (5.4)

Then, the kinetic terms read

| �@µ � iqAE
µ

�
'|2

!
X

µ

�
'⇤
x � uµ'

⇤
x�µ̂a

� �
'x � u†

µ'x�µ̂a

�
/a2

=
X

µ

�
'⇤
x'x + '⇤

x�µ̂a'x�µ̂a � '⇤
xu

†
µ'x�µ̂a � '⇤

x�µ̂auµ'x

�
/a2.

(5.5)

Using the periodicity of the lattice action, we have Eq. (5.2).

In this section, we analyze the superconducting transition at finite chemical potential. For

this purpose, we consider quantum field theories at finite temperature and chemical potential,
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i.e., in (1 + 3) dimensional Euclid spacetime. The lattice action is obtained from Eq. (5.3) by

replacing AE
⌧ with the chemical potential µ as iqAE

⌧ ! µ. It reads [87]

S
lat

= a4
X

x

h
� 1

a2

⇣
coshµa 'a

x+ˆ

0a
'a
x + i sinhµa ✏ab'

a
x+ˆ

0a
'b
x � 2'a

⌧,x'
a
⌧,x

⌘

� 1

a2

X

i

⇣
'a
⌧,x+ˆia

'a
⌧,x � 2'a

⌧,x'
a
⌧,x

⌘
+

1

2a2
m2a2|'⌧,x|2 + 1

4
�|'⌧,x|4

i
.

(5.6)

At µa = 0, the temporal hopping terms are real as in the first line of Eq. (5.6). However,

at finite chemical potential, they are not. The lattice action only satisfies S†
lat

(µ) = S
lat

(�µ)

and becomes in general complex. Therefore, the standard Monte Carlo simulation su↵ers from

the sign problem. This lattice action has been analyzed by adopting the complex Langevin

simulation in Ref. [87]. Here, for completeness of the thesis, we reproduce their result.

We have numerically solved Eqs. (3.26) and (3.27) with the lattice action (5.6) by adopting

the higher order algorithm [107, 108] with " = 2.0 ⇥ 10�4a. The size of lattice sites is V =

NxNyNzN⌧ = 64, 84 and 104. The periodic boundary condition was imposed to all directions.

We set ma = 0.10 and � = 0.10. Errors were estimated by using the jackknife method. We

note that imaginary parts of observables were consistent with zero within error bars.

First, we analyze the Silver Blaze problem [101]. The number density is defined as the

n = @L/@µ with L being the lattice Lagrangian density. It is explicitly given as

n =
1

V

X

⌧,x

n⌧,x, (5.7)

with

n⌧,x = �'⇤
⌧+a,xe

�µa'⌧,x + '⇤
⌧,xe

µa'⌧+a,x

= (sinhµa �ab + i coshµa ✏ab)'
a
⌧+a,x'

b
⌧,x.

(5.8)

We show the real part of the charge density as a function of chemical potential for the lattice

size V = N4 with N = 6, 8 and 10 in Fig. 5.1. We can clearly see that the charge density brows

up at a critical value of µca ⇠ 0.25. Figure 5.2 shows the number density near the critical

chemical potential. As the lattice volume V is increasing, the transition becomes sharper and

sharper and the density goes to zero below µc. Thus, the Silver Blaze problem [101] in the

relativistic complex scalar field can be correctly handled by the complex Langevin method [87].

We note that in Ref. [87], the critical chemical potential is µca ⇠ 1.15, and thus larger than

one in the lattice unit. As mentioned in Sec. 3.4, the chemical potential should be smaller than

one, i.e., µa < 1 to avoid the lattice artifact, which comes from exponentiating the chemical

potential. Therefore, we choose di↵erent parameters from Ref. [87], so that the transition occurs

at su�ciently small chemical potential.

We have performed a further study on the complex scalar field at finite chemical potential.

At zero temperature, as shown in Chap. 2 and Chap. 3, the nonvanishing number density
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Figure 5.1: Number density n as a function of chemical potential µ at N = 6 (circle), 8

(triangle) and 10 (diamond). All the scales are measured in the unit of the lattice spacing a.

implies the Bose-Einstein condensate. To show this, we have performed the long range order

analysis. We show the two-point correlation function:

G(r) =
1

N⌧NxNy

X

⌧,x,y

h�⇤(⌧, x, y, r)�(⌧, x, y, 0)i, (5.9)

at µa = 0.1 (circle), 0.34 (triangle), and 0.5 (diamond) in Fig. 5.3. The lattice volume is

N4 = 104. Below µc (circle), the boson propagator exponentially drops to zero. On the other

hand, above µc (triangle and diamond), it goes to a constant value and thus the signature of

long range order has been clearly observed. We show the condensate fraction R as a function

of µ in Fig. 5.4, which is defined as

R = Re[G(Nz/2)]/Re[G(0)], (5.10)

with Nz = 10 in our simulation. We can see that the spontaneous U(1) symmetry breaking

occurs simultaneously at µc, which is defined as the critical value where the charge density

starts to brow up. Now, we find that, by using the complex Langevin method, we can non-

perturbatively analyze the spontaneous symmetry breaking in the relativistic scalar field even

when the lattice action su↵ers from the sign problem.
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Figure 5.2: Number density n near the transition region at N = 6 (circle), 8 (triangle) and 10

(diamond). All the scales are measured in the unit of the lattice spacing a.
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Figure 5.3: Boson propagator G(r) as a function of r at µa = 0.1 (circle), 0.34 (triangle) and

0.5 (diamond). All the scales are measured in the unit of the lattice spacing a.
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Figure 5.4: Condensate fraction R as a function of µ. All the scales are measured in the unit

of the lattice spacing a.

5.2 Electric field

Next, we analyze the relativistic Bose-Einstein condensate in the presence of Minkowski elec-

tric field. As mentioned in Sec. 4.2.1, the Minkowski electric field can be introduced as a

coordinate-depedent real chemical potential. Therefore, the same strategy can be applicable

in the Minkowski electric field and the real chemical potential to evade the sign problem. For

example, in the case where particles have the iso-spin symmetric electric charges, the sign prob-

lem does not occur and the lattice simulation has been performed by adopting the standard

Monte Carlo method [109]. However, when there is no such special symmetry in the system,

the sign problem necessarily occurs. We perform the ab-initio simulation of particle production

in such situation by using the complex Langevin method.

In Euclid spacetime, although we cannot follow the real-time dynamics associated with

the vacuum instability, we can still analyze the nonperturbative mechanism of the particle

production. For this purpose, we have applied the Minkowski electric field to the relativistic

charged bose gas. The lattice action is

S
lat

= a4
X

x

h
� 1

a2

⇣
cosh (qaA

0

(x)) 'a
x+ˆ

0a
'a
x + i sinh (qaA

0

(x)) ✏ab'
a
x+ˆ

0a
'b
x � 2'a

⌧,x'
a
⌧,x

⌘

� 1

a2

X

i

⇣
'a
⌧,x+ˆia

'a
⌧,x � 2'a

⌧,x'
a
⌧,x

⌘
+

1

2a2
m2a2|'⌧,x|2 + 1

4
�|'⌧,x|4

i
.

(5.11)
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L0
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�E

z

Figure 5.5: Schematic configuration of vector potential AM
⌧ and electric field EM . The periodic

boundary condition is imposed.

The lattice volume is NxNyNzN⌧ . We consider only the Minkowski electric field and omit the

upper script M . We take all spatial components of gauge potentials zero, i.e., Ai = 0. We

impose periodic boundary condition to all directions. The gauge potential and the associated

electric field are shown in Fig. 5.5. We consider electric fields along z direction. The vector

potential, which satisfies the periodic boundary condition, is given explicitly as

A
0

(z) =

8
<

:
�E(z � L/4) (0  z < L/2)

E(z � 3L/4) (L/2  z < L).
(5.12)

The associated electric field reads

Ez = �@zA0

(z) =

8
<

:
+E (0  z < L/2)

�E (L/2  z < L).
(5.13)

We have numerically calculated Eqs. (3.26) and (3.27) with the lattice action (5.11), by adopting

the higher order algorithm with " = 2.0⇥ 10�4a. The lattice volume is V = NxNyNzN⌧ = 104.

We set ma = 0.1 and �/a2 = 0.1. Errors were estimated by using the jackknife method. We

note that imaginary parts of observables were consistent with zero within error bars.

First, we analyze the particle production by electric field. The particle production via the

Schwinger mechanism is a pair production, i.e., particles and anti-particles are equally gener-

ated. Thus, the net charge of the system vanishes. We have checked that the volume-averaged

charge density became zero within the error bar. We show the charge density distribution along

the z direction, which is parallel to the electric field in Fig. 5.6:

n(z) =
1

N⌧NxNy

X

⌧,x,y

n⌧,x, (5.14)

with

n⌧,x = (sinh aqA
0

�ab + i cosh aqA
0

✏ab)'
a
⌧+a,x'

b
⌧,x. (5.15)
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Figure 5.6: Number density n as a function of z at a2qE = 0.05 (circle), 0.15 (triangle), 0.2

(diamond), and 0.25 (square). All the scales are measured in the unit of the lattice spacing a.

We find that there is a critical electric field, above which the particles and anti-particles are

produced. The particles and anti-particles accumulate in the highest and lowest voltage regions,

respectively. The charge density shows the linear z dependence. This behavior is consistent

with the configuration of the vector potential shown in Fig. 5.5, and also with the result in the

nonrelativistic theory shown in Fig. 4.3.

As discussed in Chap. 3 and Chap. 4, the nonvanishing number density is accompanied

by the U(1) symmetry breaking at zero (or su�ciently low) temperature. To show such non-

uniform symmetry breaking, we perform the o↵-diagonal long-range order analysis. We have

calculated the two-point correlation function in the plane perpendicular to the electric field:

G(r, z) =
1

N⌧Ny

X

⌧,y

h�⇤(⌧, r, y, z)�(⌧, 0, y, z)i. (5.16)

In Fig. 5.7, we show the two-point correlation function in the perpendicular plane at z = 5

in the case of a2qE = 0.05 (circle), 0.15 (triangle), 0.2 (diamond) and 0.25 (square). We can

clearly observe the signature of long-range order above the critical electric field (diamond and

square). We have also calculated the condensate fraction R:

R(z) = Re[G(Nxa/2, z)]/Re[G(0, z)], (5.17)

with Nx = 10 in our simulation. The condensate fraction R as a function of electric field

at highest voltage point (z = 5a) is shown in Fig. 5.8. We can see the transition from U(1)
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Figure 5.7: Boson propagator G(r) as a function of r at z = 5, and a2qE = 0.05 (circle),

0.15 (triangle), 0.2 (diamond) and 0.25 (square). All the scales are measured in the unit of the

lattice spacing a.

symmetric to U(1) broken phase at a2qE ⇠ 0.15. To see the inhomogeneity of symmetry

breaking, we show the condensate fraction as a function of z at a2qE = 0.05 (circle), 0.1

(triangle), 0.2 (diamond) and 0.25 (square) in Fig. 5.9. In contrast to the nonrelativistic theory

shown in Fig. 4.6, the symmetry breaking occurs also in the lowest voltage regions (z = 0 or

10a). This is because in the relativistic theory, there are two Bose-Einstein condensates of

particles and anti-particles. The interplay of these two Bose-Einstein condensate exhibits the

periodic behavior of the condensate fraction shown in Fig. 5.9.
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Figure 5.8: Condensate fraction R at z = 5 as a function of a2qE. All the scales are measured

in the unit of the lattice spacing a.
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Figure 5.9: Condensate fraction R as a function of z at a2qE = 0.05 (circle), 0.1 (triangle),
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5.3 Magnetic field

To see the e↵ect of magnetic field to the relativistic Bose-Einstein condensate, we have per-

formed the complex Langevin simulation of charged scalar theory in the presence of magnetic

field. The lattice action is

S
lat

= a4
X

x

h
� 1

a2

⇣
'⇤
x+ˆ

0a
eµa'x + '⇤

xe
�µa'

x+

ˆ

0a � 2|'x|2
⌘

� 1

a2

X

i

⇣
'⇤
x+ˆia

u†
i'x + '⇤

xui'
x+

ˆia � 2|'x|2
⌘

+
1

a2
m2a2|'x|2 + �|'x|4

i
,

(5.18)

where the abelian phase ui are

ui = exp(�iaqAi), (5.19)

with

Ai =

✓
�1

2
By,

1

2
Bx, 0

◆
. (5.20)

The lattice volume is V = NxNy ⇥ NzN⌧ = 112 ⇥ 102. x and y are ranged to [�5a, 5a]. We

imposed the Dirichlet boundary condition to x and y directions, and the periodic boundary

condition to ⌧ and z directions. The chemical potential is introduced on the basis of the

standard lattice formulation [87, 90, 91] as discussed in Sec. 4.1. We have applied the magnetic

field to the superconducting phase just above (µa = 0.50) and far above (µa = 0.74) the

critical chemical potential µca ⇠ 0.45. We have numerically solved Eqs. (3.26) and (3.27) with

the lattice action (5.18) by adopting the higher order algorithm [107, 108] with the fictitious

time step " = 1.0⇥ 10�4a. Errors were estimated by using the jackknife method. We note that

the imaginary parts of observables were found to be zero within error bars.

First, we show the charge density at µa = 0.50 (triangle) and µa = 0.74 (circle) as a function

of magnetic field in Fig. 5.10. As discussed in Sec. 4.3, the magnetic field e↵ectively screens the

chemical potential due to the formation of Landau levels, and thus the charge density decreases

as the magnetic field increases. This behavior is clearly observed also in the relativistic theory.

In Fig. 5.11, we show the condensate fraction at (x, y) = (0, 0), which is defined as

R = Re[G(0, 0, Nz/2)]/Re[G(0, 0, 0)], (5.21)

with

G(x, y, z) =
1

N⌧

X

⌧

h�⇤(⌧, x, y, z)�(⌧, x, y, 0)i. (5.22)

At µa = 0.74 (circle), we can see the clear plateaux, which reflect the quantum vortex nucleation

as shown in Fig. 5.12. On the other hand, at µa = 0.50 (triangle), the condensate fraction

monotonically decreases, and we do not find any oscillatory behavior.
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Figure 5.10: Number density n at µa = 0.50 (triangle) and 0.74 (circle) as a function of

magnetic field a2qB. All the scales are measured in the unit of the lattice spacing a.
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Figure 5.11: Condensate fraction R at (x, y) = (0, 0), and µa = 0.50 (triangle) and 0.74

(circle) as a function of magnetic field a2qB. All the scales are measured in the unit of the

lattice spacing a.
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Figure 5.12: Circulation �(8) as a function of magnetic field qB at µa = 0.3 (triangle) and 0.5

(circle). The magnetic field qB is measured in the unit of the lattice spacing a.

Next, we analyze the quantum vortex nucleation by magnetic field. The direct evidence of

quantum vortex nucleation is the quantization of circulation, which is given in Eq. (4.71). The

size of the loop is l ⇥ l (2  l  10 in our simulation), and the center of the loop is placed at

(x, y) = (0, 0). �̂(l) becomes integer in each configuration of the ensemble, but its ensemble

average can be non-integer when the number of vortices strongly fluctuates.

In Fig. 5.12, we show the circulation as a function of magnetic field in the superconducting

phases at µa = 0.5 (triangle) and 0.74 (circle). We can see that the circulation is clearly

quantized below a2qB = 0.40 at µa = 0.74. On the other hand, at µa = 0.5, it is not

quantized and linearly increases like a classical vortex. The result indicates the break down of

the mean-field approximation as the chemical potential getting close to its critical value. Above

a2qB = 0.40, both curves show the linear dependence, where the charge density almost goes

to zero as shown in Fig. 5.10. It indicates that the quantum fluctuation becomes also stronger

near the critical magnetic field, which is clearly seen in Fig. 5.14.

To see the fluctuation of vortices, we show the profile of circulation �̂ obtained from each

configuration at µa = 0.5 and µa = 0.74 in Figs. 5.13 and 5.14, respectively. At µa = 0.5,

the profile shows a clear Gaussian distribution. Therefore, the number of vortices is strongly

fluctuate near the critical chemical potential. On the other hand, when the chemical potential

is far from the critical chemical potential (µa = 0.74), the profile behaves as almost a single

peak. However, at a2qB = 0.40, a clear Gaussian distribution appears. It indicates that the

fluctuation becomes stronger as the magnetic field increases.
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Figure 5.13: Profile of the circulation �̂(8) at µa = 0.5.
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Figure 5.14: Profile of the circulation �̂(8) at µa = 0.74.
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Figure 5.15: Circulation �(l) as a function of loop size l at µa = 0.74, and a2qB = 0.08

(circle), 0.20 (triangle) and 0.40 (diamond).

We analyze the spatial positions of vortices from the l-dependence of �(l) shown in Fig. 5.15.

At a2qB = 0.20 (triangle) and 0.40 (diamond), �(l) = 1, and it is almost independent of l in

l � 2. Thus, one vortex exists inside the 2⇥ 2 loop, i.e., in |x|  a and |y|  a. The quantum

vortex is strongly localized at (x, y) = (0, 0) with depending little on the magnetic field.

To deepen our understanding on the vortex structure in the relativistic Bose-Einstein con-

densate, we analyze it by using the charge density and condensate fraction. In Fig. 5.16, we

show the charge density as a function of x in the superconducting phase at µa = 0.74 with

changing the magnetic fields. Also, in Fig. 5.17, we show the condensate fraction as a function

of x. We note that we imposed the dirichlet boundary conditions in the x and y directions,

so that these quantities drop o↵ at the boundaries as seen in Figs. 5.16 and 5.17. The charge

density and the condensate fraction decrease as a function of magnetic field, which represents

the U(1) symmetry is restored as the magnetic field increases. The healing length of the con-

densate fraction is 1a in the lattice unit, which less depends on the magnetic field. We find

that the one vortex is strongly localized at x = 0, which is consistent with Fig. 5.15.

For comparison, we show the charge density and the condensate fraction in the supercon-

ducting phase at µa = 0.50 in Figs. 5.16 and 5.17, respectively. We do not see any spatial

structures and the U(1) symmetry is homogeneously restored as the magnetic field increases.
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Figure 5.16: Number density n as a function of x at a2qB = 0 (square), 0.08 (circle), 0.2

(triangle) and 0.4 (diamond). All the scales are measured in the unit of the lattice spacing a.
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Figure 5.17: Condensate fraction R as a function of x at a2qB = 0 (square), 0.08 (circle), 0.2

(triangle) and 0.4 (diamond). All the scales are measured in the unit of the lattice spacing a.
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Figure 5.18: Number density n as a function of x at a2qB = 0 (square), 0.08 (circle), 0.2

(triangle) and 0.4 (diamond). All the scales are measured in the unit of the lattice spacing a.
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Figure 5.19: Condensate fraction R as a function of x at a2qB = 0 (square), 0.08 (circle), 0.2

(triangle) and 0.4 (diamond). All the scales are measured in the unit of the lattice spacing a.
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Chapter 6

Summary and Concluding Remarks

In this thesis, we have performed ab-initio lattice simulations of the nonrelativistic and relativis-

tic Bose-Einstein condensates under strong external fields such as the electric field, the magnetic

field, and the rotation. All the lattice actions discussed in this thesis are complex, so that the

conventional Monte Carlo method su↵ers from the notorious sign problem. To overcome this

di�culty, we have adopted the complex Langevin method, which can take into account quan-

tum fluctuations exactly even for such complex actions. The complex Langevin method has

been previously developed in relativistic field theories to attack complex action problems such

as nonequilibrium systems and the phase diagram at finite quark number density.

In particular, we have performed the ab-initio simulation of the quantum vortex nucle-

ation in the rotating Bose-Einstein condensate. In dilute and low temperature systems, the

Bose-Einstein condensate is remarkably well described by the mean field theory and the Gross-

Pitaevskii equation, where the vortex is quantized due to the single-valuedness of the macro-

scopic wave function of the Bose-Einstein condensate. When quantum or thermal fluctuation

becomes large, it is highly nontrivial how such quantized vortex behaves. For example, the flux

quantization does not occur in the presence of strong quantum fluctuation. Around the critical

values of temperature, chemical potential, magnetic field, or angular velocity, the fluctuation

grows and then the mean-field description necessariliy breaks down. This is the reason why the

ab-initio simulations are necessary as discussed in this thesis. In fact, we have shown that the

flux quantization breaks down when the chemical potential is getting close to its critical value.

In Chap. 2, we have reviewed the formulation of quantum field theories on the lattice. The

partition function in the grand canonical ensemble can be represented by the path integral over

field variables on the lattice. We have also reviewed how to discuss the spontaneous symmetry

breaking in practical simulations. The order parameter always vanishes in finite systems unless

the symmetry is explicitly broken. Thus, we have introduced an alternate way to analyze the

spontaneous symmetry breaking, that is, observing the o↵-diagonal long-range order. We have

also shown that the Bose-Einstein condensate implies the spontaneous U(1) symmetry breaking.

In Chap. 3, we have reviewed the stochastic quantization formalism, which was originally

proposed by Parisi and Wu in 1981. We have also shown the general relation between the
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stochastic and path integral formalisms from which we understand that the Langevin method

can exactly reproduce the standard Monte Carlo simulation. Then, we have summarized the

basis to perform the complex Langevin simulation in which the quantization procedure in the

stochastic quantization formalism is numerically performed on the lattice. As an example,

we have presented our original work in which we have applied the complex Langevin method

to the nonrelativistic bose system interacting by a repulsive contact interaction. The Silver

Blaze problem was correctly managed in our numerical simulation. Also, we have analyzed the

spontaneous U(1) symmetry breaking by performing the long-range order analysis.

In Chap. 4, we have performed ab-initio simulations of the nonrelativistic Bose-Einstein

condensate under strong external field such as the electric field, the magnetic field, and the

rotation. First, we have discussed how to apply such external fields on the lattice. To maintain

the local U(1) symmetry on the lattice, we have improved the lattice action by adding higher

order terms in terms of the lattice spacing.

Then, we have analyzed the Bose-Einstein condensate in the presence of the Minkowski

electric field. We have shown that the non-uniform charge distribution is generated according

to the vector potential. We have also analyzed the associated U(1) symmetry breaking by

performing the long-range order analysis.

Next, we have analyzed the Bose-Einstein condensate in the presence of the magnetic field.

We have shown that the Bose-Einstein condensate for interacting theory is destroyed by the

magnetic field due to the formation of Landau levels. Furthermore, we have analyzed the

quantum vortex nucleation by the magnetic field. The direct evidence of quantum vortex

nucleation is the quantization of circulation: We have shown that the circulation is quantized

far from the critical chemical potential, but it is not just above the critical chemical potential.

We have clarified that the flux quantization in the Bose-Einstein condensate is blurred by the

quantum fluctuation as the chemical potential is getting close to its critical value.

Finally, we have analyzed the Bose-Einstein condensate under the rotation. We have for-

mulated the rotating lattice by using the e↵ective magnetic field induced by the rotation. We

have successfully simulated the quantum vortex nucleation in the rotating Bose-Einstein con-

densate. In our simulations, the quantum fluctuation of vortex numbers is observed, while

the averaged circulation is clearly quantized. We have revealed that the fluctuation of vortex

numbers behaves as Gaussian and, as a result of cancellation, the average circulation becomes

exact integer.

In Chap. 5, we have applied our analysis to the relativistic Bose-Einstein condensate under

strong electromagnetic fields. The Silver Blaze problem is resolved by the complex Langevin

method also in the relativistic case. We have analyzed the spontaneous U(1) symmetry breaking

by performing the long-range order analysis, which was not discussed in previous literature.

Then, we have analyzed the Bose-Einstein condensate in the presence of the electric field. In

contrast to the nonrelativistic theories, the pair creation of a particle and an anti-particle can

occur in the vacuum via the Schwinger mechanism in relativistic theories. We have performed,
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by using the complex Langevin method, the first ab-initio simulation of the particle production

in the system, where the sign problem occurs. We have shown that the non-uniform charge

distribution is generated according to the vector potential. We have also analyzed the associated

U(1) symmetry breaking by performing the long-range order analysis.

Finally, we have analyzed the relativistic Bose-Einstein condensate in the presence of the

magnetic field. We have numerically shown, as in the case of the nonrelativistic theory, that

the Bose-Einstein condensate is destroyed by the magnetic field due to the formation of Landau

levels. We have also analyzed the relativistic quantum vortex nucleation by the magnetic field.

We have shown that the circulation is clearly quantized in the superconducting phase far from

the critical chemical potential, but it is blurred by quantum fluctuation as the chemical potential

or the magnetic field is getting close to its critical value. We have clarified that near the critical

values of chemical potential or magnetic field, the fluctuation of vortex numbers shows a broad

Gaussian distribution, while it becomes almost a single peak far from the critical value.

There are several future applications of the complex Langevin method to condensed matter

systems. First, nonperturbative simulations at finite temperatures are interesting. We can

estimate the critical temperature of Bose-Einstein condensation with including all orders of

density corrections [119, 120, 121, 122]. We can also study the e↵ect of thermal fluctuations

to the Bose-Einstein condensate and the breakdown of the Gross-Pitaevskii equation. Further-

more, our approach is applicable to the Bose-Hubard model, which describes Bose system on

an optical lattice [123] and is known to su↵er from the sign problem [106]. The application

of the complex Langevin method to the nonrelativistic fermion system is an important future

problem.

The complex Langevin method will also be useful in relativistic Bose systems under ro-

tation, where the rotation causes the sign problem as well the chemical potential does [124].

Nonperturbative study of the quantum vortex nucleation in relativistic systems is helpful to

understand the physics of e.g., cosmic string in the early universe [56]. However, as remarked in

Sec. 4.4.1, the formulation of rotating lattice in the relativistic field theories has some di�culties

e.g., the problem of renormalization. We defer these challenging issues to future works.
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Appendix A

Higher order algorithm

Here, we review the higher order algorithm [107, 108]. We show, by using a toy model, that it

removes the linear order step size dependence, which appears in the lowest order algorithm. In

the higher order algorithm, instead of directly solving the lowest order Eqs. (3.26) and (3.27),

we numerically solve following equations:
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where ⌘̃a is defined as ⌘̃a = ⌘a/2 +
p
3⌘̄a/6. We introduce auxiliary complex fields '(1)a =

'(1)aR + i'(1)aI and '(2)a = '(2)aR + i'(2)aI. We also introduce independent Gaussian noises ⌘a

and ⌘̄a, which satisfy

h⌘ax(n)i = h⌘̄ax(n)i = 0, (A.7)

h⌘ax(n)⌘by(n0)i = h⌘̄ax(n)⌘̄by(n0)i = 2�ab�xy�nn0 , (A.8)
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h⌘ax(n)⌘̄by(n0)i = 0. (A.9)
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( ⌧,x) means that the functional derivative in those

equations are evaluated by using the complex field  = ', '(1), or '(2).

To see that this algorithm improves the step size dependence, let us consider a two site

model, which imitates the temporal hopping term in the nonrelativistic lattice action. The

action is
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where 'i=1,2 are real scalar field. Since the matrixM is not hermitian, the action is complex and

thus causes the sign problem, namely, the Langevin equations are needed to be complexified.

However, since the action is quadratic, we can analytically solve the Langevin equations by

diagonalizing the action:
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where '± = '
1

±'
2

, and �± = 1± i. The correlation functions of '
1,2 are obtained from those

of '± by unitary transformation and thus we only calculate the correlation functions of '±.

The discretized Langevin equations read
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p
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where 'i=± are complex fields and ⌘i=± are independent real Gaussian noises. We have
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where we choose 'i(0) = 0 as initial conditions. The two point function reads
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Therefore, the correlation function shows the linear step size dependence in the limit of "! 0:
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On the other hand, Eqs. (A.1)- (A.6) read
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Then, we have
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Since Gaussian noises are additive, ⌘0i(n) are also Gaussian noises, which are no longer real and
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From Eqs. (A.13) and (A.13), the two point function in the higher order algorithm read
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Therefore, the leading step size dependence of the correlation function in the limit of "! 0 is

improved as
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Appendix B

Jackknife method

Here we summarize the Jackknife method to estimate the statistical errors of ensemble aver-

ages [125].

B.1 Standard deviation

Let us consider a set of finite data xi, X = {xi : x1

, x
2

, . . . , xN}, which have the same probability

distribution. We are interested in estimating the “error” of their mean value:

x̄ =
1

N

NX

i=1

xi. (B.1)

If xi are uncorrelated, by assuming the central limit theorem, the standrd error of the mean

value �x is obtained from the corrected standard deviation of the data s as
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B.2 Jackknife estimation

In the jackknife method, the statistical errors are estimated by dividing {xi} into small subsets.

We decompose {xi} intoNm = N/m bins and thus each bin hasm data. Let us defineXk=1,...,Nm

as

Xk = {xk
i : x1

, . . . , x
(k�1)m, x(k+1)m, . . . , xN}. (B.4)
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The subsets Xk are obtained from X by removing the data decomposed into the k th bin. The

mean value in Xk is

x̄k =
1

N �m

X

i2Xk

xi. (B.5)

Now, we have a data set X̃ = {x̄i : x̄1, . . . , x̄NM}. We use h·i as the average over X̃. Then, we

can calculate the mean value of the whole data as

hx̄i = 1
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X

k

x̄k, (B.6)

which recovers Eq. (B.1) as follows
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The statistical error in the m-th bin jackknife method, �xm, is estimated from the uncorrected

standard deviation of X̃, sm, as
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When we choose m = 1, Eq. (B.9) recovers the statistical error obtained from the corrected

standard deviation (B.3) as follows. Eq. (B.8) reads
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Therefore, �x
1

apparently satisfies

�x
1

=
p
N � 1s

1

= �x. (B.11)

By changing the bin size m, we can estimate the autocorrelation between data taken from

Langevin trajectories. If the data are uncorrelated, the estimated error sm are independent

of m, and thus by observing the bin size dependence of errors, we can determine how many

times we should iterate the Langevin process before we take next field configurations. In all

simulations performed in this thesis, we have taken su�ciently large Langevin time step to

generate the ensemble, so that the statistical errors of expectation values do not depend on the

bin size m.
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