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Abstract

In this thesis, we have studied the time-evolution of the scalar condensation in the early Uni-
verse; with special emphasis on interactions between the scalar condensation and abundant
particle-like excitations around it. Starting from the Kadanoff-Baym equations, which describe
the evolution of one- and two-point functions, we have obtained coarse-grained equations un-
der the “separation of time scale” assumption. By using the obtained equations, we have shown
that these interactions can dramatically affect the dynamics of scalar condensation. In partic-
ular, we have revisited several important roles of scalar condensates in the early Universe, and
shown how the characteristic features of each role are modified by these interactions.
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Chapter 1

Introduction

Scalar fields play many important roles in particle cosmology. In particular, their impacts on
cosmology become significant, when they condensate homogeneously with large field values
which are far from equilibrium. They start to oscillate coherently around their potential min-
ima when the Hubble parameter becomes comparable to their mass scales. After the onset of
oscillation, since they have large energy densities and tendency to dominate the Universe, the
evolution of the Universe can be altered dramatically. There are several examples in which the
scalar condensation plays essential roles in solving fundamental issues of our Universe, such as
flatness/horizon problems, primordial density fluctuations, baryon asymmetry of our Universe
(BAU), dark matter (DM) and so on.

• One of the prominent examples is the inflation [1–5], which not only solves horizon/flatness
problems but also produces primordial density fluctuations observed in the cosmic mi-
crowave background (CMB) by an accelerated expansion of the Universe. Such an ex-
plosive expansion is caused by a potential energy of a scalar field, so-called inflaton,
which slowly rolls down its potential during inflation [4,5]. After the end of inflationary
phase, the inflaton should convert its huge energy density into light particles including
our Standard Model (SM) ones to create the hot Universe. This process is referred to as
reheating.

• Though the inflaton can produce primordial density fluctuations, it is interesting to con-
sider another possibility; a scalar field other than inflaton which acquires quantum fluc-
tuations during inflation is responsible for primordial density perturbations [6–9]. Such
a scalar field is referred to as the curvaton, and it has distinguishable features, such as
non-Gaussianity, compared with inflaton. Eventually, the curvaton should decay into
light particles so as to convert its fluctuations into the adiabatic perturbation in the radi-
ation.

• If a scalar condensation is charged under U(1)B-L symmetry, then it can produce the BAU.
For instance, in the Affleck-Dine mechanism [10,11], the initial far from equilibrium field
value of the scalar condensate, the enhanced U(1)B-L breaking term due to its large field
value, and the initial misalignment of the phase direction of the scalar potential naturally
satisfy the Sakharov’s three conditions [12]. In this case, the net BAU is produced when
the scalar condensate starts to oscillate, and later it is converted to our SM particles via
its decay. Another interesting case is to produce the BAU at its decay. For instance, in
the case of Leptogenesis via the decay of right-handed sneutrino condensates [13–20],
the Sakharov’s three conditions are fulfilled by the explicit breaking of U(1)B-L due to the
Majorana mass term and its non-equilibrium C-/CP-violating decay.
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• Also, the scalar field can be a candidate of DM. For instance, in the Peccei-Quinn (PQ)
mechanism [21,22], the condensation of the axion [23,24], which is a pseudo NG-boson
associated with the U(1)PQ breaking, can explain the present DM abundance [25]. In
addition, the PQ scalar may cause a cosmological phase transition after the inflation.
Then, the remnant of its radial component oscillation can produce hot axions, and also
the phase transition might leave some detectable features [26,27].

Importantly, from the viewpoint of particle physics, these scalar fields may be closely tied
with models beyond the SM. For instance, it may be the Higgs field, which was recently discov-
ered, flat directions in supersymmetric (SUSY) theory, SUSY breaking fields, moduli in string
theory and PQ scalar fields and so on. Thus, it is of quite importance to understand the dy-
namics of scalar condenses and their cosmological fate in both cosmology and particle physics.

Nevertheless, the dynamics of scalar condensation in the early Universe has not been fully
investigated. In most of these scenarios, the scalar field should decay into light particles (which
somehow will be thermalized) before the big-bang nucleosynthesis (BBN) sets in not to over-
close the Universe. Thus, an interaction term between the scalar field and light fields is required
inevitably, and this very interaction makes the dynamics of scalar condensates complicated.

As an illustration, let us assume the simplest Yukawa coupling between the scalar field ϕ
and light particles χ in radiation; yϕχ̄χ. Naively, one might guess that the scalar condensation
decays completely, when the Hubble parameter (H), which characterizes the expansion rate of
the Universe, becomes comparable to the decay rate of the scalar field (Γ 0

ϕ
), which is computed

in the Vacuum field theory: H ≃ Γ 0
ϕ
∼ y2mϕ. Here mϕ represents the mass of the scalar field.

However, for yϕ̃ ≫ mϕ with ϕ̃ being the amplitude of the scalar field, one can see that
the perturbative decay, ϕ → χ̄χ, is kinematically forbidden except for ϕ ∼ 0. In this case,
the notion of “χ-particle” can become ambiguous near ϕ ∼ 0 due to the rapidly moving back-
ground scalar condensation, and hence different treatments are required. As a result, it is
known that the efficient particle production can take place near ϕ ∼ 0, which is the so-called
non-perturbative particle production extensively studied in the context of preheating after in-
flation [28,29].

On the other hand, if there exists the background radiation, the effective potential of ϕ
receives corrections because the scalar field ϕ interacts with abundant particles in radiation
via χ-fields [30]. Also, owing to the interactions, the dissipation rate of the scalar condensation
can significantly differ from its decay rate at Vacuum as expected [31–42]. This is because the
dispersion relation of χ-particle can be modified due to interactions with radiation; it might
attain the effective mass and also width. As a result, the dominant process of the energy
transportation from the scalar condensation to radiation can differ from the perturbative decay
of ϕ into χ-particles at Vacuum.

Although comprehensive and thorough analyses are required in order to understand the
cosmological fate of scalar condensation, yet these issues have been partly tackled by separate
literatures in each different context, to the best of our knowledge. Therefore, in this thesis,
we investigate in detail the dynamics of scalar condensation in the early Universe; strong em-
phasis on the interplay between the scalar condensation and particle-like excitations around
it. To treat these issues transparently, we start with the Kadanoff-Baym equations [43], which
describe the time-evolution of one- and two-point correlators with systematic resummations
which are often required in studying a finite density system and its time-evolution. Not to trou-
ble with unnecessary complications, we adopt a phenomenological model [Eq. (4.2)] which is
simple but, we believe that, captures essential features of realistic situations. Specifying the dy-
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namical time scale, we approximate these full equations by means of “separation of time scale”
in each situation. As a result, we obtain the coarse-grained equations which can be applicable
to various cosmological situations [35,44,45].

Then, we study several cosmological roles of scalar condensation so as to clarify the ef-
fects of interactions with light particles by using the coarse-grained equations. Consequently,
we have shown that characteristic features of these roles can be drastically modified due to
interactions with light particles.

• Reheating after Inflation [36]: We have studied in detail the dynamics of (p)reheating
after inflation, and shown that the reheating temperature, which characterizes inflation
models, can be significantly changed by that of conventional estimation. We have also
demonstrated that the evolution of radiation before the completion of reheating can be
also modified.

• Curvaton [46]: We have revisited the curvaton mechanism by taking account of interac-
tions with abundant light particles in the background plasma, and shown that the energy
fraction of the curvaton at its complete decay/dissipation, which is an important param-
eter of the curvature perturbation, can be significantly changed. We have also derived
general formulas of the scalar power spectrum and the non-linearity parameter (which
characterizes the non-Gaussianity), taking account of these effects.
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Organization of This Thesis

The organization of this thesis is as follows. See also the schematic figure of this thesis given
in Fig. 1.1.

In Chap. 2, we review important roles of scalar condensation in the early Universe. In order
to clarify the effects of interactions with light particles in later chapters, here, we summarize
important features of each role with a conventional textbook argument; without the effects of
interactions between the scalar condensation and light particles. Later, we will see that the im-
portant features can be dramatically modified by these effects. In Sec. 2.1, basic facts of scalar
condensate as an inflaton are reviewed; with special emphasis on the reheating temperature.
In Sec. 2.2, we briefly summarize the δN -formalism at first, and then characteristic features of
curvaton mechanism, the scalar power spectrum and the non-linearity parameter, are derived.

In Chap. 3, we introduce the theoretical equipment, the “closed time path formalism”, in
order to describe the evolution of scalar condensation which interacts with light particles. In
Sec. 3.1, we see why the closed time path contour arises when one computes the evolution of
expectation values. Then, in Sec. 3.2, we briefly introduce the nPI effective action technique; it
provides us with a simple and systematic way of resummation scheme which is often required
in order to treat the finite density system and its long time behavior. In Sec. 3.3, we derive the
Kadanoff-Baym equations from 2PI effective action, which is a fundamental building block of
our following discussion to study the evolution of correlators.

Chap. 4 and Chap. 5 are main parts of this thesis, based on our previous works in collabo-
ration with Takeo Moroi, Kazunori Nakayama, and Masahiro Takimoto [35, 36, 44–46]. First,
after specifying the phenomenological setup which shares essential features of scalar conden-
sate playing important roles in the early Universe in Sec. 4.1, we obtain the coarse-grained
equations to make the full equations tractable by means of “separation of time scale” in various
regimes in Secs. 4.2, 4.3 and 4.4. Eventually, we obtain the evolution equations in the cosmo-
logical time scale in Sec. 4.6. Then, Chap. 5 is devoted to applying the obtained equations to
various roles of scalar condensation in the early Universe. In Sec. 5.1, we study in detail the
dynamics of reheating after inflation, and show that the reheating temperature can be changed
significantly compared with the conventional estimation. We also discuss that the evolution of
radiation before the completion of reheating can be also different form the conventional argu-
ment. In Sec. 5.2, we investigate the effects of interactions with light particles on the curvaton
mechanism. We show that the scalar power spectrum and the non-linearity parameter can be
significantly modified by these effects.

Chap. 6 is devoted to conclusions and discussion. Notation and conventions are summa-
rized in Appendix A. Basic ingredients of thermal field theory which we frequently use in this
thesis is introduced in Appendix B. Also we summarize minimum knowledge on the Standard
Cosmology in Appendix. C.
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Figure 1.1: Schematic figure of interrelationship among chapters of this thesis. Chaps. 4 and 5 are
main parts of this thesis.
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Chapter 2

Roles of Scalar Condensation

In this chapter, several roles of scalar fields in the early Universe are reviewed briefly. In order
to clarify the impacts of interactions with light fields, which are discussed in detail in later
chapters, here we restrict ourselves to simple conventional arguments without seriously taking
care of these effects. That is, let us consider a scalar field ϕ that obeys an equation of motion
with a potential that solely depends on ϕ and with a constant dissipation term Γ 0

ϕ
evaluated

as a decay rate at Vacuum:

ϕ̈ +
�
3H + Γ 0

ϕ

�
ϕ̇ + V ′(ϕ) = 0, (2.1)

where H is the Hubble parameter and V (ϕ) is a scalar field potential.
Using theoretical equipment in Chap. 3, we will see in Chap. 4 that the potential and the

dissipation term depend also on the temperature of background plasma T and on the field
value of ϕ in general: Γϕ(ϕ; T ), Veff(ϕ; T ). Their cosmological impacts are studied in detail in
Chap. 5.

The organization of this chapter is the following: First, we review basic facts of a scalar
field as an inflaton [1–5]; in particular we see how the reheating after inflation takes place
if the equation of motion is given by Eq. (2.1). We also discuss why it is important to know
the reheating temperature. Then, we review the curvaton mechanism [7–9], which is another
source of primordial density fluctuations other than the inflaton. Especially, the scalar power
spectrum and the non-linearity parameter are derived in this simple case.

The following discussion assumes basic knowledge about the Standard Cosmology. We
briefly summarize minimun information in Appendix C.
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2.1 Inflaton

Inflation [1–5] now has become an essential ingredient of the Standard Cosmology, which
provides us with an elegant way to solve the horizon/flatness problems and also generate
seeds of primordial density perturbations by an accelerated expansion of the Universe. In this
section, we see how a homogeneous scalar condensation can cause the inflation; accelerated
expansion phase of our Universe, and the reheating after that; energy conversion process into
light particles including SM ones. For simplicity, we mainly discuss the case with the quadratic
inflaton potential, V = m2

ϕ
ϕ2/2.

2.1.1 Slow Roll Inflation

First, let us consider the inflation phase. The basic evolution equation is nothing but Eq. (2.1)
plus the Friedmann equation [See Eq. (C.3) and (C.30)]:

0= ϕ̈ + 3Hϕ̇ + V ′(ϕ), (2.2)

3M2
plH

2 =
1
2
ϕ̇2 + V (ϕ). (2.3)

Here we assume that the particle creation Γ 0
ϕ

is negligible and that the energy density is domi-
nated by the scalar field. In order to understand the condition where the accelerated expansion
takes place, we consider the following equation derived from above ones:

ä
a
= H2 − ϕ̇2

2M2
pl

=
1

3M2
pl

�
V (ϕ)− ϕ̇2

�
. (2.4)

Thus, as one can see, the accelerated expansion occurs if V (ϕ)≫ ϕ̇2. In order for the acceler-
ated phase to continue sufficiently long, we impose the following condition:

|ϕ̈| ≪ |Hϕ̇|, |V ′|. (2.5)

At this regime, the equation of motion can be approximated with

3Hϕ̇ ≃ −V ′(ϕ). (2.6)

Inserting this into V (ϕ)≫ ϕ̇2, one obtains

εV ≡
M2

pl

2

�
V ′
V

�2

; εV≪ 1. (2.7)

Also differentiating H2ϕ̇2 ∼ −V ′2 with respect to ϕ and inserting it into V (ϕ)≫ ϕ̇2, one finds

ηV ≡ M2
pl

V ′′
V

; |ηV| ≪ 1. (2.8)

These two parameters εV and ηV are known as the potential slow roll parameters, and they are
quite useful since the duration of slow-roll regime can be simply obtained from the potential
shape of the inflaton. One can also define parameters for higher derivatives of the inflation
potential. The inflation ends at max[εV, |ηV|] ≃ 1. We denote the field value at the end of
inflation as ϕend.

7



To see how to determine the model of inflaton by cosmological observations, let us briefly
explain primordial fluctuations generated during inflation and their relations with slow-roll
parameters. Roughly speaking, due to the (quasi) de Sitter nature during the inflation, Vac-
uum fluctuations inside the horizon are continuously stretched toward the super-horizon scale.
Through this process, the primordial curvature perturbation (scalar mode) and also primordial
tensor perturbation (gravitational wave) are generated. Importantly, their power spectra are
closely related to the slow-roll parameters. Their amplitudes are given by (See also Sec. 2.2)

Pζ ≃
�

H∗
2πMpl

�2
1

2εV∗
; Ph =

2
π2

H2
∗

M2
pl

→ r ≡ Ph

Pζ ≃ 16εV∗, (2.9)

and their scale dependence can be expressed as

ns − 1≡ d lnPζ
d ln k∗

≃ 2ηV∗ − 6εV∗; nt ≡ d lnPh

d ln k∗
≃ −2εV∗, (2.10)

for a single field slow roll inflation, wherePs [Pt] denotes the scalar [tensor] power spectrum,
and ns and r are so-called the scalar spectral index and the tensor-to-scalar ratio respectively.
Here ∗ indicates values at the horizon exit of the observed mode. One can find a consistency
relation, r = −8nt , for a single field slow roll inflation. It is noticeable that the scalar spectral
index is almost ns ∼ 1, which is a remarkable feature of inflation. Importantly if the primor-
dial density fluctuations are generated dominantly by the inflaton, then the CMB observation
implies (H∗/2πMpl)2/2εV∗ ≃ (5× 10−5)2 [47]. Moreover, if ns and r are somehow determined
in the future, then we can access the information of inflaton potential around ϕ∗. The scalar
spectral index and the tensor-to-scalar ratio are already constrained by the CMB observation;
ns = 0.9603± 0.0073 and r < 0.11 [48]. We can see that the observed ns indicates the nearly
scale invariant red-tilted spectrum, which strongly suggests the existence of inflation. Thus, it
is quite important to predict these parameters precisely if one specifies a model of inflation.

The e-folding number which characterizes the duration of inflation is defined as

N(ϕ)≡ ln
aend

a
=

∫ tend

t

d tH =

∫ ϕend

ϕ

dϕ
H

ϕ̇
≃
∫ ϕ

ϕend

dϕ
Mpl

1p
2εV

. (2.11)

To solve the horizon and flatness problems, the total number of e-folding should be larger than
∼ 60. Even if one specifies the model of inflation, one needs to know the dynamics of reheating
to predict its precise value. To see this, let us relate a mode p(t0) = k/a0 with the e-folding
number from its horizon exit during the inflation to the end of the inflation. Such an e-folding
number is defined as

Nk ≡ ln
aend

ak
; with k = akHk. (2.12)

The second condition means that the observed scale with a physical momentum p(t) = k/a(t)
exits the horizon during the inflation at the time p(tk) = Hk. To clarify its physics, we rewrite
this equation as follows:

Nk = − ln
�

k
a0H0

�
+ ln

�
aendHend

a0H0

�
− ln

�
Hend

Hk

�
, (2.13)

where 0 subscript indicates present values. While the third term is O (1) in most inflation
models, the second term strongly depends on the information about the dynamics after the in-
flation. Assuming that the inflaton behaves as matter after the inflation, i.e. quadratic potential
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(See the next subsection), one obtains

aend = a0

�
H0

Heq

�3/2�Heq

Hrh

�1/2� Hrh

Hend

�3/2

, (2.14)

where Heq and Hrh represent the Hubble parameter at the matter-radiation equality and at the
completion of reheating. Plugging this equation to Eq. (2.13), we obtain the following form of
Nk:

Nk ≃ 56− ln
�

k
a0H0

�
+

1
3

ln
�

TR

109 GeV

�
+

1
3

ln
�

Hend

1014 GeV

�
− ln

�
Hend

Hk

�
, (2.15)

where TR denotes the reheating temperature, which is defined as the temperature of radiation
when the inflaton completely convert its energy into radiation. As one can see, the e-folding
number Nk crucially depends on the reheating temperature, which can take broad range of
parameters, TBBN ≲ TR ≲ V 1/4

inf with TBBN and Vinf being the temperature at the beginning of
BBN and the energy scale of inflation respectively. This uncertainty motivates the commonly
used range 50–60 for k ≃ a0H0.

It is instructive to compute these parameters in the chaotic inflation [49] with a quadratic
potential, V = m2

ϕ
ϕ2/2. The potential slow-roll parameters are given by

εV = 2
�Mpl

ϕ

�2

; ηV = 2
�Mpl

ϕ

�2

. (2.16)

Hence, the inflation ends at ϕend =
p

2Mpl. The e-folding number can be expressed as a func-
tion of ϕ as

N(ϕ)≃ 1
4M2

pl

�
ϕ2 −ϕ2

end

�↔ ϕ2(N)≃ ϕ2
end + 4N M2

pl ≃ 4N M2
pl. (2.17)

Therefore, the slow-roll parameters can be expressed in terms of the e-folding number as

εV(N)≃ 1
2N

; ηV(N)≃ 1
2N
→ ns(N)≃ 1− 2

N
; r(N)≃ 8

N
. (2.18)

One can predict ns and r by inserting the e-folding number at the CMB scale: N∗. However,
as we have already seen, the e-folding number N has an O (10) uncertainty due to the large
uncertainty of the reheating temperature. So, it is essential to know when the reheating is
completed in the era of precision cosmology.

2.1.2 Reheating after Inflation

Then, let us see a textbook argument of reheating dynamics, based on Eq. (2.1) [50]. Soon
after the break down of the slow-roll condition, the oscillation time scale becomes much faster
than the cosmic expansion, H2≪ |V ′/ϕ|, and the inflaton starts to oscillate around its potential
minimum. Initially, we assume that the decay term is smaller than the Hubble parameter. From
Eq. (2.1), one finds

d
d t
ρϕ ≡ d

d t

�
1
2
ϕ̇2 + V (ϕ)

�
= −�3H + Γ 0

ϕ

�
ϕ̇2. (2.19)
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Since this equation implies that the energy density ρϕ changes slowly, O (H, Γ 0
ϕ
), compared

with the oscillation time scale, it is convenient to take the oscillation-time average (See also
Sec. 4.6). Making use of the virial theorem, one can easily show that

ρ̇ϕ = −
�
3H + Γ 0

ϕ

�
ρϕ, (2.20)

for a quadratic potential V = m2
ϕ
ϕ2/2. Then, the whole evolution equations of this system are

ρ̇ϕ = −
�
3H + Γ 0

ϕ

�
ρϕ, (2.21)

ρ̇rad = −4Hρrad + Γ
0
ϕ
ρϕ, (2.22)

3M2
plH

2 = ρϕ +ρrad, (2.23)

where ρϕ and ρrad denote the energy density of inflaton and radiation respectively. We study
typical behavior of ρϕ and ρrad in the following.

Due to the rapid expansion of the Universe during inflation, there is almost no radiation
right after the end of inflation, tend. So, the initial condition isρrad(tend) = 0 andρϕ(tend) = Vinf.
First, we consider the regime Γ 0

ϕ
< H. Then, Eq. (2.21) yields ρϕ(t) = Vinfa

3
end/a

3(t), and also
Eq. (2.23) determines the evolution of scale factor a(t) = aend(t/tend)2/3. At that regime, the
radiation obeys the following equation:

ρrad ≃ Γ 0
ϕ

∫
d ln[a/aend]

ρϕ

H
∼ Γ

0
ϕ

H
ρϕ ≃ 3M2

plΓ
0
ϕ

H∝ a−3/2, (2.24)

which implies T ∝ ρ
1/4
rad ∝ a−8/3. In the second similarity, we have used the fact that the inte-

grand ρϕ/H is a polynomial function of a and dropped the factor. After the Hubble parameter,
H∝ a−3/2, becomes comparable to the decay term Γ 0

ϕ
, the inflaton rapidly loses its energy and

decays completely, as can be seen from ρ̇ϕ ≃ −Γ 0
ϕ
ρϕ for Γ 0

ϕ
> H. Then, the produced radia-

tion behaves as ρrad∝ a−4, and the radiation dominant era begins. At that regime, the scale
factor obeys a∝ t−1/2 obtained from 3M2

plH
2 = ρrad. Therefore, the decay time which char-

acterizes the beginning of radiation dominant era can be estimated by H ≃ Γ 0
ϕ

. This condition
determines the temperature at that time, which is so-called the reheating temperature:

TR ≃
�

90
π2 g∗

�1/4Ç
Γ 0
ϕ

Mpl, (2.25)

where g∗ denotes relativistic degrees of freedom of radiation at the temperature TR. Impor-
tantly, Eq. (2.24) impies that the radiation already exists before the completion of reheating,
which implies the era with the temperature T > TR. In Sec. 5.1, we see that the conventional
estimation of reheating temperature [Eq. (2.25)] can be changed dramatically by interactions
with radiation which exists before the complete decay of the inflaton.

Before closing this section, we briefly comment on the compatibility of inflaton models
with other mechanisms that solve several remaining problems of our Universe. Up to here,
we focus on how an inflaton can solve horizon/flatness problems, produce primordial density
perturbations and successfully generate the hot Universe. However, since there are remain-
ing unsolved problems in our Universe as mentioned in the Introduction (e.g. DM, BAU, and so
on), it is desirable to discuss how to construct a consistent history of the Universe by combining
an inflaton model and other mechanisms which solve remaining problems. At this stage, the
reheating temperature is of quite importance to discuss these issues. For instance, the (stan-
dard) thermal freeze-out DM production [50] requires that the reheating temperature should
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be larger than the DM mass, the thermal Leptogenesis [51] also does that it should be larger
than 109 GeV [52], the abundance of gravitino [53–55], axino [56,57] and axion [58,59] cru-
cially depends on the reheating temperature, that of coherently oscillating moduli [60–62] and
heavy particles (e.g. [63,64]) also does since the dilution factor plays the important role, and
so on. Thus, the reheating temperature and also the dynamics of reheating are essential to
characterize an inflaton model.

2.2 Curvaton

In the previous section, we see that the inflaton can be the dominant source of primordial cur-
vature perturbations, which were of super-horizon scales and almost scale invariant. Though
it is a minimal scenario, one can assume that another scalar field which acquires quantum fluc-
tuations during inflation but does not contribute to the inflation is responsible for primordial
curvature perturbations [7–9]. Such a scalar field is dubbed as the curvaton. In contrast to
the slow-roll inflation, a key signature of the curvaton mechanism is that it can produce large
local-type non-Gaussianity which is parametrized by the non-linearity parameter fNL. Since it
is constrained by the CMB observation fNL = 2.7±5.8 (68% C.L.) [65], it is important to know
fNL accurately so as to discuss the viability of the curvaton model.

In this section, we first summarize δN -formulas [66–69] which provide us simple ways to
compute primordial curvature perturbations. And then compute the power spectrum Pζ and
the non-linearity parameter fNL in the simplest case where the equation of motion is given by
Eq. (2.1) with a quadratic potential V = m2

ϕ
ϕ2/2.

2.2.1 Delta-N Formalism

In theδN -formalism, the primordial curvature perturbation ζ on a uniform density slice labeled
by time t is equal to the difference in the local e-folding number with respect to an initially
spatially flat slice [66–69]:

ζ(t, x ) = N(t, x )− N̄(t), (2.26)

where the local expansion on sufficiently large scales is given by the same expression as the
homogeneous one

N(t, x ) =

∫ t

t∗
d tH(t, x ). (2.27)

Here N(t, x ) denotes the e-folding number from the initially flat slice to the uniform density
slice and N̄ indicates that of the background value. For each different patch x on super-horizon
scales, light scalar fields during inflation acquires different values δϕ(x ), and thus, taking the
initial time as the horizon crossing, one can express ζ as

ζ= Nϕ∗δϕ∗ +
1
2

Nϕ∗ϕ∗δϕ∗δϕ∗ + · · · , (2.28)

where the ϕ subscript denotes a derivative with respect to ϕ. If there are several light scalars,
then the summation is promised, like Nϕ j

δϕ j
∗.

Performing the Fourier transform

ζk =

∫
d3 xe−ik·xζ(x ), (2.29)
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we can write down the two point function as

ζk1
ζk2

�≡ (2π)3δ(k1 + k2)Pζ(k1). (2.30)

Here we define the power spectrum

Pζ(k)≡ k3

2π2
Pζ(k) (2.31)

so that the variance of ζ in the real space becomes
∫∞

0
d ln kPζ(k). By means of the δN -

formula [Eq. (2.28)], the power spectrum can be expressed as

Pζ(k) = N 2
ϕ∗Pδϕ(k);



δϕk1

δϕk2

�
= (2π)3δ(k1 + k2)Pδϕ(k), (2.32)

at the leading order in fluctuations of scalar fields. In a de Sitter space with the Hubble param-
eter H, light fields (mϕ ≪ H) acquire following quantum fluctuations on super-horizon scales
[See also Eq. (C.39)]: 


δϕk1
δϕk2

�
= (2π)3δ(k1 + k2)

H2

2k3
. (2.33)

Thus, the power spectrum can be expressed as

Pζ(k) =
�

H∗
2π

�2

N 2
ϕ∗ (2.34)

Here note that H∗ indicates the Hubble parameter at the horizon crossing a∗H∗ = k, because
the Hubble parameter gradually changes in the inflationary phase.

Also, Eq. (2.33) implies that the tensor mode, which obeys the same action as a massless
scalar field in the FLRW background up to a normalization factor Mpl/2, also acquires the
following fluctuations:

Ph(k) = 2× 4
M2

pl

Pδϕ(k), (2.35)

where the factor 2 comes from two polarizations and 4/M2
pl from the normalization factor.

Thus, the power spectrum for the tensor perturbation is given by

Ph(k) =
2
π2

H2
∗

M2
pl

. (2.36)

Then, we move on to the three point function which imprints the non-Gaussianity. The
bispectrum is defined as


ζk1
ζk2
ζk3

�≡ (2π)3δ(k1 + k2 + k3)Bζ(k1, k2, k3), (2.37)

where the leading order bispectrum can be expressed as

Bζ(k1, k2, k3) = N 2
ϕ∗Nϕ∗ϕ∗

�
Pδϕ(k1)Pδϕ(k2) + Pδϕ(k2)Pδϕ(k3) + Pδϕ(k3)Pδϕ(k1)

�
. (2.38)

Defining the non-linearity parameter fNL by

Bζ(k1, k2, k3) =
6
5

fNL

�
Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)

�
, (2.39)
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we obtain the following expression of the non-linearity parameter:

6
5

fNL =
Nϕ∗ϕ∗
N 2
ϕ∗

. (2.40)

It is instructive to apply obtained formulas to a single field slow-roll inflation discussed
in the previous section. Let us move back to Eq. (2.11), which relates the e-folding number
with the field value. Note that the e-folding number after the inflation does not depend on
ϕ because the end of inflation is determined by the same ϕend for each patch. Differentiating
Eq. (2.11) with respect to ϕ, we obtain

Nϕ∗ = −H∗
ϕ̇∗
≃ 1

Mpl

p
2εV∗

; Nϕ∗ϕ∗ ≃ N 2
ϕ∗ [2εV∗ −ηV∗] . (2.41)

Therefore, the power spectrum of curvature perturbation and the non-linearity parameter can
be expressed as

Pζ ≃
�

H∗
2πMpl

�2
1

2εV∗
;

6
5

fNL ≃ 2εV∗ −ηV∗, (2.42)

in terms of the slow-roll parameters. One can clearly see that the non-Gaussianity is suppressed
by the slow-roll parameters.

2.2.2 Curvaton Paradigm

Now we are in a position to discuss the curvature perturbation in the curvaton mechanism [7–
9]. Basically, the idea of the curvaton mechanism is the following; first the curvaton which
remains light during inflation acquires super-horizon fluctuations, then it starts to oscillate
around its potential minimum, and finally it decays into radiation and produces adiabatic per-
turbations in radiation. To be explicit, let consider a scenario where the curvaton energy den-
sity is negligible at least before the completion of reheating by the inflaton and the curvaton
decays after that. We also assume that the curvaton obeys Eq. (2.1) with V = m2

ϕ
ϕ2/2, and

that the inflaton contribution to the curvature perturbation is negligible for simplicity.
Let us compute the curvaton contribution to the e-folding number N . Before the onset of

oscillation, the curvaton field is almost frozen to its initial value. Hence, we expect that the
initial amplitude of curvaton at the beginning of oscillation, ϕi, is almost the same as that
of horizon exit, ϕi ≃ ϕ∗, and do not distinguish them. Since the curvature perturbation is
assumed to be negligible, we can take the initial slice to be the inflaton decay surface; H = ΓI
with ΓI being the decay rate of inflaton. The final uniform density slice is taken to be the decay
surface of curvaton; H̄ = Γϕ. The energy density of curvaton can be expressed as�1

ρ(dec)
ϕ
(x ) = ρ(ini)

ϕ
(x )

�
ΓI

Hos

�2

e−3N(x ); N(x ) = ln
adec(x )

areh
, (2.43)

where ρ(ini/dec)
ϕ

is the energy density of curvaton at the onset of oscillation/decay, Hos is the
Hubble parameter at the onset of oscillation, and areh/dec represents the scale factor at the
reheating/curvaton-decay. That of radiation is given by

ρ(dec)
rad (x ) = ρ

(reh)
rad e−4N(x ). (2.44)

�1 Here we adopt the expression for Hos > ΓI for later usage (See Sec. 5.2). For Hos < ΓI, ΓI/Hos should be
replaced with the identity.
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On the final uniform density surface, the total energy density of the Universe should satisfy

3M2
plΓ

2
ϕ
= ρ(dec)

ϕ
(x ) +ρ(dec)

rad (x ) = ρ
(ini)
ϕ
(x )

�
ΓI

Hos

�2

e−3N(x ) +ρ(reh)
rad e−4N(x ). (2.45)

Note that the left-hand-side does not depend on ϕi. Differentiating this equation with respect
to ϕi, one finds

Nϕi
= r

2
3ϕi

; Nϕiϕi
=

2r
ϕ2

i

�
3− 4r − 2r2

�
; r ≡ 3R̃

3R̃+ 4
; R̃≡ ρ̄

(dec)
ϕ

ρ̄(dec)
rad

. (2.46)

Here we have used ρ(ini)
ϕ
= m2

ϕ
ϕ2

i /2. Thus, the power spectrum for the curvature perturbation
and the non-linearity parameter are given by

Pζ =
�

H∗
2πϕi

2r
3

�2

;
6
5

fNL =
3
2r
− 2− r. (2.47)

In contrast to the inflaton case, if the energy fraction of the curvaton at the decay is small
R̃< 1, then the non-linearity parameter can be enhanced, fNL ∼ 5/(3R̃).

Up to here, we assume that the inflaton contribution to the curvature perturbation is neg-
ligible. For completeness, let us briefly summarize formulas in the mixed scenario where both
the inflaton and the curvaton yield sizable curvature perturbation [70, 71]. Assuming that
there are no correlations between the inflaton and the curvaton fluctuations, the curvature
perturbation can be expanded as

ζ= Nϕ∗δϕ∗ + NI∗δI∗ +
1
2

�
Nϕ∗ϕ∗δϕ

2
∗ + NI∗I∗δI2

∗
�
+ · · · , (2.48)

where I denotes the inflaton field. This equation implies the following expressions of the power
spectrum and the non-linearity parameter:

Pζ = (1+ E )P I
ζ
, (2.49)

6
5

fNL =
N 2

I∗NI∗I∗ + N 2
ϕ∗Nϕ∗ϕ∗�

N 2
I∗ + N 2

ϕ∗

�2 ≃
� E

1+ E
�2� 3

2r
− 2− r

�
, (2.50)

where

P I
ζ
=

�
H∗

2πMpl

�2
1

2εV∗
; E =

�2rMpl

3ϕi

�2

2εV∗ . (2.51)

Here we have neglected NI∗I∗ since it is suppressed by the slow-roll parameters. One can see that
the non-linearity parameter becomes suppressed if the inflaton contribution becomes large, as
expected.

Finally, we comment on the scalar spectral index ns. By using the ratio E , one can express
the scalar spectral index as [71].

ns − 1≃ M2
pl

V ′′(ϕ∗)
3H2∗

− 2εV∗ −
4εV∗ − 2ηV∗

1+ E . (2.52)

For E → 0, Eq. (2.10) is obtained as expected. On the other hand, if the curvaton dominates the
curvature perturbation E ≫ 1, then the spectral index becomes ns ≃ 1− 2εV∗ +M2

plV
′′/(3H2

∗ ).
Hence, the observed red-tilted spectrum can be expressed by a large field inflation model with
εV∗ = O (0.01) or a slightly steep tachyonic curvaton potential.
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Chapter 3

Review of Closed Time Path Formalism

The aim of this chapter is to introduce theoretical equipment [72–74] in order to describe the
evolution of scalar condensation which interacts with light fields.

To treat the evolution of expectation values of operators systematically as an initial value
problem, it is convenient to employ the “closed time path formalism” also known as “in-in
formalism” [75–77]; rather than “in-out formalism” which is useful in computing scattering
amplitudes between in and out on-shell asymptotic states. In addition, since there exists back-
ground medium in general, resummations are sometimes required in contrast to the perturba-
tion around vacuum. Hence we also have to know a systematic and consistent resummation
scheme which respects symmetries of an underlying theory. First, let us see why the closed time
path contour [72, 73, 77] arises when one considers the evolution of expectation values. Sec-
ond, a systematic way to truncate the Schwinger-Dyson hierarchy, which is an infinite series of
coupled (evolution) equations of correlators, is introduced. It is so-called n-Particle Irreducible
(nPI) effective action technique that provides us with a consistent and simple resummation
scheme [78–81]. Then, as a stationary solution of 2PI effective action the Kadanoff-Baym
equations [43] are derived.

In later chapters, regarding the obtained equations as a starting point, we will use some
approximations applicable to cosmological situations in consideration, so as to make the ob-
tained equations tractable. By doing so, we believe that the meaning and limitation of approx-
imations are clarified, and also the relation with traditional arguments reviewed in Chap. 2
becomes transparent.
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3.1 Closed Time Path

3.1.1 Density Matrix

Let ρ̂ be a density matrix which characterizes a system, namely it gives maps of all the ob-
servables to probability functions: ρ̂ : Ô 7→ Pρ(o) where o represents a measured value of an
observable Ô and P (o) stands for a probability of measuring o. For a state ρ̂′, if there exists
an observable Ô that gives a different probability function Pρ′(o), then ρ̂′ is a different state
from ρ̂. For all the observables Ô, if the probability function can be universally decomposed
into a weighted sum of different states, Pρ(o) = xPρ1

(o)+(1− x)Pρ2
(o) with 0< x < 1, then

such a state ρ̂ is called a mixed state. If this is not the case, then it is called a pure state.
To make this map concrete, let us consider a projection operator P̂o = |o〉〈o| where |o〉

denotes an eigenvector of Ô with an eigenvalue o. Then, the probability function is given
by Pρ(o) = Tr

�
P̂oρ̂

�
where (i) ρ̂ is a Hermitian operator. Since the probability should be

positive for all the states, (ii) 〈ψ|ρ̂|ψ〉 ⩾ 0 is required for an arbitrary |ψ〉. Also the sum
of probability functions for all the exclusive possibilities should be one: (iii) 1 =

∑
oPρ(o) =

Tr [ρ̂]. Formally, a density matrix is an operator satisfying these three properties (i)–(iii). Note
that the pure state is characterized by ρ̂2 = ρ̂. By construction, the mean value 〈o〉 is given by
〈o〉 =∑oPρ(o)o = Tr

�
Ôρ̂
�

for instance. We sometimes write down the ensemble average as
〈•〉 ≡ Tr [ρ̂•].

One can express the density matrix as

ρ̂ =
∑
ψ

ωψ|ψ〉〈ψ|; with ωψ ⩾ 0,
∑
ψ

ωψ = 1. (3.1)

Note that this expression is not always unique because there exists different representations
due to the superposition principle: ρ̂ =

∑
ψ′ωψ′ |ψ′〉〈ψ′| with

p
ωψ′ |ψ′〉 =∑ψ Uψ′ψ

p
ωψ|ψ〉

and U is a unitary matrix. This fact implies that one cannot disentangle quantum and statistical
fluctuations because it depends on the choice of density matrix representation.

Throughout this thesis, we adopt the Heisenberg picture where operators evolve according
to the Heisenberg equation, i∂tÔ(t) =

�
Ô(t), Ĥ

�
with Ĥ being the Hamiltonian, but the state ρ̂

does not. Note that, in this case, the eigenvector of Ô also depends on time: Ô(t)|o; t〉= o|o; t〉
where i∂t |o; t〉= −Ĥ|o; t〉.

3.1.2 Closed Time Path Integral

Then let us see how to express correlators in the path integral language. To see why it is
convenient to employ the closed time path contour, let us first consider an expectation value

Ô
�

where O is a function of fundamental field ϕ̂, like O(ϕ). In terms of a time-evolution
operator which obeys

i∂tÛ (t) = ĤÛ (t); Û (0) = 1̂, (3.2)

it can be expressed as 

Ô(x)

�
= Tr

�
ρ̂Û †(t)Ô(0, x )Û (t)� . (3.3)

As mentioned previously, the eigenvector of ϕ̂(x), |ϕ; t〉, depends on time: i∂t |ϕ; t〉= −Ĥ|ϕ; t〉
with ϕ̂(x)|ϕ; t〉= ϕ(x )|ϕ; t〉. Hence one finds

〈ϕ f ; t|ϕi; 0〉= 〈ϕ f |Û (t)|ϕi〉=
∫ ϕ f

ϕi

DϕeiS[ϕ], (3.4)

16



Figure 3.1: The “Closed Time Path” contour, C =C+ +C−, is shown in the Blue line.

where the boundaries of path integral are given by ϕi(x ) and ϕ f (x ). Here and hereafter we
suppress t = 0 for brevity as done in the second equality of Eq. (3.4). In the path integral
language, Eq. (3.3) can be expressed as


Ô
�
=

∫
dφ+dφ−〈φ+|ρ̂|φ−〉

∫
dφ f O(φ f )

∫ φ f

φ+

DφeiS[φ]

∫ φ f

φ−
Dφe−iS[φ] (3.5)

This suggests the following generating functional:

Z[J]≡ eiW [J] ≡
∫

dφ+dφ−〈φ+|ρ̂|φ−〉
∫

dφ f

∫ φ f

φ+

DφeiS[φ]+iJ ·φ
∫ φ f

φ−
Dφe−iS[φ]−iJ ·φ, (3.6)

where we have used the shorthanded notation, J ·φ = ∫ d4 xJ(x)φ(x) and dropped the state
dependence of the generating functional, Z[J](= Z[J ;ρ]). Differentiating W with respect to
J , one can obtain the mean value of O(ϕ̂).

The generating functional, Eq. (3.6), can be written down conveniently if one introduces
the closed time path contour [72,73,77] shown in Fig. 3.1:

Z[J] =

∫
dφ+dφ−〈φ+|ρ̂|φ−〉

∫ φ−

φ+

Dφ exp

�
i

∫
C

d4 xL (x) + i

∫
C

d4 xJ(x)φ(x)

�
. (3.7)

If one defines the contour C ordering TC , then it can be also expressed as

Z[J] = Tr

�
ρ̂TC exp

�
i

∫
C

d4 xJ(x)ϕ̂(x)

��
. (3.8)

3.1.3 Green Functions on the Closed Time Path

To study the dynamics of a given theory, it may be more convenient to consider Green func-
tions rather than the generating functional itself. As in the case of ordinary in-out formalism,
connected Green functions can be obtained from

G(n)(x1, . . . , xn) =
iδW [J]

inδJ(x1) · · ·δJ(xn)

����
J=0

=


TC ϕ̂(x1) · · · ϕ̂(xn)

�
con

. (3.9)

The vertex function, which is an amputated Green function that consists of one-particle irre-
ducible (1PI) graphs, is defined as

n∏
i=1

�∫
C

d4 yiG(x i, yi)

�
iΓ (y1, . . . , yn)≡ G(n)prop (x1, . . . , xn) , (3.10)
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where the subscript prop means that the Green function contains only 1PI diagrams.
In particular, let us study the properties of two-point function (See also Appendix A.3 where

we summarize basic properties of propagators), which is so-called the Schwinger-Keldysh prop-
agator defined by

G (x , y) =
iδW [J]

i2δJ(x)δJ(y)

����
J=0

=


TC ϕ̂(x)ϕ̂(y)

�
con

. (3.11)

Here a possible internal degree of freedom is implicit, for instance, if we have multi fields ϕ̂i,
then the argument x should be replaced with a set {x , i}. Here and hereafter, we omit the
subscript “con” for brevity. Generally there are two independent basic propagators:

G> (x , y)≡ 
ϕ̂(x)ϕ̂(y)� (3.12)

G< (x , y)≡ (−)|ϕ| 
ϕ̂(y)ϕ̂(x)� , (3.13)

where |ϕ| = 0, 1 for the bosonic/fermionic field ϕ. By construction, the Schwinger-Keldysh
propagator can be expressed as

G (x , y) = θC (x0, y0)G> (x , y) + θC (y0, x0)G< (x , y) , (3.14)

where θC represents the step function defined on the contour C . Depending on a choice of
time arguments, the Schwinger-Keldysh propagator reads

G (x , y) =


GFyn (x , y) for x0 ∈ C+, y0 ∈ C+
G> (x , y) for x0 ∈ C−, y0 ∈ C+
G< (x , y) for x0 ∈ C+, y0 ∈ C−
GDys (x , y) for x0 ∈ C−, y0 ∈ C−

. (3.15)

Here the time ordered and anti time ordered propagators, which are so-called Feynman prop-
agator and Dyson propagator respectively, are defined by

Feynman Propagator : GFyn (x , y)≡ θ (x0 − y0)G> (x , y) + θ (y0 − x0)G< (x , y) , (3.16)

Dyson Propagator : GDys (x , y)≡ θ (y0 − x0)G> (x , y) + θ (x0 − y0)G< (x , y) . (3.17)

As you know, the former one is frequently used in computing scattering amplitudes in the
“in-out” formalism. For later convenience, we define the following propagators:�1

Hadamard Propagator : GH (x , y)≡ 
�ϕ̂(x), ϕ̂(y)�+�= G> (x , y) + G< (x , y) , (3.19)

Jordan Propagator : GJ (x , y)≡ 
�ϕ̂(x), ϕ̂(y)�−�= G> (x , y)− G< (x , y) , (3.20)

where [•,•]± represents a commutator/anti-commutator respectively, which is defined as

[A, B]± ≡ AB ± (−)|A||B|BA. (3.21)

The Hadamard/Jordan propagator is also known as statistical/spectral function in some litera-
ture. As explained in Sec. 3.3 and also can be seen in the next subsection, the Hadamard prop-
agator encodes the occupation number of quasi-particle excitations and the Jordan propagator
does the spectrum of the theory. We sometimes use the retarded and advanced propagators:

Gret(x , y) = iθ (x0 − y0)GJ (x , y) ; Gadv(x , y) = −iθ (y0 − x0)GJ (x , y) . (3.22)

�1 In some literature, e.g. [74], the following convention of statistical/spectral function is used

F (x , y)≡ 1
2

GH (x , y) ; ρ (x , y)≡ iGJ (x , y) . (3.18)

We basically adopt the convention used in [73,82].
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3.1.4 Green Functions on the Thermal Path

In this subsection, we briefly explain special properties of Green functions in the case of thermal
equilibrium. See also Appendix B for basic ingredients of thermal field theory.

If the system can be regarded as thermal equilibrium state, we have several special prop-
erties of Green functions because the density matrix commutes with the translation operator,

0=
�
ρ̂eq, Ĥ

�
=
�
ρ̂eq, P̂

�
, (3.23)

and can be written by the Gibbs state which can be interpreted as a complex time-evolution
operator:

ρ̂eq =
e−β Ĥ

Tr
�
e−β Ĥ

� . (3.24)

Here we omit chemical potentials since they can be neglected in most cases from cosmological
point of view (that for Baryon/Lepton number is much smaller than the background tempera-
ture µ/T ∼ 10−10).

Thanks to the translational invariance, Eq. (3.23), all the Green functions do not depend on
the constant space-time shift: G•(x1, . . . , xn) = G•(x1 + c, . . . , xn + c). Hence, it is convenient
to perform the Fourier transform. In particular, a two point function only depends on the
space-time difference:

G• (x , y) = G• (x − y)
Fourier tr. w.r.t. x − y−−−−−−−−−−−→ G• (P) . (3.25)

In addition, since the density matrix can be regarded as a complex time-evolution operator,
ρ̂∝ e−i(−iβ Ĥ), there is a relation between the two basic propagators:

G>
�
x0, x

�
= (−)|ϕ|G<

�
x0 + iβ , x

� Fourier tr.−−−−−→ G> (P) = (−)|ϕ|eβp0
G< (P) , (3.26)

which is the so-called “Kubo-Martin-Schwinger” (KMS) relation [83,84]. Thus, all the propa-
gators can be expressed in terms of a single propagator. We choose the Jordan propagator as
this role and call its Fourier transform the spectral density, which is defined as�2

ρ(P)≡ GJ(P). (3.27)

By using it, one can express the other propagators:

G> (P) =
�
1± fB/F(p0)

�
ρ (P) , (3.28)

G< (P) = ± fB/F(p0)ρ(P), (3.29)

GFyn (P) =

∫
dk0

2π
ρ (k0, p)

ik0 − ip0 + ε
± fB/F(p0)ρ(P), (3.30)

GDys (P) =

∫
dk0

2π
ρ (k0, p)

ip0 − ik0 + ε
± fB/F(p0)ρ(P), (3.31)

GH (P) =
�
1± 2 fB/F(p0)

�
ρ(P), (3.32)

for |ϕ| = 0, 1 respectively. We define the Bose-Einstein/Fermi-Dirac distribution as fB/F(p0).
Here one can clearly see that the Hadamard propagator encodes the occupation number of
each quasi-particle excitations since the spectral density represents the spectrum of the theory.
�2 ρ should not be confused with the density matrix ρ̂.
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Figure 3.2: The “Thermal Path” is shown in the Blue line C+ +C−, plus the Red line Cβ . The latter
Red one corresponds to the “Matsubara Contour”.

It is instructive to see the path integral representation so as to clarify the special feature of
thermal equilibrium system. For this purpose, let us move back to the generating functional.
For a thermal equilibrium system, the density matrix kernel 〈φ+|ρ̂eq|φ−〉 can be written down
explicitly by means of path-integral because the density matrix can be regarded as a complex
time-evolution operator:

〈φ+|ρ̂eq|φ−〉=
∫ φ+

φ−
Dφ exp

�
i

∫
Cβ

d4 xL (x)
�

, (3.33)

whereCβ denotes the Matsubara contour [85], which starts from 0− and goes straight down to
−iβ . See also Fig. 3.2. Hence, it is convenient to define the generating functional as follows:

Zβ[J]≡Tr

�
ρ̂TC+Cβ exp

�
i

∫
C+Cβ

d4 xJ(x)ϕ̂(x)

��
(3.34)

=

∫
[anti-]periodic

Dφ exp

�
i

∫
C+Cβ
d4 xL (x) + i

∫
C+Cβ
d4 xJ(x)φ(x)

�
, (3.35)

where the path-integral is performed under the (anti-)periodic boundary condition, φ(0+, x ) =
(−)|ϕ|φ(−iβ , x ) for |ϕ| = [1], 0.�3 There are two well-known conventions of thermal field
theory. If the source term solely lie on the contour C , then all the Green functions have real
time arguments, which is the so-called “real time formalism” [75–77]. On the other hand, if
the source term only lie on the contour Cβ , then all the Green functions have imaginary time
arguments, which is the so-called “imaginary time formalism” [85]. In the following, we adopt
the real time formalism. See Appendix B for the relation between them.

Finally, let us summarize properties of the Schwinger-Keldysh propagator. By using the
KMS relation, one can rewrite it as

G(x , y) =
¬
TC+Cβ ϕ̂(x)ϕ̂(y)

¶
=

∫
d4P

(2π)4
e−iP·(x−y)

�
θC+Cβ (x0, y0)± fB/F(p0)

�
ρ(P), (3.36)

for |ϕ| = 0, 1. For the real time formalism, the Schwinger-Keldysh propagator encodes the

�3 To derive the anti-periodic boundary condition, we have to carefully treat the path-integral expression of
Eq. (3.33) and also the trace formula of Grassmann numbers: Tr[Ô] =

∫
dηdη†eη

†η〈η|Ô|η〉 where η̂|η〉 = η|η〉,
〈η|η̂† = 〈η|η†, [η̂, η̂†]+ = 1 and [η̂, η̂]+ = [η̂†, η̂†]+ = 0. See for instance [86].

20



following ones as can be seen from Eq. (3.15)

G(RTF)(x) =



∫
d4P
(2π)4

e−iP·x �∫ dk0
2π

ρ(k0,p)
ik0−ip0+ε

± fB/F(p0)ρ(P)
�

for x0 ∈ C+, y0 ∈ C+∫
d4P
(2π)4

e−iP·x �1± fB/F(p0)
�
ρ(P) for x0 ∈ C−, y0 ∈ C+∫

d4P
(2π)4

e−iP·x ± fB/F(p0)ρ(P) for x0 ∈ C+, y0 ∈ C−∫
d4P
(2π)4

e−iP·x �∫ dk0
2π

ρ(k0,p)
ip0−ik0+ε

± fB/F(p0)ρ(P)
�

for x0 ∈ C−, y0 ∈ C−

, (3.37)

for |ϕ|= 0, 1.

3.2 Effective Actions

In this section, the effective action techniques are introduced as a tool of resummation. Before
going to discuss resummation for a dynamical and finite density system, let us first review the
1PI (one-particle irreducible) effective action in zero-temperature field theory, and clarify its
implicit resummation.

3.2.1 1PI Effective Action

The 1PI effective action is defined as the Legendre transform of the generating functional W :

Γ [ϕ]≡W [J]− J ·ϕ, (3.38)

where

ϕ(x; J)≡ δW [J]
δJ(x)

=



TC ϕ̂(x)exp

�
iJ · ϕ̂��


TC exp
�
iJ · ϕ̂�� . (3.39)

Here we have used a shorthanded notation, J ·ϕ = ∫C d4 xJ(x)ϕ(x), and the collective nota-
tion, that is, if we have several fields ϕi(x) then the summation with respect to i is implicit.
As one can see, ϕ(x; J) given in Eq. (3.39) means the expectation value of ϕ̂ in the presence
of the external field J .

The inverse Legendre transform gives the equation of motion including quantum effects:�4

−J(x) =
δΓ [ϕ]
δϕ(x; J)

. (3.40)

In particular, for vanishing external field J , this gives the equation of motion for


ϕ̂(x)

�
in the

original theory (without the external source J). If we consider an equilibrium system, e.g., the
vacuum state ρ̂ = |0〉〈0|, then this equation of motion determines the expectation value of ϕ̂
at equilibrium:

0=
∂ Veff(ϕ)
∂ ϕ

; with Veff(ϕ) = − Γ [ϕ]
Vol(R1,3)

. (3.41)

Here we have used the fact that the expectation value of ϕ for a translation invariant system
does not depend on the space time x , and hence one can factor out the space time volume
Vol(R1,3) from the effective action Γ .
�4 Here the functional derivative is taken from the right.
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In order to clarify its implicit resummation nature, let us rewrite the 1PI effective action by
using the background field method:

exp (iΓ [ϕ]) =

∫
dφ+dφ−〈φ+|ρ̂|φ−〉

∫ φ+

φ−
Dφ exp

�
i

∫
C

d4 xL (φ)− i
δΓ

δϕ
· (φ −ϕ)

�
(3.42)

=

∫
dφ+dφ−〈φ+ +ϕ|ρ̂|φ− +ϕ〉

∫ φ+

φ−
Dφ exp

�
i

∫
C

d4 xL (φ +ϕ)− i
δΓ

δϕ
·φ
�

.

(3.43)

Expanding the Lagrangian around ϕ; L (φ +ϕ) =L (ϕ) +L ′(ϕ)φ +L ′′(ϕ)φ2/2+ · · · , one
obtains

Γ [ϕ] = S[ϕ] +
i
2

lndet G−1
F [ϕ] + Γ1[ϕ], (3.44)

where

exp (iΓ1[ϕ])≡ [det GF]
−1/2

∫
dφ+dφ−〈φ+ +ϕ|ρ̂|φ− +ϕ〉∫ φ+

φ−
Dφ exp

�
−1

2
φ · G−1

F ·φ + iSint[φ;ϕ] + i
�
δS
δϕ
− δΓ
δϕ

�
·φ
�

(3.45)

Here we have defined

G−1
F (x , y)≡ −i

δ2S[ϕ]
δϕ(x)δϕ(y)

, (3.46)

Lint(φ;ϕ)≡∑
n⩾3

L (n)(ϕ)φn

n!
; Sint[φ;ϕ] =

∫
C

d4 xLint(φ;ϕ). (3.47)

Note that the Green function GF depends on the background field ϕ. The last term on the
exponent of Eq. (3.45), δ(S − Γ )/δϕ ·φ, implies that all the one-particle reducible diagram,
which is defined as a diagram that can be separated into disconnected diagrams if one cuts one
internal line, does not contribute. Thus all one has to do is to sum up one-particle irreducible
bubbles. The second term in Eq. (3.44) corresponds to the one-loop 1PI bubble and the last
term contains ones at higher order loops. To be concrete, let us consider a ϕ4 theory, where
the tree level potential is given by

V (ϕ) =
m2

2
ϕ2 +

λ

4!
ϕ4. (3.48)

Then Γ1 is given by the sum of following 1PI diagrams in terms of the coupling λ expansion:

Γ1[ϕ] = + + + · · · . (3.49)

Here the blob denotes the three point interaction induced by the background field ϕ and thick
lines represent the ϕ dependent propagator, GF.

The equation of motion [Eq. (3.40)] can be rewritten by means of Eq. (3.44):

0=
δS[ϕ]
δϕ

+
i
2

δG−1
F

δϕ
· GF +

Γ1[ϕ]
δϕ

. (3.50)
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Importantly, one obtains the exact propagator by a second differentiation of Γ [ϕ]:

G−1 (x , y) =− i
δ2Γ [ϕ]

δϕ(x)δϕ(y)
(3.51)

=G−1
F (x , y)− i

2

�
δ4S
δϕ4
· GF

�
(x , y)− i2

2

�
δ3S
δϕ3
· GF · δ

3S
δϕ3
· GF

�
(x , y)

− i
δ2Γ1[ϕ]

δϕ(x)δϕ(y)
. (3.52)

The quantum correction to the classical propagator GF comes from the last three terms and
hence these contributions are called the self energy:

Π (x , y)≡ − i
2

�
δ4S
δϕ4
· GF

�
(x , y)− i2

2

�
δ3S
δϕ3
· GF · δ

3S
δϕ3
· GF

�
(x , y)− i

δΓ1[ϕ]
δϕ(x)δϕ(y)

. (3.53)

The first two terms correspond to the one-loop result and the last term contains higher loops,
and both consist of 1PI diagrams.

Now we are in a position to see the resummation nature of 1PI effective action as mentioned
at the beginning of this section. For this purpose, let us compare the propagator for ϕ = 0 with
one for ϕ ̸= 0. By definition, the propagator for ϕ = 0, G0, can be expressed as

G−1
F = G−1

0 + i
�
V ′′(ϕ)− V ′′(0)

�
δC (x , y) , (3.54)

with δC being a delta function defined on the contour C . Hence, GF is formally recovered by
the infinite resummation of G0:

GF =G0 + {−iG0

�
V ′′(ϕ)− V ′′(0)

�} · GF (3.55)

=G0 + {−iG0

�
V ′′(ϕ)− V ′′(0)

�} · G0

+ {−iG0

�
V ′′(ϕ)− V ′′(0)

�} · {−iG0

�
V ′′(ϕ)− V ′′(0)

�} · G0 + · · · . (3.56)

This fact implies that if one computes Feynman diagrams around ϕ = 0 by means of G0 and
truncates the perturbative expansion at some order in e.g. the coupling λ, then the correct
perturbative expansion around ϕ ̸= 0 cannot be fully recovered, especially at its infrared scale
µ≪ λ|ϕ|. The advantage of 1PI effective action is that, for any expectation values of ϕ, the
perturbative expansion is controlled at least V ′′(ϕ) > 0 since the resummation is automatic.
In fact, to discuss a spontaneous symmetry breaking with ϕ being an order parameter, the
1PI effective action plays important roles since the nonzero expectation value of ϕ completely
modifies the particle-like excitation (and also the interaction). Roughly speaking, the 1PI ef-
fective action systematically resums effects caused by the condensation of one-point function

ϕ̂
�
.

3.2.2 2PI Effective Action

As we have seen above, the condensation of one-point function requires the infinite resum-
mation from the viewpoint of theory at ϕ = 0 since the particle-like excitation is completely
modified by the background field. In a finite density medium, as you might guess, not only the
condensation of background field, one-point function ϕ, but also the finite number excitation
of particle-like excitations, two-point function G, itself can change its spectrum due to inter-
actions among them. Therefore some generalization of 1PI effective action is expected. Let us
see how to achieve it in the following.
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For this purpose, let us slightly generalize the 1PI effective action by introducing a bi-local
source K(x , y):

eiW [J ,K] ≡ Tr
�
ρ̂TC exp

�
iJ · ϕ̂ + i

2
ϕ̂ · K · ϕ̂

��
(3.57)

=

∫
dφ+dφ−〈φ+|ρ̂|φ−〉

∫ φ−

φ+

Dφ exp
�

iS[φ] + iJ ·φ + i
2
φ · K ·φ

�
. (3.58)

The 2PI effective action is defined as the double Legendre transform of W [J , K] [81]:

Γ [ϕ, G]≡W [J , K]− J ·ϕ − K · 1
2
(ϕϕ + G) , (3.59)

where

ϕ(x; J , K)≡ δW [J , K]
δJ(x)

=



TC ϕ̂(x)exp

�
iJ · ϕ̂ + i

2 K · ϕ̂2
��


TC exp
�
iJ · ϕ̂ + i

2 K · ϕ̂2
�� , (3.60)

G (x , y; J , K)≡ 2
δW [J , K]
δK(x , y)

−ϕ(x; J , K)ϕ(y; J , K). (3.61)

Here we have explicitly written down the external source dependence. The inverse Legendre
transform gives the quantum equations of motion

−J(x)− [K ·ϕ] (x) = δΓ [ϕ, G]
δϕ(x; J , K)

, (3.62)

−1
2

K(x , y) =
δΓ [ϕ, G]

δG(x , y; J , K)
. (3.63)

For vanishing external sources J , K = 0, this set of equations describes the dynamics of the
original theory with quantum effects.

In the path integral language, the 2PI effective action can be expressed as

exp (iΓ [ϕ, G]) =

∫
dφ+dφ−〈φ+|ρ̂|φ−〉

∫ φ+

φ−
Dφ

exp

�
i

∫
C

d4 xL (φ)− i
δΓ

δϕ
· (φ −ϕ)− i

δΓ

δG
· [(φ −ϕ) (φ −ϕ)− G]

�
(3.64)

=

∫
dφ+dφ−〈φ+ +ϕ|ρ̂|φ− +ϕ〉

∫ φ+

φ−
Dφ

exp

�
i

∫
C

d4 xL (φ +ϕ)− i
δΓ

δϕ
·φ − i

δΓ

δG
· (φφ − G)

�
(3.65)

Here note that if one exactly solves the equation of motion given in Eq. (3.61) with vanishing
an external source K = 0 and inserts the solution into the 2PI effective action, then the 2PI
effective action becomes equivalent to the 1PI effective action, i.e.,

Γ [ϕ] = Γ [ϕ, Gsol[ϕ]]; 0=
δΓ

δG

����
G=Gsol[ϕ]

. (3.66)

As we will see soon, a truncation of perturbative expansions produces crucial differences.
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As in the case of 1PI effective action, performing the Taylor expansion around ϕ, one ob-
tains the following form of 2PI effective action:

Γ [ϕ, G] = S[ϕ] +
i
2

G−1
F · G + i

2
lndet G−1 − i

2
G−1 · G + Γ2[ϕ, G], (3.67)

where

exp (iΓ2[ϕ, G])≡ [det GF]
−1/2

∫
dφ+dφ−〈φ+ +ϕ|ρ̂|φ− +ϕ〉∫ φ+

φ−
Dφ exp

�
−1

2
φ · G−1 ·φ + iSint[φ;ϕ]

+i
�
δS
δϕ
− δΓ
δϕ

�
·φ + 1

2

�
G−1 − G−1

F + 2i
δΓ

δG

�
· (φφ − G)

�
. (3.68)

Since the last two terms on the exponent, δ(S− Γ )/δϕ ·φ and (G−1−G−1
F +2iδΓ/δG) · (φφ−

G), verify that two particle reducible diagrams, which are defined as diagrams that can be
separated into disconnected diagrams if one cuts one or two internal lines, does not contribute
to Γ2. Therefore one can compute Γ2 perturbatively by summing all the 2PI bubbles. One can
express the equations of motion [Eqs. (3.60) and (3.61)] with vanishing external sources by
using Eq. (3.67):

0=
δS[ϕ]
δϕ

+
i
2

δG−1
F

δϕ
· G + δΓ2[ϕ, G]

δϕ
, (3.69)

0= G−1 − G−1
F + 2i

δΓ2[ϕ, G]
δG

. (3.70)

As one can see, the self energy Π is given by

Π[ϕ, G] = −2i
δΓ2[ϕ, G]
δG

. (3.71)

Here it is instructive to compare Eq. (3.71) with Eq. (3.53). On the one hand, the self energy
computed in terms of the 1PI effective action [Eq. (3.53)] only contains 1PI diagrams. On the
other hand, expanding G around GF and inserting it to Γ2, one can recover the diagrammatic
expression of Eq. (3.53). Hence, Γ2 cannot contain two (or one) particle reducible diagram
since otherwise δΓ2/δG involves one particle reducible (disconnected) diagrams, which con-
tradicts the fact that Eq. (3.53) is made up of 1PI diagrams. From this observation, one can
also see that Γ2 only contains 2PI diagrams.

Finally, we see how the 2PI effective action resums effects from finite density particle-like
excitations. To be explicit, let us again consider the ϕ4 theory. In this case, Γ2 is given by the
sum of following 2PI bubbles in terms of the coupling λ expansion:

Γ2[ϕ, G] = + + + · · · . (3.72)

Here the red thick line represents the full propagator G in contrast to GF. Note that if higher or-
der diagrams are taken into account, the diagrammatic expression of Γ2 [Eq. (3.72)] completely
differs from that of Γ1 [Eq. (3.49)]. Moreover, the above diagrammatic expression coincides
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with Γ1 at this order, but the meaning is different, that is, the thick line in Eq. (3.72) stands for
the exact propagator not GF. For simplicity, we consider a state where the mean field vanishes
ϕ = 0. The functional derivative of Γ2 with respect to G reads

δΓ2[G]
δG

= + + · · · . (3.73)

The first tadpole diagram of Eq. (3.73) yields a self energy proportional to a delta function,
and it gives a dominant finite density correction to the mass term:

Πloc(x) =
λ

2
G(x , x); Π[G](x , y) = iΠloc(x)δC (x , y) +Πnon-loc(x , y). (3.74)

For instance, in the thermal equilibrium case, the finite density contribution to Πloc is so-called
the thermal mass. It is encoded in

Πloc =
λ

2

∫
P

�
1
2
+ fB(p0)

�
ρ(P) =

λ

2

∫
p

1
ωp

�
1
2
+ fB(ωp)

�
+ · · · , (3.75)

where · · · represents higher order terms in λ. Here we have used the thermal propagator given
in Eq. (3.32), and inserted a dominant contribution of spectral density which comes from a
particle-like excitation (See also Sec. B.3). The first term is the zero-temperature contribution
and is renormalized by the mass counter term. The second term which depends on the Bose-
Einstein distribution function gives the finite density correction. For the temperature larger
than the mass term T ≫ m, it can be expanded as [30]

λ

2

∫
p

fB(ωp)

ωp
= λ

�
T 2

24
− mT

8π
+O �m2 ln m2/T 2

��
=
λT 2

24
+ · · · . (3.76)

Note that though the numerical factor depends on the details of model, its typical scale λT 2

is rather generic for dimension less couplings. Therefore, when the typical scale of physics,
e.g. mass m and momentum p, is smaller than

p
λT , then the correct perturbative expansion

cannot be arrived from that of vacuum if one truncates the expansion. To see this, let us move
back to the equation of motion for the propagator:

G = GF − GF ·Π · G = GF − GF ·Π · GF + (−)2GF ·Π · GF ·Π · GF + · · · (3.77)

Fourier tr.−−−−−→ 1
i (m2 − P2) +Π(P)

=
1

i (m2 − P2)
− 1

i (m2 − P2)
Π(P)

i (m2 − P2)
+ · · · ,

=
1

i (m2 − P2)
− 1

i (m2 − P2)
λT 2/24
(m2 − P2)

+ · · · . (3.78)

As one can see, around (m2− P2)∼ λT 2, this expansion does not converge, which implies that
one should resum the thermal mass contribution to capture the correct behavior of this theory
at the infrared.

The second sunset diagram of Eq. (3.73) contains an imaginary part contribution at the
leading order in the coupling λ, since it has cutting diagrams. When one considers time-
evolution of a quasi-particle excitation in the plasma, this imaginary part plays an important
role. Roughly speaking, such a damping effect Γ appears with the combination of Γ t in the
evolution equation. Though Γ is higher-order in the coupling λ, the combination Γ t grows after
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t ≳ 1/Γ and eventually the perturbation breaks down. It is known as the secular term (See [87]
for instance). In addition, if one studies the equations of motion in the non-equilibrium case as
an initial value problem (See also in Sec. 3.3), it is shown that the 2PI effective action provides
us with a systematic resummation scheme to cope with the secular term in terms of numerical
studies of simple toy models [74, 88–92]. Therefore if one is interested in the physics where
the long time behavior becomes important, one should take account of not only the real part
but the imaginary part correction to the self energy.

3.2.3 Equivalence Hierarchy

As we have already seen, the truncation of perturbative expansions makes the difference among
nPI effective actions. Let us briefly discuss this issue in this subsection. To make our discussion
general, we consider the nPI effective action, which is defined as

Γ [ϕ, G, G3, . . . , Gn] =W [J1, . . . , Jn]− J1 ·ϕ − 1
2

J2 · (ϕϕ + G)

− 1
6

J3 · (G3 + 3Gϕ +ϕϕϕ)− · · · , (3.79)

where

eiW [J1,...,Jn] ≡ Tr

�
ρ̂TC exp

�
i

n∑
m=1

1
m!

Jm · ϕ̂m

��
. (3.80)

The equations of motion are given by

0=
δΓ

δϕ
=
δΓ

δG
=
δΓ

δG3
= · · ·= δΓ

δGn
. (3.81)

First of all, if one were to compute Γ and solve these equations of motion exactly, then all the
nPI effective actions fall into the same results:

Γ [ϕ] = Γ [ϕ, Gsol[ϕ]] = Γ [ϕ, Gsol[ϕ], G3,sol[ϕ]] = · · · . (3.82)

This fact can be easily seen, for instance, in Eq. (3.65) for the 2PI case, since the 2PI effective
action becomes exactly the same as 1PI one if one inserts δΓ/δG = 0.

However, the above relation is broken down if one truncates the perturbative expansion
at some finite order. In other words, this is the reason why the higher PI effective action
makes sense. If one specifies the perturbation parameter, then it is known that there exists an
“Equivalence Hierarchy”. For the loop expansion, the Equivalence Hierarchy is given by [93]:

Γ (1−loop)[ϕ] =Γ (1−loop)[ϕ, Gsol] = · · · ,
Γ (2−loop)[ϕ] ̸=Γ (2−loop)[ϕ, G] = Γ (2−loop)[ϕ, G, G3,sol] = · · · ,
Γ (3−loop)[ϕ] ̸=Γ (3−loop)[ϕ, G] ̸= Γ (3−loop)[ϕ, G, G3] = Γ

(3−loop)[ϕ, G, G3, G4,sol] = · · · . (3.83)

As one can see, this hierarchy implies that the nPI effective action is sufficient if one truncates
the perturbative expansion at the n-loop.
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3.3 Kadanoff-Baym Equations

In this section, we derive the Kadanoff-Baym equations [43] by rewriting the equation of mo-
tion for the propagator [Eq. (3.70)] in terms of the Hadamard and Jordan propagators given in
Eqs. (3.19) and (3.20). By doing so, the physical interpretation of evolution equations becomes
clearer as we will see. Since the 2PI effective action self-consistently resums effects caused by
the dynamical finite density background, the Kadanoff-Baym equations provide us with the
fundamental building blocks to study the dynamics of quantum fields with finite density.�5 In
the following, we briefly derive the Kadanoff-Baym equations and then the relation between
the initial condition of these equations and the density matrix is discussed. We also comment
on the case where a system is close to thermal equilibrium.

3.3.1 Kadanoff-Baym Equations

To make our discussion concrete, let us consider a scalar field theory unless otherwise stated.
First of all, let us recall the equation of motion for the propagator [Eq. (3.70)],��

G−1
F +Π

� · G� (x , y) = δC (x , y) , (3.84)

with

G−1
F (x , y) = i[□x + V ′′(ϕ)]δC (x , y) . (3.85)

The Schwinger-Keldysh propagator can be written in terms of the Hadamard and Jordan prop-
agator as

G (x , y) =
1
2

�
GH (x , y) + sgnC (x0, y0)GJ (x , y)

�
, (3.86)

where the sign function sgnC is defined on the closed-time-path contour C . By using this
relation, let us rewrite Eq. (3.84) as equations for the Hadamard and Jordan propagators. For
this purpose, the following formulas are useful:

∂ 2
x0

�
sgnC (x0, y0) f (x)

�
=sgnC (x0, y0)∂

2
x0

f (x) + 2δC (x0, y0)∂x0
f (x), (3.87)

[A · B] (x , y) =
1
4

�
AH · BH + AH · sgnC BJ + sgnCAJ · BH + sgnCAJ · sgnC BJ

�
=

1
2

�
−
∫ y0

0

d4zAH (x , z)BJ (z, y) +

∫ x0

0

d4zAJ (x , z)BH (z, y)

+sgnC (x0, y0)

∫ x0

y0

d4zAJ (x , z)BJ (z, y)

�
. (3.88)

Plugging these formulas to the left-hand-side of Eq. (3.84), one obtains�
G−1

F · G
�
(x , y) =

1
2

�
G−1

F · GH + sgnCG−1
F · GJ

�
(x , y) +δC (x , y) , (3.89)

[Π · G] (x , y) =
1
2

�
−
∫ y0

0

d4zΠH (x , z)GJ (z, y) +

∫ x0

0

d4zΠJ (x , z)GH (z, y)

+sgnC (x0, y0)

∫ x0

y0

d4zΠJ (x , z)GJ (z, y)

�
. (3.90)

�5 Implicitly, we assume that the 2PI effective action is sufficient in the sense of the equivalence hierarchy, that
is, we do not consider higher order terms in some expansion parameter which require the higher PI effective
action.
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Here we have used the flexible notation; on the left hand side of Eq. (3.89), G−1
F stands for

the one defined on the closed-time-path contour, G−1
F (x , y) = i[□x + V ′′(ϕ)]δC (x , y), but on

the right hand side, it stands for G−1
F (x , y) = i[□x + V ′′(ϕ)]δ(x − y). We do not use different

symbols for notational simplicity since it is obvious from the context.
Then, Eq. (3.84) can be expressed in terms of GH/J as coupled integro-differential equations,

which are so-called Kadanoff-Baym equations [43]:�
G−1

F · GJ

�
(x , y) = −

∫ x0

y0

d4zΠJ (x , z)GJ (z, y) , (3.91)

�
G−1

F · GH

�
(x , y) = −

∫ x0

0

d4zΠJ (x , z)GH (z, y) +

∫ y0

0

d4zΠH (x , z)GJ (z, y) . (3.92)

Note that we do not need the equations where the derivative operator acting on the second
variable y because we have GJ/H (x , y) = ∓GJ/H (y, x). Here again possible internal degrees of
freedom are implicit: x → {x , i} for multiple scalar fields ϕi. Roughly speaking, if the quasi-
particle description is valid, the first equation describes the evolution of the spectrum of each
particle-like excitation and the second one encodes the evolution of its number density. These
relations may become clearer after we see the subsequent discussion in Sec. 3.3.4 where we
derive the Boltzmann equation from the Kadanoff-Baym equations. If the expectation value of
ϕ is also dynamical, the complete set of equations is given by above two Eqs. together with

0=
δS[ϕ]
δϕ

+
i
2

δG−1
F

δϕ
· G + δΓ2[ϕ, G]

δϕ
. (3.93)

Note that since Γ2 (and hence Π∝ δΓ2/δG) depends both on ϕ and G, these equations are
non-linear in general.

Similarly, the Kadanoff-Baym equations for fermionic fields can be obtained from the Schwinger-
Dyson equations: ��

S−1
F +Σ

� · S� (x , y) = δC (x , y) , (3.94)

where S is the Schwinger-Keldysh propagator for fermions S(x , y) ≡ ¬TC ψ̂(x) ˆ̄ψ(y)
¶
, its free

propagator is defined as

S−1
χ,F (x , y) = i

�
−i/∂ x − ∂ 2L

∂Lψ̄∂Rψ

�
δC (x , y) , (3.95)

and Σ represents the self energy which is defined as

Σ (x , y)≡ i
δΓ2

δS (y, x)
. (3.96)

By using the following formula

∂x0
γ0
�
sgnC (x0, y0)SJ (x , y)

�
= 2δC (x , y) + sgnC (x0, y0)γ

0∂x0
SJ (x , y) , (3.97)

we obtain the Kadanoff-Baym equations:�
S−1

F · SJ

�
(x , y) =−

∫ x0

y0

d4zΣJ (x , z)SJ (z, y) , (3.98)

�
S−1

F · SH

�
(x , y) =−

∫ x0

0

d4zΣJ (x , z)SH (z, y) +

∫ y0

0

d4zΣH (x , z)SJ (z, y) . (3.99)
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3.3.2 Initial Condition

The obtained Eqs. (3.91), (3.92) and (3.93) [(3.98) and (3.99)] are second-order differential
equations, and hence we have to specify their initial condition; their values and first order
derivatives at the initial time t = 0. The initial condition of the mean field can be expressed as

ϕ(0, x ) =


ϕ̂(0, x )

�
; ϕ̇(0, x ) =

¬ ˙̂
ϕ(0, x )

¶
. (3.100)

And the initial condition of the Hadamard propagator also relates with the density matrix as

GH (x , y)|x0,y0=0 = 2
�

ϕ̂(0, x )ϕ̂(0, y)

�−ϕ(0, x )ϕ(0, y)
�

, (3.101)

∂x0
GH (x , y)

��
x0,y0=0

=
¬ ˙̂
ϕ(0, x )ϕ̂(0, y) + ϕ̂(0, y) ˙̂

ϕ(0, x )
¶− 2ϕ̇(0, x )ϕ(0, y), (3.102)

∂x0
∂y0

GH (x , y)
��

x0,y0=0
= 2

�¬ ˙̂
ϕ(0, x ) ˙̂

ϕ(0, y)
¶− ϕ̇(0, x )ϕ̇(0, y)

�
. (3.103)

On the other hand, the initial condition of the Jordan propagator does not depend on the
density matrix because it is completely determined by the canonical commutation relation:

GJ (x , y)|x0,y0=0 =

�
ϕ̂(0, x ), ϕ̂(0, y)

��
= 0, (3.104)

∂x0
∂y0

GJ (x , y)
��

x0,y0=0
=
¬� ˙̂
ϕ(0, x ), ˙̂

ϕ(0, y)
�¶
= 0, (3.105)

∂x0
GJ (x , y)

��
x0,y0=0

= − ∂y0
GJ (x , y)

��
x0,y0=0

=
¬� ˙̂
ϕ(0, x ), ϕ̂(0, y)

�¶
= −iδ (x − y) . (3.106)

Since there are no other degrees of freedom in the Kadanoff-Baym equations, it is implicitly
assumed that the initial condition of higher order correlators should be reduced to that of
one and two point Green functions. Therefore, there is an implicit assumption on the (initial)
density matrix. In fact, this set of initial conditions indicate the so-called Gaussian density
matrix, which roughly implies that a set of free quasi-particles under a mean field is prepared
at the initial time. To see this clearly, it is instructive to explicitly relate these initial conditions
with the density matrix.

For this purpose, let us first move back to the density matrix kernel in the path integral.
Following Refs. [73,94], we parametrize the density matrix as

〈φ+|ρ̂|φ−〉 ≡ exp (F [φ]) . (3.107)

For a general density matrix, the functionalF [φ] is an arbitrary functional of φ and it may be
Taylor expanded as [94]

F [φ] =∑
n=0

1
n!
αn ·φn (3.108)

= α0 +

∫
C

d4 xα1(x)φ(x) +
1
2

∫
C

d4 xd4 yα2(x , y)φ(x)φ(y) + · · · , (3.109)

where we have used the shorthanded notation in the first equality. α0 is not physical because
it is determined by the normalization condition. Since the density matrix kernel only depends
on the φ± at the initial time surface, the functions αn with n⩾ 1 can be expressed as

αn(x1, . . . , xn) =
∑
{εi=±}

αε1···εn
n (x1, . . . , xn)δCε1 (x

0
1) · · ·δCεn

(x0
n), (3.110)
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where δC± stands for the delta function defined on the contour C±. Performing the time-
integral on the contour C , one obtains the following form of the functional F
F [φ] = α0 +

∫
d3 x

∑
ε1=±

α
ε1
1 (x )φε1

(x ) +
1
2

∫
d3 xd3 y

∑
ε1,ε2=±

α
ε1ε2
2 (x , y)φε1

(x )φε2
(y) + · · · .

(3.111)

Note that, due to the hermiticity of the density matrix, 〈φ+|ρ̂|φ−〉∗ = 〈φ−|ρ̂|φ+〉, all the func-
tions αn are not independent:�6�

iαε1···εn
n (x1, . . . , xn)

�∗
= iα(−ε1)···(−εn)

n (x1, . . . , xn) . (3.112)

In addition, depending on the property of the system, the functions αn might be further
restricted. For instance, if the system is spatially homogeneous [P̂, ρ̂] = 0, then the following
equality holds: 〈φ+|ρ̂|φ−〉= 〈φ+|e−iP̂·cρ̂eiP̂·c|φ−〉 for an arbitrary c. Recalling that eiP̂·c acts as
a spatial translation operator, ϕ̂(t, x )eiP̂·c|φ〉= φ(x + c)eiP̂·c|φ〉, one finds

αε1···εn
n (x1, . . . , xn) = α

ε1···εn
n (x1 + c, . . . , xn + c) for an arbitrary c, (3.113)

which implies

αε1···εn
n (x1, . . . , xn) =

∫
d3k1

(2π)3
· · · d3kn

(2π)3
ei(k1·x1+···+kn ·xn) (2π)3δ (k1 + · · ·+ kn)

×αε1···εn
n (k1, . . . , kn) . (3.114)

Thus, for a spatially homogeneous system, the functional F can be expressed as

F [φ] = α0 +
∑
ε1=±

α
ε1
1 φε1

(0) +
1
2

∫
d3k

(2π)3
∑

ε1,ε2=±
α
ε1ε2
2 (k)φε1

(k)φε2
(−k) + · · · , (3.115)

where the hermiticity of the density matrix relates the functions α as

α+1 = −α−∗1 , (3.116)

α++2 (k) = −α−−∗2 (−k), (3.117)

α+−2 (k) = −α−+∗2 (−k), (3.118)

· · · .
Let us explicitly see all the initial conditions Eqs. (3.100)–(3.103) are completely deter-

mined by αε1
1 and αε1ε2

2 . For simplicity, we consider one real scalar field in the following discus-
sion. Then, the number of independent functions is five since we also have α+−2 (k) = α

−+
2 (−k).

Using these five independent functions αε1
1 , αε1ε2

2 , the initial conditions can be expressed as

ϕ(0) = iξ(0)
�
α+1 +α

−
1

�
, (3.119)

ϕ̇(0) =
1
2

��
α+1 −α−1

�
+ 2iη(0)ξ(0)

�
α+1 +α

−
1

��
, (3.120)

GH (x0, y0; k)|x0,y0=0 =
2i

α++2 (k) + 2α+−2 (k) +α
−−
2 (k)

≡ 2ξ2(k), (3.121)

∂x0
GH (x0, y0; k)

��
x0,y0=0

=
�
α++2 (k)−α−−2 (k)

�
ξ2(k)≡ 2η(k)ξ(k), (3.122)

∂x0
∂y0

GH (x0, y0; k)|x0,y0=0 = 2
�
η2(k) +

i
4

�−α++2 (k)−α−−2 (k) + 2α+−2 (k)
��

≡ 2
�
η2(k) +

σ2(k)
4ξ2(k)

�
. (3.123)

�6 Here we have adopted the notation where all the scalar fields are decomposed into real fields: e.g. for one
complex scalar field theory, we use two real fields.
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Note that the hermiticity of the density matrix ensures that all the above values are correctly
real: α+1 +α

−
1 = 2iℑα+1 , α+1 −α−1 = 2ℜα+1 , α++2 (k) +α

−−
2 (k) = 2iℑα++2 (k), α

+−
2 (k) = iℑα+−2 (k),

α++2 (k) − α−−2 (k) = 2ℜα++2 (k). Therefore, the Kadanoff-Baym equations derived from the
2PI effective action is sufficient, if the initial density matrix can be well approximated by the
quadratic terms in the field ϕ, which is the so-called Gaussian density matrix.

If this is not the case, we have to slightly generalize the computation of 2PI effective action,
as discussed in Ref. [94]. To see the idea briefly, let us move back to the generating functional
in the language of the path-integral [Eq. (3.58)]:

eiW [J ,K] =

∫
dφ+dφ− exp (FG[φ] +FNG[φ])

∫ φ−

φ+

Dφ exp
�

iS[φ] + iJ ·φ + i
2
φ · K ·φ

�
,

(3.124)

where we have decomposed the functional of the initial density matrix into the Gaussian part
and the non-Gaussian part: F =FG+FNG. Regarding the sum of the tree level action S[φ] and
the non-Gaussian partFNG[φ] as an effective tree level action, one can formally reproduce the
2PI effective action along with the discussion we have made. Thus, the same Kadanoff-Baym
equations can be obtained formally, but the self energy contains the information of the initial
non-Gaussianity. See Ref. [94] for details, and here we stop our discussion on the non-Gaussian
initial condition.

3.3.3 Thermal Fixed Point

As one can guess, since the Kadanoff-Baym equations describe the dynamics of a system, ther-
mal propagators should be a static solution of these equations. In the following, let us see this
feature explicitly.

The density matrix, ρ̂eq, commutes with translation operators Ĥ and P̂, and hence the one
point function should be constant, ϕ(x) = ϕ. So, we only have to care about the equations
for propagators given in Eqs. (3.91) and (3.92) [(3.98) and (3.99)]. In particular, the latter
equation is relevant to the dynamics, since it depends on the initial condition. On the other
hand, the former equation does not contains information of a non-equilibrium initial condition
directly, which becomes relevant through the dynamics of GH in the self energy. Aside from a
term which leads to the same equation as Eq. (3.91), one finds that the remnant of Eq. (3.92)
becomes�7

−ΠJ (P)GH (P) +ΠH (P)ρ (P) . (3.125)

Here we have used the fact that one can take the initial time to the infinity past and that the
equation depends solely on the difference x − y because the density matrix commutes with
Ĥ. The KMS relation implies AH(P) = (1 ± 2 fB/F(p0))AJ(P), and thus the right-hand-side of
Eq. (3.92) vanishes, which yields the consistent result that there is no dynamics in thermal
equilibrium. In other words, the Kadanoff-Baym equations has a fixed point, a space-time
translation invariant solution, which corresponds to thermal equilibrium.

3.3.4 Boltzmann equation from Kadanoff-Baym equation

Taking the free field limit, one can clearly see that the Hadamard propagator encodes the
number density and the Jordan propagator does the spectrum. If we consider a system which

�7 A similar relation also holds for fermions.
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is not equilibrium (even in the lower order correlators) and turn on interactions, then the
number density and the spectrum start to evolve. Hence, as one can guess, the Kadanoff-Baym
equations which describe the dynamics of one and two point functions include the so-called
Boltzmann equation in a certain limit.

Hence, in this section, we give a brief sketch of how to derive the Boltzmann equation
from the Kadanoff-Baym equations. There are several derivations in the literature [43,72–74,
95–103], for instance. In this subsection, we follow the derivation with an emphasis on WKB
approximation given in Ref. [104] for later convenience.

In the following, we consider a spatially homogenous system, and thus it is convenient to
perform the Fourier transform with respect to the spatial difference, x − y . Then Kadanoff-
Baym equations can be expressed as:�

∂ 2
t + p2 +M2(t)

�
GJ(t, t ′; p) =+ i

∫ t

t ′
dτΠJ(t,τ; p)GJ(τ, t ′; p), (3.126)

�
∂ 2

t + p2 +M2(t)
�

GH(t, t ′; p) =+ i

∫ t

tini

dτΠJ(t,τ; p)GH(τ, t ′; p)

− i

∫ t ′

tini

dτΠH(t,τ; p)GJ(τ, t ′; p), (3.127)

where we have extracted the possible local contribution to the self energy as Π[G](x , y) =
iΠloc(x)δC (x , y) +Πnon-loc(x , y), and define the “mass” term as

M2(t)≡ V ′′ (ϕ(t)) +Πloc(t;0). (3.128)

Here we have suppressed “non-loc” subscript for brevity and recovered tini for later conve-
nience. We define the partial transform with respect to relative time as

Π• (t;ω, p)≡ −i

∫ ∞
0

dτeiωτΠ• (t, t −τ; p) , (3.129)

for • = J , H. Notice that this integration is dominated by τ ≲ τint with τint being a typical
damping time scale of self energies,�8 and that ΠJ(t;ω, p) is nothing but the retarded self
energy. Basically, we make use of the following assumptions to derive the Boltzmann-like
equations.

(i) Quasi-particle spectrum We assume that the spectrum is dominated by particle-like exci-
tations which have the following dispersion relation:

Ωp(t)≃
q

M2(t) + p2 +ℜΠret(t;Ωp , p); Γp(t)≡ −ℑΠret(t;Ωp , p)

Ωp(t)
. (3.130)

Here we implicitly assume the narrow width approximation; Ωp ≫ Γp , which is typically
satisfied for a weakly coupling system.

(ii) Separation of time scale To employ the WKB method, we assume that the following sep-
aration of time scale:

Γ̇p/Γp , Ω̇p/Ωp ≪ Ωp ,τ−1
int (3.131)

�8 Roughly speaking, it can be regarded as the duration of each interaction, which may be typically related with
the de Broglie wave length [104].
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which is nothing but the adiabaticity condition (See Sec. 4.3.1). Roughly speaking, it
implies that the background dynamics is so slow that the quasi-particle can see it as
almost static.

(iii) Negligence of initial time Finally, we take the initial time to the remote past, tini→−∞,
which implies that the finite time effects can be neglected.

Under these assumptions, one can obtain the WKB solution of the Jordan propagator [104]:

GJ(t, t ′; p)≃ −i
sin
�∫ t

t ′ dτΩp(τ)
�

e− 1
2 |∫ t

t′ dτΓp (τ)|Æ
Ωp(t)Ωp(t ′)

(3.132)

Then, we move to the Hadamard propagator. Generally, the Hadamard propagator can be
expressed by the following form:

GH(t, t ′; p) = G(hom)
H (t, t ′; p) +

∫ t

tini

dτ

∫ t ′

tini

dτ′GJ(t,τ; p)ΠH(τ,τ′; p)GJ(τ
′, t ′; p). (3.133)

Here G(hom)
H is the homogeneous solution:

�
∂ 2

t + p2 +M2(t)
�

G(hom)
H (t, t ′; p)− i

∫ t

tini

dτΠJ(t,τ; p)G(hom)
H (τ, t ′; p) = 0, (3.134)

which can be written down in terms of the Jordan propagator and the initial condition of
GH [103]. Since we send the initial time to the remote past later, the initial condition de-
pendence is suppressed. Hence, let us concentrate on the latter term, which is so called the
memory integral. Inserting the WKB solution of Jordan propagator, one can obtain the WKB
solution of the Hadamard propagator up to O (Γp/Ωp , Γp/τ

−1
int) [104]:

GH(t, t ′; p)≃ cos
�∫ t

t ′ dτΩp(τ)
�

e− 1
2 |∫ t

t′ dτΓp (τ)|Æ
Ωp(t)Ωp(t ′)

[1+ 2 f (p; t)] , (3.135)

with

∂t f (p; t) = Γ<,p(t) [1+ f (p; t)]− Γ>,p(t) f (p; t). (3.136)

Here we have defined the gain/loss term in the collision term as

Γ</>,p(t)≡ Π</>(t;Ωp , p)

2Ωp(t)
, (3.137)

which implies

Γp(t) = Γ>,p(t)− Γ<,p(t). (3.138)

It is noticeable that the obtained result is consistent with the following definition of the
distribution function of quasi-particle excitations [100,103,105,106]:

f (p; t) =
1

4Ωp(t)

�
∂t∂t ′ +Ω

2
p(t)

�
GH(t, t ′; p)

��
t ′→t − 1

2
, (3.139)
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up to O (Ω̇p/Ω
2
p , Γ̇p/Γ

2
p , Γp/Ωp). Here and hereafter we adopt this definition of distribution

function since it directly relates with the energy momentum tensor. See also Sec. 4.3.1. Its
generalization to fermion case is straightforward.

For later use, let us express the derivative of distribution function in terms of the Hadamard
propagator. We follow the arguments given in Ref. [107]. From Eq. (3.139), one immediately
obtains

∂t f (p; t) =
Ω̇p

4Ωp

�
Ωp − 1

Ωp
∂t∂t ′

�
GH(t, t ′; p)

��
t→t ′ (3.140)

+
1

4Ωp

�
∂ 2

t ∂t ′ + ∂t∂
2
t ′ +Ω

2
p (∂t + ∂t ′)

�
GH(t, t ′; p)

��
t→t ′ . (3.141)

The first term corresponds to the particle production due to the change of the mass term and
the second term imprints ordinary collision term due to interactions with the fixed mass term;
one can show that this term reproduces the ordinary collision term of Boltzmann equations
under the assumptions (i)–(iii). (See for instance [74]). Hence let us concentrate on the first
term. Note that we have the following formulas:

�
∂t1
+ iΩp

�
GH(t1, t2; p)|t1→t =

∫ t

−∞
d t1eiΩp (t−t1)

�
∂ 2

t1
+Ω2

p

�
GH(t1, t2; p), (3.142)

�
∂t2
− iΩp

�
GH(t1, t2; p)|t2→t =

∫ t

−∞
d t2e−iΩp (t−t2)

�
∂ 2

t2
+Ω2

p

�
GH(t1, t2; p), (3.143)�

∂ 2
t +Ω

2
p

��
∂ 2

t ′ +Ω
2
p

�
GH(t, t ′; p) = ΠH(t, t ′; p) + · · · , (3.144)

where · · · represents higher order terms in the coupling. By using these formulas, one finds�9

Eq. (3.140)= −ℑ
�
Ω̇p

2Ωp

∫ t

−∞
d t2e−iΩp (t−t2)

�
M2(t)−M2(t2)

�
GH(t, t2; p)

�
. (3.145)

Later we will see that this term actually represents the energy transportation from the scalar
condensation to radiation due to the adiabatic mass change in Sec. 4.5.

�9 In the case of complex Φ-field, here we have assumed that there is no net U(1) number associated with
Φ→ eiθΦ.
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Chapter 4

Dynamics of Scalar Condensation

Now we are in a position to discuss the time-evolution of scalar condensates in the early Uni-
verse by using theoretical equipment introduced in the previous chapter. Unless the scalar
condensates contribute to today’s energy component of our Universe, they should eventually
decay into light particles before the BBN takes place. It implies that the scalar field inevitably
couples to light fields and this very coupling makes the dynamics of the scalar condensate
complicated. In a general far from equilibrium situation, it is quite difficult to follow the dy-
namics except for limited simple examples [108–113]. Instead of following all the dynamics
with a simple toy model, in the following, we assume the “separation of time scale”, that is,
the dynamical time scale of a scalar field is assumed to be much slower than the the typical
interaction time scale of other “fast” fields. Then, we can obtain the coarse-grained equations
which are more tractable by assuming the “fast” fields remain close to thermal equilibrium,
which is simply characterized by a temperature T .

In a word, the aim of this chapter is to understand the theoretical origin of the coarse-
grained equation:

ϕ̈ +
�
3H + Γϕ(ϕ; T )

�
ϕ̇ +

∂ Veff(ϕ; T )
∂ ϕ

= 0, (4.1)

in particular, Veff(ϕ; T ) and Γϕ(ϕ; T ). Note that the effects of background plasma are sim-
ply characterized by T under our assumption. Though this assumption poses restrictions to
our treatment, there are still many examples of cosmological situations to which the obtained
equations can be applied. Due to this correction, we will see in the Chap. 5 that the simplified
arguments in Chap. 2 should be modified and the dynamics of the early Universe can be altered
significantly.

The organization of this chapter is the following. First, in Sec. 4.1, let us clarify our setup;
it captures essential features of scalar condensates which play important roles in the early Uni-
verse. Second, in Sec. 4.2, we discuss when the scalar condensate starts to oscillate. Third,
in Sec. 4.3, we study the case where the oscillating scalar field acts as a non-adiabatic back-
ground for fields which couple to the oscillating scalar. Fourth, in Sec. 4.4, we focus on the case
where all the relevant fields other than the oscillating scalar can be regarded to remain close to
thermal equilibrium. Finally, in Sec. 4.6, we perform further coarse-graining, oscillation-time
average, to obtain the evolution equation with the cosmological time scale H−1. For the practi-
cal usage, one may skip to Sec. 4.6 after reading Sec. 4.1; there the relevant equations which
we use in the following chapter are summarized.

This chapter is mainly based on our previous works [35,44,45].
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4.1 Preliminaries

4.1.1 Setup

As explained repeatedly, the interaction between the scalar field and other fields is required
in order to convert the energy of the oscillating scalar into radiation. In addition, these cou-
pled fields should interact with radiation; via for instance SM gauge interaction. To capture
these essential feature but not to trouble with unnecessary complications, let us consider the
following phenomenological setup in the following discussion:

L =Lkin − 1
2

m2
ϕ
ϕ2 −λ2ϕ2|χ̃|2 − yϕχ̄χ +Lothers, (4.2)

where λ and y are coupling constants assumed to be perturbative, Lkin denotes canonical ki-
netic terms and Lothers represents the other fields except for ϕ including gauge bosons (also
interactions among them). Note that the scalar ϕ is assumed to interact with other light fields
only through λ2ϕ2|χ|2 and yχ̄χ. For notational simplicity, we sometimes denote these cou-
plings, y and λ, as λ̃ collectively. A complex scalar χ̃ and a Dirac fermion χ are assumed to
be charged under some gauge group (e.g. SM gauge group) and lighter than ϕ in the vacuum
and their bare masses are neglected in the following. Through this gauge interaction, the χ-
fields contact with other light fields in radiation. Hereafter g represents the gauge coupling
constant, and we sometimes use the fine structure constant, α ≡ g2/(4π). For simplicity, we
mainly concentrate on the case where the coupling between ϕ and χ is relatively smaller than
the gauge coupling constant, λ, y < α (See also discussion in Sec. 4.4). A schematic figure of
this Lagrangian is shown in Fig. 4.1.

One might wonder that if we write down the action respecting the gauge symmetry at a
renormalizable level, then one must have following terms including the scalar field ϕ: a three
point interaction with the complex scalar Λϕ|χ̃|2 and a four point self interaction λ2

ϕ
ϕ4/4!.

In particular, the latter term should be generated radiatively by the χ loops [Eq. (4.5)]�1 even
if one discards it at the tree level. These terms cause another complications to the dynamics;
Including the three point interaction induces a possible instability of χ̃ field and also cause
a shift of the ϕ’s potential minimum, and the four point self interaction may make the ϕ-
condensate inhomogeneous by the non-perturbative ϕ-particle production with a highly non-
thermal distribution. The latter effect is discussed separately in Sec. 4.3.5.

For this aspect, it is instructive to consider a SUSY theory, as a well motivated candidate of
new physics, because it restricts the couplings due to the symmetry. Let us consider a super-
potential of the form, W = λϕχ̄χ. Then the Lagrangian reads

L =Lkin − (λϕχχ̄ + h.c.)−λ2|ϕ|2 �|χ̃|2 + | ˜̄χ|2�− VSB +Lothers, (4.3)

with the soft SUSY breaking term being

VSB = m2
ϕ
|ϕ|2 +m2

χ
|χ̃|2 +m2

χ̄
| ˜̄χ|2 + �Aχϕχ̃ ˜̄χ + h.c.

�
, (4.4)

whereχ(χ̄)/χ̃( ˜̄χ) are fermonic/scalar components of each chiral superfield and mϕ, mχ , mχ̄ , Aχ
are SUSY breaking parameters of same orders of magnitude. Here note that χ and χ̄ are Weyl
fermions. As one can see, the Coleman-Weinberg (CW) correction [114] get suppressed, which
is given by

VCW =
∑

F

εF

m4
χ
(ϕ)

64π2

�
ln

m2
χ
(ϕ)

µ2
− 3

2

�
, (4.5)

�1 For brevity, we sometimes use χ for both the fermion χ and boson χ̃ unless we need to distinguish them.
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Figure 4.1: Schematic figure of our phenomenological setup.

where εF = +1 for a real scalar boson χ̃ and εF = −2 for a (Weyl) fermion χ, since both the
Yukawa coupling and the quartic coupling are given by λ. And there remain small logarithmic
corrections due to the SUSY breaking effects. In this case, the motion of scalar condensate be-
comes elliptical in general since it is a complex scalar field. However, if the A-term contribution
to the scalar potential is small, one can approximate the dynamics of complex scalar field with
its one-dimensional radial component. After all, one can reduce the relevant Lagrangian as

L =Lkin − 1
2

m2
ϕ
ϕ2 − (λϕχχ̄ + h.c.)−λ2ϕ

�|χ̃|2 + | ˜̄χ|2�+Lothers, (4.6)

where the coupling λ is redefined as λ/
p

2→ λ, and the A-term contribution is neglected since
its effect is smaller than λ2|χ̃|2ϕ2 for a large expectation value of scalar condensate which we
are interested in. As one can see, the setup given in Eq. (4.2) includes this class of models.

In Eq. (4.2), we assume that the potential origin of ϕ coincides with the enhanced sym-
metry point of χ-fields, though there are no a priori reasons. We comment on this issue in the
following. If it is different from the enhanced symmetry point, then Eq. (4.2) should become

L =Lkin − 1
2

m2
ϕ
(ϕ − v)2 −λ2ϕ2|χ̃|2 − yϕχ̄χ +Lothers. (4.7)

First of all, if the typical scale of dynamics in consideration, e.g. temperature of background
plasma, is much larger than the VEV, λ̃v≪ T , then the dynamics may be well approximated
with Eq. (4.2). Hence, let us consider the case with a sizable VEV; λ̃v ≫ T, mϕ. In this case,
after the possible efficient χ-particle production at the preheating stage (See Sec. 4.3), the
effective Lagrangian can be obtained from integrating out heavy χ-fields with masses ∼ λ̃v:

L =Lkin − 1
2

m2
ϕ
ϕ2 − A

ϕ

v
F aµνF a

µν
+Lothers, (4.8)

where A is a model dependent factor and F a
µν

represents the field strength of gauge field under
which χ-fields are charged [See also Eq. (4.140)]. The effects of background plasma in this
case can be also inferred from the discussion given in Sec. 4.4.

Here we only write down renormalizable terms, but our following analyses can be applied
to more general forms of the scalar potential for ϕ. For instance, it is easy to include the
following higher dimensional terms:

Vhigher(ϕ) = − c
2

H2ϕ2 +
κϕn

nM n−4
pl

, (4.9)

where n⩾ 4 is an integer, κ is a coupling constant, H denotes the Hubble parameter and c is an
O (1) constant. This is the typical form in the case of MSSM (Minimal Supersymmetric Standard
Model) flat direction when the A-term contribution is small [11]. Also higher dimensional
terms which induce decays of ϕ into radiation can be included.

Finally, let us briefly comment on the case where ϕ is also charged under the SM gauge
group. This is the case, for instance, where ϕ is the SM Higgs field, ϕ is the MSSM flat
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direction and so on. In this case, the scalar ϕ also couples to the SM gauge bosons, e.g. ϕ2A2
µ
,

ϕ2B2
µ

where Aµ and Bµ represent SM gauge bosons of SU(2)W and U(1)Y respectively. Unless
the SM gauge group is completely broken down, we expect that (some parts of) our analyses
are useful even in this case. However, note that we should be careful in studying this case
because the basic assumption that other fields can remain close to thermal equilibrium might
be threatened since the SM gauge group is broken down by the scalar condensation (If it is
completely broken down, our following analyses may not be used).

4.1.2 Kadanoff-Baym Equations

To derive the coarse-grained equation, let us move back to the Kadanoff-Baym equations of this
system as a starting point of our discussion. We will not explicitly write down the effects of
cosmic expansion in computing the 2PI effective action, rather consider its effect separately as
an adiabatic background.�2 Also, for notational simplicity, we will not write down contributions
from other light fields except for χ explicitly unless otherwise stated. The 2PI effective action
of Eq. (4.2) is given by [44,116]

Γ [ϕ, Gϕ, Gχ , Sχ] = S[ϕ] +
i
2

Tr G−1
ϕ,F · Gϕ − i

2
Tr ln Gϕ − i

2
Tr G−1

ϕ
· Gϕ

+ i Tr G−1
χ,F · Gχ − i Tr ln Gχ − i Tr G−1

χ
· Gχ

− i Tr S−1
χ,F · Sχ + i Tr ln Sχ + i TrS−1

χ
· Sχ

+ Γ2[ϕ, Gϕ, Gχ , Sχ], (4.10)

where G• denotes Schwinger-Keldysh propagators for scalar fields, and S• is one for a fermion
field. Here the Schwinger-Keldysh propagators are defined as

Gϕ(x , y)≡ 
TC ϕ̂(x)ϕ̂(y)� , (4.11)

Gχ(x , y)≡ 
TC ˆ̃χ(x) ˆ̃χ∗(x)
�

, (4.12)

Sχ(x , y)≡ 
TC χ̂(x) ˆ̄χ(y)� . (4.13)

The free propagators are given by

G−1
ϕ,F(x , y) = i

�
□x +m2

ϕ

�
δC (x , y) , (4.14)

G−1
χ,F(x , y) = i

�
□x +λ

2ϕ2(x)
�
δC (x , y) , (4.15)

S−1
χ,F(x , y) = i [−i/∂ x + yϕ(x)]δC (x , y) . (4.16)

�2 We can start with the Schwinger-Dyson Eqs. on the closed time path contour in terms of conformal time [115],
and then reduce the obtained set of equations making use of the fact that the cosmic expansion is adiabatic. See
also Appendix C.3.
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Here and hereafter possible gauge indices are suppressed for notational simplicity unless oth-
erwise stated. Performing a small coupling expansion, one can compute Γ2 perturbatively�3

iΓ2[ϕ, Gϕ, Gχ , Sχ] =− iλ2

∫
C

d4 x Gϕ(x , x)Gχ(x , x) (4.17)

+
1
2
(−2iλ2)2

∫
C

d4 xd4 yϕ(x)Gϕ(x , y)Gχ(x , y)Gχ(y, x)ϕ(y) (4.18)

+ 2
1
2
(−iλ2)2

∫
C

d4 xd4 y Gϕ(x , y)2Gχ(x , y)Gχ(y, x) (4.19)

− (−i y)2

2

∫
C

d4 xd4 yGϕ(x , y)Tr
�
Sχ(x , y)Sχ(y, x)

�
(4.20)

+ · · · .
The equations of motion can be obtained from the stationary condition of the 2PI effective

action. Since we are interested in a spatially homogeneous system, it is convenient to perform

the Fourier transform with respect to the spatial difference: A(x0, y0, x−y)
Fourier tr.−−−−−→ A(x0, y0; p).

Defining the self energy as�4

Πϕ(x , y)≡ −2i
δΓ2

δGϕ(x , y)
; Πχ(x , y)≡ −i

δΓ2
δGχ(y, x)

; Σχ(x , y)≡ i
δΓ2

δSχ(y, x)
, (4.21)

one can write down the Schwinger-Dyson equations on the close time path contour as��
Gχ/ϕ

−1

F +Πχ/ϕ
� · Gχ/ϕ� (x , y) = δC (x , y) ;

��
Sχ
−1

F +Σχ
� · Sχ� (x , y) = δC (x , y) . (4.22)

Then, the Kadanoff-Baym equations of the propagators can be obtained as follows:�
∂ 2

t + p2 +M2
χ̃/ϕ
(t)
�

Gχ/ϕJ (t, t ′; p) =+ i

∫ t

t ′
dτΠχ/ϕJ (t,τ; p)Gχ/ϕJ (τ, t ′; p), (4.23)

�
∂ 2

t + p2 +M2
χ̃/ϕ
(t)
�

Gχ/ϕH (t, t ′; p) =+ i

∫ t

0

dτΠχ/ϕJ (t,τ; p)Gχ/ϕH (τ, t ′; p)

− i

∫ t ′

0

dτΠχ/ϕH (t,τ; p)Gχ/ϕJ (τ, t ′; p), (4.24)

��−iγ0∂t + γ · p +Mχ ·
�

SχJ
�
(t, t ′; p) =+ i

∫ t

t ′
dτΣχJ (t,τ; p)SχJ (τ, t ′; p), (4.25)

��−iγ0∂t + γ · p +Mχ ·
�

SχH
�
(t, t ′; p) =+ i

∫ t

0

dτΣχJ (t,τ; p)SχH(τ, t ′; p)

− i

∫ t ′

0

dτΣχH(t,τ; p)SχJ (τ, t ′; p), (4.26)

�3 Note that the smallness of couplings λ and y alone is not enough to justify the above perturbation. Also λ2ϕ
expansion should be controlled because we are interested in a large field value of ϕ. Since the effective mass
λ2ϕ2 is completely resummed, χ becomes heavy at a large field value of ϕ. Then, their number density is quite
suppressed under our assumption, that is, χ has thermal contact with other light particles and can quickly reduce
their number. Thus, contributions from a large ϕ are expected to be suppressed for λ|ϕ|> T .
�4 Note that the Schwinger-Keldysh propagator for a real field satisfies G(x , y) = θC (x0, y0)



ϕ̂(x)ϕ̂(y)

�
+

θC (y0, x0)


ϕ̂(y)ϕ̂(x)

�
= G(y, x), but this is not the case with the complex scalar field and the fermion field.

Thus, one has to be careful in differentiating the 2PI effective action.
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where the effective masses are defined as

M2
ϕ
(t) = m2

ϕ
+λ2

∫
p

GχH(t, t; p), (4.27)

M2
χ̃
(t) = λ2

�
ϕ2(t) +

1
2

∫
p

GϕH (t, t; p)

�
+m2

χ,th, (4.28)

Mχ(t, t ′) = yϕ(t)δ(t − t ′) +Σth(t, t ′; p). (4.29)

Here we have explicitly pulled out dominant corrections to dispersion relations caused by the
presence of other light fields in thermal plasma. For the scalars χ̃, such corrections can be
roughly parametrized by the mass correction to the quadratic dispersion relation as mχ,th ∼
g2T 2 with g being the typical coupling constant which connects χ̃ with the thermal plasma.
For the fermions χ, such corrections are involved due to the non-trivial chiral structure even
at the thermal equilibrium [117] (See also Sec. 4.2), and hence we simply write down such
corrections as Σth. Yet, for our rough arguments given in the following chapters, such compli-
cated structures are not so important, rather its typical order is essential, which is the same as
the scalar case, Σth ∼ gT . Aside from contributions from other light fields in the plasma, the
self energies of ϕ,χ can be obtained from the definition [Eqs. (4.21)]:�5

Π
ϕ
J (x , y) ⊃+ 2λ4ϕ(x)

�
GχJ (x , y)GχH(y, x)− GχH(x , y)GχJ (y, x)

�
ϕ(y) (4.30)

+λ4
�
GχJ (x , y)GχH(y, x)− GχH(x , y)GχJ (y, x)

�
GϕH (x , y)

+λ4
�
GχH(x , y)GχH(y, x)− GχJ (x , y)GχJ (y, x)

�
GϕJ (x , y) (4.31)

− y2

2
Tr
�
SχJ (x , y)SχH(y, x)− SχH(x , y)SχJ (y, x)

�
, (4.32)

Π
ϕ
H(x , y) ⊃+ 2λ4ϕ(x)

�
GχH(x , y)GχH(y, x)− GχJ (x , y)GχJ (y, x)

�
ϕ(y) (4.33)

+λ4
�
GχJ (x , y)GχH(y, x)− GχH(x , y)GχJ (y, x)

�
GϕJ (x , y)

+λ4
�
GχH(x , y)GχH(y, x)− GχJ (x , y)GχJ (y, x)

�
GϕH (x , y) (4.34)

− y2

2
Tr
�
SχH(x , y)SχH(y, x)− SχJ (x , y)SχJ (y, x)

�
, (4.35)

Π
χ
J (x , y) ⊃+ 2λ4ϕ(x)

�
GϕJ (x , y)GχH(x , y) + GϕH (x , y)GχJ (x , y)

�
ϕ(y) (4.36)

+λ4GϕJ (x , y)GϕH (x , y)GχH(x , y) +
λ4

2

�
Gϕ

2

H (x , y) + Gϕ
2

J (x , y)
�

GχJ (x , y), (4.37)

Π
χ
H(x , y) ⊃+ 2λ4ϕ(x)

�
GϕH (x , y)GχH(x , y) + GϕJ (x , y)GχJ (x , y)

�
ϕ(y) (4.38)

+λ4GϕJ (x , y)GϕH (x , y)GχJ (x , y) +
λ4

2

�
Gϕ

2

H (x , y) + Gϕ
2

J (x , y)
�

GχH(x , y), (4.39)

ΣH(x , y) ⊃ y2

2

�
GϕH (x , y)SχH(x , y) + GϕJ (x , y)SχJ (x , y)

�
, (4.40)

ΣJ(x , y) ⊃ y2

2

�
GϕJ (x , y)SχH(x , y) + GϕH (x , y)SχJ (x , y)

�
(4.41)

�5 ⊃ indicates that we have omitted contributions from other light fields except for χ in radiation.
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(a) Onset of Oscillation (b) Non-thermal Effects (c) Thermal Effects

Figure 4.2: Rough sketch of coarse-graining scales for each case which we will discuss. Here Γint
denotes the typical interaction time scale among particles in the thermal plasma, mϕ,eff is the effective
mass of the ϕ-condensation (See Sec. 4.2.3), and the symbol χ̃,χ means the dynamical time scale
of χ̃,χ-fields. Note that here we only write down the case discussed in Sec. 4.4.1 as Fig. 4.2(c) for
simplicity, but the condition mϕ,eff≪ Γint is not mandatory if the oscillation amplitude is small enough
λ̃ϕ̃≪ gT . See also the discussion at the beginning of Sec. 4.4.2.

Since we are interested in particle-like excitations which have much larger energy than the
Hubble parameter, we will treat the cosmic expansion separately as an adiabatic expansion; it
only make momenta of each quasi-particles and the temperature red-shifted.

The equation of motion for the mean field can be obtained from 0 = δΓ/δϕ = δS/δϕ +
δ∆Γ/δϕ with ∆Γ being the correction to the tree level action, and it reads

0=
�
∂ 2

t + 3H∂t +M2
ϕ
(t)
�
ϕ(t)− y

2

∫
p

Tr
�
SχH(t, t; p)

�− i

∫ t

tini

dτΠJ(t,τ)ϕ(τ), (4.42)

where

λ4
�
GχH(x , y)GχH(y, x)GϕJ (x , y)− GχJ (x , y)GχJ (y, x)GϕJ (x , y)

+GχJ (x , y)GχH(y, x)GϕH (x , y)− GχH(x , y)GχJ (y, x)GϕH (x , y)
�

Fourier tr. w.r.t. x − y−−−−−−−−−−−→ ΠJ(x0, y0; p); ΠJ(t, t ′)≡ ΠJ(t, t ′;0). (4.43)

Note that a peculiar term Tr SχH vanishes for ϕ = 0 due to the chiral symmetry and hence
it finally yields a term proportional to ϕ as we will see in the subsequent section. Here the
adiabatic expansion of the Universe is taken into account explicitly as a friction term in the
equation of motion.

In the following sections, we make use of coarse-graining to obtain more tractable equa-
tions in various regimes. There are three stages; (a) the scalar condensate starts to oscillate
coherently against the expansion of the Universe, (b) the oscillating scalar condensate acts as
a non-adiabatic background for the coupled χ-fields, (c) the oscillating scalar condensate can
be regarded as an adiabatic background due to the rapid interactions among light particles.
Fig. 4.2 shows a rough sketch of coarse-graining scales in each regime. Eventually, we will
obtain coarse-grained equations which describe the evolution in the cosmological time scale
∼ H−1. In Sec. 4.2, we discuss the time when the scalar condensate starts to oscillate around its
effective potential minimum [(a)]. Then, in Secs. 4.3 [(b)] and 4.4 [(c)], we study the dynam-
ics of scalar condensate with neglecting the cosmic expansion because the Hubble parameter
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soon becomes much smaller than the effective mass of scalar field after the onset of oscillation.
Finally, we make use of further coarse-graining in order to obtain the evolution equation in the
cosmological time scale (H−1) in Sec. 4.6.

4.2 Beginning of Oscillation

In this section, we discuss the time when the scalar field starts to oscillate against the expansion
of the Universe. Throughout this section, we assume that the ambient plasma is produced via
the reheating (e.g. by the inflaton) before the onset of oscillation. Hence, in the case of the
inflaton, for instance, the following discussion is not applicable because there is no plasma
right after the end of inflation.�6 It plays essential roles in the scalar condensates other than
inflaton; such as curvaton [46], axion [45,118,119], Affleck-Dine field [120–122] and so on.

As can be seen from Eq. (4.42), the scalar condensation starts to oscillate when the Hubble
parameter becomes comparable to the typical dynamical scale (e.g. mϕ ∼ H if the vacuum
potential dominates the force). Before this time, the plasma has enough time to attain thermal
equilibrium in the presence of the constant homogeneous background ϕ. This implies that the
Kadanoff-Baym equations for light fields including χ are close to the thermal fixed point and
one can formally obtain their solutions as thermal propagators in the presence of ϕ: Gth

χ
(P;ϕ)

and Sth
χ
(P;ϕ). Thus, the coarse-graining scale is nothing but interactions in the thermal plasma

(See Fig. 4.2).
Typically, there are two regimes depending on the expectation value of ϕ; a large field

value regime, λ̃|ϕ| > T , and a small field value regime, λ̃|ϕ| < T . In the large field value
regime, there are no χ-particles in the thermal plasma because of the Boltzmann suppression
by the large effective mass λ̃|ϕ|> T . In the small field value regime, χ-particles are thermally
populated since their effective mass is smaller than the temperature λ̃|ϕ| < T . Thus, the
underlying physics is different and we discuss these two regimes separately in the following.

4.2.1 Thermal Mass

In the small field value regime λ̃|ϕ| < T , the χ-particles are in the thermal plasma, that is,
Eqs. (4.23)–(4.26) are close to the thermal fixed point. Thus, the only non-trivial equation is
that of the Jordan propagator since it is related with the Hadamard propagator via the KMS
relation. It is convenient to rewrite the equation by means of the retarded and advanced
propagator in obtaining the formal solution of Jordan propagator:�

∂ 2
t + p2 +M2

χ̃

�
Gχret/adv(t; p) +

∫ ∞
−∞

dτΠχret/adv(t −τ; p)Gχret/adv(τ; p) = δ (t) , (4.44)

�−iγ0∂t + γ · p +λϕ
�

Sχret/adv(t; p) +

∫ ∞
−∞

dτΣχret/adv(t −τ; p)Sχret/adv(τ; p) = δ(t), (4.45)

where the retarded and advanced self energies are defined as Aret/adv(t, t ′) = ∓iθ (±t∓t ′)AJ(t, t ′)
with A= Π,Σ. It is noticeable that the retarded and advanced self energies can be expressed
as ¨

Π
χ

ret/adv(p0,p)
Σ
χ

ret/adv(p0,p)

«
= PV

∫
dk0

2π
1

p0 − k0

¨
Π
χ
J (k0,p)
Σ
χ
J (k0,p)

«
∓ i

2

¨
Π
χ
J (p0,p)
Σ
χ
J (p0,p)

«
. (4.46)

�6 The warm inflation [37] is an exception.

43



Here we have restored the contribution from the thermal plasmaΣth, which gives the dominant
correction to the dispersion relation, into Σχ for notational simplicity. Performing the Fourier
transform, one can obtain the formal expression of spectral densities, which is given by ρ• =−iG•ret + iG•adv:

ρχ̃(P) =
1
i

�
1

M2
χ̃ − P2 +Πχret(P)

− 1
M2
χ̃ − P2 +Πχadv(P)

�
, (4.47)

ρχ(P) =
1
i

�
1

λϕ − /P +Σχret(P)
− 1
λϕ − /P +Σχadv(P)

�
. (4.48)

If the spectral density is well concentrated around the pole, one may approximate it with the
Breit-Wigner form (See also Appendix B.3). For bosons, the spectral density can be expressed
as

ρχ̃(P)≃ Zp

2p0Γp�
p2

0 −Ω2
p

�2
+
�
p0Γp

�2
+ρ(cont)

χ̃ (P), (4.49)

where Ωp =
q
λ2ϕ2 + p2 +ℜΠχret(Ωp,p), Γp = −ZpℑΠχret(Ωp,p)/Ωp, and the wave functional

renormalization is given by

Zp =

�
1− 1

2Ωp

∂ℜΠχret(ω, p)
∂ω

����
ω=Ωp

�−1

. (4.50)

The latter part ρ(cont)
χ̃ gives the continuum spectrum. In the following, we approximate that

the pole contribution is dominated by the quasi-particle pole; Zp ≃ 1.
For fermions, there is one more complication due to the chiral symmetry with vanishing ϕ.

Using the Kramers-Kronig relation given in Eq. (4.46), one can rewrite the retarded/advanced
self energy as Σχret/adv = Σ

χ∓ iΣχJ /2. In Vacuum, the form of self energy is strongly constrained
by the Lorentz and chiral symmetry as you know. In the presence of thermal plasma, the plasma
introduces a special frame, i.e. its rest frame. In a general frame, the thermal plasma has a four
velocity uµ with u2 = 1, and hence the self energy can be expressed as [117]

Σχ = − AR/p− BR/u− yϕCR;
Σ
χ
J

2
= AI/p+ BI/u+ yϕC I, (4.51)

where A•, B• and C• are Lorentz invariant functions. Here and hereafter, we take the rest frame
of thermal plasma, and then they become

Σχ = − AR/p− BRγ0 − yϕCR;
Σ
χ
J

2
= AI/p+ BIγ0 + yϕC I. (4.52)

To see its pole structure, let us consider two regimes; (i) y |ϕ| ≪ gT and (ii) y |ϕ| ≫ gT . If one
specifies constitutes of the plasma and interactions, one can compute these thermal corrections
perturbatively. Here we simply explain their typical behavior.

In the first case (i), the Dirac mass from the background field is smaller than the typical
size of thermal corrections, and hence the self energy can be approximated with

Σχ ≃ − AR/p− BRγ0;
Σ
χ
J

2
≃ AI/p+ BIγ0. (4.53)
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Then, the spectral density has the following form [123]

ρχ(P)≃
∑
s=±

Z s
p

2

 Γ s
p�

p0 −Ωs
p

�2
+ Γ s

p
2/4
(γ0 − p̂ · γ) + Γ s

p�
p0 +Ωs

p

�2
+ Γ s

p
2/4
(γ0 + p̂ · γ)


+ρ(cont)

χ
(P), (4.54)

where the dispersion relation is determined by

Ω±p =± p− AR
p(Ω
±
p )
�
Ω±p ∓ p

�− BR
p(Ω
±
p ); Γ

±
p /2= Z±p

�
AI

p(Ω
±
p )
�
Ω±p ∓ p

�
+ B I

p(Ω
±
p )
�

, (4.55)

and the wave functional renormalization is given by

Z±p =
�

1+
∂

∂ω

�
AR

p(ω)(ω∓ p) + BR
p(ω)

�����
ω=Ω±p

�−1

. (4.56)

The plus contribution represents the ordinary particle-like excitation corrected by the thermal
plasma. In addition, one can see that there is another minus contribution. It stands for the
collective excitation in the presence of thermal bath, which is the so-called “plasmino” [117].
The plasmino contribution becomes important when its momentum is soft, p ≲ gT , and it
decouples for a larger momentum, p ≳ gT . This behavior is imprinted in the wave function
renormalization, Z−p . In the following discussion, the plasmino contribution is not so important
since the typical momentum is dominated by p ∼ T in most cases. Thus, we assume that the
spectral density is dominated by the ordinary particle-like excitation; Z+p ≃ 1, Z−p ≃ 0. The
dispersion relation is not given by the ordinary quadratic one as you can see, but its typical
behavior can be well approximated by Ω+p ≃

Æ
p2 +mχ,as with mχ,as being the so-called asymp-

totic mass, mχ,as ∼ gT . See for instance Ref. [86] for concrete examples. In the following, we
do not worry about the difference between the screening mass and the asymptotic mass since
we are interested in its typical value not precise one. Hence, we simply write the asymptotic
mass as mχ,th for brevity.

Though this is the leading contribution, the next leading term proportional to yϕ is impor-
tant for later discussion. This is because the fermion contribution TrSχH in Eq. (4.42) vanishes
for a chiral fermion. The leading term that contributes to Tr SχH can be expressed as

ρχ(P)
��
ϕ
≃ − yϕ

i

 1�−p0 +Ω+p − iΓ+p /2
��−p0 −Ω+p − iΓ+p /2

� − (c.c.)


≃ yϕ

2p0Γ
+
p�

p2
0 −Ω+2

p

�2
+
�
p0Γ+p

�2 . (4.57)

Here we have neglected the plasmino contribution since it is sub-leading.
In the second case (ii), the plasmino contribution decouples owing to a large yϕ, and the

pole is dominated by the Dirac mass term yϕ with a thermal correction; but the correction is
smaller than yϕ because y |ϕ| ≫ gT . Thus, the spectral density can be approximated with

ρχ(P)≃ (yϕ + /P) 2p0ΓP�
p2

0 −ω2
p

�2
+
�
p0Γp

�2
+ρ(cont)

χ
(P), (4.58)
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where the dispersion relation is given by

ωp =
Æ
λ2ϕ2 + p2; Γp/2=

1
ωp

�
λ2ϕ2

�
AI

p(ωp) + C I
p(ωp)

�
+ B I

p(ωp)ωp

�
. (4.59)

Now we are in a position to discuss effects of thermally populated χ quasi-particles on
the mean field ϕ. Let us focus on the leading order contribution in the coupling λ and y in
the following, which is encoded in M2

ϕ
and y Tr[SχH] in Eq. (4.42). The contributions from

χ̃-bosons are imprinted in

M2
ϕ
⊃ λ2

∫
p

GχH(t, t; p) = λ2

∫
P

[1+ 2 fB(p0)]ρχ̃(P)

= Nχ̃λ
2

∫
p

1
Ωp

�
1+ 2 fB(Ωp)

�
+ · · · , (4.60)

where Nχ̃ is the number of χ̃ fields normalized by one complex scalar. In the first equality,
we have used the KMS relation, and in the second equality, we have approximated the spec-
tral density with the Breit-Wigner form given in Eq. (4.49). Recalling the discussion around
Eq. (3.76), one obtains the following expression for T ≫ λ|ϕ|:

M2
ϕ
= m2

ϕ
+ Nχ̃

λ2T 2

6
+ · · · , (4.61)

at the leading order in λ. Here we have omitted the Vacuum contribution; which leads to the
CW potential [Eq. (4.5)] apart from the infinite term canceled by the counter term [30, 124].
This is nothing but the thermal mass of the ϕ-field which stems from thermally populated
χ̃ quasi-particles. Note that for a large field value λ|ϕ| ≫ T , this contribution is Boltzmann
suppressed as can be seen from Eq. (4.60). Similarly, the contribution from χ-fermions is given
by

− y
2

∫
p

Tr [SH(t, t; p)] = − y
2

∫
P

[1− 2 fF(p0)]Tr
�
ρχ(P)

�
= −Nχ y2ϕ

∫
p

2
Ωp

�
1− 2 fF(Ωp)

�
+ · · · , (4.62)

where Nχ is the number of χ fields normalized by one Dirac fermion. Note that the result
is the same in both regimes: Eqs. (4.57) and (4.58). Using the high temperature expansion
y |ϕ| ≪ T , one obtains the following form [30]:

ϕ × Nχ
y2T 2

6
+ · · · , (4.63)

at the leading order in y . Note again that this contribution is Boltzmann suppressed in the
large field value regime y |ϕ| ≫ T .

To sum up, in the small field value regime, the ϕ-condensation feels the force from ther-
mally populated χ quasi-particles. At the leading order in the coupling λ and y , it is nothing
but the thermal mass:

m2
ϕ,th ≡ Nχ̃ × λ

2T 2

6
+ Nχ × y2T 2

6
, (4.64)
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for λ̃|ϕ| ≪ T . This implies the following approximated form of the effective potential:

Vth-mass(ϕ)≡ θ (T −λ|ϕ|)Nχ̃ λ
2T 2

12
ϕ2 + θ (T − y |ϕ|)Nχ y2T 2

12
ϕ2. (4.65)

Finally, we would like to comment on the simpler derivation of the above effective potential.
In the above derivation, we stick to Eqs. (4.25), (4.26) and (4.42) to demonstrate that these
equations successfully describe various situations (as we will see in the following). However,
there is a straightforward way to derive it since the χ-fields are close to thermal equilibrium.
In this case, inserting the formal solution of propagators Gχ(ϕ) and Sχ(ϕ), which depend on
the background ϕ, into the 2PI effective action, one obtains the ordinary 1PI effective action.
This is because we have the following identity, Γ [ϕ] = Γ [ϕ, {G•(ϕ)}] with {G•(ϕ)} being a
set of propagators. Precisely speaking, since we have truncated the perturbative expansion,
the above identity does not hold in general. So, the correct statement is that, at the one-loop
order, both descriptions fall into the same result as can be seen from the equivalence hierarchy.
Hence, seeing that the background field ϕ does not depend on the space-time, all one has to
do is to compute the effective potential, which is given by Veff(ϕ) = −Γ [ϕ]/Vol(R1,3). Then,
we can derive Eq. (4.65) as explicitly done in Ref. [30] for instance.

4.2.2 Thermal Log

In the large field value regime λ̃|ϕ|> T , there are no χ-particles in the thermal plasma due to
the Boltzmann suppression caused by the large effective mass. Hence, one might think that the
ϕ-condensate is free from the thermal plasma because the χ-particles which directly couple
to ϕ are absent. However, this naive guess is not true due to the quantum nature of field
theory; that is, the property of thermal plasma depends on the effective mass of fields which
are already decoupled, through the running coupling constant. Since the running coupling
constant depends on ϕ as g(T ;ϕ), thermodynamic functions also depend on ϕ. Through this
effect, the ϕ-condensation feels the existence of background thermal plasma.

In the following, we take the second way to discuss the effects of thermal plasma as demon-
strated at the last paragraph in the previous section; that is, compute the effective potential.
Since there are almost no χ-particles in the thermal plasma, one can safely integrate out χ-
fields to discuss thermal effects. Then, the running coupling constant at the temperature scale
is given by

1
g2(T ;ϕ)

=
1

g2(Λ)
− 1

16π2

�
11
3

T (Ad)− 2
3

T (F)− 1
3

T (S)
�

ln
Λ2

(λ or y)2ϕ2

− 1
16π2

�
11
3

T (Ad)− 2
3

T (F ′)− 1
3

T (S′)
�

ln
(λ or y)2ϕ2

T 2
, (4.66)

where T (r) denotes one-half of the Dynkin index of the representation r, which is defined as
Tr[ta(r)t b(r)] = T (r)δab, and T (F/S) denote the sum of T (r) for all the Weyl fermions/complex
scalars. The prime on F/S stands for the sum except for χ-fields which directly couple to ϕ.
Thus, the ϕ-dependence can be extracted as

1
g2(T ;ϕ)

− 1
g2(T )

=
1

16π2

�
Nχ

4
3

T (rF) ln
y2ϕ2

T 2
+ Nχ̃

1
3

T (rS) ln
λ2ϕ2

T 2

�
, (4.67)

where Nχ is the number of Dirac fermions and Nχ̃ is the number of complex scalars. Here
g(T ) stands for the running coupling constant with ϕ = 0. Note that this result implies the
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following operator:

−1
4

�
1

g2(T )
+

1
16π2

�
Nχ

4
3

T (rF) ln
y2ϕ2

T 2
+ Nχ̃

1
3

T (rS) ln
λ2ϕ2

T 2

��
F a
µν

F aµν, (4.68)

with F aµν being the field strength. The ϕ-condensation couples with the background plasma
via this operator, which is renormalized by the running coupling constant g(T ;ϕ). Hence, one
can obtain the effective potential easily by replacing the coupling g(T )with g(T ;ϕ) in the free
energy of thermal plasma. Recalling that the free energy of thermal plasma has a contribution
proportional to g2T 4, one finds that the free energy contains the following ϕ-dependent part,
which is the so-called thermal log potential [121]:

Vth-log(ϕ) = θ (λ|ϕ| − T ) aL,χ̃α
2(T )T 4 ln

�
λ2ϕ2

T 2

�
+ θ (y |ϕ| − T ) aL,χα

2(T )T 4 ln

�
y2ϕ2

T 2

�
,

(4.69)

where aL,• is a model dependent order one constant. In the following analysis, we take aL,• = 1
for simplicity.

4.2.3 Onset of Oscillation

Before deriving the condition for the onset of oscillation, let us first summarize the effective
potential of ϕ-condensation derived in the previous section. There are four terms; the tree
level potential, the CW potential, the thermal mass potential and the thermal log potential:

Veff(ϕ; T ) =
1
2

m2
ϕ
ϕ2 + VCW(ϕ) + Vth-mass(ϕ; T ) + Vth-log(ϕ; T ), (4.70)

where

VCW(ϕ) = Nχ̃
λ4ϕ4

32π2

�
ln
λ2ϕ2

µ2
− 3

2

�
− Nχ

y4ϕ4

16π2

�
ln

y2ϕ2

µ2
− 3

2

�
, (4.71)

Vth-mass(ϕ; T ) = θ (T −λ|ϕ|)Nχ̃ λ
2T 2

12
ϕ2 + θ (T − y |ϕ|)Nχ y2T 2

12
ϕ2, (4.72)

Vth-log(ϕ; T ) = θ (λ|ϕ| − T )α2(T )T 4 ln

�
λ2ϕ2

T 2

�
+ θ (y |ϕ| − T )α2(T )T 4 ln

�
y2ϕ2

T 2

�
. (4.73)

Here and hereafter, to avoid a possible instability caused by the CW potential, we assume
λ≳ y .

The ϕ-condensation starts to oscillate when the force from the effective potential becomes
comparable to the Hubble parameter:

Hos = mϕ,eff ≡
√√

2
∂ Veff

∂ ϕ2
(4.74)

≃max

�
mϕ,λ2ϕi,λ(y)T for λ(y)ϕi < T,

αT 2

ϕ2
i

for λ(y)ϕi > T

�
, (4.75)

with the initial amplitude being ϕi. Here we have assumed λ ≳ y . In the second line, we
have omitted model dependent order one constants to capture its essential feature. As one can
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Figure 4.3: Top Panel: Contours of Hos/mϕ for α = 0.05, TR = 109 GeV and mϕ = 1 TeV. Bottom
Panel: Same as top panel, but for mϕ = 103 TeV.
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see, if the CW potential is present, it soon dominates the effective potential for a large field
value. Hence, to focus on the feature of thermal effects, let us consider the case where the CW
potential is suppressed y ∼ λ, e.g. SUSY case. Then, the temperature Tos at the beginning of
oscillation for each cases is summarized as follows [35,45]:

• The ϕ-condensation begins to oscillate with thermal log potential if

ϕi < αTR

√√√Mpl

mϕ

and ϕi > (TR/λ)
2/3
�
αMpl

�1/3
. (4.76)

The temperature at the beginning of oscillation is given by

Tos =

√√√αMpl

ϕi
TR. (4.77)

In addition to above two inequalities, the condition Tos > TR should be met since other-
wise the scalar oscillates with the zero-temperature mass term.

• The ϕ-condensation begins to oscillate with thermal mass if
λ >

�
m3
ϕ

T 2
R Mpl

�1/4

and ϕi < (TR/λ)
2/3
�
αMpl

�1/3
for λMpl > TR

λ >

√√√mϕ

Mpl
for λMpl < TR

(4.78)

The temperature at the onset of oscillation is given by

Tos =

(�
λT 2

R Mpl

�1/3
for λMpl > TR

λMpl for λMpl < TR

(4.79)

• Otherwise, the ϕ-condensation begins to oscillate with zero temperature mass, and the
temperature is given by

Tos =

(�
mϕMplT

2
R

�1/4
for mϕMpl > T 2

Rp
mϕMpl for mϕMpl < T 2

R .
(4.80)

Here we have assumed that the reheating takes place in the conventional way, which is already
explained in Sec. 2.1. Also, note that we assume that χ particles are absent initially in the ther-
mal log case. Otherwise, ϕ would feel correction to the effective potential. This assumption
might break down if heavy χ particles are substantially produced by the direct decay of inflaton
or the inflaton preheating process. Whether this occurs or not depends on the inflation model,
and hence we simply assume the absence of χ in the thermal log case.

The Hubble parameter at the beginning of oscillation, Hos, is given by

Hos ≃

α2T 2

R MP/ϕ
2
i for thermal log,�

λ4T 2
R MP

�1/3
for thermal mass,

mϕ for zero temperature mass,

(4.81)
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where we have omitted the case with λMpl < TR since this inequality is violated in most cases.
Fig. 4.3 shows contours of Hos/mϕ on (ϕi,λ)-plane for α= 0.05, TR = 109 GeV and mϕ = 1 TeV
(top) and for mϕ = 103 TeV (bottom). Regions (a)–(c) correspond to the cases; (a) thermal
log, (b) thermal mass, (c) zero temperature mass. Note that it is possible that even if ϕ begins
to oscillate with zero-temperature mass term, thermal effects become dominant thereafter.
Conversely, the zero-temperature term eventually becomes dominant even if thermal effects
are important at the beginning of oscillation. These facts make the scalar dynamics quite rich.

4.3 Non-thermal Effects

After the onset of oscillation, the scalar field oscillates around its effective potential mini-
mum,�7 and hence the coupled χ-particles have a time dependent dispersion relation. In this
case, it is known that the non-perturbative χ-particle production can take place due to the
breakdown of the adiabaticity condition for χ-fields [28, 29]. Hence, the χ-propagators are
also dynamical and we have to study the evolution of ϕ and Gχ/Sχ at least simultaneously.
Since the oscillation time scale soon becomes larger than the Hubble parameter, mϕ,eff ≫ H,
the expansion of the Universe can be neglected in the oscillation-time scale. We take into
account the cosmic expansion later as an adiabatic expansion in Sec. 4.6.

4.3.1 Non-perturbative Particle Production

To illustrate essential features, let us consider the following set of equations at first [74], drop-
ping the self energy contributions in Eqs. (4.23)–(4.26) and (4.42): �8

0=
�
∂ 2

t +m2
ϕ

�
ϕ(t), (4.82)

0=
�
∂ 2

t + p2 +m2
χ,th +λ

2ϕ2(t)
�

GχJ/H(t, t ′; p), (4.83)

0=
�−iγ0∂t + γ · p̂Ωp + yϕ(t)

�
SχJ/H(t, t ′; p), (4.84)

where we have approximated the thermal correction to the fermion dispersion relation asΩp =q
p2 +m2

χ,as and neglected the plasmino contribution. The applicability of these approximated
equations is discussed later. Since we neglect the finite density correction including the back-
reaction to the oscillating scalar, the first equation can be solved easily:

ϕ(t) = ϕ̃ cos[mϕ t], (4.85)

where ϕ̃ denotes the amplitude of ϕ. Then, let us move to the equation of motion for prop-
agators. In the following, we mainly concentrate on Eq. (4.83) since the essential feature of
Eq. (4.84) is the same except for its statistics [125–127]. Initially, the χ̃-particles are assumed
to be absent, so the initial condition for GχH is given by

GχH(t, t ′; p)
��

t,t ′=0 =
1

Ωχ,p(0)
, (4.86)

∂t∂t ′ GχH(t, t ′; p)
��

t,t ′=0 = Ωχ,p(0), (4.87)

∂t GχH(t, t ′; p)
��

t,t ′=0 = ∂t ′ GχH(t, t ′; p)
��

t,t ′=0 = 0, (4.88)

�7 It is not necessary to coincide with the effective potential derived in the previous section due to the efficient
χ-particle production as we will see.
�8 Here we have assumed that the background plasma can remain close to thermal equilibrium. The applicability

of this treatment is discussed later.
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where

Ωχ,p(t)≡
Ç

p2 +m2
χ,th +λ2ϕ2(t). (4.89)

Note that GχJ satisfies the canonical commutation relations:

GχJ (t, t ′; p)
��

t ′=t = ∂t∂t ′ GχJ (t, t ′; p)
��

t ′=t = 0, (4.90)

∂t ′ GχJ (t, t ′; p)
��

t ′=t = −∂t GχJ (t, t ′; p)
��

t ′=t = i. (4.91)

Then we obtain the following factorized solution:

GχH(t, t ′; p) =
�

fp(t) f
∗
p (t
′) + f ∗p (t) fp(t

′)
�

, (4.92)

GχJ (t, t ′; p) =
�

fp(t) f
∗
p (t
′)− f ∗p (t) fp(t

′)
�

, (4.93)

where the equation of motion for each mode is given by

0=
�
∂ 2

t + p2 +m2
χ,th +λ

2ϕ2(t)
�

fp(t), (4.94)

with the initial condition being

fp(0) =
1Æ

2Ωχ,p(0)
; ḟp(0) = −i

√√Ωχ,p(0)

2
. (4.95)

As one can see, this equation is nothing but the Mathieu equation [128].
In the following, let us focus on the feature of this equation. Though the property of

Eq. (4.94) is well described as the stability/instability chart, given for instance in Ref. [128],
it is instructive to consider its approximated behavior so as to capture its physics. The WKB
method is useful for this purpose. One obtains the following WKB solution,

fp(t)≃ e−i
∫ t

d t ′Ωχ,p (t ′)Æ
2Ωχ,p(t)

, (4.96)

if the adiabaticity is maintained, �����Ω̇χ,p

Ω2
χ,p

�����≪ 1. (4.97)

The physical interpretation is that, if the background ϕ-condensation moves slowly, then the
χ-particles can be regarded as ones with an effective mass, mχ,eff ≡

q
m2
χ,th +λ2ϕ2(t). For

λϕ̃≪ mϕ, the oscillating scalar is expected to decay/annihilate into χ-particles perturbatively
(See Sec. 4.3.4 for effects of Bose/Fermi statistics; so-called narrow resonance [28,129,130]).

Then we concentrate on the case withλϕ̃≫ mϕ, where the perturbative decay/annihilation
of ϕ into χ-particles are forbidden except for the region near ϕ ∼ 0. Around the origin of the
effective potential, χ-fields become lighter, and as a result the backgroundϕ-condensate might
not be regarded as an adiabatic background. In fact, Eq. (4.97) implies that the adiabaticity is
broken down if the following inequality is met:

λϕ̃≫ m2
χ,th

mϕ

. (4.98)
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Together with λϕ̃≫ mϕ, the condition can be expressed as [35,131]

k∗≫max
�
mχ,th, mϕ

�
; k2
∗ ≡ λ ϕ̇

��
ϕ=0 ∼ λϕ̃mϕ, (4.99)

where k∗ represents the typical scale of non-perturbative particle production. In other words,
the former inequality verifies that this process can excite quasi-particles interacting with radi-
ation. The non-adiabatic region near ϕ ∼ 0 can be estimated as

|ϕ(t)|< ϕNP ≡
�

mϕϕ̃

λ

�1/2

. (4.100)

Basically, these equations [Eqs. (4.99) and (4.100)] are the same as the fermion case if one
replaces λ with y , and hence we do not distinguish them in the following unless otherwise
stated. Also note that even if the scalar condensation does not oscillate with the quadratic po-
tential, one may use these equations by replacing the mass mϕ with the effective mass mϕ,eff.
Inside this region, the notion of χ-particles become ambiguous due to the rapidly moving back-
ground field ϕ. Notice that the perturbative decay cannot occur outside this region because
we have λϕNP ∼ k∗ ≫ mϕ. Nevertheless, the mode function fp grows rapidly around ϕ ∼ 0
and the χ-particles are produced efficiently as a consequence, if the condition Eq. (4.99) is
met. After the first passage of the non-adiabatic region |ϕ|< ϕNP, the mode function becomes
the following form outside the non-adiabatic region [28,29]:

fp(t)≃ αp
e−i

∫ t
d t ′Ωχ,p (t ′)Æ

2Ωχ,p(t)
+ βp

ei
∫ t

d t ′Ωχ,p (t ′)Æ
2Ωχ,p(t)

, (4.101)

where αp and βp are the Bogolyubov coefficients satisfying |αp |2−|βp |2 = 1.�9 For our purpose,
the important point is that |βk |2 ≃ e−πk2/k2∗ . The distribution function of particles are given by
f•(p; t) = [∂t∂t ′ + Ω•

2

p ]G
•
H(t, t ′; p)/(4Ω•p)|t ′→t − 1/2 [Eq. (3.139)] outside the non-adiabatic

region, ϕNP≪ |ϕ(t)| [100,103,105,106].�10 Then, the number density of χ-particles is given
by

nχ =

∫
k

fχ(k)≃ 2Nd.o.f. ×
∫

k

|βk |2 ∼ Nd.o.f. × k3
∗

4π3
, (4.102)

where Nd.o.f. is normalized by one complex scalar or one chiral fermion. As one can see from
Eq. (4.99), this non-perturbative particle production is suppressed if the thermal effects are
efficient; k∗ ≲ mχ,th, which implies that this process cannot excite quasi-particles.

Before going into details, we would like to discuss the applicability of Eqs. (4.82)–(4.84). In
these equations, we only take into account thermal masses of χ-fields, but completely neglect
(a) dissipative effects caused by interactions between the χ-fields and the thermal plasma, (b)
corrections to the dispersion relation due to the non-perturbatively produced χ-particles, and
(c) back-reaction to the ϕ-condensation, which are imprinted in the self energies. Since the
issues (b) and (c) are related with the property of χ-fields as we will discuss later, here we
examine whether or not the effect (a) can disturb the non-perturbative production. Though
it is rather subtle to estimate the dissipative effects inside the non-adiabatic region since we
cannot define χ particles, nevertheless we may roughly evaluate it as follows. If ΓintδtNP ≪ 1
is satisfied with δtNP ∼ k−1

∗ being the time scale which ϕ takes to pass the non-adiabatic region
�9 |αp |2 + |βp |2 = 1 for fermions.
�10 There are some ambiguities on the definition of particle number in terms of Green function [105].

53



and Γint being the typical interaction rate of χ with the background plasma, then we expect
that the dissipation cannot disturb the non-perturbative production. In most cases we expect
Γint < mχ,th ∼ gT and hence Eq. (4.99) implies ΓintδtNP < mχ,th/k∗≪ 1. Therefore, dissipative
effects are sub-leading compared with effects from thermal masses.

Now we are in a position to discuss the subsequent oscillation after the first passage of
ϕ ∼ 0. The subsequent evolution; second, third, · · · passages of non-adiabatic region, crucially
depends on the property of χ-fields: whether or not χ-particles are stable. Let us assume that
the χ-fields can decay into other light particles with a rate being Γχ,dec ∼ ε2 g2mχ,eff(|ϕ(t)|),
which is imprinted in the χ ’s self energy. Note that since the decay is dominated at the outside
of the non-adiabatic region, the concept of χ-particle decay with the effective mass mχ,eff is
justified a posteriori. In this case, the WKB solution outside the non-adiabatic region may be
given by

fp(t)≃ αp(t)
e−i

∫ t
d t ′[Ωχ,p (t ′)−iΓχ,dec(t ′)/2]Æ

2Ωχ,p(t)
+ βp(t)

ei
∫ t

d t ′[Ωχ,p (t ′)+iΓχ,dec(t ′)/2]Æ
2Ωχ,p(t)

, (4.103)

after the first passage. Hence, the χ-particles decay dominantly at 1 ∼ Γχ,dec(tdec)tdec ∼
ε2 g2λϕ̃mϕ t2

dec which implies that the decay time measured from the first passage is given
by tdec ∼ [ε2 g2λϕ̃mϕ]−1/2. As one can see, the non-perturbatively produced χ-particles dom-
inantly decay at ϕ(tdec) ∼ [ϕ̃mϕ/(ε2 g2λ)]1/2 ≫ ϕNP which is outside of the non-adiabatic
region. Also, note that one can show that χ-particles decay after they become non-relativistic,
tdec≫ tNR with mϕ ∼ λϕ(tNR)∼ λϕ̃mϕ tNR, by using the non-adiabatic condition [Eq. (4.98)].

The subsequent oscillation crucially depends on χ ’s property, ε2 g2λϕ̃ ≶ mϕ, and thus we
classify each case in the following. See a schematic figure given in Fig. 4.4.

4.3.2 Instant Preheating

If the adiabaticity is broken down [Eq. (4.99)] and the decay rate is so large

ε2 g2λϕ̃≫ mϕ and λϕ̃mϕ ≫ m2
χ,th ∼ g2T 2, (4.104)

then the non-perturbatively produced χ-particles can decay completely well before the ϕ
moves back to its origin [132, 133].�11 See also Fig. 4.4. Therefore, the fractional energy
density which ϕ loses in one oscillation is given by

δϕ ≡ δρϕ
ρϕ
≃ Nd.o.f. × λ2

2π3|εg| . (4.105)

The dissipation rate of the ϕ-condensation is estimated as [35]

ΓNP
ϕ
∼ 1
π
δϕmϕ ∼ Nd.o.f × λ2mϕ

2π4|εg| . (4.106)

In deriving the condition Eq. (4.98), we have assumed that the background thermal plasma can
remain close to thermal equilibrium. To clarify the applicability of Eq. (4.98), let us discuss the
typical thermalization time scale of light particles produced via the decay of χ-particles. Since

�11 If the coupling is somehow fine tuned to ϕ(tdec) ≃ ϕ̃, then the energy conversion rate from the scalar
condensation to radiation becomes quite large [132]. Here we do not assume such a tuning as can be seen from
ε2 g2λϕ̃≫ mϕ .
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the χ-particles decay into light particles dominantly at tdec ∼ [ε2 g2λϕ̃mϕ]−1/2, their typical
momenta are given by K ∼ mχ,eff(tdec) ∼ k∗/|εg|, which is larger than the temperature of
thermal plasma when the non-perturbative production takes place: K ≫ T/ε ≳ T . Such high
energy particles lose their energies via multiple splittings due to interactions with the thermal
plasma. Its time scale can be estimated as tsplit ∼ (α2T )−1

p
K/T [36, 134–136]. Hence, the

background plasma can remain in thermal equilibrium if tsplit ≪ m−1
ϕ

. Through this process,
the thermal plasma is heated and eventually it terminates when the condition Eq. (4.98) is
saturated, k∗ ∼ mχ,th ∼ gT .

4.3.3 Broad Resonance

On the other hand, for ε2 g2λϕ̃ ≪ mϕ or stable χ-particles, the χ-particles might remain in
the same distribution until the ϕ-condensation moves back to its potential origin again. This
regime corresponds to (See Fig. 4.4)

mϕ

ε2 g2
≫ λϕ̃≫max

�
mϕ,

m2
χ,th

mϕ

�
. (4.107)

If this is the case, Bose/Fermi-statistics becomes important due to the previously produced
particles. In particular, the bosons are produced explosively due to the induced emission as ϕ
crosses the non-adiabatic region and they significantly affect the dynamics, but the effects of
fermion is sub-dominant since its number density is soon saturated due to the Pauli suppression.
The distribution function of bosons grows exponentially fχ̃∝ eµt . Here µ is the Floquet index
characterizing the growth rate; which is roughly given by µ ∼ mϕ,eff. Though it depends on
the model of interactions, we assume that the χ̃-field has a self interaction in the following.
Since the χ̃-particles are produced explosively, they affect their own dispersion relations via
the self interaction [(b)] and also the dynamics of ϕ-condensation [(c)]. Even though the χ-
particles become heavy after the passage of the non-adiabatic region, the χ-particles cannot
decay efficiently into other particles in this case. Hence, these heavy particles produce the
linear potential

V (broad)
linear (ϕ)≃ Nχ̃λ

2ϕ2

∫
k

1
Ωk

fχ̃(k)≃ Nχ̃λ|ϕ|nχ̃ for |ϕ|> ϕNP. (4.108)

Also, the self interaction of χ̃ induces the following effective mass of χ̃-fields:�12

λ2
χ

∫
p

1
Ωp

fχ̃(p)∼ λ2
χ

nχ̃
k∗

, (4.109)

where λχ denotes the coupling of χ̃ ’s self interaction, λ2
χ
|χ̃|4, which is assumed to be the same

order of magnitude as g for simplicity, λχ ∼ g. Therefore, the condition for non-perturbative
particle production becomes

k2
∗ ≫max

�
m̄2
ϕ,eff, m2

χ,th, g2
nχ̃
k∗

�
; k∗ ∼

�
λϕ̃m̃ϕ,eff

�
, (4.110)

where the effective mass for the ϕ-condensation is give by

m̄2
ϕ,eff ∼max

�
m2
ϕ

,λ
nχ̃

ϕ̃

�
. (4.111)

�12 Strictly speaking, this expression holds for |ϕ|≲ ϕNP, and hence the concept of χ̃-particle is not well defined.
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Figure 4.4: Rough sketch of classification of the scalar oscillation in (mϕ , λ̃ϕ̃)-plane. Slowly Oscil-
lating: Sec. 4.4.1, Small Amplitude: Sec. 4.4.2, Instant Preheating: Sec. 4.3.2, Broad Resonance:
Sec. 4.3.3, Narrow Resonance: Sec. 4.3.4.

Eventually, the parametric resonance stage finishes when the inequality is saturated. This
condition can be rewritten as�13

m̄ϕ,eff ∼min
�
k∗,
λ2

g2
k∗
�
≡ k∗

c
. (4.112)

After the saturation, the typical value of χ̃ ’s distribution function reaches fχ̃ ∼ 1/g2. Thus,
their energy is transferred into radiation efficiently via (multiple-)annihilations. Through this
process, the ϕ-condensate is expected to lose its energy [45]. Still the produced particles
sharply concentrate on the low momentum regime compared with thermal distribution, and
hence they cascade towards high momentum regime. Though it is difficult to study its dynamics
in a realistic setup, in some simple toy models, it is known that the system enters the turbulent
regime which may be understood as an approximate fixed point solution of Kadanoff-Baym
equations due to large fluctuations (large number density), GH ≫ GJ ( f (p) ≫ 1) [110, 112,
137,138]. See also Sec. 4.3.5.

4.3.4 Narrow Resonance

In this subsection, we comment on the effect of narrow resonance which could happen in some
parameter ranges. We follow the arguments in Refs. [28, 129, 130, 139, 140]. The narrow

�13 We consider the case λ≲ g2 for simplicity, and hence c = g2/λ2.
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resonance takes place for q ≪ 1 and mϕ ≫ mχ,th, where q characterizes the resonance band.
In this subsection, we concentrate on this case. Hereafter we assume ε∼ 1 for simplicity.

Let us consider the first instability band for the bosons χ̃ at k ≃ mϕ, where k is the physical
wavenumber of χ̃ in the Fourier mode. The width of the instability band is given by∆k/k ∼ q,
and the growth rate of χ̃ is given by∼ qmϕ, where q ≡ λ2ϕ̃2/m2

ϕ
≪ 1. This is understood as the

perturbative annihilation of ϕ combined with the induced emission effect. The perturbative
annihilation rate of ϕ is given by Γϕ ∼ λ4ϕ̃2/mϕ and the phase space density of χ̃ is given
by fχ̃(k) ∼ nχ̃/(k2∆k) peaked around k ≃ mϕ. Thus the evolution of the number density is
governed by ṅχ̃ ∼ Γϕnϕ fχ̃ ∼ qmϕnχ̃ . This gives nχ̃ ∝ exp(qmϕ t). On the other hand, in the
case of fermions χ, the production rate is soon suppressed due to the Pauli suppression.

In order for the resonance to occur, the momentum distribution of χ̃ must not be disturbed
in a time interval of (qmϕ)−1. The sources for termination of the resonance are the χ̃ ’s in-
teraction with the thermal plasma and the decay of χ̃. Thus we need qmϕ ≫ max[Γdamp(∼
αT ),ε2 g2λϕ̃] for the resonance. See also Fig. 4.4. Another source is the Hubble expansion,
which redshifts the physical momentum of χ̃. The time required for removing χ̃-particles
from the resonance band k ∼ m(1± q) is ∆tH ∼ q/H. During this time interval, the growth
of χ̃ number density is at most ∼ exp(qmϕ∆tH) ∼ exp(q2mϕ/H). Therefore, we also need
q2mϕ ≫ H for the efficient resonance. If these two conditions are satisfied, the χ̃ number
density exponentially grows due to the narrow resonance effect. Fig. 4.4 shows the parameter
region where the narrow resonance can occur.

If it happens, the end of the exponential growth may be caused by the self-interaction of
χ̃. For example, the rate of the self-annihilation process χ̃χ̃ → g g (gauge bosons) is estimated
as Γχ̃χ̃→g g ∼ α2nχ̃/m

2
ϕ

. If this becomes equal to qmϕ, the resonance stops. It happens at
nχ̃ ∼ (λ/α)2nϕ. Therefore, for λ < α, we have ρχ̃ < ρϕ at the end of resonance and hence it
does not drastically affect the dynamics of ϕ field. (It is same order of the energy loss rate at
the preheating stage just before the narrow resonance regime.) The evolution of ϕ field after
the end of the resonance should be solved in a way described in the following sections and the
results are not much affected.

4.3.5 Non-perturbative Production via Self Interaction

Aside from the quartic (Yukawa) interaction λ2ϕ2|χ|2 (yψ̄ψ), there is a possible source that
drives the ϕ condensation towards a higher momentum, that is, the four point self interaction
of ϕ. The main aim of this subsection is to clarify its typical time scale and compare it with
that of quartic/Yukawa interactions discussed in the previous and next sections.

For this purpose, let us first discuss the dynamics of the self interaction alone with neglecting
the interactions with other fields. In this case, the potential of scalar field is dominated by

V = λ4ϕ4. (4.113)

Here we consider a potential motivated by the CW potential. The following discussion closely
follows Appendix of [46].

In the following discussion, we assume that ϕ has an initially large amplitude; λ2ϕ̃≫ mϕ.
The effects of a four point self interaction are well studied for example in [137,138] numerically
and we simply summarize their results for the sake of completeness. According to [138], the
typical scale is written as

Q = λ(ρϕ)
1/4, (4.114)

which is the same as k∗ at first. In this case, ϕ-particles are produced non-perturbatively at
the crossing of ϕ ∼ 0. In addition, produced ϕ-particles remain the same distribution at their
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production and hence the parametric resonance takes place. Since the Floquet index, which
characterizes the exponent of distribution function fϕ ∝ eµt , is roughly given by µ ∼ Q in
this case, the non-perturbative production of ϕ particles occurs during t ≲Q logλ−4, and then
energy density of them becomes compatible to that of condensation at tNP ∼ Q logλ−4. It
implies that the condition of non-perturbative production is violated by the effective mass of
ϕ-particles: k2

∗ ∼ m2
ϕ,eff ∼ λ4k2

∗e
µt . At that time, the amplitude of ϕ is changed by factor not

order.
After the end of parametric resonance, the system enters the turbulent regime [110, 112,

137, 138] due to the large value of distribution function fϕ ∼ 1/λ4. There, the distribution
function obeys the self-similar evolution. The distribution function of high momentum modes
with p ≫ Q and that of low momentum modes with p ≪ Q evolve in different ways. This
phenomenon is dubbed as the dual cascade [138] and characterized by different exponents κ
of distribution function, f (p)∝ (Q/p)κ.
• For low momentum modes (p≪Q), an inverse particle cascade toward the infrared mo-

mentum takes place, which is driven by the number conserving interactions among the
soft sector (p≪Q).�14 The exponent is given by κM = 4/3 for f (p)≲ O (1/λ4). In terms
of perturbative kinetic picture in λ, the stationary particle flow driven by the four point
interaction implies this exponent [137]. For ultra-soft modes f (p)≳ O (1/λ4), the expo-
nent is turned out to be more stronger: κS = 4 [138]. This is because the perturbative
expansion in λ is broken down and we have to consider many other processes non-
perturbatively. In the case of N ⩾ 2 with O(N)-symmetric scalar field theory, in terms of
the 1/N expansion, it is shown that the anomalous exponent κS = 4 can be understood
as the consequence of momentum dependent effective coupling λeff(p)∼ p2 [138].

• For high momentum modes (p≫ Q), an energy cascade toward UV regime takes place,
which is driven by the effective three point interaction of hard modes: ϕ(hard)+ϕ(hard)→
ϕ(soft) + ϕ(hard). It is characterized by the Kolmogorov exponent κH = 3/2 and the
stationary energy flow towards UV implies this exponent [137]. The distribution func-
tion obeys the following self-similar evolution: f (t, p) = (Qt)α fs((Qt)β p) with α = 4β
and β = 1/(2n− 1) for a n-point interaction. Here fs represents the stationary scaling
solution of effective Boltzmann equations [137]. Hence one finds (α,β) = (4/5, 1/5) in
this case. The maximum momentum pmax ≡Q(Qt)β which has dominant energy density
grows higher and higher.

After the higher modes arrive at f ∼ 1, the quantum effects become important and lead to
thermal equilibrium. This fact implies that the turbulent regime ends at

tquant ∼Q−1λ−5 = λ−6(ρϕ)
−1/4. (4.115)

Eventually, the maximum momentum reaches the “would-be” temperature of this system;
pmax ∼ ρ1/4

ϕ
.

Then, let us compare the time scale tquant and that of the quartic/Yukawa interaction.
Though precise arguments may require complicated numerical simulations, here we simply
consider these effects separately and discuss the sufficient condition where the effects of the

�14 Though the exact zero mode might decay by a power law with ϕ0(t)∼Q(Qt)−1/3 [137], the particles are still
condensed in low momenta regime and phenomenological consequence is not clear. Therefore, we simply regard
such a condensation below p ≪ Q as a zero mode effectively in the following. In addition, even if the effective
zero mode may decay with this power low, the change of exponent from ϕ̃∝ a−1 can be neglected practically in
our case since the scalar disappears before this difference becomes significant.
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four point self interaction can be safely neglected.�15 For this purpose, we focus on the case
with λ2ϕ̃≫ λ̃T so as to maximize the effects of the four point self interaction.

In our case, since the coupling with the χ-fields is larger than the four point self interaction,
the non-perturbative production of χ-particles takes place at first. As discussed in the previous
sections (Secs. 4.3.2 and 4.3.3), if the χ-particles are (almost) stable, the parametric resonance
takes place and then the whole system may enter the turbulent regime, which may require
numerical studies. Here we consider the other case where the χ-particles can decay promptly.
In this case, high energy particles are efficiently produced by the decay of “heavy” χ-particles
in contrast to the turbulent case, and they are thermalized by their own interactions. The
non-perturbative production of χ-particles terminates at g2T 2 ∼ k2

∗ ∼ λ3ϕ̃2 with T being the
temperature of produced light particles. This condition indicates that the soft modes (p < Q)
of ϕ-particles always oscillate much slower than the typical time scale of interactions between
the χ-field and the thermal plasma, Q ∼ λ2ϕ̃ ≲ (λα)1/2T ≪ Γint. It implies that the χ-particles
see the soft modes of ϕ-fields as slowly moving homogeneous condensates. And also the
turbulent evolution toward the UV regime is much slower than the typical interaction time
scale of particles in thermal bath, t−1

quant ∼ (λ5α)1/2T≪ Γint (for α > λ).
Finally, let us compare the time scale of cascades of ϕ-particles towards the UV regime

caused by the background plasma with the four point self interaction. One can show the follow-
ing inequality, Γ eff

ϕ
tquant≫ λ4T tquant≫ 1, with Γ eff

ϕ
being the dissipation of the ϕ-condensation

caused by interactions with the background plasma. In the first inequality, we have used the
dissipation rate Γ eff

ϕ
which is shown in Sec. 4.6.2. Its intuitive meaning is that the scatterings

ϕχ → ϕχ occur more frequently than the four point self interaction. Therefore, theϕ-particles
produced by the four-point interaction is at most accumulated in the infrared regime, p≪ Γint,
and their evolution toward the UV regime is dominated by the interaction with the thermal
plasma. And hence the non-perturbative production due to the CW potential can be safely
neglected.

4.4 Thermal Effects

In the previous section, we have seen that the oscillating ϕ-condensation produces χ-particles
with a highly non-thermal distribution, and hence we have to follow the evolution equations
of the mean field ϕ and propagators Gχ/ϕ, Sχ at least, while the other light fields remain
close to thermal equilibrium due to the separation of time scale. However, there are particular
cases where the equations become further simple: we do not have to track the evolution of χ-
propagators in contrast to the case studied in Sec. 4.3. If the oscillation of the scalar field is so
slow that even χ-particles can regard the scalar condensation as a static background, one can
reduce the full set of equations to the coarse-grained equations with assuming that low order
correlators of fast χ-fields can be approximated with the thermal ones (Sec. 4.4.1). Or, if the
amplitude of oscillating scalar is smaller than the thermal mass of χ, λϕ̃ ≪ mχ,th, one can
compute the thermal corrections by simply assuming that the background plasma including
χ-particles remains in thermal equilibrium (Sec. 4.4.2). In other words, the following section
is devoted to study the case where the oscillating scalar condensate can be regarded as an
adiabatic background for χ-particles, while the non-adiabatic case is studied in the previous
section.

Let us discuss effects of the background thermal plasma in these two cases in the following.
This section closely follows our previous works [35,44]. See also [31–34,37–40].

�15 If the time scales of two effects become comparable, our estimation is not reliable.
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4.4.1 Slowly Oscillating Scalar

In this subsection, we consider the case where the time-evolution of ϕ-condensation is so slow
that, at least, lower order correlators of χ-fields can remain close to thermal equilibrium with
the background ϕ. Such a slowly oscillating scalar condensation was studied in the pioneering
works of Refs. [141, 142]. Hence, in the following, we concentrate on the regime where the
adiabaticity of χ-fields is not broken down, k∗ ≲max[mϕ, mχ,th], and the oscillation time scale
of ϕ is much slower than the typical damping time scale of each quasi-particle excitations,
mϕ,eff≪ Γdamp ∼ αT (See e.g. [143]). See Fig. 4.4 for clarity. Roughly speaking, what we will
do in the following is that: (I) Obtain the approximate solutions of propagators with the form
Gχ = Gχ,th|ϕ+δGχ (Sχ = Sχ,th|ϕ+δSχ) where Gχ,th|ϕ (Sχ,th|ϕ) represents the thermal one with
the backgroundϕ, and δG (δS) is caused by the movingϕ and hence it is roughly proportional
to ϕ̇; (II) Insert them into the equation of motion for the mean field ϕ [Eq. (4.42)] and obtain
the coarse-grained equation. The following arguments are complete contrasts to those given
in the previous Sec. 4.3, where the broken down of adiabaticity plays the key role

Before going into details, in order to clarify the above assumptions, we have to derive the
condition for χ-particles to be thermally populated when the ϕ-condensation passes through
its origin; |ϕ| ≲ ϕc ≡ T/λ̃ where χ-particles become light.�16 The time scale δt which the
ϕ-condensate takes to pass through |ϕ| ≲ ϕc can be estimated as δt ∼ ϕc/(mϕ,effϕ̃) ∼ T/k2

∗ .
The abundance of χ-particles which are produced during this time interval is given by

nχ ∼ n2
th



σprod|v|

�
δt ∼max

�
ε2,α

�
α

T 2

k2∗
T 3 ≳max

�
ε2,α

�
T 3, (4.116)

where we consider two production mechanisms of χ: inverse decay


σprod|v|

�∼ ε2 g2/T 2 and
annihilation



σprod|v|

� ∼ g4/T 2. In the last inequality, we have used the adiabatic condition:
k∗ ≲ mχ,rh. If ε is not suppressed, ε ∼ 1, then the χ-particles can always attain the thermal
abundance.

On the other hand, if ε is extremely suppressed (e.g. stable χ), there are two cases de-
pending on the ratio: k2

∗/(g
4T 2). For k2

∗/(g
4T 2) > 1, χ-particles do not reach thermal equi-

librium during δt and hence their annihilation is neglected after the passage of |ϕ| ≃ ϕc. For
k2
∗/(g

4T 2)< 1, χ-particles are thermally populated and their pair annihilation takes place after
the ϕ-condensation climbs up the potential around |ϕ| ∼ ϕc. As a result, the number density
of χ-particles after the passage of |ϕ|≲ ϕc is given by

n(stb)
χ
∼ d(stb)T 3, (4.117)

where d(stb) encodes the model dependent numerical factor; d(stb) ∼ g4T 2/k2
∗ for k2

∗/g4T 2 > 1,
and d(stb) < 1 for k2

∗/(g
4T 2) < 1.�17 In both cases; k2

∗/(g
4T 2) ≷ 1, the produced χ-particles

cannot reduce their number within the time scale ofϕ’s oscillation period, and hence the linear
potential discussed around Eq. (4.108) dominates:

V (stb)
linear(ϕ)∼ Nd.o.f.λ̃|ϕ|n(stb)

χ
for λ̃|ϕ|> T. (4.118)

�16 Be careful that the amplitude of oscillation ϕ̃ can be much larger ϕ̃≫ ϕc .
�17 Here we do not explicitly write down the form of d(stb) for k2∗/(g4T 2) < 1 since there are many cases

depending on which term dominates the potential. For instance, if the scalar field oscillates with the thermal log
potential, the number density of χ-particles reduce to nχ ∼ 1/(〈σ|v|〉δtlog) ∼ (λ̃/α3)T 3 with δtlog ∼ α/(λ̃T ),
which implies d(stb) ∼ min[1, λ̃/α3]. Note that it takes δtlog to reach the maximum value of the linear potential
∼ λ̃T 3ϕmax ∼ α2T 4.
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Obviously, in this case, χ-fields do not remain close to thermal equilibrium during the course
of ϕ’s oscillation since they do not have enough time to reduce their number densities for
λ|ϕ| > T within the oscillation period. Thus, in the following, we concentrate on the first
case: ε∼ 1.

• Small Field Value Regime: First, we study the situation where the ϕ-condensation passes
through |ϕ| ≲ ϕc.

�18 Let us again move back to Eqs. (4.23)–(4.26) and (4.42) as a starting
point of our discussion. Since the motion of the ϕ-condensate is slow, one can approximate
Eq. (4.22) around a time t̄ with ϕ( t̄) = ϕ̄:

Gχ(t, t ′; p) = Gχ,th(t, t ′; p)
��
ϕ̄
− i

∫
C

dτdτ′ Gχ,th(t,τ; p)
��
ϕ̄

Dχ̃(τ,τ′; p)
��
ϕ̄

Gχ(τ
′, t ′; p)

(4.119)

= Gχ,th(t, t ′; p)
��
ϕ̄
− 2iλ2ϕ̄

∫
C

dτ Gχ,th(t,τ; p)
��
ϕ̄
δϕ(τ; t̄) Gχ,th(τ, t ′; p)

��
ϕ̄

(4.120)

+ · · · ,
where Dχ̃(τ,τ′; p)|ϕ̄ ≡ λ2

�
2ϕ̄δϕ(τ; t̄) +δϕ2(τ; t̄)

�
δC (τ,τ′)− i

�
Πχ −Πχ,th

�
(τ,τ′; p)|ϕ̄, and

δϕ(τ; t̄)≡ ϕ(τ)−ϕ̄. Here Gχ,th|ϕ̄ is the thermal propagators with ϕ( t̄) = ϕ̄ and we implicitly
assume that the average of time-arguments in the Green function is near t̄: (t+t ′)/2≃ t̄. In the
second equality, we have neglected contributions in D from higher orders in δϕ and also from
the self energy of χ. Note that in estimating the dissipation rate of slowly oscillating scalar, the
latter self energy contribution can be comparable to the result from λ2ϕ̄δϕ, and the resultant
dissipation rate can change by several factors [40, 144]. Nevertheless, we roughly estimate
the dissipation factor with dropping contributions from the self energy; rather, concentrate on
the order of magnitude estimation and its qualitative behavior. Similarly, one can obtain the
approximated solution of fermionic χ-fields around a time t̄ as

Sχ(t, t ′; p) = Sχ,th(t, t ′; p)
��
ϕ̄
− i

∫
C

dτdτ′ Sχ,th(t,τ; p)
��
ϕ̄

Dχ(τ,τ′; p)
��
ϕ̄

Sχ(τ
′, t ′; p) (4.121)

= Sχ,th(t, t ′; p)
��
ϕ̄
− i y

∫
C

dτ Sχ,th(t,τ; p)
��
ϕ̄
δϕ(τ; t̄) Sχ,th(τ, t ′; p)

��
ϕ̄

(4.122)

+ · · · ,
where Dχ(τ,τ′; p)|ϕ̄ = yδϕ(τ; t̄)δC (τ,τ′)− i

�
Σχ −Σχ,th

�
(τ,τ′; p)|ϕ̄.

By inserting these approximated solutions to Eq. (4.42), we can obtain the coarse-grained
equation for the mean field ϕ. The effective mass term M2

ϕ
(t) can be approximated with�19

M2
ϕ
( t̄) = m2

ϕ
+λ2

∫
p

Gχ,th
H ( t̄, t̄; p)

��
ϕ̄

(4.123)

− 4iλ4ϕ̄

∫
C

dτ

∫
p

Gχ,th( t̄,τ; p)
��
ϕ̄
δϕ(τ; t̄) Gχ,th(τ, t̄; p)

��
ϕ̄
+ · · · . (4.124)

�18 See the footnote �16.
�19 Contributions from thermal log (See the next subsection) and possible Coleman-Weinberg potentials may be

imprinted in Eq. (4.123) for λ|ϕ|> T .
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Forλ|ϕ|< T , the former term [Eq. (4.123)] encodes the thermal mass ofϕ from theχ-particles
mϕ,th [Eq. (4.65)] as expected:

m2
ϕ,th

���
χ̃
= Nχ̃ ×λ2

∫
p

fB(|p|)
|p| = Nχ̃ × λ

2T 2

12
, (4.125)

at the leading order in high temperature expansion. The latter term [Eq. (4.124)] encodes the
friction term due to the abundant χ particles, so let us concentrate on this term:

−4iλ4ϕ̄

∫ t̄

tini

dτδϕ(τ; t̄)

∫
p

�
Gχ,th
>
( t̄,τ; p)|ϕ̄Gχ,th

<
(τ, t̄; p)|ϕ̄ − Gχ,th

<
( t̄,τ; p)|ϕ̄Gχ,th

>
(τ, t̄; p)|ϕ̄

�
.

Hereafter, we adopt the following approximations; δϕ(τ; t̄) = ϕ̇(τ− t̄) + · · · and tini→−∞,
since the motion of ϕ is assumed to be so slow compared with the typical damping time scale
of particle excitations in the thermal plasma (See also footnote �20). Then, the friction term
of ϕ reads

Γ
(3p, slow),χ̃
ϕ

= −4iλ4ϕ( t̄)2
∫ 0

−∞
dττ

∫
ω1,ω2,p

e−i(ω1−ω2)τ [ fB(ω1)− fB(ω2)]ρχ̃,th(ω1, p)|ϕ̄ ρχ̃,th(ω2, p)|ϕ̄

=
2λ4ϕ2( t̄)

T

∫
ω,p

[− fB(ω) fB(−ω)] ρχ̃,th(ω, p)
��
ϕ̄
ρχ̃,th(ω, p)

��
ϕ̄

. (4.126)

Here we have used the KMS relations; Gχ,th
> (P) = [1+ fB(p0)]ρχ̃,th(P), Gχ,th

< (P) = fB(p0)ρχ̃,th(P).
Assuming the Breit-Wigner form for the spectral density of χ quasi-particles as in Eq. (4.49)
and roughly approximating the thermal width as Γ ∼ αT 2/ω, one can estimate the dissipation
rate of ϕ-condensate as

Γ
(3p, slow),χ̃
ϕ

∼ Nχ̃ × λ
4ϕ2( t̄)
π2αT

. (4.127)

For fermonic χ-fields, similar computations can be done as the bosonic χ̃-fields. Inserting the
approximated solutions to

∫
p

Tr[SχH(t, t; p)], one obtains

− y
2

∫
p

Tr
�
SχH(t, t; p)

�
=− y

2

∫
p

Tr
�
Sχ,th

H (t, t; p)
���
ϕ̄

(4.128)

+ i y2

∫
C

dτ

∫
p

Tr
�

Sχ,th(t,τ; p)
��
ϕ̄
δϕ(τ; t̄) Sχ,th(τ, t; p)

��
ϕ̄

�
(4.129)

+ · · · .
The first term on the right hand side is nothing but the thermal mass from abundant χ-particles
as computed in Eq. (4.62):

m2
ϕ,th

���
χ
= Nχ × y2T 2

6
, (4.130)

for y|ϕ| < T . The second term [Eq. (4.129)] imprints the dissipation rate of ϕ-condensation
due to the abundant χ-particles and it can be expressed as

i y2

∫ t̄

tini

dτδϕ(τ; t̄)

∫
p

Tr
�
Sχ,th
>
( t̄,τ; p)|ϕ̄Sχ,th

<
(τ, t̄; p)|ϕ̄ − Sχ,th

<
( t̄,τ; p)|ϕ̄Sχ,th

>
(τ, t̄; p)|ϕ̄

�
.

(4.131)
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Assuming that the ϕ-condensation moves sufficiently slow; δϕ( t̄;τ) = ϕ̇(τ − t̄) + · · · and
tini→−∞, we obtain the dissipation rate of ϕ-condensation:

Γ
(slow),χ
ϕ

= i y2

∫ 0

−∞
dττ

∫
ω1,ω2,p

ei(ω1−ω2)τ [ fF(ω1)− fF(ω2)]Tr
�
ρχ,th(ω1, p)

��
ϕ̄
ρχ,th(ω2, p)

��
ϕ̄

�
=

y2

2T

∫
ω,p

[ fF(ω) fF(−ω)]Tr
�
ρχ,th(ω, p)

��
ϕ̄
ρχ,th(ω, p)

��
ϕ̄

�
. (4.132)

Approximating the spectral densities with the Breit-Wigner forms given in Eqs. (4.54) and
(4.58), one can obtain the dissipation rate of ϕ-condensation caused by abundant χ-fermions:

Γ
(slow),χ
ϕ

∼ Nχ ×


y2αT

4π2
for y |ϕ| ≪ mχ,th ∼ gT

2y4ϕ2( t̄)

π2αT
for mχ,th ∼ gT ≪ y|ϕ| ≪ T

, (4.133)

where we have roughly approximated the thermal width of fermions as Γ ∼ αT (See for in-
stance [143]).

Interestingly, these ϕ-dependent dissipation terms given in Eqs. (4.127) and (4.133) can
be understood as the energy transportation caused by the adiabatic mass change of χ-particles
because their effective mass depends on ϕ. This picture is explicitly demonstrated in Sec. 4.5.
Note that this is a complete contrast to the dissipation rates discussed in the previous Sec. 4.3
where the broken down of adiabaticity plays the key role.

Then, let us evaluate the non-local term, −iΠJ ·ϕ. Again we assume that the dynamics of
ϕ is sufficiently slow δϕ( t̄;τ) = ϕ̇(τ− t̄) + · · · and tini→−∞, and hence the non-local term
can be approximated with

−i

∫ t̄

−∞
dτΠJ( t̄,τ)ϕ(τ) ⊃ −i

∫ t̄

−∞
dτ ΠJ( t̄ −τ; t̄)|ϕ̄ δϕ(τ; t̄)≃ ϕ̇( t̄)

�
ΠJ(ω; t̄)|ϕ̄

2ω

�
ω→0
(4.134)

where the self energy is approximated by the gradient-expansion: ΠJ( t̄,τ) = ΠJ( t̄ − τ; [ t̄ +
τ]/2) = ΠJ( t̄ −τ; t̄) + · · · .�20 Thus, the dissipation rate can be expressed as

Γ
(4p),χ̃
ϕ

=

�
ΠJ(ω; t̄)|ϕ̄

2ω

�
ω→0

. (4.135)

Since there are no ϕ particles initially, let us assume that the propagators of ϕ can be approx-
imated with the vacuum one. Then, one finds

ΠJ(ω; t̄)|ϕ̄ = λ4

∫
K ,Q,L

��
1+ 2 fB,k0

� �
1+ 2 fB,q0

�
+ 1+ 2

�
1+ 2 fB,k0

�
sgn(l0)

�
ρχ,th(K)|ϕ̄ ρχ,th(Q)|ϕ̄ ρϕ,vac(L) (4.136)

where ∫
K ,Q,L

=

∫
d4K
(2π)4

d4Q
(2π)4

d4 L
(2π)4

(2π)4δ (−ω+ k0 + q0 + l0)δ (k + q + l) . (4.137)

�20 Note that the correlation of two distinct time in the self energy is expected to decay much faster than the
motion of oscillating scalar since the scalar oscillates much slower than the typical interaction in thermal plasma.
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As a result, the dissipation rate reads

Γ
(4p, slow),χ̃
ϕ

∼ Nχ̃ × λ4T 3

12πm2
χ,th

. (4.138)

Before closing the discussion on the small field value regime, it is instructive to reconsider
the condition meff≪ Γdamp ∼ αT . If the ϕ-condensate oscillates with the thermal mass poten-
tial, then this inequality poses the following requirement λ, y < α. Also, one can show that
the non-perturbative production does not take place in the thermal potential under λ, y < α
[See discussion below Eq. (4.199)]. Hence, the thermal mass potential derived in Sec. 4.2 can
be safely applied to the oscillating scalar field for λ, y < α

• Large Field Value Regime: Second, let us consider the large field value regime |ϕ| ≳ ϕc,
where the χ-particles are absent due to the Boltzmann-suppression. In this case, we adopt the
different strategy to obtain the coarse-grained equation since it is easier as we have seen in
Sec. 4.2. We start with the effective operator given in Eq. (4.68)

−1
4

�
1

g2(T )
+

1
16π2

�
Nχ

4
3

T (rF) ln
y2ϕ2

T 2
+ Nχ̃

1
3

T (rS) ln
λ2ϕ2

T 2

��
F a
µν

F aµν, (4.139)

which is obtained by integrating out heavy χ-fields. Differentiating with respect to ϕ, one
obtains the following operator for δϕ(τ; t̄) = ϕ(t)− ϕ̄:

− 1
16π2

�
Nχ

2
3

T (rF) + Nχ̃
1
6

T (rS)
�
δϕ(t; t̄)

ϕ̄
F a
µν

F aµν ≡ −δϕ(t; t̄)

ϕ̄

Tsum

16π2
F a
µν

F aµν. (4.140)

Basically, the equation of motion for the ϕ-condensation is obtained from 0 = δΓ/δϕ. Again
assuming that the motion of ϕ is much slower than the typical interaction time scale in the
thermal plasma, one can approximate that all the other light fields remain close to thermal equi-
librium and these fields see the ϕ-condensation as an almost static background, Γ [ϕ, {G•|ϕ̄}]
with {G•|ϕ̄} being a set of propagators which are close to thermal equilibrium in the presence
of the constant background ϕ̄. In this case, we can evaluate the effective action:

1
vol (R3)

δΓ

δϕ

����
ϕ̄+δϕ

=− ¨̄ϕ − 3H ˙̄ϕ − ∂ Veff(ϕ̄)

∂ ϕ̄

+
1

vol (R3)

∑
n=1

1
n!

∫
d t1 · · · d tn

δn+1Γ

δϕ( t̄)δϕ(t1) · · ·δϕ(tn)

����
ϕ=ϕ̄

δϕ(t1) · · ·δϕ(xn)

= − ¨̄ϕ − 3H ˙̄ϕ − ∂ Veff(ϕ̄)

∂ ϕ̄
−
∫

dτ Πϕret( t̄ −τ;0)
��
ϕ̄
δϕ(τ; t̄) + · · · (4.141)

at the first order in δϕ. The first term in Eq. (4.141) is nothing but the effective potential
caused by the thermal plasma in the presence of ϕ̄, which is computed in Sec. 4.2.�21

Before going to discuss the dissipation rate of ϕ-condensate, it is instructive to verify the
underlying assumption of our discussion: the oscillation time scale of ϕ is much slower than
that of typical interactions in the thermal plasma. If the effective potential is dominated by the
zero temperature mass term, then this assumption simply constraints the range of applicability
of our discussion, that is, mϕ ≪ T . In the thermal mass case, the assumption nothing but

�21 It is noticeable that the discussion in the previous case (small field value regime) can be reproduced by this
strategy.
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implies the coupling hierarchy λ̃≪ α. However, if it is dominated by the thermal log potential,
the oscillation time scale is determined by the parameters in the thermal plasma, αT 2/|ϕ| for
ϕ≫ ϕc. Even in this case, one can show that it is much slower than the typical interaction time
scale: αT 2/|ϕ| ≪ αλ̃T ≪ α2T . Thus, under our assumption, we can safely use the thermal
potential in the equation of motion.

In our case, δϕ couples with the thermal plasma via the effective operator given in Eq. (4.140),
and hence the self energy is given by

Πϕret(x)
��
ϕ̄
= −iθ (x0) Π

ϕ
J (x)

���
ϕ̄
≡ −iθ (x0)

�
Tsum

16π2ϕ̄

�2

〈[F F(x), F F(0)]〉 , (4.142)

where the ensemble average 〈· · ·〉 is taken with the thermal one, and the summation over
Lorentz and gauge indices are promised, F F = F a

µν
F aµν. As in the previous case (small field

value regime), one can approximate the self energy as follows, since the typical interaction
time scale in the thermal plasma is much faster than the motion of ϕ-condensate:∫

dτ Πϕret( t̄ −τ,0)
��
ϕ̄
δϕ(τ; t̄) = −ϕ̇ ∂

∂ iω

∫
dτeiωτ Πϕret(τ,0)

��
ϕ̄

����
ω→0

+ · · ·

= ϕ̇

�
− lim
ω→0

ℑΠϕret(ω,0)|ϕ̄
ω

�
. (4.143)

In the second line, we have used the fact that ℜ/ℑΠret(ω,0) is an even/odd function in ω.
This equation implies that the dissipation rate of ϕ-condensation is given by

Γ (lf)
ϕ
= lim
ω→0

Π
ϕ
J (ω,0)|ϕ̄

2ω
, (4.144)

where we have used the Kramers-Kronig relation.
As mentioned in the previous discussion, it is known that one should perform technical

resummations in order to obtain Γϕ at the complete leading order in the coupling in the case
of vanishing external four momentum. Since the complete resummation is beyond the scope
of this thesis, we restrict ourselves to order of magnitude estimations in the previous case.
However, fortunately, in the large field value regime, the complete result can be extracted
from that given in a different context; as a bulk viscosity of non-Abelian plasma:

ζ=
1
9

lim
ω→0

1
2ω

∫
d4 xeiωx0


�
Tµµ(x), Tνν(0)

��
, (4.145)

where

Tµµ ≃ − b0

2
F aµνF a

µν
. (4.146)

Here we have assumed that all the light fields in the thermal plasma are massless, and b0 is
the coefficient of the beta function; b0 ≡ β(g)/g3 with β(g) ≡ µ∂ g/∂ µ. In Ref. [145], the
bulk viscosity ζ for QCD-like theory is determined at the complete leading order by means of
the effective kinetic theory developed in Ref. [146,147]. Here we simply quote their result:�22

ζ≃ b2
0 g4T 3

4 ln(1/α)
. (4.147)

�22 In our case, there might be scalar fields charged under the gauge group, for instance in SUSY theory. But,
we expect that the qualitative behavior is the same since the order of magnitude estimation is still valid in terms
of the one-loop diagram [148].
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As can be seen from Eqs. (4.145)–(4.147), the dissipation rate Γ (lf)
ϕ

can be expressed as [41,42]

Γ (lf)
ϕ
≃
�

Tsum

16π2

�2 36ζ

b2
0ϕ̄

2
≃
�

Tsum

16π2

�2 (12πα)2

lnα−1

T 3

ϕ̄2

≡ bα2T 3

ϕ̄2
, (4.148)

typically b ∼ 10−3.
Before closing this subsection, let us briefly comment on the case where theϕ-condensation

oscillates around a sizable VEV [Eq. (4.8)]. Obviously, the dissipation rate of theϕ-condensation
is given by [41,42,45,118,119]:

Γ (vev)
ϕ
≃ bα2T 3

v2
. (4.149)

This effect plays important roles in the dynamics after the symmetry breaking; for instance,
dynamics after the thermal inflation, dynamics of PQ-scalars after the U(1)PQ breaking [45,
119] and so on.

4.4.2 Oscillating Scalar with Small Amplitude

Then, let us study the case where the amplitude ϕ̃ is smaller than the thermal mass of χ,
λϕ̃ ≪ mχ,th ∼ gT , but not necessarily the oscillation period of ϕ-condensate is slower than
the typical damping time scale of each quasi-particle excitations, mϕ ≳ Γdamp ∼ αT , in contrast
to the previous case. In this case, we expect the background plasma including χ-particles
remains close to thermal equilibrium during the course of ϕ’s oscillation for the following
reasons. First, the ϕ-dependent mass term of χ can be safely neglected. Second, the energy
transportation time scale from the oscillating scalar ϕ to thermal plasma is much slower than
the typical interaction time scale of thermal plasma in our case. Third, the broad resonance
does not occur in this case since λϕ̃≪ mχ,th violates the condition for non-perturbative particle
production, Eq. (4.99). The narrow resonance also does not occur in our cases. This is because
at least mϕ,eff > mχ,th is required for the narrow resonance to take place, and in addition
the growth rate of narrow resonance should be larger than the decay and dissipation rate of
χ [139,140], λ2ϕ̃2/mϕ ≫max[αT,ε2αλϕ̃], in order for the induced emission to be efficient.
These conditions are unlikely to be satisfied in most cases of our interest. See Fig. 4.4. (See
also the discussion in Sec. 4.3.) Finally, radiation has huge degrees of freedom. Therefore,
one can calculate thermal corrections to the oscillating scalar field by simply assuming that the
background plasma including χ particles can remain in thermal equilibrium [31,33].

First, we evaluate the effective mass term M2
ϕ
(t). The following arguments are essentially

equivalent to those in Ref. [31]. Since the amplitude is small compared to the thermal mass
of χ, the approximate solution of χ ’s propagator can be obtained in the similar way as in the
previous case:

Gχ(t, t ′; p) = Gχ,th(t, t ′; p)
��
ϕ̄=0
− i

∫
C

dτdτ′ Gχ,th(t,τ; p)
��
ϕ̄=0

D′
χ̃
(τ,τ′; p)Gχ(τ, t ′; p)

= Gχ,th(t, t ′; p)
��
ϕ̄=0
− iλ2

∫
C

dτ Gχ,th(t,τ; p)
��
ϕ̄=0
ϕ2(τ) Gχ,th(τ, t ′; p)

��
ϕ̄=0
+ · · · ,

(4.150)
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where D′̃
χ
(τ,τ′; p) ≡ λ2ϕ2(τ)δC (τ,τ′) − i

�
Πχ −Πχ,th

�
(τ,τ′; p)|ϕ̄=0. In the following, we

drop the subscript ϕ̄ = 0 for brevity. Aside from the leading contribution to the thermal mass
of ϕ, λ2T 2, this term leads to the following contribution:

− 2iλ4

∫ t̄

−∞
dτϕ2(τ)

∫
p

�
Gχ,th
>
( t̄,τ; p)Gχ,th

<
(τ, t̄; p)− Gχ,th

<
( t̄,τ; p)Gχ,th

>
(τ, t̄; p)

�
=− 2iλ4

∫ ∞
0

dτϕ2( t̄ −τ) ∂
∂ τ

Cχ̃(τ)

=+ 2iλ4ϕ2( t̄)Cχ̃(0)− 4iλ4

∫ ∞
0

dτϕ( t̄ −τ)ϕ̇( t̄ −τ)
∫
ω

e−iωτCχ̃(ω) (4.151)

where

∂

∂ τ
Cχ̃(τ)≡

∫
p

�
Gχ,th
>
(τ; p)Gχ,th

<
(−τ; p)− Gχ,th

<
(τ; p)Gχ,th

>
(−τ; p)

�
. (4.152)

This implies

−iωCχ̃(ω) =

∫
dτ eiωτ

∫
p

�
Gχ,th
>
(τ; p)Gχ,th

<
(−τ; p)− Gχ,th

<
(τ; p)Gχ,th

>
(−τ; p)

�
. (4.153)

Here note that we take the initial time tini to the infinity past as in the previous case because the
background plasma can remain close to thermal equilibrium much longer than the oscillation
time scale of ϕ-condensate. However, we cannot approximate ϕ(τ) by its Taylor expansion
because the oscillation period is much faster than the typical damping time scale of thermal
propagators in this case.

The first term of Eq. (4.151) represents a higher order correction to the thermal mass of ϕ
in the coupling λ. Hence, let us concentrate on the latter term of Eq. (4.151) that encodes the
dissipation rate. Inserting ϕ( t̄ −τ) = ϕ( t̄) cos[mϕ,effτ]− [ϕ̇( t̄)/mϕ,eff] sin[mϕ,effτ], one finds

− 4iλ4

∫ ∞
0

dτ

∫
ω

e−iωτCχ̃(ω)

�
ϕ( t̄)ϕ̇( t̄) cos

�
2mϕ,effτ

�− 1
2mϕ,eff

�
ϕ̇2( t̄)−m2

ϕ,effϕ
2( t̄)

��
≡+ C (1)χ̃ ϕ( t̄)ϕ̇( t̄) + C (2)χ̃

1
2mϕ,eff

�
ϕ̇2( t̄)−m2

ϕ,effϕ
2( t̄)

�
. (4.154)

Since the second term vanishes if we consider the oscillation time averaged evolution equation
of ϕ’s energy density, we concentrate on the first term C (1)χ̃ that leads to the dissipation of
oscillating scalar. By definition, we have

C (1)χ̃ =− 4iλ4

∫ ∞
0

dτ

∫
ω

e−iωτCχ̃(ω) cos
�
2mϕ,effτ

�
=λ4 1

mϕ,eff

∫
dτ ei2mϕ,effτ

∫
p

�
Gχ,th
>
(τ; p)Gχ,th

<
(−τ; p)− Gχ,th

<
(τ; p)Gχ,th

>
(−τ; p)

�
=2λ4

�
1
ω

∫
P

[1+ fB(p0) + fB(ω− p0)]ρχ̃,th(p0, p)ρχ̃,th(ω− p0, p)

�
ω=2mϕ,eff

. (4.155)
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Therefore, the dissipation rate can be expressed as

Γ
(3p, small),χ̃
ϕ

= 2λ4ϕ̄2

�
1
ω

∫
P

[1+ fB(p0) + fB(ω− p0)]ρχ̃,th(p0, p)ρχ̃,th(ω− p0, p)

�
ω=2mϕ,eff

.

(4.156)

Taking the vanishing effective mass limit mϕ,eff→ 0, one can obtain Eq. (4.126) consistently. In
contrast to the former case [Eq. (4.127)], the effective mass of oscillating scalar can be larger
than the thermal mass of χ, mϕ,eff > mχ̃,th. Then, the perturbative decay (annihilation) of ϕ
into two χ̃ quasi-particles is kinematically allowed and the dissipation factor is given by

Γ
(3p, small),χ̃
ϕ

= Nχ̃ × λ4ϕ̄2

8πmϕ,eff

√√√
1− m2

χ,th

m2
ϕ,eff

�
1+ 2 fB(mϕ,eff)

�
θ
�
mϕ,eff −mχ,th

�
, (4.157)

for λϕ̃ < mχ,th < mϕ,eff.
Next, let us evaluate the fermion contribution Tr[SH]. As in the boson case, one finds the

following approximate solution for χ-fermions:

Sχ(t, t ′; p) = Sχ,th(t, t ′; p)
��
ϕ̄=0
− i

∫
C

dτdτ′ Sχ,th(t,τ; p)
��
ϕ̄=0

D′
χ
(τ,τ′; p)Sχ(τ

′, t ′; p)

= Sχ,th(t, t ′; p)
��
ϕ̄=0
− i y

∫
C

dτ Sχ,th(t,τ; p)
��
ϕ̄=0
ϕ(τ) Sχ,th(τ, t ′; p)

��
ϕ̄=0
+ · · · ,
(4.158)

where D′
χ
(τ,τ′; p) = yϕ(τ)δC (τ,τ′) − i

�
Σχ −Σχ,th

�
(τ,τ′; p)|ϕ̄=0. Since the first term of

Eq. (4.158) vanishes in Tr[SH], the following term remains

i y2

∫ ∞
0

dτϕ( t̄ −τ)
∫

p

Tr
�
Sχ,th
>
(τ; p)Sχ,th

<
(−τ; p)− Sχ,th

<
(τ; p)Sχ,th

>
(−τ; p)

�
. (4.159)

Inserting ϕ( t̄ − τ) = ϕ( t̄) cos[mϕ,effτ] − [ϕ̇( t̄)/mϕ,eff] sin[mϕ,effτ], we obtain the following
term which contributes to the dissipation rate of ϕ-condensation:

− ϕ̇ y2

2mϕ,eff

∫
dτeimϕ,effτ Tr

�
Sχ,th
>
(τ; p)Sχ,th

<
(−τ; p)− Sχ,th

<
(τ; p)Sχ,th

>
(−τ; p)

�
=ϕ̇ y2

�
1

2ω

∫
Q

[ fF(q0)− fF(q0 +ω)]Tr
�
ρχ,th(q0,q)ρχ,th(ω+ q0,q)

��
ω=mϕ,eff

, (4.160)

where we have used the fact that the function, Tr[Sχ,th
> (τ; p)Sχ,th

< (−τ; p)−(>↔<)], is an odd
function in τ. Note that the contribution proportional to ϕ̄ leads to nothing but the thermal
mass of ϕ due to the abundant χ-particles. The dissipation rate is obtained as

Γ
(small),χ
ϕ

= y2

�
1

2ω

∫
Q

[ fF(q0)− fF(q0 +ω)]Tr
�
ρχ,th(q0,q)ρχ,th(ω+ q0,q)

��
ω=mϕ,eff

. (4.161)

The former result [Eq. (4.132)] is recovered by taking mϕ,eff → 0. If the effective mass of
oscillating scalar is larger than the thermal mass (asymptotic mass) of χ, mϕ,eff≫ mχ,th, then
the perturbative decay of ϕ into χ quasi-particles is kinematically allowed. Its rate is given by

Γ
(small),χ
ϕ

=
y2mϕ,eff

8π

√√√
1− 4m2

χ,th

m2
ϕ,eff

�
1− fF(mϕ,eff/2)

�
θ
�
mϕ,eff − 2mχ,th

�
, (4.162)
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for yϕ̃ < mχ,th ≪ mϕ,eff/2. Here we have omitted the plasmino contribution. This is because
emitted χ quasi-particles have larger momenta than its thermal mass due to the large effec-
tive mass of ϕ, mϕ,eff ≫ mχ,th, and hence the plasmino contribution is decoupled. However,
near the threshold mϕ,eff/2 ∼ mχ,th, the plasmino contribution becomes comparable. In the
following discussion, we do not care about precise behavior of ϕ’s dissipation rate near the
threshold, rather concentrate on its qualitative behavior and order of magnitude estimation
not to trouble with unnecessary complications. For this purpose, we expect that Eq. (4.162) is
sufficient.

Finally, let us evaluate the non-local term, −iΠJ ·ϕ. A similar computation yields

−i

∫ ∞
0

dτΠJ(τ; t̄)ϕ( t̄ −τ) ⊃ i
ϕ̇( t̄)
mϕ,eff

∫ ∞
0

dτΠJ(τ; t̄) sin
�
mϕ,effτ

�
= ϕ̇( t̄)

�
ΠJ(ω; t̄)

2ω

�
ω=mϕ,eff

.

(4.163)

Here we have extracted a term that contributes to the dissipation factor. Therefore, the dissi-
pation rate is given by

Γ
(4p, small),χ̃
ϕ

=
�
ΠJ(ω; t̄)

2ω

�
ω=mϕ,eff

. (4.164)

Obviously one can obtain the former result [Eq. (4.135)] by taking mϕ,eff → 0. In the former
case mϕ,eff≪ Γdamp ∼ αT , the phase space for the scatteringϕχ → ϕχ is quite suppressed since
the final particles are almost collinear in the rest frame of thermal plasma. For comparison, let
us evaluate the dissipation rate in the case of αT ≪ mϕ,eff≪ T . In this case, one finds

Γ
(4p, small),χ̃
ϕ

∼ Nχ̃
λ4

2mϕ,eff

2
(2π)3

∫
dΩk fB(Ωk)

∫ Ωk

dΩq

≃ Nχ̃ × λ4T 2

48πmϕ,eff
, (4.165)

where we have assumed that ϕ-particles are not as abundant as thermal ones.

4.5 Boltzmann Equation

Up to here, we concentrate on the scalar condensation; in particular its energy transportation
to radiation. In this section, we briefly discuss results obtained in the previous section from the
viewpoint of evolution of propagators for completeness. In particular, we see that the energy
transportation can be interpreted as the particle production. As extensively studied previously
(See e.g. Refs. [43, 73, 74, 95, 98, 100–104, 106, 149]), to make the problem more tractable,
the Boltzmann-like equations are frequently derived from the Kadanoff-Baym equations under
several assumptions as explained in Sec. 3.3.4: (i) Quasi-particle spectrum, (ii) Separation
of time scales, (iii) Negligence of finite time effects tini → −∞. From the Kadanoff-Baym
equations, one can derive the Boltzmann-like equation for ϕ- and χ-particles under the above
assumptions and the adiabatic expansion of the Universe (See also Sec. 3.3.4):

∂t f•(p; t)−Hp · ∂p f•(p; t) =C [ f•]. (4.166)

First, we discuss the dissipation term given in Eq. (4.127) [(4.133)], which will be proved
to play dominant roles in the large amplitude regime λ̃ϕ̃ ≫ T of a slowly oscillating scalar
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condensate in Sec. 4.6.2. We soon recognize that these terms can be interpreted as particle
production events due to the adiabatic change of the mass term. Let us start with Eq. (3.145):

C (mass)[ fχ] = −ℑ
�
λ4ϕ(t)ϕ̇(t)

2Ω2
p

∫ t

−∞
d t2e−iΩp (t−t2)

�
ϕ2(t)−ϕ2(t2)

�
GχH(t, t2; p)

�
. (4.167)

Again assuming that the scalar field moves slowly so that the integrand can be approximated
with the Taylor expansion ϕ2(t)−ϕ2(t2) = 2ϕ(t)ϕ̇(t)(t − t2) · · · , then we obtain

C (mass)[ fχ]≃ −2λ4ϕ2(t)ϕ̇2(t)
Ω3

p(t)Γp(t)T

�
fB(−Ωp(t)) fB(Ωp(t))

�
. (4.168)

Here we have assumed that the Hadamard propagator of χ-field remains close to thermal one
[See also Eq. (4.120)] and that the spectral density is well approximated with the Breit-Wigner
form [Eq. (4.49)]. Hence, radiation (including χ-particles for λ̃|ϕ|< T) obtains the following
energy density:

ρ̇(mass)
rad =

∫
p

ΩpC (mass)[ fχ] = ϕ̇
2 2λ4ϕ2

T

∫
p

�− fB(−Ωp) fB(Ωp)
� 1
ΓpΩ2

p

(4.169)

= Γ (3p, slow),χ̃
ϕ

ϕ̇2. (4.170)

As we will see later in Eq. (4.179) in Sec. 4.6.1, the energy transportation rate from the scalar
condensation to radiation coincides with Γϕϕ̇

2, and thus the dissipation Γ (3p, slow),χ̃
ϕ

can be re-
garded as the particle production associated with the adiabatic mass shift. It is straightforward
to perform the same computation in the fermionic case. Also, for the small amplitude case,
one can perform the same computation.

Then, let us move to the dissipation term given in Eq. (4.138). Since it becomes important
in the small amplitude regime, λϕ̃ ≪ gT , we focus on this case in the following. See also
Sec. 4.6.2. Technically, within this regime, the background plasma including χ particles can
be regarded as thermal bath and the above assumptions are likely to be satisfied. Practically,
the thermalization of ϕ-particles become important when the amplitude of oscillating scalar
becomes smaller than the temperature of background plasma ϕ̃ < T , and also the oscillation
period is slow enough mϕ < αT . (See Sec. 4.6.2 and also Sec. 5.1.2.) As can be seen from
Eq. (4.138), this dissipation may be understood as the following process ϕ(c)χ → ϕ(p)χ with
ϕ(c) and ϕ(p) being the ϕ-condensation and -particle respectively. Thus, the ϕ-particle pro-
duction is expected to be the dominant source of the dissipation,�23 and we concentrate on the
collision term of ϕ-particles in the following. The collision term due to interactions with the
fixed mass term can be expressed as

C [ f ϕp ] = i
2Ωp

∫ t

−∞
dτ
�
Π
ϕ
J (t,τ; p)∂t G

ϕ
H (τ, t; p)−ΠϕH(t,τ; p)∂t G

ϕ
J (τ, t; p)

�
. (4.171)

�23 The ϕ-condensate with a small amplitude can be understood as ϕ-particles at rest.
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Plugging Eqs. (4.30)–(4.35), one finds

C (4pt)[ fϕ] = 4Nχ̃λ
4

∫
l,q ,k

(2π)4δ(p − l − q − k)
1

2Ωϕp 2Ωϕl 2Ωχq 2Ωχk¦
2
�
(1+ f ϕp ) f

ϕ

l (1+ f χq ) f
χ

k − f ϕp (1+ f ϕl ) f
χ

q (1+ f χk )
�
δ
�
Ωϕp −Ωϕl +Ωχq −Ωχk

�
+
�
(1+ f ϕp )(1+ f ϕl ) f

χ
q f χk − f ϕp f ϕl (1+ f χq )(1+ f χk )

�
δ
�
Ωϕp +Ω

ϕ

l −Ωχq −Ωχk
�©

,

(4.172)

C (3pt)[ fϕ] = 2Nχ̃λ
4ϕ2(t)

∫
q ,k

(2π)4δ(p − q − k)
1

2Ωϕp 2Ωχq 2Ωχk¦
2
�
(1+ f ϕp )(1+ f χq ) f

χ

k − f ϕp f χq (1+ f χk )
�
δ
�−Mϕ +Ω

ϕ
p +Ω

χ
q −Ωχk

�
− � f ϕp (1+ f χq )(1+ f χk )− (1+ f ϕp ) f

χ
q f χk

�
δ
�
Mϕ +Ω

ϕ
p −Ωχq −Ωχk

�©
. (4.173)

Here we have dropped the contribution proportional to ϕϕ̇ which vanishes with the oscilla-
tion time average, and also omitted interactions with χ-fermions since they do not directly
contribute to the energy transportation from the scalar condensate to radiation.�24 Taking the
oscillation time average, one can show

ρ̇
(3pt)
rad

ρϕ
=

1
ρϕ

∫
p

ΩϕpC 3pt[ fϕ] (4.174)

≃ 4Nχ̃λ
4

mϕ

∫
p,k,l

(2π)4δ(p − q − k)
1

2Ωϕp 2Ωχq 2Ωχk¦
2
�
(1+ f ϕp )(1+ f χq ) f

χ

k − f ϕp f χq (1+ f χk )
�
δ
�−Mϕ +Ω

ϕ
p +Ω

χ
q −Ωχk

�
− � f ϕp (1+ f χq )(1+ f χk )− (1+ f ϕp ) f

χ
q f χk

�
δ
�
Mϕ +Ω

ϕ
p −Ωχq −Ωχk

�©
= Γ (4p,slow),χ̃

ϕ
(4.175)

One can see that the dissipation term Γ (4p,slow),χ̃
ϕ

is dominated by the scattering process ϕ(c)χ →
ϕ(p)χ.

4.6 Evolution of the Universe

In the previous Secs. 4.3 and 4.4, we have derived the coarse-grained equation for the ϕ-
condensate in various regimes by utilizing the separation of time scale and specifying the dy-
namical degree of freedom. Starting from the evolution equations for propagators [Eqs. (4.23)–
(4.26)] and for the mean field [Eq. (4.42)] that is given by

0=
�
∂ 2

t + 3H∂t +M2
ϕ
(t)
�
ϕ(t)− y

2

∫
p

Tr
�
SχH(t, t; p)

�− i

∫ t

tini

dτΠJ(t,τ)ϕ(τ), (4.176)

�24 Precisely speaking, scatterings with χ-fermions involving gauge bosons can play an important role so that the
ϕ-particles which are still concentrated on the infrared momentum cascade towards the UV regime comparable
to the temperature of background plasma. See also Sec. 5.1.2.
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we have obtained the following coarse-grained evolution equation for the mean field,

ϕ̈ + [3H + Γ (ϕ; T )] ϕ̇ +
∂ Veff(ϕ; T )
∂ ϕ

= 0, (4.177)

which is more tractable than Eq. (4.176). The key assumption in driving this equation is the
“separation of time scale” under which the behavior of propagators can be obtained approxi-
mately as discussed in Secs. 4.3 and 4.4. The dissipation rate Γ (ϕ; T ) is given in Eqs. (4.106),
(4.127), (4.133), (4.138) and (4.148); and the effective potential Veff(ϕ; T ) is in Eqs. (4.70)–
(4.73).

Actually, however, after the onset of oscillation, we are interested in the evolution of the
Universe whose typical time scale is given by H−1, rather than the oscillation of ϕ-condensate
whose time scale is mϕ,eff with mϕ,eff ≫ H. Thus, it is convenient to perform further coarse-
graining, that is, taking the oscillation-time average of physical quantity which varies as slow
as the cosmic expansion. In the case of oscillating scalar, the physical quantity is nothing but
its energy density, which is roughly given by�25

ρϕ ≃
m2
ϕ,eff(ϕ̃; T )ϕ̃2

2
, (4.178)

where mϕ,eff(ϕ̃; T ) represents the typical effective mass of ϕ at the amplitude ϕ̃ and the tem-
perature T . Hence, in the following, we derive the equation how the amplitude ϕ̃ evolves in
the cosmological time scale.

4.6.1 Oscillation-time Average

The aim of this subsection is to derive the equation of motion for the amplitude ϕ̃ by utilizing
the oscillation-time average. Let us start with the coarse-grained equation of motion:

ϕ̈ +
�
3H(T ) + Γϕ(ϕ; T )

�
ϕ̇ +

∂ Veff(ϕ; T )
∂ ϕ

= 0. (4.179)

From this, we immediately find the following relation between the kinetic energy K = ϕ̇2/2
and the effective potential energy Veff:

d
d t
(K + Veff) = −

�
6H + 2Γϕ

�
K +

Ṫ
T

�
T
∂ Veff

∂ T

�
. (4.180)

This is an exact relation. It implies that K + Veff changes slowly O (H, Γϕ), and approximately
conserves with time. Therefore, we can take the oscillation-time average of this equation:

d
d t



K + Veff

�
= −6H



K
�− 2



ΓϕK

�
+

Ṫ
T

�
T
∂ Veff

∂ T

�
, (4.181)

where 〈· · ·〉 stands for the oscillation average. Then we make use of the virial theorem. By
noting that 2K = d(ϕϕ̇)/d t −ϕϕ̈, we obtain


2K
�
=

�
ϕ
∂ Veff

∂ ϕ

�
, (4.182)

�25 Strictly speaking, there is subtlety on the definition of energy density of ϕ and energy transportation from
ϕ to radiation in the case of oscillation with thermal potential. However, in this case, the energy density of ϕ is
at most that of one degree of freedom in thermal bath ∼ T 4. Hence, it is merely a small change of g∗ and can be
neglected practically within an accuracy of our estimation.
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discarding O (H, Γϕ) terms. Also, we define the oscillation averaged dissipation rate as follows:

Γ eff
ϕ
(ϕ̃; T )≡

D
Γϕϕ̇2

E
D
ϕ̇2
E . (4.183)

Thus, we obtain the time-averaged evolution equation for the ϕ-condensation [35]:

d
d t

�
ϕ
∂ Veff

∂ ϕ
+ 2Veff

�
= −�6H + 2Γ eff

ϕ

��
ϕ
∂ Veff

∂ ϕ

�
+ 2

Ṫ
T

�
T
∂ Veff

∂ T

�
. (4.184)

From this equation, we can derive the evolution equation of the amplitude ϕ̃ by inserting the
concrete form of the effective potential. Let us see some concrete examples in the following.

• Zero-temperature Polynomial Potential: Suppose that the oscillation is dominated by the
following vacuum potential, Veff∝ |ϕ|n. Plugging it into Eq. (4.184), one obtains

d
d t

¬|ϕ|n¶= − 2n
n+ 2

�
3H + Γ eff

ϕ

�¬|ϕ|n¶ , (4.185)

which implies the following equation:

d
d t

ln ϕ̃ = − 2
n+ 2

�
3H + Γ eff

ϕ

�
. (4.186)

Thus, one finds

ϕ̃∝ a−6/(n+2) for Γ eff
ϕ
≪ H. (4.187)

• Thermal Mass: Next, suppose that the oscillation is dominated by the thermal mass, Veff∝
T 2ϕ2. Plugging it into Eq. (4.184), one obtains

d
d t
〈ϕ2〉= −

�
3H + Γ eff

ϕ
+

Ṫ
T

�
〈ϕ2〉, (4.188)

which implies the following equation:

d
d t

ln ϕ̃ = −1
2

�
3H +

Ṫ
T
+ Γ eff

ϕ

�
. (4.189)

Thus, one finds

ϕ̃∝ a−3/2T−1/2 for Γ eff
ϕ
≪ H. (4.190)

Note that the evolution of temperature crucially depends on whether or not the Universe is
dominated by the inflaton (c.f. moduli) which reheats the Universe: T ∝ a−n with n= 1[3/8]
for the radiation [inflaton] dominant era. Here we assume the conventional reheating with a
quadratic inflaton potential (See also Secs. 2.1 and 5.1).

• Thermal Log: Finally, suppose that the oscillation is dominated by the thermal log, Veff∝
T 4 ln(ϕ2/T 2). Plugging it into Eq. (4.184), one finds

d
d t

¬
T 4(1+ lnϕ2/T 2)

¶
= −�6H + 2Γ eff

ϕ

�
T 4 +

4Ṫ
T

¬
T 4 lnϕ2/T 2

¶− 2Ṫ
T

T 4. (4.191)
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Since the left-hand-side can be written as 4(Ṫ/T )
¬

T 4(1+ lnϕ2)
¶
+ T 4d ln ϕ̃2/d t − 2T 4 Ṫ/T ,

this equation implies

d
d t

ln ϕ̃ = −
�

3H + Γ eff
ϕ
+

2Ṫ
T

�
. (4.192)

Thus, one finds

ϕ̃∝ a−3T−2 for Γ eff
ϕ
≪ H. (4.193)

Again, note that T ∝ a−n with n= 1[3/8] for the radiation [inflaton] dominant era.

Before closing this subsection, let us summarize the obtained equations in a convenient
form:

d
d t

ln ϕ̃ = − 1
n1

�
3H + n2

Ṫ
T
+ Γ eff

ϕ

�
, (4.194)

where

(n1, n2) =


�

n+ 2

2
, 0

�
for vacuum potential with V ∝ |ϕ|n,

(2, 1) for thermal mass,

(1, 2) for thermal log,

(4.195)

and

Ṫ
T
=

−H for radiation dominant era,

−3

8
H for inflaton dominant era.

(4.196)

Here note again that we have assumed the conventional reheating with a quadratic inflaton
potential. As one can see, until the effective dissipation rate becomes comparable to the Hubble
parameter, Γ eff

ϕ
≃ H, the amplitude obeys the following scaling:

ϕ̃∝ a−3/n1 T−n2/n1 . (4.197)

In the next subsection, we evaluate the effective dissipation rate by using the results in Secs. 4.3
and 4.4.

4.6.2 Effective Dissipation Rate

In this subsection, we evaluate the effective dissipation rate, which is defined as

Γ eff
ϕ

�
ϕ̃; T

�≡
D
Γϕ(ϕ; T )ϕ̇2

E
ϕ̇2

. (4.198)

In a word, the aim of this subsection is to obtain the effective dissipation rate as a function of
ϕ̃ and T . In the following discussion, we drop numerical factors for brevity basically since it
might depend on models, and let us perform order of magnitude estimation. The following
discussion is based on Refs. [36,44,46]. See Fig. 4.4 for clarity.
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• Dissipation by Non-perturbative Particle Production: As discussed in Sec. 4.3, the non-
perturbative production takes place when the following condition [Eq. (4.99)] is fulfilled

k∗≫max
�
mχ,th, mϕ,eff

�
; k2
∗ ≡ λ̃ϕ̇

��
ϕ=0 . (4.199)

Here it is noticeable that the non-perturbative production does not take place if ϕ oscillates
dominantly with the thermal potential. This is because the typical scale is at most k2

∗ ∼ λ̃T 2 in
this case, and hence it is smaller than the thermal mass, k2

∗ ∼ λT 2 < m2
χ,th ∼ g2T 2 because we

assume λ, y < α (See also Sec. 4.4).
If the broad resonance takes place, the system enters the turbulent regime and complicated

numerical studies might be required. So, we mainly focus on the instant preheating regime:

ε2 g2(λ or y)ϕ̃≫ mϕ. (4.200)

with ε ∼ 1. Therefore, aside from the CW potential, the following region in mϕ–ϕ̃ plane is
relevant in the following discussion:

NP-production: ε2 g2(λ or y)ϕ̃≫ mϕ and (λ or y)ϕ̃≫ g2T 2

mϕ

. (4.201)

Inside this region, the dissipation rate [Eq. (4.106)] does not depend on both ϕ and T , and
hence it coincides with the oscillation-time averaged one:

Γ eff
ϕ
= ΓNP

ϕ
∼ Nd.o.f. × λ̃2mϕ

2π4|εg| for NP-production, (4.202)

where Nd.o.f. stands for the degree of freedom normalized by one complex scalar or one chiral
fermion.

• Dissipation by thermally populated χ: If the ϕ-condensate passes through |ϕ| < ϕc, the
χ-particles are thermally populated (for ε∼ 1) as discussed at the beginning of Sec. 4.4.1. Basi-
cally, the following region in mϕ–ϕ̃ plane is relevant in the following discussion (See Sec. 4.4):

Thermal χ-fields:

�
mϕ,eff≪ αT and λ̃ϕ̃≫ g2T 2

mϕ

�
or λ̃ϕ̃≪ mχ,th ∼ gT. (4.203)

Let us discuss these regions in turn in the following.
For k∗≪ mχ,th and mϕ,eff≪ αT , the oscillating scalar can be regarded as a slowly moving

object in the fast interacting particles of thermal plasma, as explained in Sec. 4.4.1. Taking
the oscillation-time average of results obtained in Sec. 4.4.1, one can estimate the effective
dissipation rate as follows. The effective dissipation rate caused by thermally populated χ̃-
bosons is given by

Γ
eff, slow,χ̃
ϕ

∼ Nχ̃



λT 2

αϕ̃
η for T/λ≪ ϕ̃,

λ4ϕ̃2

αT
for T < ϕ̃≪ T/λ,

λ4T

α
for ϕ̃ < T,

(4.204)
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with η = α if ϕ oscillates dominantly with the thermal log potential, otherwise η = 1. And
that cause by χ-fermions is estimated as

Γ
eff,slow,χ
ϕ

∼ Nχ



yT 2

αϕ̃
η for T/y ≪ ϕ̃,

y4ϕ̃2

αT
for

mχ,th

y ∼ gT
y < ϕ̃≪ T/y,

y2αT for ϕ̃ <
mχ,th

y ∼ gT
y ,

(4.205)

with the same definition of η.�26

On the other hand, for λ̃ϕ̃≪ mχ,th, we can safely assume that theχ-particles are in the ther-
mal plasma since the amplitude of oscillating scalar can be neglected, as discussed in Sec. 4.4.2.
The effective dissipation rate from abundant χ̃-particles is given by

Γ
eff,small,χ̃
ϕ

∼ Nχ


λ4ϕ̃2

αT
for

Ç
αT

mϕ,eff
T < ϕ̃ <

mχ,th

λ ∼ gT
λ

λ4T 2

mϕ,eff
for ϕ̃ <

Ç
αT

mϕ,eff
T

with αT ≪ mϕ,eff < mχth ∼ gT ;

(4.206)

Γ
eff,small,χ̃
ϕ

∼ Nχ


λ4ϕ̃2

mϕ,eff
for T < ϕ̃ <

mχ,th

λ ∼ gT
λ

λ4T 2

mϕ,eff
for ϕ̃ < T

with mχ,th ∼ gT < mϕ,eff < T ; (4.207)

Γ
eff,small,χ̃
ϕ

∼ Nχ
λ4ϕ̃2

mϕ,eff
with T < mϕ,eff. (4.208)

And that caused by thermally populated χ-particles is the following

Γ
eff,small,χ
ϕ

∼ Nχ


y2αT for mϕ,eff < 2mχ,th ∼ gT,

y2mϕ,eff for 2mχ,th ∼ gT < mϕ,eff.
(4.209)

Here we do not repeat the results in the case with mϕ,eff ≪ αth,χT for brevity. Note that we
have also dropped the Bose-enhancement/Pauli-suppression factor for simplicity.

• Dissipation by dimension-five operator: Even though the χ-particles are absent in the
thermal plasma due to the large field value λ̃|ϕ| ≫ T , the ϕ-condensation interacts with the
thermal plasma via the dimension-five operator as explained in Sec. 4.4. Basically, the deriva-
tion implicitly assumes that the ϕ-condensate should move slowly compared with the typical
�26 Strictly speaking, even though the non-perturbative production takes place at the very origin of the potential,

the background plasma may remain close to thermal equilibrium for ε2 g2(λ or y)ϕ̃≫ mϕ . In this case, the above
effective dissipation rate cannot be used unless the non-adiabatic region becomes smaller than the threshold value,
ϕNP < ϕc . See also footnote �27.
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interaction time scale of background plasma and also that the χ particles are absent in the
thermal plasma due to the large field value. Note that even if the non-perturbative produc-
tion is efficient at the very origin of the potential, the produced particles immediately decay
into radiation for ε2 g2(λ or y)ϕ̃≫ mϕ. Hence, even in this case, the ϕ-condensate dissipates
its energy via the dimension-five operator though it tends to be sub-dominant compared with
Eq. (4.202). Here, roughly estimating the damping time scale as αT , one finds the relevant
region in mϕ–ϕ̃ plane:

Dimension-5: λ̃ϕ̃ > T and αT > mϕ. (4.210)

The effective dissipation rate can be expressed as�27

Γ
eff, large
ϕ

∼ ηbα2 λ̃T 2

ϕ̃
, (4.211)

typically b ∼ 10−3.

• The Missed Region: There are two missed regions in mϕ–ϕ̃ plane in our simple calculation.
The first one corresponds to the broad resonance because its dynamics can be highly non-
thermal and our strategy does not work as already mentioned:�28

mϕ ≪ λ̃ϕ̃≪ mϕ

ε2 g2
and λ̃ϕ̃≫ g2T 2

mϕ

. (4.212)

Next, since we consider the typical regimes where the dynamics become simple, unfortu-
nately the following small regime is not covered:

αT < mϕ < gT and gT < λ̃ϕ̃ <
g2T 2

mϕ

. (4.213)

Inside this regime, we simply interpolate the “Thermal χ-fields” regime as a rough approxima-
tion.

�27 If the non-perturbative production takes place around the potential origin, then the effective dissipation rate
is given by Eq. (4.211) times the following factor ϕc/ϕNP for ϕNP > ϕc .
�28 Still, it might be possible to say something with a quite rough estimation even in this case [45].
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Chapter 5

Applications

As we have shown in the previous chapter in detail, the equation of motion for theϕ-condensation
is changed by the interaction with the light χ-fields as

ϕ̈ + [3H + Γ (ϕ; T )] ϕ̇ +
∂ Veff(ϕ; T )
∂ ϕ

= 0. (5.1)

In particular, we have obtained the cosmological evolution of ϕ̃ by taking the oscillation-time
average,

d
d t

ln ϕ̃ = − 1
n1

�
3H + n2

Ṫ
T
+ Γ eff

ϕ

�
. (5.2)

Here the two parameters depend on which term dominates the effective potential:

(n1, n2) =


�

n+ 2

2
, 0

�
for vacuum potential with V ∝ |ϕ|n,

(2, 1) for thermal mass,

(1, 2) for thermal log.

(5.3)

And also note that the effective dissipation rate Γ eff
ϕ

depends on ϕ̃ and T . Though our treatment
is based on some assumptions to make the equations tractable, we have demonstrated that
it has a wide range of applicability in the mϕ–ϕ̃ plane. It is obvious that the cosmological
fate of the ϕ-condensation can be significantly modified from that estimated in Vacuum. This
is because the beginning time of oscillation is modified due to the thermal potential H2

os ≃
2∂ Veff/∂ ϕ

2, the scaling solution of ϕ̃ for H > Γ eff
ϕ

is changed by the interaction with the

background plasma as ϕ̃ ∝ a−3/n1 T−n2/n1 and the decay time of the ϕ-condensate is also
changed from that estimated in Vacuum since it is determined by H ≃ Γ eff

ϕ
. The remaining task

is to study how these effects influence the thermal history of the Universe.
Thus, the aim of this chapter is to clarify the impacts of Eq. (5.2) on the evolution of

the Universe. For this purpose, let us reconsider the following well-motivated roles of scalar
condensates in the early Universe, inflaton and curvaton, and see how these effects change
essential features of these models. In Sec. 5.1, we study reheating after inflation, and in par-
ticular show that the reheating temperature, which characterizes the important feature of the
inflaton model, is significantly modified from the conventional argument. We also discuss the
detailed dynamics before the completion of reheating. In Sec. 5.2, we derive formulas for the
curvature perturbation by taking all these effects into account.

This chapter is based on our previous works [36,46]
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5.1 Reheating after Inflation

In this section, we investigate the reheating dynamics after the inflation, i.e. ϕ represents
the inflaton throughout this section. The reheating temperature is an important parameter
of inflation because it characterizes the efficiency of Lepto/Baryogenesis, the abundance of
unwanted relics (e.g. moduli, gravitino), and also the spectral index of inflation as explained in
Sec. 2.1. Thus, the reheating temperature is essential to discuss a compatibility of an inflation
model with thermal history of our Universe.

The main aim of this section is to clarify how the background plasma changes the conven-
tional estimation of reheating temperature [Eq. (2.25)]:

T (cnv)
R ≃

�
90
π2 g∗

�1/4Ç
Γ 0
ϕ

Mpl, (5.4)

where g∗ denote the relativistic degrees of freedom at the temperature T (cnv)
R and Γ 0

ϕ
represents

the inflaton decay rate evaluated at the Vacuum. Correspondingly, as one can guess from the
discussion around Eq. (2.24), we see that the evolution of radiation before the completion of
reheating is also altered. Recall that, as already explained in Sec. 2.1.2, the Universe is often
already filled with plasma before the completion of reheating.

Before going into details, we summarize related previous works on this aspect. In Ref. [150],
it was argued that large thermal masses of χ-fields prevent the inflaton decay and the temper-
ature of plasma cannot be as high as the inflaton mass (divided by a coupling constant). This
is not correct statement because, roughly speaking, the inflaton can lose its energy even if it
is oscillating very slowly as we have already shown in Sec. 4.4. In the small amplitude case
λ̃ϕ̃ ≪ mχ,th, this aspect is correctly pointed out in Refs. [32, 33] (for Γχ,damp ≪ mϕ). For
mϕ ≪ Γχ,damp, the dissipation rate of slowly moving inflaton is discussed in the context of the
warm inflation [37–40], and the relation between the moduli dissipation rate and the bulk
viscosity is pointed out in the context of moduli dynamics [41, 42]. We successfully treat all
these regimes in a single framework as shown in detail so far. In addition, we also address the
issues how such a high temperature plasma with T≫ mϕ is produced before the completion
of reheating in the same framework. As a result, we can predict the reheating temperature and
the reheating dynamics of the universe in a wide range of parameters for the inflaton model
whose essential feature falls into Eq. (4.2).

We first explain how the reheating dynamics takes place in a time order, referring to results
derived in the previous sections. Then, the numerical results are shown in some typical pa-
rameters. Finally, we summarize our findings. This section is based on our previous work [36]
and also [44,151].

In the following discussion, we mainly consider two limits, λ∼ y and λ≫ y ∼ 0, to avoid
unnecessary complexities. Basic evolution equations are given by

ρ̇ϕ = − n
n1

�
3H + Γ eff

ϕ

�
ρϕ, (5.5)

ρ̇rad = −4Hρrad +
2n
n1
Γ eff
ϕ
ρϕ, (5.6)

3M2
plH

2 = ρϕ +ρrad, (5.7)

with n1 = (n + 2)/2 for V ∝ |ϕ|n. For simplicity, we consider the quadratic potential and
neglect the CW potential. Hence, n, n1 = 2. We assume that the parametric resonance does
not take place, which implies that the following condition should hold during the preheating
stage, ε2 g2λ̃ϕ̃ ≫ mϕ with ε ∼ 1. Here note that the thermal potential is not so important
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in the study of reheating dynamics, since the inflaton energy density is already subdominant
when it dominates the effective potential, ρϕ,th ∼ T 4 < ρrad.

5.1.1 Preheating

After the era of inflation, the inflaton ϕ starts to oscillate coherently around its potential min-
imum with a large initial amplitude ϕi. Since the χ-fields couple to the inflaton, its effective
mass term depends on the field value of ϕ, and the dispersion relation of the χ-fields de-
pends on time in the inflaton oscillation regime. Due to the rapid expansion of inflation, there
are almost no particles in the Universe at first, and hence the adiabaticity condition given in
Eq. (4.99) is broken down if λ̃ϕ̃ ≫ mϕ. In the following, we concentrate on the case where
the adiabaticity is broken down initially λ̃ϕi ≫ mϕ.

Hence, the χ-particles can be produced copiously via the so-called non-perturbative particle
production [28, 29]. In the following, we consider the case where the χ-fields are not stable
since there is no reason to protect them in general.�1 If they can decay into other light particles
efficiently before the oscillating inflaton moves back to its potential origin [132], ε2 g2λ̃ϕ̃≫ mϕ

with ε∼ 1, the inflaton loses its energy with the rate given in Eq. (4.202) [35,131]:

Γ eff
ϕ
= ΓNP

ϕ
∼ c0 × λ̃2mϕ

2π4|εg| , (5.8)

where we write down the model dependent factor as c0. We concentrate on the case where the
condition g2λ̃ϕ̃≫ mϕ holds during the preheating stage to avoid the possible turbulent regime
which requires different treatments [110, 137]. Through this process, radiation is gradually
produced, and eventually the non-perturbative production shuts off when the temperature of
background plasma becomes�2

T 2
pR ∼

λ̃ϕ̃pRmϕ

g2
, (5.9)

which indicates the following relation:

ρrad|TpR
∼ π

2 g∗λ̃2

30g4
ρϕ
��
pR
≪ ρϕ

��
pR

, (5.10)

for α ≫ λ̃. Otherwise, α ≲ λ̃, the inflaton loses an order one fraction of its energy via this
process and immediately evaporates due to frequent interactions with the produced thermal
plasma.

If the Hubble parameter becomes comparable to the dissipation rate before the end of
preheating stage, then the reheating temperature is given by

TR ∼
�

90
π2 g∗

�1/4� c0

2π4|εg|
�1/2Ç

λ̃2mϕMpl. (5.11)

�1 One of exceptions is dark matter for instance.
�2 Here we assume that the background plasma can be well approximated with the thermal one. As discussed

below Eq. (4.106), this implies the following condition m−1
ϕ
> tsplit ∼ (α2T )−1

p
K/T with K ∼ mχ,eff(tdec) ∼

k∗/|εg|. We also check this condition in our numerical calculation.
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5.1.2 Reheating

After the termination of non-perturbative production, the remaining inflaton condensate dissi-
pates its energy via frequent interactions with abundant particles in the thermal plasma. Under
our assumption g2λ̃ϕ̃ ≫ mϕ during the preheating stage, we have the following inequality
right after the end of preheating

λ̃ϕ̃pR ∼
g2T 2

pR

mϕ

≫ TpR. (5.12)

Note that the assumption g2λ̃ϕ̃ ≫ mϕ indicates the oscillation of inflaton is quite slow com-
pared with the typical damping rate of quasi-particles in the thermal plasma

g2TpR ∼
Ç

g2λ̃ϕ̃mϕ ≫ mϕ. (5.13)

Hence, the χ-particles are not yet in the thermal plasma and the effective dissipation rate is
given by

Γ eff
ϕ
(ϕ̃; T )≃ c

λ̃T 2

αϕ̃
+ b
α2λ̃T 2

ϕ̃
≡ c1

λ̃T 2

αϕ̃
, (5.14)

until the amplitude decreases as small as the temperature, λ̃ϕ̃ ∼ T . Here b and c denote
model-dependent factors and their typical values are b ∼ 10−3 and c ∼ 10−1 (See Sec. 4.4).�3

At this regime, the evolution of radiation can be roughly approximated with

ρrad ∼
Γ eff
ϕ

H
ρϕ ∼p3c1Mpl

λ̃T 2

αϕ̃
ρ

1/2
ϕ
∼p3c1

λ̃

α
mϕMplT

2↔ T ∼ c1/2
1

�
30
p

3
π2 g∗α

�1/2Ç
λ̃mϕMpl.

(5.15)

Interestingly, the temperature of background plasma is constant at this regime. If the effective
dissipation rate becomes comparable to the Hubble parameter during this regime, then the
reheating temperature is given by Eq. (5.15).

After the amplitude of inflaton decreases as small as the temperature λ̃ϕ̃ ∼ T , the χ-
particles are thermally populated. Practically, the dissipation coefficient proportional to the
amplitude squared, Γ eff

ϕ
∝ ϕ̃2, is not so important because it decreases faster than the Hubble

parameter which is proportional to the amplitude, H ∝ ϕ̃.�4 Hence, this term alone cannot
dissipate the energy of inflaton condensate completely. Let us concentrate on the smaller am-
plitude regime in the following. At this regime, the effective dissipation rate can be expressed
as

Γ eff
ϕ
(ϕ̃; T )≃ c2

¨
λ4T/α for ϕ̃ < T
y2αT for ϕ̃ < gT/y

(5.16)

with mϕ ≪ αT . Here c2 is a model-dependent parameter, typically c2 ∼ 10−1. The radiation
approximately follows the following equation:

ρrad ∼ 3Γ eff
ϕ

M2
plH↔ T ∼ c1/3

2

�
90
π2 g∗

�1/3 �
M2

plH
�1/3

¨
(λ4/α)1/3 for λ≫ y ∼ 0

(y2α)1/3 for λ∼ y
, (5.17)

�3 As mentioned below Eq. (4.120) and the footnote �22 [also below Eq. (4.144)], the parameter also have
theoretical uncertainties due to the rough estimation, which results in c1/2

1 uncertainty of reheating temperature
as we will see soon. Still, the qualitative behavior is correct.
�4 Here we assume that the vacuum potential is given by the quadratic one.
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which implies that T ∝ a−1/2. If the dissipation rate becomes comparable to the Hubble
parameter at this regime, then the reheating temperature is given by

TR ∼ c2

�
90
π2 g∗

�1/2

Mpl

¨
λ4/α for λ≫ y ∼ 0

y2α for λ∼ y
. (5.18)

In the first case λ≫ y ∼ 0, the inflaton dominantly loses its energy via the scattering ϕ(c)χ →
ϕ(p)χ with ϕ(c) and ϕ(p) being the ϕ-condensate and -particle respectively. One might won-
der that the distribution of ϕ-particles is still sharply dominated by the IR-regime. So, let us
roughly estimate the time scale, δtUV, which the ϕ’s distribution takes to evolve towards the
UV-regime T via interactions with the thermal plasma. First, the typical gain of ϕ’s momentum
in each scatter ϕ(p)χ → ϕ(p)χ, denoted by δp, is given by δp ∼ Eϕ/g2 as long as Eϕ ≲ gT .
Thus the typical energy of ϕ just after the dissipation of ϕ-condensate is given by ∼ mϕ/g2.
Next, the typical scattering rate for mϕ < αT is Γscat ∼ λ4T/α. Then the momentum ofϕ grows
in a time scale of δtUV ∼ g2/Γscat. It is comparable to the Hubble time scale at the completion
of dissipation. Hence the distribution is expected to soon cascade towards T , and the inflaton
ϕ participates in the thermal plasma.

The subsequent evolution has a crucial difference between λ ∼ y and λ ≫ y ∼ 0, so
we discuss them separately. First, let us consider the simple case where the Yukawa coupling
is sizable λ ∼ y . In this case, the dissipation rate is given by the ordinary decay rate if the
temperature decreases as small as 2mχ,th ∼ gT < mϕ:

Γ eff
ϕ
∼ c2 y2mϕ. (5.19)

Thus the evolution of radiation is exactly the same as Eq. (2.24) and the reheating temperature
is given by the conventional one (2.25). Second, we move to the other case where the Yukawa
coupling is suppressed λ≫ y ∼ 0. In this case, the dissipation rate becomes proportional to
the temperature squared, Γ eff

ϕ
∝ T 2, when the temperature decreases as mϕ > αT . Hence it

cannot reach the Hubble parameter, if the coupling is smaller than the critical value [44]:

λ > λc ∼
�

mϕ

Mpl

�1/4

. (5.20)

Roughly speaking, this inequality can be understood as follows: in order for the inflaton to
participate in the thermal plasma, at least the scattering process, ϕ(c)χ ↔ ϕ(p)χ, should be
efficient; λ4T 3/(mϕT )> H ∼ T 2/Mpl.

We comment on the difference between two cases, λ ∼ y and λ ≫ y ∼ 0, after the in-
flaton condensate dissipates its energy completely via interactions with the thermal plasma.
In the former case λ ∼ y , one might wonder that inflaton particles are eventually thermally
decoupled and reheat the Universe again via their late-time decay. However, such an event
hardly happens: once the thermal dissipation rate becomes larger than the Hubble parameter,
the Hubble parameter cannot exceed the dissipation rate after that. This is because, after the
dissipation of inflaton condensate, the effective dissipation rate of inflaton particles behaves as

Γ eff
ϕ
∼ c2

¨
y2αT for αT < mϕ < gT
y2m f for gT < mϕ

, (5.21)

while the Hubble parameter is proportional to T 2. Note that the renormalizable interaction
between the inflaton and radiation is essential for this consequence. See discussion at the final
paragraph of this subsection.
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However, in the latter case λ ≫ y ∼ 0, inflaton particles are (almost) stable, and hence
they can reduce number densities only through annihilations. Therefore, they are eventually
decoupled from the thermal plasma, and behaves as matter with a fixed number after that.
As one can guess, the inflaton itself can be a candidate of WIMP (weakly interacting massive
particle) DM if it is singlet under U(1)em and SU(3)c. For instance, the singlet extension of SM
can simultaneously explain the primordial inflation and the present DM abundance [151–153].

Up to here, we stick to the setup Eq. (4.2) and concentrate on the dissipation that comes
from the Yukawa and quartic interactions imprinted in Eq. (4.2). Before closing this section,
we briefly comment on the case where the dissipation term has a rather general form:

Γ eff
ϕ
(ϕ̃; T ) = A

ϕ̃ l T m

2l/2ml+m−1
ϕ

for mϕ ≪ T, (5.22)

with A being a dimensionless factor that does not depend on ϕ̃ and T . See also Ref. [154]. In
this case, the energy density of radiation before the completion of reheating follows

ρrad ∼
Γ eff
ϕ

H
ρϕ ≃ A

ρ
1+l/2
ϕ

T m

Hm2l+m−1
ϕ

≃ A(3M2
pl)

1+ l
2 H1+l T m

m2l+m−1
ϕ

, (5.23)

which implies

T ∼
�

31+ l
2 A
�

30
π2 g∗

� M l+2
pl H l+1

m2l+3
ϕ

� 1
4−m

mϕ∝ a− 3
2

l+1
4−m . (5.24)

One can see that the evolution of radiation can be significantly modified from the conventional
scenario (l, m) = (0, 0). Note that, for l > 1, the dissipation factor may decrease faster than
the Hubble parameter and hence the inflaton cannot completely lose its energy completely by
this term alone. In addition, also note that, for m > 2, even if the inflaton participates in
the thermal plasma once, the Hubble parameter soon becomes larger than the interaction rate
between the inflaton and radiation because H ∝ T 2/Mpl but Γ eff

ϕ
∝ T m. Thus, the inflaton

particles might dominate the Universe again. If this is the case, the reheating temperature may
be determined by the perturbative decay rate at the regime mϕ ≫ T where the dissipation rate
is expected to have different behavior, like Γ eff

ϕ
∝ mϕ. Therefore, if the inflaton oscillates with

a sizable VEV, then the final reheating might be determined by its perturbative decay.

5.1.3 Numerical Result

In this subsection, we calculate the evolution of inflaton/plasma system after inflation. We
numerically solve the differential Eqs. (5.5)–(5.7) to study the dynamics of inflaton/plasma
system, using the effective dissipation summarized in Sec. 4.6.2. The gauge coupling constant
is assumed to be α= 0.05, and concentrate on the sizable Yukawa case y ∼ λ because the evo-
lution is basically the same except for its final behavior as explained in the previous subsection.
We closely follow Ref. [36] in the following.

The top panel is computed with (mϕ, λ̃,ϕi) = (1 TeV, 10−3, 1018 GeV). First, the radiation
with high temperature, T ∼ 108 GeV, is produced via the preheating. The condition for non-
perturbative production [Eq. (4.199)] is soon saturated, since the amplitude scales as ϕ̃ ∝
a−3/2 where a is the scale factor of the Universe while the temperature scales as T ∝ a−3/8, and
consequently the non-perturbative production shuts off. Then, as can be seen from the plateau
of ρrad around H ∼ 5× 10−1 – 10−2 GeV, the temperature of thermal plasma becomes nearly
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Figure 5.1: The evolution of various quantities as a function of Hubble scale H: the effective
dissipation rate except for non-perturbative particle production Γ eff

ϕ
[Red thin solid], one for non-

perturbative particle production ΓNP
ϕ
[Green thin dotted], the energy density of radiation ρrad [Ma-

genta thick solid] and inflaton ρϕ [Black thick dashed] normalized by an initial energy density ρini.
Top: (mϕ , λ̃,ϕi) = (1 TeV, 10−3, 1018 GeV), Middle: (mϕ , λ̃,ϕi) = (1 TeV, 10−5, 1018 GeV), Bottom:
(mϕ , λ̃,ϕi) = (1 TeV, 10−7, 1018 GeV).
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Figure 5.2: The reheating temperature TR as a function of λ̃ is shown. Left: mϕ = 1 TeV and Right:
mϕ = 103 TeV.

constant during the regime where the dominant dissipation rate is given by Γ eff
ϕ
∼ λ̃T 2/(αϕ̃).

Finally, the reheating is completed at Γ eff
ϕ
∼ H. In the top panel, the reheating takes place via

Γ eff
ϕ
∼ λ̃T 2/(αϕ̃) at H ∼ 2× 10−2 GeV, and the reheating temperature is TR ∼ 108 GeV.

The middle and bottom panels are computed with (mϕ, λ̃,ϕi) = (1 TeV, 10−5, 1018 GeV) and
(mϕ, λ̃,ϕi) = (1 TeV, 10−7, 1018 GeV) respectively. The subsequent evolution is the same as the
top panel case in the both middle and bottom panels. First, the thermal plasma is produced
via the preheating, and the condition for non-perturbative production soon saturates. Then,
the plateau region follows H ∼ 5 × 10−1 – 10−4 GeV (middle) and H ∼ 5 × 10−1 – 10−3 GeV
(bottom). After that, since ϕ̃ decreases due to the cosmic expansion, the dominant dissipation
rate becomes Γ eff

ϕ
∼ λ̃2αT . In the middle panel, the reheating takes place via Γ eff

ϕ
∼ λ̃2αT at

H ∼ 10−8 GeV, and the reheating temperature is TR ∼ 105 GeV. On the other hand, in the
bottom panel, the reheating occurs via Γ eff

ϕ
∼ λ̃2mϕ at H ∼ 10−13 GeV, and its temperature is

given by TR ∼ 3× 102 GeV.�5

Analytically, the reheating temperature can be roughly estimated as follows in the four
cases: reheating via (0) Γ eff

ϕ
∼ ΓNP

ϕ
, (i) Γ eff

ϕ
∼ λ̃T 2/(αϕ̃), (ii) Γ eff

ϕ
∼ λ̃2αT and (iii) Γ eff

ϕ
∼

�5 Usually, the reheating temperature TR is defined as the temperature at which the radiation dominated Uni-
verse begins and it roughly corresponds to the epoch H ∼ Γϕ as (2.25). In the present situation with thermal
dissipation effect, this definition is ambiguous because of the peculiar behavior of Γ eff

ϕ
. As seen in the middle panel

of Fig. 5.1, Γ eff
ϕ

can once become equal to H but the relation ρrad ∼ ρϕ may hold thereafter without exponential
decay of the inflaton for a while. This is because the dissipation rate decreases faster than the Hubble parameter
during the regime: Γ eff

ϕ
∝ ϕ̃2. Therefore, the reheating temperature TR here is defined as the temperature at

which the inflaton energy density begins to decrease exponentially. One should note that, although the parameter
TR is a convenient quantity which describes a global picture of the early Universe, actual thermal history before
the reheating would be significantly different from a conventional one.

85



Figure 5.3: Contour plot of reheating temperature TR as a function of λ̃ and mϕ for ϕi = 1018 GeV.
Inside the Black shaded region, the condition g2λ̃ϕ̃ > mϕ is violated, and this region depends on the
initial amplitude ϕi . In the Yellow shaded region, the reheating is completed by the perturbative decay
via the Yukawa interaction, and in the Orange and Red shaded region, the reheating is dominated by
the thermal dissipation.

λ̃2mϕ [36]:

TR ∼



c1/2
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�
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�1/4�
1

2π4|εg|
�1/2q

λ̃2mϕMpl · · · (0)

c1/2
1

�
30
p

3

π2 g∗α

�1/2q
λ̃mϕMpl · · · (i)

c2

�
90

π2 g∗

�1/2

αλ̃2Mpl · · · (ii)

c1/2
2

�
90

π2 g∗

�1/4q
λ̃2mϕMpl · · · (iii)

(5.25)

Note that the resultant reheating temperature contains the uncertainty c1 in Eq. (5.14) (See
also footnote �3). Importantly, the coupling λ̃ dependence differs among (i) – (iii) and the
initial amplitude ϕi dependence is absent even in the case (i). These behavior can be seen in
Figs. 5.2 and 5.3. In Fig. 5.2, reheating temperature is plotted as a function of λ̃ for mϕ = 1 TeV
(left) and mϕ = 103 TeV (right) with ϕi = 1018 GeV. It is seen that in the small λ̃ limit, the
reheating temperature is determined by the standard perturbative decay scenario [case (iii)].
As TR increases and approaches to mϕ for larger λ̃, it begins to saturate due to the effect of
thermal blocking. For larger λ̃, however, thermal dissipation comes in and again TR increases
[case (ii) and (i)]. This figure does not depend on ϕi for ϕi ≳ 1015 GeV. In Fig. 5.3, contours
of reheating temperature as a function of λ̃ and mϕ are shown.

As mentioned in footnote �5, the reheating temperature TR here is defined as the tem-
perature at which the inflaton energy density begins to decrease exponentially. The sharp
discontinuity between two regimes [(i) and (ii)] seen in Fig. 5.2 is related to the definition
of reheating temperature TR. The reheating cannot be completed during the regime where
the effective dissipation rate is given by Γ eff

ϕ
∝ ϕ̃2, with the definition of reheating that we

employed. This is clearly seen in the middle panel of Fig. 5.1 (λ̃ = 10−5); Γ eff
ϕ

crosses H two
times, but at the first crossing the reheating is not completed and the reheating temperature
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is roughly determined at the second crossing. For larger λ̃, the situation becomes close to the
top panel of Fig. 5.1 (λ̃ = 10−3), where reheating is completed soon after the first crossing.
Thus the reheating temperature jumps somewhere around 10−5 < λ̃ < 10−3 (for mϕ = 1 TeV)
if it is plotted as a function of λ̃. This is the reason for the behavior in Fig. 5.2.

Here we note that, for the purpose of estimating the reheating temperature alone, it is
not necessary to impose the condition that the light degrees of freedom should be always
kept in thermal equilibrium for every ϕ’s oscillation. The only requirement is that the typical
interaction time scale of plasma should be much faster than the Hubble parameter and the
dissipation rate of ϕ before the reheating is completed.

5.2 Curvaton

In this section, we study the effects of the background plasma on the curvaton mechanism,
i.e. ϕ represents the curvaton in this section, and the reheating is assumed to take place in
a conventional way (e.g. Planck-suppressed decay) for simplicity. A characteristic feature of
the curvaton model is that it can produce the large non-Gaussianity which is parameterized by
fNL. As briefly explained in Sec. 2.2, in a simple scenario where the curvaton oscillates with a
quadratic potential and convert its energy into radiation via a vacuum decay rate, fNL is given
by [Eq. (2.47)]

6
5

fNL =
3
2r
− 2− r; r ≡ 3R̃

3R̃+ 4
; R̃≡ ρϕ

ρrad

����
dec

, (5.26)

and also the power spectrum is

Pζ =
�

H∗
2πϕi

2r
3

�2

, (5.27)

with H∗ being the Hubble parameter at the horizon exit of the CMB scale. Here and hereafter
we assume that the curvaton is the main source of the curvature perturbation for simplicity. If
the curvaton energy density at its decay is smaller than that of radiation, then fNL is enhanced
by a factor 1/R̃ and it might contradict with the Planck result [65]. So, one needs to know the
energy fraction of the curvaton at its decay to examine the curvaton scenario.

However, since the curvaton should convert its primordial fluctuations acquired during the
inflation, it inevitably couples to light particles. Hence, as one might guess from Eqs. (5.2)
and (5.3), one has to take into account effects of interactions with light particles because they
change when the curvaton oscillates, how the curvaton evolves after the onset of oscillation and
when it decays. Moreover, in general, the oscillation time depends on the initial value of the
curvaton and the effective dissipation rate also depends on both the amplitude of the curvaton
and the background temperature. Therefore, the above formulas are expected to be modified.
Thermal effects on the dynamics of the curvaton were partly studied in the literature [155,156].
In Ref. [46], we have first taken into account all these effects.

In the following, we first derive rather general formulas of curvature perturbations for
completeness, and see that the typical behavior of fNL is still roughly given by 1/R̃ except for
some special cases. Then, we numerically compute 1/R̃ for two cases; λ≫ y ∼ 0 and λ ∼ y ,
and show that if the curvaton cannot survive from interactions with the thermal plasma, it
becomes difficult to explain today’s amount of power spectrum and also tends to produce too
large non-Gaussianity. We put an upper bounds on the couplings λ and y . This section closely
follows Ref. [46].
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Before going into details, we summarize basic evolution equations in this case:�6

d
d t

ln ϕ̃ = − 1
n1

�
(3− n2n3)H + Γ

eff
ϕ

�
, (5.28)

ρ̇I = − [3H + ΓI]ρI , (5.29)

ρ̇rad = −4Hρrad + ΓIρI +
n
n1
Γ eff
ϕ
ρϕ, (5.30)

3M2
plH

2 = ρϕ +ρI +ρrad, (5.31)

where

(n, n1, n2) =


�

n,
n+ 2

2
, 0

�
for vacuum potential with V ∝ |ϕ|n,

(2, 2, 1) for thermal mass,

(1, 1, 2) for thermal log,

(5.32)

and

n3 =


1 for radiation dominant era,

3

8
for inflaton dominant era.

(5.33)

Here ρI and ΓI represent the energy density and decay rate of inflaton. And we assume that the
inflaton has a quadratic potential and reheats the Universe via a vacuum decay rate (e.g. Planck-
suppressed decay). As we will see later, the CW-potential correction has important effects on
curvature perturbations and hence we keep this term in this section.

5.2.1 Curvature Perturbation

As explained in Sec. 2.2, according to the δN -formalism [66–69], the primordial curvature
perturbation ζ is obtained from

ζ(x ) = N(x )− N̄ , (5.34)

where N(x ) denotes the e-folding number from the initial spatially flat slice to the final uni-
form density slice, and N̄ is that of the background one. Thus, the curvature perturbation is
expanded as

ζ= Nϕi
δϕi +

1
2

Nϕiϕi
δϕiδϕi + · · · , (5.35)

where δϕi denotes fluctuations around ϕi. This relation implies that the power spectrum and
the non-linearity parameter can be expressed as

Pζ =
�

H∗
2π

�2

N 2
ϕi

;
6
5

fNL =
Nϕiϕi

N 2
ϕi

. (5.36)

�6 Again note that there is subtlety on the definition of energy density of ϕ, ρϕ and energy conversion from ϕ

to radiation, n
n1
Γ eff
ϕ

, in the case of oscillation with thermal potential. However, in this case, the energy density of
ϕ is at most that of one degree of freedom in thermal bath ∼ T 4. Hence, it is merely a small change of g∗ and
can be neglected practically within an accuracy of our estimation.
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Hence, we need to know the ϕi-dependence of N .
However, as mentioned at the beginning of this section, theϕi-dependence on the e-folding

number N from the spatially flat surface to the uniform density surface is complicated in our
setup [Eq. (4.2)]. The large scale curvature perturbation is produced via four steps in our
case: (i) Fluctuations of ϕi acquired during the inflation yield those of ϕ’s energy density,
(ii) The beginning of ϕ’s oscillation may depend on ϕi [157–159], (iii) The time when ϕ’s
equation of state changes may depend on the amplitude of ϕ [46,160] and (iv) The effective
dissipation rate may also depend on the amplitude of ϕ (self-modulated reheating; a variant of
the modulated reheating [161]). As can be seen from the basic evolution equations (5.28)–
(5.33), all these effects could contribute to the final curvature perturbation in general.

We take the final uniform density slice well after ϕ-decay. For our purpose, we can take the
initial spatially flat surface freely as long as the curvaton energy density is negligible. We take
this surface so that ϕ’s equation of state does not change after that. We refer to this surface
as the uniform density surface of others (except for ϕ), and denote with the superscript (uds-
o). In addition, we assume that the inflaton decays into radiation after the change of ϕ’s
equation of state but before the decay of ϕ for simplicity, and thus take the uds-o surface after
the reheating hereafter. One can express ρϕ on the uds-o surface by using the initial energy
density ρ(ini)

ϕ
as

ρ(uds-o)
ϕ

(x ) = ρ(ini)
ϕ
(x )

�
Hos(x )
Hw(x )

�− 2(1+w(osc)
ϕ

)

1+wtot
�

Hw(x )
H(uds−o)

�− 2(1+w(dec)
ϕ

)

1+wtot

, (5.37)

where w(osc/dec)
ϕ

is the equation of state of ϕ just after the oscillation/before the dissipation
respectively, wtot is the equation of state of the Universe, Hos is the Hubble parameter at the
beginning of oscillation, and Hw is the Hubble parameter when the equation of state changes;
ϕ(x ) = ϕw. Here notice that since the energy density of ϕ at the change of e.o.s., ρ(w)

ϕ
, does

not depend on ϕi(x ), the ϕi-dependence only enters via Hw(x ). We define ζϕ as

ζϕ(x )≡ Nϕ(x )− N̄ϕ, (5.38)

where Nϕ(x ) is the e-folding number from the spatially flat surface to the uniform ρϕ sur-
face. This quantity is conserved once the equation of motion is fixed. Recalling that ρϕ ∝
a−3(1+w(dec)

ϕ
), one can express ζϕ as

ρ(uds-o)
ϕ

(x )

ρ̄(uds-o)
ϕ

= e3(1+w(dec)
ϕ
)(Nϕ(x )−N̄ϕ)↔ ζϕ =

1

3(1+w(dec)
ϕ
)

ln
ρ(uds-o)
ϕ

(x )

ρ̄(uds-o)
ϕ

. (5.39)

The relation between ρ(uds-o)
ϕ

/ρ̄ϕ and the primordial fluctuation can be read from Eq. (5.37):

ρ(uds-o)
ϕ

(x )

ρ̄(uds-o)
ϕ

=

�
Hw(x )

H̄w

�−bw

=

�
Hos(x )

H̄os

�−bw
�
ρ(ini)
ϕ
(x )

ρ̄(ini)
ϕ

�bw/aw

, (5.40)

where aw ≡ 2(1+ w(osc)
ϕ
)/(1+ wtot) and bw ≡ 2(1+ w(dec)

ϕ
)/(1+ wtot). In the second equality,

we have used

1=
ρ(ini)
ϕ
(x )

ρ̄(ini)
ϕ

�
Hos(x )

H̄os

H̄w

Hw(x )

�−aw

. (5.41)
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Therefore one can express ζϕ as

ζϕ =
bw

3(1+w(dec)
ϕ
)

ln

�
H̄w

Hw(x )

�
=

bw

3(1+w(dec)
ϕ
)

�
1
aw

ln
ρ(ini)
ϕ
(x )

ρ̄(ini)
ϕ

− ln
Hos(x )

H̄os

�
(5.42)

≡ k

3(1+w(dec)
ϕ
)

ln

�
1+

δϕi(x )

ϕ̄i

�
, (5.43)

where k represents a model-dependent order one constant; for instance in a conventional case
k = 2. In addition, if the initial value ofϕ is larger, then it takes more time to satisfyϕ(x ) = ϕw.
Therefore we expect that the parameter k is positive. After the equation of motion is fixed, ζϕ
conserves as already mentioned, so let us move to another contribution.

Then, we take the ϕ-decay surface H(dec)(x ) = Γ (dec)
ϕ
(x ):

ρ
(dec)
rad (x ) +ρ

(dec)
ϕ
(x ) = 3M2

plH
(dec)2

(x ) = ρ̄(dec)
tot

 
Γ
(dec)
ϕ
(x )

Γ̄
(dec)
ϕ

!2

. (5.44)

Here note that Γϕ represents the effective dissipation rate, but we omit the eff superscript for
notational simplicity, and also note that the superscript (dec) stands for just before the decay.
We define δN1(x )≡ N1(x )− N̄1 where N1 is the e-folding number from the uniform ρϕ surface
to the ϕ-decay surface. Then, one finds

ρ(dec)
ϕ
(x )

ρ̄(dec)
ϕ

= e−3(1+w(dec)
ϕ
)δN1(x );

ρ(dec)
rad (x )

ρ̄(dec)
rad

= e−4(ζϕ(x )+δN1(x )). (5.45)

We consider a rather general form of the dissipation rate in the following:

Γϕ(ϕ̃; T )∝ ϕ l T m∝ a−qlρ
m
4

rad, (5.46)

which can be expressed as

Γ (dec)
ϕ
(x )

Γ̄ (dec)
ϕ

= e−qlδN1(x )−m(ζϕ(x )+δN1(x )) = e−pδN1(x )−mζϕ(x ), (5.47)

with p ≡ ql +m. Finally, inserting Eqs. (5.45) and (5.47) into (5.44), we obtain the following
relation:

Rϕe−3(w(dec)
ϕ
+1)δN1(x ) + Rrade−4(δN1(x )+ζϕ(x )) − e−2(pδN1(x )+mζϕ(x )) = 0, (5.48)

where

Rϕ ≡
ρ̃(dec)
ϕ

ρ̃(dec)
tot

; Rrad ≡ ρ̃
(dec)
rad

ρ̃(dec)
tot

. (5.49)

Eq. (5.48) relates the δN1 with the fluctuations δϕi/ϕ̄i through ζϕ. For later usage, it is
convenient to express δN1 in terms of ζϕ order by order:

N (1)1 =
2 (2Rrad −m)

2p− 4Rrad − 3(1+w(dec)
ϕ
)Rϕ

ζϕ, (5.50)

N (2)1 =
−2RrRϕ�

2p− 3(1+w(dec)
ϕ
)Rϕ − 4Rr

�3

�
4(p−m)− 3(1+w(dec)

ϕ
)(2−m)

�2
ζ2
ϕ

, (5.51)

· · · . (5.52)
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Finally, let us connect the decay slice to the uniform density slice well after the ϕ-decay.
We define δN2(x )≡ N2(x )− N̄2 where N2(x ) is the e-folding number from the ϕ-decay surface
to the uniform density surface. The energy density of radiation can be expressed as

ρ̄(dec,+)
rad

ρ(dec,+)
rad (x )

= e−4δN2(x ); ρ(dec,+)
rad (x ) = 3H(dec,+)2

(x )M2
pl = ρ̄

(dec,+)
rad

 
Γ (dec,+)
ϕ

(x )

Γ̄ (dec,+)
ϕ

!2

. (5.53)

Here (dec,+) superscript denotes the ϕ-decay surface right after the complete decay of ϕ.
Thus, we obtain the following relation:

e4δN2(x ) =

 
Γ (dec,+)
ϕ

(x )

Γ̄ (dec,+)
ϕ

!2

= e−2pδN1(x )−2mζϕ(x )↔ δN2(x ) = −1
2

�
pδN1(x ) + ζϕ(x )

�
. (5.54)

See also Ref. [162]; the validity of sudden decay approximation that we employed here is
discussed.

Now we can compute the curvature perturbation ζ well after the decay of ϕ. The resulting
curvature perturbation is given by their sum:

ζ= ζϕ +δN1 +δN2. (5.55)

At the leading order, it is given by

ζ(1) =
Rϕ

3(1+w(dec)
ϕ
)Rϕ + 4Rr

3(1+w(dec)
ϕ
)ζϕ + (3w(dec)

ϕ
− 1)

δΓ
(dec)
ϕ

2Γ̄ (dec)
ϕ

 . (5.56)

One can see that the curvature perturbation is proportional to Rϕ and the effect of self-modulated
reheating vanishes for w(dec)

ϕ
= 1/3, as expected. By substituting (5.47), we obtain

ζ(1) =
Rϕ
�
4(p−m)− 3(1+w(dec)

ϕ
)(2−m)

�
2
�
2p− 3(1+w(dec)

ϕ
)Rϕ − 4Rr

� ζϕ, (5.57)

at the leading order, and

ζ(2) =
(p− 2)RrRϕ�

2p− 3(1+w(dec)
ϕ
)Rϕ − 4Rr

�3

�
4(p−m)− 3(1+w(dec)

ϕ
)(2−m)

�2
ζ2
ϕ

, (5.58)

at the second order in ζϕ.
Then, let us the evaluate power spectrum Pζ and the non-linearity parameter fNL in terms

of p, m, w(dec)
ϕ

, k and r which is defined as

r ≡ Rϕ
�
3(1+w(dec)

ϕ
)(2−m)− 4(p−m)

�
2
�
(3(1+w(dec)

ϕ
)− 2p)Rϕ + (4− 2p)Rr

� . (5.59)

As one can see, it coincides with 3ρϕ/(3ρϕ + 4ρr) in the standard curvaton scenario where
parameters are given by (p, m, w(dec)

ϕ
) = (0, 0, 0). The power spectrum is obtained as

Pζ =
 

H∗
2πϕi

kr

3(1+w(dec)
ϕ
)

!2

. (5.60)
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The non-linearity parameter fNL has the following form:

fNL = A(0) + A(1)r + A(−1)1
r

, (5.61)

with

A(0) = −5
3
× 6(1+w(dec)

ϕ
)− 4− 2p

2− p
, (5.62)

A(1) = −5
6
× 4(4− 3(1+w(dec)

ϕ
))(3(1+w(dec)

ϕ
)− 2p)

(2− p)(3(1+w(dec)
ϕ
)(2−m)− 4(p−m))

, (5.63)

A(−1) =
5
4
×
2(3(1+w(dec)

ϕ
)(2−m)− 4(p−m))

3(2− p)
− 2(1+w(dec)

ϕ
)

k

 . (5.64)

In most cases including the cases which we deal with, A(−1) is a factor of order unity, hence we
have fNL ∼ 1/r for r ≪ 1 as in the ordinary curvaton model.

However, there exists an exceptional situation in which the enhancement of non-linearity
parameter does not exist, A(−1) = 0, keeping ζ ∼ 5 × 10−5. Thus the constraint on a curva-
ton scenario is drastically relaxed [160]. This scenario is quite simple. First, the curvaton
starts to oscillate with the quartic potential, such as the CW potential, before the completion
of reheating. Then, the curvaton potential becomes dominated by the quadratic one. At this
stage, we assume that the curvaton energy density is still negligible. Finally, after the com-
pletion of reheating, the curvaton decays into radiation with a constant decay rate. This case
corresponds to the following parameters; (p, m, w(dec)

ϕ
, k) = (0, 0, 0, 1). Obviously, the factor

vanishes, A(−1) = 0, in this case.

5.2.2 Numerical Results

As shown in the previous subsection, the non-linearity parameter still follows the typical be-
havior fNL ∝ 1/r for r ≪ 1 except for the special case [160]. In this subsection, we discuss
the viability of the curvaton scenario which falls into Eq. (4.2). In particular, we estimate the
energy fraction of the curvaton at its dissipation:

R̃≡ ρϕ

ρrad

����
dec

, (5.65)

which characterizes the properties of ϕ as a curvaton.
Here we assume that the curvaton is a dominant contribution to the observed density per-

turbation. Hence, the energy fraction should be relatively large, R̃ ≳ 0.1, to avoid the con-
straints on fNL. In addition, the observed power spectrum should be explained by the curvaton,
which indicates

(5× 10−5)2 ≃Pζ ∼
�

H∗
2πϕi

r(R̃)
�2

↔O (10−4)×ϕi
1

r(R̃)
∼ H∗ ≲ 1014 GeV. (5.66)

Note that unless non-trivial cancellation occurs, the typical behavior of r is r(R̃)∼ R̃/(O (1)+R̃).
Here the upper bound on the inflation scale H∗ comes from the condition that the amplitude of
tensor mode should not be too large. The typical behavior of this constraint is the following;
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Figure 5.6: Contours of R̃ on (λ, y/λ) plane with ϕi = 1016 GeV. We have taken (mϕ , TR) =
(1 TeV, 109 GeV).

ϕi ≲ O (1018)GeV for R̃ > 1 and ϕi ≲ R̃×O (1018) for R̃ < 1. On the other hand, H∗ must be
larger than Hos, which is the Hubble parameter at the onset of ϕ oscillation, otherwise ϕ starts
to oscillate during or before the inflation. Thus, we impose a following condition:

Hos ≲ O (10−4)×ϕi
1

r(R̃)
. (5.67)

We have checked these conditions (5.66) and (5.67)) in the numerical study.
First, we consider the suppressed Yukawa case, λ ≫ y ∼ 0. In such a case, the scalar

condensation ϕ cannot completely disappear if the coupling λ is smaller than the critical value
λc because Z2-symmetry forbids the perturbative decay of ϕ. Therefore, we assume non-zero
Γ

higher
ϕ

for ϕ to obtain a small but nonzero perturbative decay rate (very small y is equivalent).

In order to see the typical situation, we assume the following form Γ higher
ϕ
∼ m3

ϕ
/M2
∗ with a

decay temperature Tdec ∼ O (1)MeV, which indicates

Γ
higher
ϕ

=

√√√ g∗π2T 4
dec

90M2
Pl

. (5.68)
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Here M∗ denotes a cutoff scale. This ensures that ϕ condensation decays before BBN. Thus, for
small λ in which ϕ condensation cannot be dissipated away, our calculation gives the upper
bound on R̃. We takeα= 0.05 in our numerical computation. This set up is close to the minimal
Higgs curvaton model [163]. The remaining parameters are the reheating temperature of the
universe TR, the tree-level mass mϕ and the coupling constant λ.

Fig. 5.4 shows a contour plot of R̃ on (ϕi,λ)-plane. We take (mϕ, TR) = (103 TeV, 109 GeV)
[top], (mϕ, TR) = (1 TeV, 109 GeV) [middle], and (mϕ, TR) = (1 TeV, 103 GeV) [bottom]. Inside
the pink shaded region, the condition (5.66) is violated. One can see that R̃ ∼ 1 can be
realized just below the line of λ ∼ λc. This fact is easily understood because for λ > λc, the
condensation ϕ is dissipated and R̃ becomes suppressed, while for λ≪ λc, the condensation
survives until it decays via the higher dimensional term. Therefore, the line of R̃∼ 1 exists just
below λ= λc. The difference between top and middle panels mainly comes from the position
of the line λ= λc. For smaller TR, ϕ oscillates in the inflaton dominant era for a long time and
R̃ tends to be smaller.

Now we consider more general case, i.e. y ̸= 0. If we set λ ∼ y , the quartic potential of
ϕ coming from the CW correction is suppressed. Fig. 5.5 shows contours of R̃ in the case of
vanishing CW potential. We take (mϕ, TR) = (1 TeV, 109 GeV) [left] and (10−6 TeV, 109 GeV)
[right]. In the pink shaded region, the condition (5.66) is violated. Since the Yukawa coupling
induces the earlier dissipation/decay compared with the y = 0 case, the energy fraction R̃
tends to be smaller. Hence the constraints become severer. The contours of R̃ in the figure are
relatively curved in the upper side and tend to have large values compared with the previous
case y = 0. This is because thermal potential is more likely to affect the dynamics of the
condensation of ϕ in this case and because the absence of four point self interaction delays the
beginning of oscillation, respectively. As in the previous case, above the critical coupling yc,
the curvaton dissipates its energy thermally.

Fig. 5.6 indicates contour of R̃ for a general set of (λ, y) with ϕi = 1016 GeV. We take
(mϕ, TR) = (1 TeV, 109 GeV). Similar to the case of y = 0, the line of R̃ = 1 lies a bit below
λ= λc. This figure indicates that the effect of CW potential vanishes at the vicinity of y ∼ λ.
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Chapter 6

Conclusions and Discussion

In this thesis, we have investigated the dynamics of scalar condensation in the early Universe;
with special emphasis on the interplay between the scalar condensate and particle-like exci-
tations around it. For this purpose, employing the CTP formalism to follow the dynamics of
correlators, we have obtained coarse-grained equations of motion under the separation of time
scale assumptions that are often satisfied in the cosmological setup. In other words, in a single
framework, we have shown that, owing to interactions of the scalar condensate with abundant
particles, the following effects should be taken into account appropriately;

• corrections to the effective potential from abundant particles,

• corrections to the dissipation rate from abundant particles,

• non-perturbative particle production if the scalar condensate acts as a non-adiabatic
background.

Importantly, these effects drastically change the dynamics of scalar condensates;

• its beginning time of oscillation which is determined by H2 ≃ 2∂ Veff(ϕ; T )/∂ ϕ2 is altered
[See Fig. 4.3 and Eqs. (4.76)–(4.80)],

• its equation of state is significantly modified [Eqs. (4.194)–(4.197)],

• its decay time is also changed Γ eff
ϕ
(ϕ̃; T )≃ H [Eqs. (4.201)–(4.211)].

Then, we have revisited several important roles of scalar condensates in the early Universe
in order to clarify their impacts on cosmology. Comments are given in turn for each roles of
scalar condensation.

6.1 Reheating after Inflation

We have studied issues of reheating and thermalization after inflation. In particular, we have
shown that if the inflaton is relatively light and its coupling to light fields is not suppressed
(unlike the Planck-suppressed operator), then the standard picture of reheating where the
perturbative decay of the inflaton dominates the process of reheating does not hold. We have
seen that in such a case the following two effects play crucial roles; the production of quite
high temperature plasma at the preheating stage and the subsequent dissipation due to in-
teractions with the plasma. Roughly speaking, they become important for mϕ ≲ α2λ̃2Mpl

[↔ mϕ/(1013 GeV) ≲ (10λ̃)2]. As a result, the reheating temperature, which characterizes
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the transition time from inflaton oscillation dominant era to radiation dominant era, can be
dramatically changed [See also Eq. (5.25), Fig. 5.2 and Fig. 5.3]:

TR ∼



c1/2
0

�
90

π2 g∗

�1/4�
1

2π4|εg|
�1/2q

λ̃2mϕMpl · · · (0)

c1/2
1

�
30
p

3

π2 g∗α

�1/2q
λ̃mϕMpl · · · (i)

c2

�
90

π2 g∗

�1/2

αλ̃2Mpl · · · (ii)

c1/2
2

�
90

π2 g∗

�1/4q
λ̃2mϕMpl · · · (iii)

(6.1)

for the reheating via (0) Γ eff
ϕ
∼ ΓNP

ϕ
, (i) Γ eff

ϕ
∼ λ̃T 2/(αϕ̃), (ii) Γ eff

ϕ
∼ λ̃2αT , and (iii) Γ eff

ϕ
∼ λ̃2mϕ.

We comment on in what kinds of models these effects might play important roles. Basically,
a class of inflaton models with a small inflaton mass and with a renormalizable interaction to
radiation is relevant. Below, we list several attractive models of inflaton within this class and
explicitly write down the dominant interactions which connect the inflaton to radiation. One
may roughly estimate the reheating temperature for these models by using the above formulas
by plugging the typical coupling (between the inflaton and light particles) and the inflaton
mass. However, it should be noted that the reheating temperature can depend on how to
flatten the potential of inflaton because the effective mass, mϕ, in the inflaton oscillation era
can vary during the course of dynamics. Hence, one has to study separately in each cases for
further investigation.

• The singlet DM inflaton model [151–153] exactly shares essential features of our phe-
nomenological setup of Eq. (4.2) with y = 0; where the singlet Z2-odd scalar field plays
the roles of inflaton and DM simultaneously. The interaction between the singlet and
light particles is caused by

Lint = −1
2
λ2ϕ2|H|2, (6.2)

where ϕ is a singlet Z2-odd scalar field and H is the Higgs field, which has the large top
Yukawa coupling and thus can decay immediately at the preheating stage. As already
explained, in this case, the inflaton condensate completely dissipates its energy at some
time and the inflaton particles participate in the thermal plasma. Later, the number
density of inflaton particles freezes out and they can be the present DM. To account for
the present DM abundance, its mass is typically weak scale and the coupling should not
be suppressed; there are two regimes: λ2 ∼ O (10−3) for mϕ ∼ mh/2 and λ2 ∼ O (1) for
mϕ ∼ O (1)TeV, with mh being the SM Higgs mass (See [164] for instance).

• Another interesting example is the Higgs inflation; where the SM Higgs field acts as the
inflaton [133,165]. The relevant interaction terms for reheating are given by

Lint = − ytp
2
ϕ t̄ t +

g2
2

4
ϕ2W+

µ
Wµ− +

g2
Y + g2

2

8
ϕ2ZµZµ, (6.3)

where yt is the top-Yukawa coupling, gY /2 represents gauge coupling of U(1)Y/SU(2)W,
andϕ, t, W, Z denote the SM Higgs, top quark, W-boson and Z-boson respectively. Notice
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that these couplings should be evaluated at the energy scale of reheating. Though one
should treat the background plasma carefully since the electro-weak symmetry U(1)Y ×
SU(2)W is broken during the inflaton oscillation regime, still the final process of reheating
cannot be understood without taking the dissipation effect into account, as studied in this
paper.

• In the context of leptogensis, the right-handed sneutrino inflation [13,14] is an attractive
candidate and also within a class of our setup. The superpotential is given by

W =
1
2

MiNiNi + yN
iαNi LαHu +WMSSM, (6.4)

where Ni (i = 1, 2, 3), Lα (α = e,µ,τ) and Hu represent the right-handed neutrinos,
lepton doublets and up-type Higgs superfields respectively. WMSSM indicates the MSSM
superpotential. Here we take the basis where the mass matrix of right-handed neutrinos,
Mi, becomes diagonal and real. To account for the tiny neutrino masses, the typical
value of the Yukawa coupling is yN ∼ O (0.1) for M ∼ O (1013)GeV. This superpotential
encodes the following interaction terms which may play important roles in the dynamics
of reheating:�1

Lint = −yN
iαÑi LαH̃u −

��yN
iαÑiHu

��2 − ��yN
iαÑi L̃α

��2 − �yN
iαMiÑ

∗
i L̃αHu + h.c.

�
. (6.5)

Roughly speaking, if the sneutrino condensate thermally dissipates its energy completely,
then the “thermal” leptogenesis takes place since it participates in the thermal plasma; if
this is not the case, “non-thermal” leptogenesis takes place where the lepton-asymmetry
is completely determined by the non-equilibrium decay of right-handed sneutrino con-
densate.�2

• The MSSM inflation [166] is also an interesting possibility where the MSSM flat direc-
tion plays the role of inflaton. The relevant interaction terms during the dynamics of
reheating depend on the choice of the flat direction (e.g. LLE, UDD). Since its expec-
tation value (partly) breaks the SM gauge group, it couples with sfermions via D-terms,
with gauge bosons via their masses, and with fermions via Yukawa couplings. Notice
that these interactions are controlled by the gauge couplings of SM gauge group (See
Ref. [167]). Its dynamics after inflation is partly studied in Ref. [167], but the final re-
heating might be caused by interactions with the thermal plasma. Similar results might
hold for the alchemical inflation scenario [168], in which the inflaton turns into the
MSSM flat direction after the inflation and then the flat direction oscillates around the
origin with a mass of soft SUSY breaking scale.

• Though we have sticked to the simple phenomenological model [Eq. (4.2)], our methods
can be also applied to the case where the inflaton oscillates around a VEV; that is, it
interacts with the thermal plasma via a higher-dimensional operator. Hence, it will also
be useful for reheating after a class of thermal inflation model [169]. For a larger VEV (∼
Mpl), these effects become smaller, but it is non-trivial for an intermediate scale (c.f. PQ
phase transition [45,119]).

As we have seen, the reheating temperature and the reheating dynamics before the com-
plete dissipation of inflaton can significantly differ from that of conventional one due to the

�1 Here we omit the cross terms including the top-Yukawa coupling.
�2 Also, the dynamics of sneutrino condensate other than the inflaton (e.g. curvaton) is interesting [15–20].
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effects of interactions with radiation. Obviously, since the value of reheating temperature dif-
fers from the conventional one, the abundance that depends on the reheating temperature
can be drastically modified. In addition, since the evolution of preexisting radiation before
the completion of reheating is also modified, the abundance of heavy particles which are pro-
duced thermally at T > TR is altered. Therefore, thermal particle production at that stage,
such as gravitino, right-handed neutrino and heavy DM, can differ from that of conventional
arguments.

6.2 Curvaton

We have studied the dynamics of curvaton model which falls into Eq. (4.2) in detail, and shown
that its dynamics can be drastically modified due to interactions with the thermal plasma; in
particular, its energy fraction of the curvaton at its complete decay/dissipation, R̃, can be sig-
nificantly changed, which is an important parameter to determine the curvature perturbation
generated by the curvaton. In addition, we have also shown that the curvature perturbation
has the following additional contributions compared with the simple case with a quadratic
potential and constant decay rate:

• The beginning of oscillation may depend on its initial field value ϕi,

• The equation of state can change and its transition time may depend on the amplitude
of ϕ

• The decay/dissipation time may also depend on the amplitude of ϕ.

We have derived the formulas for the power spectrum and the non-linearity parameter taking
account of all these effects listed above [Eqs. (5.60)–(5.64)].

Then, taking all these effects into account, we have examined the viability of the cur-
vaton scenario where the observed curvature perturbation is dominantly produced by the
curvaton. From these equations, we can see that the power spectrum is roughly given by
Pζ ∝ [H∗r(R̃)/ϕi]2 with r(R̃) ∼ R̃/(O (1) + R̃) unless non-trivial cancellations occur. The
non-discovery of primordial tensor perturbations constrains the parameter space as ϕi/r(R̃)≲
O (1017)GeV, whose typical behavior is ϕi ≲ O (1018)GeV for R̃ > 1 and ϕi ≲ R̃×O (1018) for
R̃ < 1. Also, the non-linearity parameter roughly behaves as fNL∝ 1/R̃ for R̃ < 1 unless non-
trivial cancellations occur, which implies the following lower bound on the energy fraction;
R̃ ≳ O (0.1). Typically, the interaction with the thermal plasma makes the beginning of oscil-
lation and the complete dissipation earlier. And thus it tends to decrease the value of R̃ and
narrow down the allowed parameter region. To demonstrate it explicitly, we have computed
the energy fraction R̃ as a function of λ̃ and ϕi for two typical cases; λ≫ y ∼ 0 and λ∼ y > 0.
In particular, we have found the upper-bound on the coupling between the curvaton and light
fields; y ≲ yc and λ ≲ λc with yc = [mϕ/(αMpl)]1/2 and λc = [mϕ/Mpl]1/4. Otherwise, the
energy fraction becomes too small and it contradicts with the constraint on the amplitude of
tensor perturbation.

6.3 Discussion on Other Mechanisms

Though we have focused on the above roles of scalar condensation in the early Universe in this
thesis, our analysis has relevance to other mechanisms. For instance, in the case of Affleck-Dine
baryogenesis [10], it was already shown in Refs. [120–122] that efficiencies of baryogenesis is
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modified by thermal corrections to the effective potential. This is because the baryon/lepton
number density is fixed at the beginning time of oscillation, but it is changed drastically by
them [See also Fig. 4.3 and Eqs. (4.76)–(4.80)]. After the onset of oscillation, the Affleck-Dine
condensate may fragment into localized objects so-called Q-ball if the potential is shallower
than the quadratic, and the subsequent evolution of the Universe is dramatically altered if it is
formed [170–180]. As a next step. it is interesting to study how the dissipative effects caused
by interactions with the background plasma can affect the formation of Q-ball.
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Appendix A

Notation and Conventions

Notation and conventions used throughout this thesis are summarized.

A.1 Units

We adopt natural units where the speed of light c, the reduced Planck constant ħh and the
Boltzmann constant kB are taken to be unity. We do not use the Planck units (the special
natural units) where the Newton constant G is also taken to be unity. Instead, we explicitly
write down the reduced Planck mass Mpl ≃ 2.4× 1018 GeV.

A.2 Metric

We use the (+,−,−,−) convention:�
ηµν

�
= diag (1,−1,−1,−1) . (A.1)

A.3 Propagators

Let us consider a system which is described by a density matrix ρ̂ in the Heisenberg picture.�1

Two basic propagators are defined as

G> (x , y)≡ 
ϕ̂(x)ϕ̂(y)�
con

, (A.3)

G< (x , y)≡ (−)|ϕ| 
ϕ̂(y)ϕ̂(x)�
con

, (A.4)

where the subscript “con” denotes the connected part and 〈•〉 ≡ Tr [•] and |ϕ| = 0, 1 for
bosonic/fermionic field respectively. For brevity we drop “con” in the following. Here possible
internal degree of freedom is implicit: if there are several species (i = 1, 2, . . . , n), x should be
replaced with a set {x , i}. Note that all the propagators which we introduce in the following
can be expressed in terms of these two propagators.

�1 In the Schrödinger picture a density matrix obeys the von-Neumann Liouville Eq.:

i∂t ρ̂(t) =
�
Ĥ, ρ̂(t)

�
, (A.2)

and hence it can be understood as an initial condition ρ̂(tini) = ρ̂.
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As explained in Sec. 3.1, a path integral on the closed time path (CTP) contour C is useful
in studying the evolution of expectation values of some operators. Hence it is convenient to
define a propagator on the CTP contour, so-called Schwinger-Keldysh propagator:

G (x , y)≡ 
TC ϕ̂(x)ϕ̂(y)�= θC �x0, y0
�

G> (x , y) + θC
�

y0, x0
�

G< (x , y) , (A.5)

where θC denotes a step function defined on the contour C . It is instructive to clarify the
relation of the Schwinger-Keldysh propagator with other common ones:

G (x , y) =


GFyn (x , y) for x0 ∈ C+, y0 ∈ C+
G> (x , y) for x0 ∈ C−, y0 ∈ C+
G< (x , y) for x0 ∈ C+, y0 ∈ C−
GDys (x , y) for x0 ∈ C−, y0 ∈ C−

, (A.6)

where other common propagators, which are frequently used in the in-out formalism, are given
by

Feynmann Propagator : GFyn (x , y)≡ θ �x0 − y0
�

G> (x , y) + θ
�

y0 − x0
�

G< (x , y) , (A.7)

Dyson Propagator : GDys (x , y)≡ θ �y0 − x0
�

G> (x , y) + θ
�
x0 − y0

�
G< (x , y) . (A.8)

In some cases�2 it makes their physical meanings clearer to express the above propagators
in terms of following two propagators:

Hadamard Propagator : GH (x , y)≡ 
�ϕ̂(x), ϕ̂(y)�+�= G> (x , y) + G< (x , y) , (A.9)

Jordan Propagator : GJ (x , y)≡ 
�ϕ̂(x), ϕ̂(y)�−�= G> (x , y)− G< (x , y) , (A.10)

with [•,•]± being a commutator/anti-commutator, which are defined as

[A, B]± ≡ AB ± (−)|A||B| BA. (A.11)

These two propagators are also known as the “statistical/spectral function” and encode the
number/spectrum of quasi-particle excitation respectively. The Schwinger-Keldysh propagator
can be expressed as

G (x , y) =
1
2

�
GH (x , y) + sgnC

�
x0, y0

�
GJ (x , y)

�
, (A.12)

where sgnC denotes a sign function defined on the contour C .�3 We sometimes use the re-
tarded and advanced propagators defined as follows:

Gret (x , y) = iθ (x0 − y0)GJ (x , y) , (A.14)

Gadv (x , y) = −iθ (y0 − x0)GJ (x , y) . (A.15)

�2 e.g., if the quasi-particle picture is valid
�3 In some literature, the following convention of statistical/spectral function is used

F (x , y)≡ 1
2

GH (x , y) ; ρ (x , y)≡ iGJ (x , y) . (A.13)
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Appendix B

Basic Ingredients of Thermal Field Theory

Here we summarize basic ingredients of thermal field theory that are frequently used in this
thesis. See [86,181] for details. If a system is close to thermal equilibrium, at least lower order
correlators can be well approximated with ones computed in terms of the Gibbs-state:

ρ̂eq =
e−β(Ĥ−

∑
i µiQ̂ i)

Z
; Z = Tr

�
e−β(Ĥ−

∑
i µiQ̂ i)

�
, (B.1)

where Q i represents possible conserved charges and β is the inverse temperature 1/T . Since
it obviously commutes with the Hamiltonian and e−β Ĥ can be interpreted as a complex time
evolution operator, Green functions have interesting properties as we see in the following.
From cosmological point of view, the chemical potential for Baryon and Lepton asymmetries is
much smaller than the background temperature, and hence we can use the simple canonical
ensemble in most cases. Thus, in the following, we summarize basic relations for the canonical
ensemble neglecting µ.

B.1 Kubo-Martin-Schwinger Relation

As mentioned above, since the canonical ensemble,

ρ̂eq =
e−β Ĥ

Z
; Z = Tr

�
e−β Ĥ

�
, (B.2)

commutes with the Hamiltonian Ĥ and the translation operator P̂, all the Green functions
depend only on the difference of space time:

G• (x , y) = G• (x − y) . (B.3)

Therefore it is convenient to perform the Fourier transform

G• (x)
Fourier tr.−−−−−→ G• (P) . (B.4)

Also the canonical ensemble can be understood as a complex time evolution operator, and
hence there is a relation between two basic Green functions:

G>
�
x0, x

�
= (−)|ϕ|G<

�
x0 + iβ , x

� Fourier tr.−−−−−→ G> (P) = (−)|ϕ|eβp0
G< (P) , (B.5)

which is the so-called “Kubo-Martin-Schwinger” (KMS) relation [83, 84]. As it connects two
independent propagators, all the propagators can be expressed by a single propagator. We
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choose the Jordan propagator (spectral function) as this role and call its Fourier transform the
spectral density, which is denoted as

ρ(P)≡ GJ(P). (B.6)

Then the other propagators can be obtained as

G> (P) =
�
1± fB/F(p0)

�
ρ (P) , (B.7)

G< (P) = ± fB/F(p0)ρ(P), (B.8)

GFyn (P) =

∫
dk0

2π
ρ (k0, p)

ik0 − ip0 + ε
± fB/F(p0)ρ(P), (B.9)

GDys (P) =

∫
dk0

2π
ρ (k0, p)

ip0 − ik0 + ε
± fB/F(p0)ρ(P), (B.10)

GH (P) =
�
1± 2 fB/F(p0)

�
ρ(P), (B.11)

for |ϕ| = 0, 1 respectively. Here the Bose-Einstein/Fermi-Dirac distribution is denoted as
fB/F(p0).

B.2 Real and Imaginary Time Formalism

As explained in the previous chapter, the generating functional for sources J1, J2, . . . , Jn is given
by

Z[{J};ρ]≡Tr

�
ρ̂TC exp

�
i
∑

m

1
m!

∫
C

d4 x1 · · · d4 xmJm(x1, . . . , xm)ϕ̂(x1) · · · ϕ̂(xm)

��
(B.12)

=

∫
dφ+dφ−〈φ+|ρ̂|φ−〉

∫ φ−

φ+

Dφ

exp

�
i

∫
C

d4 xL (x) + i
∑

m

1
m!

∫
C

d4 x1 · · · d4 xmJm(x1, . . . , xm)φ(x1) · · ·φ(xm)

�
(B.13)

For a thermal equilibrium system, one can proceed further because the canonical ensemble can
be interpreted as the complex time evolution operator:

〈φ+|ρ̂eq|φ−〉=
∫ φ+

φ−
Dϕ exp

�
i

∫
Cβ

d4 xL (x)
�

, (B.14)

where Cβ denotes the Matsubara contour. Therefore it is convenient to extend the integral
domain of sources as

Zβ[{J}]≡Tr

�
ρ̂eqTC+Cβ exp

�
i
∑

m

1
m!

∫
C+Cβ

d4 x1 · · · d4 xmJm(x1, . . . , xm)ϕ̂(x1) · · · ϕ̂(xm)

��
(B.15)

=

∫
[anti-]periodic

Dφ exp

�
i

∫
C+Cβ
d4 xL (x) + i

∑
m

1
m!

∫
C+Cβ
d4 x1 · · · d4 xmJm(x1, . . . , xm)φ(x1) · · ·φ(xm)

�
(B.16)
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where the path integral is performed under the condition φ(0+, x ) = (−)|ϕ|φ(−iβ , x ) for |ϕ|=
[1], 0.

There are well known two conventions to construct the thermal field theory.�1 If all the
source terms lie on the contour C , then all the Green functions have real time arguments,
which results in so-called “real time formalism (RTF)” [75–77]. On the other hand, if all the
sources lie solely on the contour Cβ (which implies t f = 0), then all the Green functions have
imaginary time arguments, which is so-called “imaginary time formalism (ITF)” [85].

The Schwinger-Keldysh propagator generated from this functional becomes

G (x , y) =
¬
TC+Cβ ϕ̂(x)ϕ̂(y)

¶
. (B.17)

To see the relation between two formulation, the following expression of Shwinger-Keldysh
propagator is useful

G (x , y) =

∫
d4P

(2π)4
e−iP·(x−y)

�
θC+Cβ (x0, y0)± fB/F(p0)

�
ρ(P), (B.18)

for |ϕ| = 0, 1. Here we use the KMS relation. On the one hand, if one chooses both x0, y0 on
the contour C , then the Schwinger-Keldysh propagator encodes the following ones as can be
seen from Eq. (A.6)

G(RTF)(x) =



∫
d4P
(2π)4

e−iP·x �∫ dk0
2π

ρ(k0,p)
ik0−ip0+ε

± fB/F(p0)ρ(P)
�

for x0 ∈ C+, y0 ∈ C+∫
d4P
(2π)4

e−iP·x �1± fB/F(p0)
�
ρ(P) for x0 ∈ C−, y0 ∈ C+∫

d4P
(2π)4

e−iP·x ± fB/F(p0)ρ(P) for x0 ∈ C+, y0 ∈ C−∫
d4P
(2π)4

e−iP·x �∫ dk0
2π

ρ(k0,p)
ip0−ik0+ε

± fB/F(p0)ρ(P)
�

for x0 ∈ C−, y0 ∈ C−

, (B.19)

for |ϕ| = 0, 1. On the other hand, for x0, y0 ∈ Cβ , one finds the following periodicity/anti-
periodicity condition of the Schwinger-Keldysh propagator for ITF:

G(ITF) (x0, x ) =

∫
d4P

(2π)4
e−iP·x �1± fB/F(p0)

�
ρ(P) (B.20)

=

∫
d4P

(2π)4
e−ip0(x0+iβ)+ip·x fB/F(p0)ρ(P) (B.21)

= ±G(ITF) (x0 + iβ , x ) , (B.22)

for |ϕ|= 0, 1. Therefore it can be expanded as a Fourier series:

G(ITF)(x) = i
1
β

∑
n

e−iωn x0

∫
d3p

(2π)3
eip·x G(ITF) (ωn, p) ; (B.23)

ωn =
π

β

¨
2n for |ϕ|= 0

2n+ 1 for |ϕ|= 1
. (B.24)

Obviously Schwinger-Keldysh propagators in both RTF and ITF can be constructed if one
knows the spectral density ρ. Let us consider the other way around: how to obtain the spec-
tral density ρ from the Schwinger-Keldysh propagator. In RTF it is rather trivial: since the
�1 Of course, it is possible to deform the contour so there exists many other conventions in general. One of

these is the Umezawa formalism, which is also known as the “Thermo-Field-Dynamics” [182]
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Schwinger-Keldysh propagator for x0 ∈ C±, y0 ∈ C∓ results in G>/<, one can easily obtain the
spectral density by their difference G> − G<. In ITF, the inverse Fourier transform implies

G(ITF) (ωn, p) =

∫ −iβ

0

d4 xeiωn x0−ip·x
∫

d4K

(2π)4
e−iK ·xρ(K)

�
1± fB/F(k0)

�
(B.25)

= i

∫
dk0

2π
ρ (k0, p)
ωn − k0

. (B.26)

From the definition of the retarded and advanced propagators given in Eqs. (A.14) and (A.15),
we have following relations

Gret(P) = −
∫

dk0

2π
ρ (k0, p)

p0 − k0 + iε
, (B.27)

Gadv(P) = −
∫

dk0

2π
ρ (k0, p)

p0 − k0 − iε
. (B.28)

Thus one finds

Gret(P) = iG(ITF) (p0 + iε, p) , (B.29)

Gadv(P) = iG(ITF) (p0 − iε, p) . (B.30)

Then, recalling ρ(P) = −i [Gret(P)− Gadv(P)], we can construct the spectral density from the
ITF propagator:

ρ(P) = G(ITF) (p0 + iε, p)− G(ITF) (p0 − iε, p) . (B.31)

B.3 Breit-Wigner Approximation

For instance let us consider a scalar field with a mass mϕ. In the free field limit, its spectral
density takes the following form:

ρ(P) = (2π) sgn (p0)δ
�
P2 −m2

ϕ

�
. (B.32)

For a weakly interacting system, the spectral density may be approximated with the Breit-
Winger form:

ρ(P)≃ Zp

2p0Γp�
p2

0 −Ω2
p

�2
+
�
p0Γp

�2
+ρ(cont) (P) , (B.33)

where Ωp and Γp represent a dispersion relation and a relaxation rate of quasi-particle exci-
tation respectively, which can be computed perturbatively if one specifies interactions of the
theory. Zp is the wave function renormalization which comes from the shift of the pole posi-
tion due to the thermal correction. Typically, the dispersion relation has the following form;
Ωp =

Æ
p2 +mϕ,th with mϕ,th ∼ gT . Here g is a typical coupling constant. The first part

describes a quasi-particle pole and the latter, ρ(cont), gives the continuum spectrum.
In the fermion case, there are complications associated with the chiral symmetry. In the

free field limit, its spectral density is nothing but

ρ(P) =
�
mψ + /P

�
(2π) sgn (p0)δ

�
P2 −m2

ψ

�
. (B.34)
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If the Dirac mass term is smaller than the typical size of thermal corrections to the dispersion
relation, mψ ≪ gT , then the chiral symmetry is approximately conserved. In this case, the
spectral density typically has the following form:

ρ(P) =
∑
s=±

Z s
p

2

 Γ s
p�

p0 −Ωs
p

�2
+ Γ s

p
2/4
(γ0 − q̂ · γ) + Γ s

p�
p0 +Ωs

p

�2
+ Γ s

p
2/4
(γ0 + q̂ · γ)


+ρ(cont)(P), (B.35)

where s = + correspond to the ordinary particle-like excitation, and s = − represents the
collective excitation in the plasma, which is so-called “plasmino” [117]. Again, the dispersion
relations have the threshold energy due to the thermal correction; Ωs

0 = mψ,th ∼ gT . For a
large momentum p ≫ gT , the plasmino contribution tends to be exponentially suppressed,
which is imprinted in the wave function renormalization Z−p [86].

On the other hand, if the Dirac mass term is larger than the thermal correction, mψ≫ gT ,
then the spectral density can be approximated with

ρ(P)≃ �mψ + /P
� 2p0ΓP�

p2
0 −ω2

p

�2
+
�
p0Γp

�2
+ρ(cont)(P). (B.36)
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Appendix C

Standard Cosmology

Here we briefly summarize basic ingredients of the Standard Cosmology which we use fre-
quently throughout this thesis. See for instance [50].

C.1 Friedmann-Lemaître-Robertson-Walker Universe

C.1.1 Metric

In the Standard Cosmology, the Universe is assumed to be homogeneous and isotropic on
large scales (aside from small perturbations), which leads to the so-called Friedmann-Lemaître-
Robertson-Walker (FLRW) metric:�1

ds2 = d t2 − a2(t)
�

dr2

1− kr2
+ r2

�
dθ 2 + sin2 θdϕ2

��
, (C.1)

where a(t) is the scale factor which characterizes a relative size of space-like surface, t denotes
the cosmic time and k is the curvature. The geodesic equation implies that a free-fall particle
without a peculiar motion (x i = const.) keeps fixed on this coordinate (t, r,θ ,ϕ), and hence
it is known as the comoving coordinate.

C.1.2 Einstein Equations

Assuming the general covariance, one finds the minimal action for general relativity, which is
so-called the Einstein-Hilbert action. Differentiating with respect to the metric gµν, we obtain
the celebrated Einstein equation:

M2
plGµν = Tµν, (C.2)

where the Einstein tensor is defined as Gµν ≡ Rµν − Rgµν/2 and Tµν is the energy-momentum
tensor. As one can see, the energy-momentum tensor should have the perfect fluid form�2,
Tµν(t) = diag(ρ(t),−p(t),−p(t),−p(t)), since the space-time is homogeneous and isotropic
in the FLRW universe. In the FLRW universe, the Einstein equations lead to the following two
equations:

H2 ≡
�

ȧ
a

�2

=
ρ

3M2
pl

− k
a2

, (C.3)

�1 ϕ should not be confused with the scalar field ϕ.
�2 Aside from small perturbations.
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and

Ḣ2 +H2 =
ä
a
= −ρ + 3p

6M2
pl

. (C.4)

They are also known as the Friedmann equations. From Friedmann equations, one can show

d
d t

�
ρa3

�
= −p

d
d t

�
a3
�

, (C.5)

which indicates the entropy conservation as we will see in the next section. To solve these
equations, one should specify the equation of state, which is often parametrized as

p ≡ wρ, (C.6)

where w is a parameter depending on what dominates the Universe. Using Eq. (C.5), one finds

ρ∝ a−3(1+w). (C.7)

Typically, there are three types of equation of state:

Matter: w= 0; ρmat∝ a−3, (C.8)

Radiation: w=
1
3

; ρrad∝ a−4, (C.9)

Vacuum: w= −1; ρvac = const. (C.10)

It is convenient to define the density parameters for each species:

Ω• ≡ ρ•
ρcrit

; ρcrit ≡ 3M2
plH

2. (C.11)

Obviously, Eq. (C.3) can be expressed as

1−Ωk = Ωmat +Ωrad +Ωvac; Ωk ≡ − k
a2H2

. (C.12)

The present values of these cosmological parameters are summarized as follows. The Universe
is flat; Ωk = 0.042+0.043

−0.048 (95% C.L.). The present Hubble parameter is given by H0 = 100h km
s−1 Mpc−1 with h = 0.673± 0.012 (68% C.L.). The density parameters for baryon, cold dark
matter and dark energy are Ωbh2 = 0.02207± 0.00027 (68% C.L.), Ωch

2 = 0.1198± 0.0026
(68% C.L.) and ΩΛ = 0.685+0.017

−0.016 (68% C.L.) respectively. See [47] for details.
Since the Universe is flat, we take k = 0 in the following. Then, the scale factor obeys the

scaling solution for each era:

Matter Dominant (MD): a∝ t2/3; H =
2
3t

, (C.13)

Radiation Dominant (RD): a∝ t1/2; H =
1
2t

, (C.14)

Vacuum Dominant (VD): a∝ eHt ; H = const. (C.15)
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C.1.3 Particles on FLRW Universe

Since we know the dynamics of the Universe, now we can consider how a particle on this
space-time propagates. For later convenience, let us define the notion how far a massless test
particle can propagate. The massless particle obeys the null-geodesic equation, ds2 = 0. Due
to the homogeneity and isotropy of the Universe, a comoving distance which the test particle
can propagate from t i to t can be expressed as∫ t

t i

d t
a
= η−ηi, (C.16)

where we define the conformal time, dη = d t/a. Then, we define the particle horizon, which
indicates the maximum comoving distance a particle can propagate from the beginning of the
Universe to now:

ηp(t) =

∫ t

0

d t
a
=

∫ a

ai

d ln a
aH

, (C.17)

where (aH)−1 is the comoving Hubble radius. Its physical distance is given by dp(t) = a(t)ηp(t).
The particles horizon can be expressed as

ηp(a)∝


a1/2 MD

a RD

a−1
i VD

, (C.18)

where we have assumed a≫ ai. Also, one can define the event horizon, which is the maximum
comoving distance a particle can propagate from now to the future:

ηe(t) =

∫ ∞
t

d t
a
=

∫ ∞
a

d ln a
aH

. (C.19)

Its physical distance is given by de(t) = a(t)ηe(t). Obviously, the event horizon diverges for
RD and MD but it approaches to a−1 for VD, which indicates that particles comes into the
event horizon for RD/MD but, for VD, particles goes outside the event horizon due to the rapid
expansion.

C.1.4 Horizon and Flatness problems

Here we briefly explain the horizon and flatness problem which lead us to the idea of inflation.
Eq. (C.18) indicates that the comoving Hubble radius grows monotonically. If our Universe
experiences only RD or MD, then observed Universe in the comoving horizon should be far
outside at the early epoch, and thus there seems to be no a priori reasons to expect the ho-
mogeneity of observed CMB. This is the horizon problem. Also, the density parameter of the
curvature grows with time because it is proportional to the comoving Hubble radius squared in
RD or MD. Nevertheless, observed Ωk is almost zero, which implies that its initial value should
be extremely suppressed or exactly vanish. This is the flatness problem. As one can see, these
fine-tuning issues can be ameliorated by assuming that our Universe experiences VD era at its
early epoch, which is so-called inflation, since the comoving Hubble radius decreases at this
era.
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C.2 Thermodynamics in the Early Universe

In this section, we summarize basics of thermodynamics in the early Universe; In particular,
that of particle-like excitations (on-shell pole) in thermal equilibrium neglecting finite density
corrections that appears with the coupling. The number density, energy density and pressure
can be expressed as

ni = gi

∫
p

fB/F(ωi,p); ρi = gi

∫
p

ωi,p fB/F(ωi,p); pi = gi

∫
p

p2

3ωi,p
fB/F(ωi,p), (C.20)

where gi represents the degree of freedom for each species i andωi,p represents the dispersion
relation of i. Let us see their typical behavior in two limits; Non-relativistic mi ≫ T and Ultra-
relativistic mi ≪ T :

Non-relativistic:


ni ≃ gi

�
mi

2π

�3/2

e−β(mi−µi),

ρi ≃ mini +
3

2
ni T,

pi = ni T,

(C.21)

and

Ultra-relativistic:



ni ≃ gi

�
ζ(3)

π2

�
T 3

¨
1 for Boson,

3/4 for Fermion,

ρi ≃ gi

�
π2

30

�
T 4

¨
1 for Boson,

7/8 for Fermion,

pi =
ρi

3
.

(C.22)

ζ(3) is the Riemann-zeta function and its value is ζ(3) ≃ 1.2020 · · · . As one can see, Non-
relativistic particles behave as matter and ultra-relativistic particles do as radiation. The total
energy density of radiation can be written as follows:

ρrad =
π2 g∗(T )

30
T 4; g∗(T )≡

∑
b: boson

gb

�
Tb

T

�4

+
7
8

∑
b: fermion

g f

�Tf

T

�4

, (C.23)

where the summation is taken over relativistic particles. If there exists relativistic species with
different temperature Ti, then the factor T 4

i /T
4 should be multiplied.

Let us recall the thermodynamic relation:

G(T, p, Ni) =
∑

i

Niµi(T, p); G(T, p, Ni)≡ [U − TS + pV ](T, p, Ni), (C.24)

where U , S and N represent energy U = ρV , entropy S = sV and number Ni = niV respectively.
In the first equality, we have used the fact that the Gibbs free energy G is a linear function in
an extensive variable Ni, and that ∂ G/∂ Ni = µi. Thus, we obtain the following expression for
the entropy density:

s =
ρ + p−∑i µini

T
. (C.25)
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In our Universe, the chemical potential is much less than the temperature in most cases, and
hence we neglect it hereafter. Then, together with Eq. (C.5), we can see that the cosmic ex-
pansion conserves the entropy. Importantly, the entropy is dominated by relativistic particles
and it can be expresses as

s =
4ρrad

3T
=

2π2 gs,∗(T )
45

T 3; gs,∗(T )≡
∑

b: boson

gb

�
Tb

T

�3

+
7
8

∑
b: fermion

g f

�Tf

T

�3

, (C.26)

where again the summation is taken over relativistic particles.

C.3 Scalar Field on FLRW

In this section, we derive the equation of motion for a scalar field in the FLRW background with
vanishing curvature k = 0.�3 The action of a scalar field which minimally couples to gravity is
given by

Sϕ =

∫
a3d td3 x

�
1
2
(∂tϕ)

2 − 1
2a2(t)

(∇ϕ)2 − V (ϕ)
�

. (C.27)

Here we insert the FLRW metric. For later convenience, let us rescale the scalar field φ = aϕ
and use the conformal time η. Then, in terms of the conformal variables this action can be
expressed as

Sφ =

∫
dηd3 x

�
1
2

�
∂ηφ

�2 − 1
2
(∇φ)2 − a′′

2a
φ2 − a4V (φ/a)

�
, (C.28)

where (· · · )′ represents a derivative with respect to the conformal time η.
Differentiating the action with respect to φ, we can obtain the equation of motion of a

scalar field on FLRW background:

0= φ′′ −∇2φ − a′′
a
φ + a3V ′(φ/a) = φ′′ −∇2φ − a′′

a
φ + a2m2

ϕ
φ +

λ2
ϕ

6
φ3. (C.29)

In the second equality, we have assumed that the potential is given by V = m2
ϕ
ϕ2/2+λ2

ϕ
ϕ4/4!.

In terms of the physical variables, this equation of motion can be expressed as

0= ϕ̈ −∇2ϕ + 3Hϕ̇ + V ′(ϕ) = ϕ̈ −∇2ϕ + 3Hϕ̇ +m2
ϕ
ϕ +

λ2
ϕ

6
ϕ3. (C.30)

Obviously, if the oscillation period is much faster than the expansion of the Universe H−1, then
this equation of motion can be well approximated with that of Minkowski-background.

For the sake of completeness, let us see how to quantize a free scalar field on the FLRW.
Performing the Fourier transform, the conformal scalar field can be expressed as

φ̂(η, x ) =

∫
k

�
fk(η)âk eik·x + f ∗k (η)â

†
k e−ik·x� ; 0= f ′′k (η) +

�
k2 + a2m2

ϕ
− a′′

a

�
fk(η), (C.31)

with [ak , a†
k′] = (2π)

3δ(k−k′), which indicates the following normalization of Wronskian; i =
( fk, f ∗k )≡ fk∂η f ∗k − f ∗k ∂η fk. As is usual the case with quantum fields in an evolving background,
�3 We only consider the scalar sector and neglect interactions with radiation. Their effects are discussed in the

main part of this thesis.
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a positive frequency mode and negative frequency mode can mix (See also Sec. 4.3). First, as
done in Sec. 4.3, let us consider the adiabatic expansion of the Universe; that is,

1≫ ω
′
k(η)

ω2
k(η)

; ωk(η)≡
√√

k2 + a2(η)m2
ϕ
− a′′(η)

a(η)
. (C.32)

For instance, this condition is satisfied for mϕ ≫ H /a = H with H = a′/a. Then, we can
construct the WKB solution,

fk(η)≃ e−i
∫ η

dη′ωk (η′)p
2ωk(η)

, (C.33)

and the adiabatic vacuum; âk|0〉= 0. Here we take the boundary condition of fk so that there
are no particles in the adiabatic vacuum initially. Its physical interpretation is obvious, that is,
if the de Broglie wave length is much shorter than the Hubble scale, then the expansion of the
Universe can be neglected for such particles.

For comparison, it is instructive to consider super-horizon modes in a de Sitter space. Let us
consider a light scalar field mϕ ≪ H to break the above condition. In a de Sitter background,
the wave function satisfies the following equation:

0= f ′′k (η) +
�

k2 − 2
η2

�
fk(η), (C.34)

where we take the conformal time as η = −1/(aH) so that η = 0 corresponds to the infinite
future. Fortunately, this equation can be solved analytically:

fk(η) = α
e−ikη

p
2k

�
1− i

kη

�
+ β

eikη

p
2k

�
1+

i
kη

�
. (C.35)

Then, we impose that there are no particles for modes well inside the horizon, which implies
fk→ e−ikη/

p
2k for k≫ aH = 1/|η|, that is, α= 1 and β = 0:

f (BD)
k (η) =

e−ikη

p
2k

�
1− i

kη

�
. (C.36)

This boundary condition corresponds to the Bunch-Davies Vacuum. The equal time two-point
function on the Bunch-Davies Vacuum is given by


ϕ̂k(t)ϕ̂k′(t)
�

BD
=

1
a2(η)

〈φ̂k(η)φ̂k′(η)〉BD = (2π
3)δ(k + k′) 1

a2

1
2k

�
1+

H2a2

k2

�
. (C.37)

In terms of the physical variables, this equation can be rewritten as

ϕ̂p(t)ϕ̂p′(t)

�
BD
= a4 〈φ̂k(t)φ̂k′(t)〉BD = (2π)

3δ(p + p′) 1
2p

�
1+

H2

p2

�
, (C.38)

with the physical momentum being p = k/a. The first term is nothing but the ordinary vacuum
contribution in Minkowski-space. As one can see, there is another contribution which becomes
important for super-horizon modes; p ≪ H. Moving back to the conformal expression, one
can see that the two-point function approaches a constant value for super-horizon modes:


ϕ̂k(t)ϕ̂k′(t)
�

BD

H≫k/a−−−−→ (2π)3δ(k + k′) H2

2k3
. (C.39)

This expression remains in the physical variables. Note that the obtained result is applicable
to gravitons since its (second order) action is the same as that of a massless free scalar field up
to a normalization factor.
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