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Abstract

In quantum mechanics, it is well known that counterfactual arguments sometimes lead to
paradoxes, which implies that our classical intuition is not always reliable. However, it has
been pointed out by several authors that the weak value, which was introduced by Aharonov
et al. in 1988, may be useful to comprehend quantum mechanics intuitively. Another extraor-
dinary aspect of the weak value is its amplification, which has been exploited for precision
measurement. Nevertheless, the physical meaning of the weak value is still obscure due to its
complexity of the value and the very fact of the amplification. In this thesis, by considering
various situations of quantum interference, we attempt to provide a possible interpretation of
the weak value. We find, on one hand, that the imaginary part of the weak value is relevant
to the wave nature. On the other hand, in the double-slit experiment the particle nature can
be seen in the real part of the position weak value. This property for the real part does not
hold for more general cases such as the multiple (more than two) slit experiment. The posi-
tion weak value, nevertheless, can be interpreted as the average of the classical trajectories
based on a complex probability. We also investigate the possibility of knowing which path the
particle takes in the multiple-slit experiment without destroying the interference fringes. We
show that, because of the statistical nature of the weak value, obtaining the which-path infor-
mation and the interference pattern is compatible with complementarity. Our study suggests
that the weak value is a reasonable physical quantity.
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Chapter 1

Introduction

In quantum mechanics, defining the trajectory of a particle is considered to be impossible due
to the uncertainty principle. In fact, one of the most intriguing features of quantum mechanics
is the wave-particle duality which can be observed in the double-slit experiment, and we all
know that the measurement of the which-path information destroys the interference pattern
on the screen (i.e., the complementarity).

In 1924, de Broglie introduced the matter wave (de Broglie wave) as an attempt to achieve
a physical synthesis of the wave nature and the particle nature [1]. At the 5th Solvay confer-
ence, Einstein’s main concern was whether the causality of the space-time holds in quantum
mechanics, which resulted in the impressive discussion on the famous two-slit thought exper-
iment. If one performs the double-slit experiment by using many electrons, an interference
pattern appears on the screen. Intermediately, the particle should go through one of the slit,
and one can measure the transversal momentum of the slit when the particle passes the slit.
Naturally, the total momentum must be conserved, and the momentum that the particle loses
(or gets) can be deduced. It follows that, from the position of the particle at the screen, which
path the particle took can also be found. Einstein pointed out that obtaining both which-path
information and the interference pattern contradicts the complementarity. In response, Bohr
stated that the measurement system, too, must obey quantum mechanics and, if one performs
the which path experiment, it will destroy the interference due to the uncertainty relation, and
vice versa. Bohr asserted that, in quantum mechanics, specifying the measurement apparatus
is essential, and we should not employ two contradicting measurements. Later, Feynman
mentioned that

this is impossible, absolutely impossible, to explain in any classical way, and which
has in it the heart of quantum mechanics [2].

The double-slit experiment with the electron was demonstrated in 1965 by Jonsson [3], and
the supplementary examination has been performed by Tonomura in 1989 [4], who is also
known for the experiment of the Aharonov-Bohm effect [5, 6]. While the apparatus suggested
by Einstein at the 5th Solvay conference is designed to find which path the particle takes by
measuring the momentum of the slit, Scully et al. proposed an ingenious experiment which
allows us to determine the which-path information without transferring the momentum of the
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particle, and also suggested how to erase the which-path information [7]. Their conclusion,
however, is the same as that obtained by the Bohr-Einstein debate, that is, no one can observe
its trajectory and interference simultaneously.

Despite this, the reconstruction of the trajectories in the double-slit experiment has been
demonstrated by Kocsis et al. [8] by the approach based on the weak value argued by Wiseman
[9]. In the de Broglie-Bohm theory, the velocity of the particle (the derivative of the position
with respect to time) is defined, and Wiseman pointed out that this velocity is naturally
related to the real part of the momentum weak value. Intermediately, they measured the weak
value of the momentum for a number of different screen positions and performed many trials
to reconstruct the trajectory. The resultant trajectories agree with the prediction of the de
Broglie-Bohm theory [10, 11, 12]. As Kocsis et al. claimed, the trajectories are reconstructed
by using a large number of photons, i.e., the trajectories are defined by an ensemble, not by
an individual event. The de Broglie-Bohm theory is one of the most successful examples of
hidden variable theory, which is meant to describe all physical processes through the particle
nature. In the de Broglie-Bohm theory, the motion of a particle must obey what is called
“quantum potential” and, if one knows the particle’s initial position, its motion is completely
determined [10, 11]. If, however, one measures the initial position of the particle, the position
of the particle is completely disturbed. Thus, the de Broglie Bohm theory allows us to infer
its initial position by measuring its final position.

The weak value, which was proposed by Aharonov et al. in 1988 [13], is a value defined by
two boundary conditions. Weak values are defined in the framework of quantum mechanics
and can be seen as a generalization of the expectation value, in the sense that the weak value
coincides with the expectation value if we choose the two boundaries by the same state. Like
the expectation value, the weak value is also a statistical value. The definition of the weak
value is similar to that of the S-matrix because the initial state evolves under the Hamiltonian
until the final state is specified. The main difference between the S-matrix and the weak value
is that the interaction does not disturb the initial state in the weak limit. We call these initial-
and final states pre- and post-selected states, respectively. The measurement is performed in
such a way that the object system is minimally disturbed.

Since the weak value can exceed the range of the eigenvalues, one has the possibility of
amplification and may be applied to precise measurement, i.e., estimating a tiny coupling
constant which cannot be measured in the conventional method [14, 15]. Also, the wave func-
tion can be experimentally measured by using the weak value [16]. Besides these applications,
weak values can be applied to explain away several quantum paradoxes.

Our conclusion deduced from some counterfactual argument (reference to the measurement
that we actually do not perform) sometimes fails to explain the actual result, and Hardy pro-
posed the Mach-Zehnder type interferometers to explain his paradox [17]. In Hardy’s paradox,
two Mach-Zehnder interferometers are implemented, and instead of a photon, an electron and
a positron are used for each interferometer. The interferometers have an overlapping part,
and if the electron and the positron enter the overlapping path simultaneously, they must
be annihilated. The electron always arrives at one of the detectors without the positron,
and vice versa. However, due to the overlap, the other detector can also click. One may
infer that, when the other detectors click simultaneously, the electron and the positron are



taking the overlapping path. Apparently, this result contradicts the assumption that, if both
the electron and the positron take the overlapping path, they must annihilate each other
on the overlapping path. As Bohr pointed out that the physical value is dependent on the
measurement setup. Without measurement, we must not infer its intermediate state. Since
counterfactual statements are not allowed in quantum mechanics, intuitive explanations are
not always eligible to deduce correct conclusions. The weak measurement, however, is ex-
pected to provide reasonable explanations for quantum mechanics. Indeed, for examples, to
explain Hardy’s paradox, the weak measurement has been applied [18, 19, 20].

As another example, recently Danan et al. proposed that the weak value gives a reasonable
explanation for experimental outcomes obtained in a nested Mach-Zehnder interferometers
[21]. In order to infer the path that the photons take, each mirror vibrates around its horizon-
tal axes with a certain frequency. Inference by the evolving state from the initial state does
not coincide with the measurement result (counterfactual measurement), but Danan et al.
suggested that inference by backwardly evolving state from the final state may be necessary
to understand this measurement result intuitively, and their conclusion is consistent with the
two-state vector formulation of quantum mechanics [22, 23]. By using weak values, another
intriguing example has been proposed and demonstrated in a recent experiment, in which the
spin-1/2 nature is separated from the particle [24, 25].

The physical meaning of the weak value, however, is still obscure because of the complexity
of its value and its possible amplification. Among several papers attempting to figure out the
physical interpretation for the weak value, Aharonov and Botero express the weak value as

the weak value can be regarded as a definite mechanical effect on a measuring probe
specifically designed to minimize the back reaction on the measured system [26].

Similarly, Dressel and Jordan interpret the weak value as

the real part of the weak value stems directly from the part of the conditioned shift
of the detector pointer. The imaginary part stems directly from the disturbance of
the measurement |[27].

The interpretation of the real and imaginary parts of the weak values proposed by Dressel and
Jordan is based on the canonical commutation relation. They concluded that the imaginary
part of the weak value is derived from the post-selection, and the real part can be seen as the
conditional average. Aharonov and Dressel claimed that the weak value can be interpreted
in terms of the mechanical effect of the measurement. Vaidman, one of the proponents of the
weak value, stated that there is a significant meaning in the weak value:

our definition of elements of reality, i.e., a definite shift of the probability distribu-
tion of the pointer variable yields for pre-and post-selected systems the weak value
[28].

Vaidman, in his paper, proposed a novel definition of an element of reality and asserted that,
when the interaction between the object and a meter system is weak, the average shift of the
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meter (which is the weak value if one performs the post-selection) coincides with the element
of reality. The standpoint of Vaidman is different from that of Aharonov and Dressel, because
the mechanical shift of the meter has been given a distinguished meaning, namely, the element
of reality.

In our paper, we adopt a similar position as Vaidman without relying on the notion of
an element of reality. Instead, we try to find a proper interpretation of the weak value
through several examples. We utilize the weak value so as to understand quantum mechanics
intuitively. The difficulty of defining a trajectory in quantum mechanics is known: when
the position of the particle is determined, the momentum becomes completely unknown,
making the trajectory completely ambiguous. Since the weak value is obtained in the weak
limit, ideally speaking, the initial (pre-selected) state is not disturbed, even if the position is
observed. Besides, the position weak value coincides with the classical trajectory in several
examples, so that utilizing the position weak value as the (weak) trajectory is reasonable. In
the double-slit experiment, the position weak value can be obtained without destroying the
interference pattern. In our paper, we investigate the interference effect based on the weak
values.

We show that the interference effect can be expressed in terms of the imaginary part of
the weak value [29]. In contrast, in the double-slit experiment, the real part of the position
weak value can be interpreted as a particle picture. However, this particle nature does not
hold for the multiple-slit experiment. Nevertheless, we can show that the position weak value
can be realized as the average of the classical trajectory based on the complex probability.
By introducing the internal degree of freedom, the classical trajectory is obtained from the
re-scaled weak value without destroying the interference pattern. This trajectory does not
contradict the complementarity because the weak value is statistical [29, 30].

The plan of this paper is as follows. In chapter 2, we quickly review several examples to
learn how to utilize the weak value in terms of the intuitive interpretation, and how to perform
the weak measurement. Then, the connection between interference and the imaginary part
of the weak value is shown in chapter 3. The index of interference is defined and expressed
in terms of the imaginary part of the weak value. This way, the imaginary part of the weak
value can be related to the interference effect [29]. As examples, we treat the double-slit
(thought) experiment and the spin-1/2 system. It turns out that the index of interference
can be expressed in terms of the imaginary part of the momentum weak value. The index
of interference can be expressed in terms of the imaginary part of the spin component. In
chapter 4 we investigate the trajectory in terms of the position weak value by using multiple-
slit (thought) experiment and Lloyd’s mirror experiment. In the free Hamiltonian, the position
weak value of the particle between two points exactly coincides with the classical trajectory.
This feature, however, does not hold in the double-slit experiment because there exists an
imaginary part. The real part is the average of the classical trajectories. However, again, this
property does not hold when we consider the three- (or multiple-) slit experiment. Admitting
the complex probability, the position weak value can be interpreted as the average of the
classical trajectory. In classical optics, Lloyd’s mirror experiment is known for making the
interference pattern on the screen with a single slit. The position weak value can be calculated,
and the result shows that the weak trajectory is a smooth function of time ¢t and has the



imaginary part which cannot be seen in classical optics. Also, the spin-tagged position weak
value is defined in order to specify which path the particle takes without destructing the
interference by exploiting quantum eraser. The re-scaled spin-tagged weak value coincides
with the classical trajectory. We show that this spin-tagged position weak value does not
contradict the complementarity [29, 30]. Our conclusion and discussions are provided in
chapter 5. Detailed calculation in section 2.5 is in Appendix A. In Appendix B, we show that,
for the double-slit experiment for quantum eraser, the index of interference is represented by
the imaginary part of the spin-tagged momentum weak value.

This thesis is based on the submitted papers [29, 30].



Chapter 2

Weak value and the weak
measurement

In this chapter, we briefly review the weak value and its applications. The weak value was
proposed by Aharonov et al. in 1988 [13]. The weak value can be implemented in precision
measurement [14, 15] and be used to explain quantum paradoxes [19, 21]. The trajectories of
particles are reconstructed from the momentum weak value [8, 9], and reconstructed trajec-
tories coincide with the prediction of the de Broglie-Bohm theory [10, 11, 12]. Nonetheless,
because of the amplification and the complex valuedness of the weak value, the physical
meaning of the weak value is still obscure. Several authors attempted to find a physical in-
terpretation for the weak value [26, 27, 28]. The weak measurement is utilized to obtain the
weak value.

2.1 Time symmetry in the quantum process of mea-
surement

Before taking up the argument of the weak value, we briefly explain time symmetry in the
quantum process of measurement (two-state vector formalism) [22]. This procedure was
advocated by Aharonov et al. and closely connected to the weak value. Reznik and Aharonov
claimed that the weak value is a physical quantity in the time-symmetric process [31].

In quantum mechanics, the dynamical laws of motion, which can be expressed by either
the Heisenberg equation or the Schrodinger equation, are time symmetric and correspond to
Hamilton’s equation of motion in classical mechanics. However, the macroscopic phenomena
are, of course, asymmetric in time, e.g., the second law of thermodynamics. It is believed
that asymmetric phenomena enter into quantum mechanics through the theory of measure-
ment which cannot be described by the Heisenberg equation nor the Schrodinger equation.
The measurement induces the wave function collapse which is time irreversible. Aharonov et
al. introduced time symmetric nature into the measurement theory [22]. The initial state is
selected by a measurement (pre-selection). In conventional theory, one performs the measure-
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ment on this initial state. In the two-state vector formalism, however, the selection of the final
state (post-selection) is also required, and the future and the past should be considered equiv-
alently. The initial state is prepared by the measurement Ay (pre-selection), and when the
measurement result is af), the corresponding state is assumed to be |ag). The superscript “i”
denotes distinct eigenvalues of the observable, and the subscript denotes different observable.
The final state is selected by the measurement Ay (post-selection), and when the outcome is

a1, the corresponding state is ]a ~N+1)- Intermediately the N measurements, A, As, ..., Ay,
are implemented. The results, al,ak, ... a%, are obtained, and the corresponding eigenstates
are described by |a]), |a%), ..., |a®), respectively. The projection operator is expressed by,
I} = |af)(aj]. (2.1)
The joint probability P(aj, a{, ..., 0} ) that the measurements Ag, Ay, -, An, Any1 result
in the eigenvalues a}, a},dk, ... a%, a% 41 is defined by
P(ay, a3, ..., ax,) = Te(IHTH T, - - - IR, TR - - T). (2:2)

The total probability P(af,al,,) is defined by taking all possible summation for the inter-
mediate states:

Plag, afyq) =y oo Te(IIGIE - TIRTIR TIRIL - IT)). (2.3)
) 7 n

The conditional probability P(ai,...,a%¥|a}, a% ) that the outcomes al, ..., a¥ are obtained
for fixed values aj, and afy; is given by

; , Plad,al,....a%.,,)
Pai, .., allah, alyyy) = —op 2 A (2.4)
- P(%a aRH—l)
The conditional probability P(al, ..., aRt|ah, aly. ) is time symmetric because, if one performs
the measurement backward in time, i.e., Ayy1, Ay, -+, A1, the conditional probability does

not change. Some may wonder that the post-selection is artificial. However, this kind of
procedure is implemented by the experimenter. For example, let us consider the Stern-
Gerlach experiment. Firstly, the ensemble of particles with the spin z up is prepared by
the measurement (pre-selection). Then, the measurement of the spin component along z
(or y) is measured (intermediate measurement). Finally, the experimenter should count the
number of particle at the screen (post-selection). Thus, the experimenter performs the pre-
and post-selections.

2.2 Weak value

The definition of the weak value of the observable A is

4 wl4le) (25)

(Wlg)
10



where |¢) and |¢) are the pre- and post-selected states, respectively [13]. The weak value A,
can be seen as a generalized expectation value because, if one puts the post-selected state as
|1) = |¢), the expectation value can be obtained from the weak value. The expectation value
can also be obtained from the weak value by using the completeness relation »_, [¢) ([ =L,

(A) = ($lAlg) = D (Blu) (vl Alg) = ZIW’ ’ Jﬂ?
P

> 1W]e)* A, (2.6)
v

where |{1)|¢)|? is the probability to obtain the post-selected state |¢) for a given pre-selected
state |¢). It is clear that, when the denominator of (2.5), (¥|¢), approaches to zero, the
weak value becomes infinitely large unless the numerator also becomes zero (amplification).
Besides, the weak value is a complex valued number because of the post-selection. Due to
the amplification and the complex valuedness of the weak value, the physical meaning of the
weak value is obscure.

The amplification of the weak value may be applied to estimate the coupling constant
which cannot be detected in the conventional method [14, 15]. The weak value also allows us
to measure the wave function directly [16]. Besides, it is expected that the weak value enables
us to explain the measurement result intuitively [18, 19, 20]. In quantum mechanics, as Bohr
described, we cannot mention the counterfactual measurement that we do not measure, and
the conclusion based on the counterfactual measurement sometimes leads to the paradox as
Hardy’s paradox [17]. By exploiting the weak value, however, the reasonable explanation can
be obtained. A bizarre feature of the weak value can also be observed, in which the spin-1/2
nature is separated from the particle by using neutrons [24, 25].

We summarize the applications of the weak values in the following sections.

2.2.1 Hardy’s paradox

In this subsection, we briefly explain Hardy’s paradox, and the intuitive interpretation of
Hardy’s paradox is shown by exploiting the weak value. Hardy’s paradox directly stems from
the counterfactual measurement [17]. As Bohr noted, in quantum mechanics, all we can
mention is the measurement result. Meanwhile, Aharonov et al. claimed that the weak value
can be applied to explain away Hardy’s paradox [19].

Hardy utilized two Mach-Zehnder interferometers to explain his paradox [17]. Each in-
terferometer has the overlapping part, and instead of photons, electrons (e~) and positrons
(e*) are exploited. Without a particle e™ (e7), another particle e~ (e™) always arrives at the
detector C_ (C,) (see Fig.2.1). When each particle gets through the overlapping path, the
particles must be annihilated. The electron state passing through on the overlapping path
is described by |o)_ and the positron state on the overlapping path, is described by |o),. In
contrast, if the electron and the positron are on the non-overlapping paths, these states are
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Figure 2.1: The illustration for Hardy’s paradox in which the combination of two Mach-
Zehnder interferometers is employed. Each interferometer is set to arrive at the C.. When
both particles get through the overlapping path simultaneously, the particles annihilated, so
that the probability that the detector DL clicks is not zero.

represented by |no)_ and |no),, respectively. The initial state is denoted by

1
|0) = ﬁ(l0>+ ® [no)— + [no)y & lo)- +[no)y @ |no)-), (2.7)

when the particles are not annihilated. It is assumed that the detector D, (D_) clicks whenever
the electron or the electron (the positron) enters the overlapping path. If |¢) is projected onto
the positron state |no), (the positron goes through the non-overlapping path), the electron
state is 4 (nol¢) o (|o)_ 4 |no)_)/v/2, and then the detector C_ clicks. Similarly, the detector
C, clicks when the positron state is _(no|¢) o< (o), + [n0)_)/+/2 (the electron goes through
the non-overlapping path). The detectors D_ and D click when the electron and the positron
states are (Jo)_ — |no)_)/v/2 and (|o)+ — |no))/v/2, respectively. The joint probability that
the detector C, and C_ click simultaneously is

3
In the same vein, the joint probabilities P(C,D_), P(D4,C_), P(D4,D_) are
1
P(C;,D-) = P(D4,C) =P([D,,D-) = 12 (2.9)

The joint probability P(D, D_) that the detectors D click simultaneously is not zero. When
D, and D_ click simultaneously, both of the particle take the overlapping path (because it is
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assumed that the detector DL clicks when either the electron or the positron enters overlapping
path), and it contradicts the fact that the electron and the positron must be annihilated.

Next, let us show that the weak value can be exploited to explain Hardy’s paradox intu-
itively [19]. Our interest is when D, and D_ click simultaneously, and hence we choose the
post-selected state as

¥) = %(|n0>+ = lo)4) @ ([no)— —[0)-). (2.10)

We define the projection operators,

IL}, = |no);+(no|, I, = |no)__(no, (2.11)
H: = ‘O>++<0|7 H; = 0>——<0’a (2'12)
M, =10, @I, 17 =1 @11, (2.13)
I, =15 @IL,,, I, =11 @11, (2.14)

from which the path of the particles can be obtained, e.g., the operator IT} expresses that
the positron is on the non-overlapping path. The weak value of the projection operators
(2.11), (2.12) can be easily derived as

1 = WL, lé) _ LT - (YT, |¢)

T {dlg) T Tl .
s Wi e e (I, [6)
oo =gy =% e =gy 0 210

from which we can conclude neither the positron nor the electron takes non-overlapping path
in terms of the weak value. It is consistent with the intuitive argument. Similarly, the weak
values of the projection operators (2.13), (2.14) are obtained,

.. =0, (2.17)
Moo, =L 150, =1, (2.18)
H;L'_(;,_now = _]-7 (219)

from which we conclude that the electron and the positron do not take the overlapping path
simultaneously. Besides, from (2.18), we conclude that the electron (the positron) gets through
the overlapping path while the positron (the electron) gets through the non-overlapping path.
However, it is weird because there is always only one pair. To compensate this discrepancy,
(2.19) can be implemented. Both particles take non-overlapping paths.

Hardy’s paradox is originated from the inference of the counterfactual measurement. Even
if the detectors D, and D_ click simultaneously, one cannot conclude that the particles
get through the overlapping path. However, the weak value may enable us to mention the
intermediate state and give us the intuitive explanation.
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Figure 2.2: FIG.1 from [21]. Mirrors A and B are rotating horizontally with frequencies
fa and fp, respectively. Red lines represent the path that the photons take. (a): Mach-
Zehnder interferometer with the power spectrum. (b): Mach-Zehnder interferometer without
the second beam splitter. Only the frequency fp is measured.
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2.2.2 Asking photons where they have been

Danan et al. suggested the intuitive interpretation of the Mach-Zehnder interferometer by
using weak values [21].

Firstly, a simple Mach-Zehnder interferometer is considered. Mirrors A and B vibrate
horizontally with frequencies f4 and fg, respectively. Intuitively, from Fig. 2.2 (a) photons
are passing through both arms, and the measurement result coincides with this intuition.
When the second beam splitter of the interferometer is removed, intuitively, the detected
photons pass through one of the arms, and the intuitive inference is consistent with the
measurement result: Fig. 2.2 (b).

Secondly, more complicated interferometer is suggested as Fig.2.3(a), (b), and (c). In
Fig. 2.3 (a), the interferometer is prepared so that the photons may be passing through all
arms, and the power spectrum explains that the photons are affected by all mirrors. So far, it
seems that the intuitive explanation (the path of the photons) coincides with the measurement
result. In general, however, this intuitive explanation does not work. The interferometer is
adjusted so that the photons are not to reach the mirror F as Fig.2.3 (b). Intuitively, the
only detected photons are passing through the mirror C while the photons that take the
path via the mirrors E, A, and B, do not reach the detector, and hence it seems that the
only frequency fo would be detected. However, from the measurement result Fig.2.3 (b),
the frequencies fa, fp, and fo are detected. Besides, the frequency fg is not detected even
though the frequencies f4 and fp are measured. This result (the power spectrum) contradicts
the intuition. This discrepancy occurs due to the counterfactual intuition. One may think
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Figure 2.3: FIG. 2 from [21]. Each mirror are oscillating horizontally with certain frequencies.
Red lines represent the path that the photons take. (a): Mach-Zehnder interferometer with
the power spectrum. All frequencies are detected. (b): Set inner interferometer not to reach
at the detector. (c): No frequencies are detected when the lower arm is blocked.

that some of the particles leak to the mirror F and are detected. To check this, Danan et al.
performed the measurement as shown in Fig. 2.4 (¢), and it turns out that there are no leak.

Danan et al. suggested that the result in Fig. 2.3 (b) can be explained in terms of the weak
values. The localized wave packet near the mirror A is described by |A), etc. The pre-selected
state is

1 .
|9) = E(W +1i|B) +[C)). (2.20)
The post-selected state is
) = —=(|4) — i|B) + C)). (2.21)

V3

Let us define several projection operators,

[y = |A)(A], Tl = |B)(BI, (2.22)
o = |C)(C], T = |E)(E], (2.23)
Iy = |F)(F| (2.24)
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Figure 2.4: FIG.3 from [21]. Describing two-state vector formalism. Each mirror oscillates
horizontally with a different frequency. Red lines represent the path that the photons take.
Dashed green lines represent the backward evolving state.

from which one can observe the path of the photons. The weak values are

_ (plAle) _(@[Clg) _

o ="ggy =1 Mo ="ggy =1 (2.25)
_ ([Ble)

g, = NN 1, (2.26)
_ (¥IBl9) _ _ (IFl9) _

e =y =0 M= gy =0 (227)

and these values correspond to the measurement result in Fig. 2.3 (b) except for its sign. Also,
the result Fig. 2.3 (b) can be explained in terms of the two-state vector formalism of quantum
theory [22]. Let us consider the post-selected state |¢)) which evolves backward in time. The
path that photons take is indicated by dashed green lines in Fig.2.4. We may conclude that
the power spectrum can be intuitively explained away by the overlapping of the states evolving
forward and backward. Danan et al. concluded that, in order to give reasonable explanation
for the measurement, one has to take into account the backward evolving state, not only the
forward evolving state.

2.2.3 Cheshire cat

Aharonov et al. proposed a “quantum Cheshire cat” [24] making an analogy to Alice’s Adven-
tures in Wonderland written by Lewis Carroll in which the Cheshire cat disappears while its
grin is left. Aharonov et al. suggested that, in terms of the weak value, the grin is separated
from the Cheshire cat. In this subsection, we briefly review the quantum Cheshire cat, which
is realized by using the weak value [24].

The locations of the cat in the box 1 and the box 2 are represented by [1) and |2),
respectively. The state that the cat is grinning is expressed by |+), while |—) represents the
cat with frowning. Let us introduce projection operators for the grin state and the frown
state as

I =4+, = [-)(~] (2.28)
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from which whether the cat is grinning or not can be observed. The cat with grin is expressed
by

o, =11, —1TI_. (2.29)
For the location of the cat, the projection operator is described by
M = [1)(1], T = [2)(2], (2.30)

from which the position of the cat can be observed. At t = 0, initially the cat state is prepared
as,

1 1
[9) =5+ + =) @)+ 5(+) =) ®2), (2.31)
and at t =T, the cat state is post-selected by

¥) = %(|+> — =) e (1) +12). (2.32)

The location of the cat and whether the cat is grinning are obtained in terms of the weak
values,

I

I, = o) 0, (2.33)
_ (@iLl¢)

Iy, = <7/1’¢> 1, (2.34)
_ (Wloalé) _

O = 0Ta) 1, (2.35)

from which the cat is always grinning and in the box 2 intermediately, and one may infer that
the cat is in the box 2 with grinning. However, the weak value for the cat with grinning in
the box 2 becomes

(0, ® 1), = 0. (2.36)
In contrast, the grin is in box 1,
(0, ®1Iy), = 1. (2.37)

Thus, the cat is in the box 2, but the grin is in the box 1. Experimentally, Denkmayr et al.
confirmed that the spin nature is separated from the neutron [25].

2.3 Reconstructed trajectories based on the de Broglie-
Bohm theory

Because of the uncertainty principle, we cannot define the trajectory for the quantum particle.
In the double-slit experiment, which path the particle takes is the particle nature, while

17



the interference pattern on the screen is the wave nature. The wave-particle nature is not
measured simultaneously by the complementarity. Despite it, Kocsis et al. reconstructed the
trajectories in the double-slit experiment by using the momentum weak value [8] as expected
by the de Broglie-Bohm theory [9, 10, 11, 12].

The de Broglie-Bohm theory is one of the most successful examples of the hidden variable
theory. In the de Broglie-Bohm theory [10, 11], the velocity of the particle is defined by

. ixt)

= Bty (2.38)
J(x ) = Qimi(cb*(X» HVo(x,t) — (Vo' (x,1))o(x, 1)), (2.39)
P(x,t) = ¢"(x,t)p(x, 1), (2.40)

where j(x,t) is the probability current and P(x,t) is the probability. The probability and the
probability current satisfy the conservation equation

OP(x,t .

0P, 1) +V-jx,t)=0. (2.41)

ot

All physical processes are described by the particle nature, and the notion of the particle
obeys what is called “quantum potential”. From (2.38), it is easily shown that the velocity
can be written in terms of the momentum weak value [9],

X = %Re puw(x,t) = %Re [M] . (2.42)

(x|o(t))
By solving differential equation (2.42), one can obtain the trajectories without disturbing
the interference pattern. Kocsis et al. implemented (2.42) for the double-slit experiment by
using photons. The measurement apparatus is prepared as shown in Fig. 2.5. To measure the
momentum weak value, the polarization state has been exploited as a probe system. Initially,
the probe system (the polarization state) is prepared by

1
V2

Then, the weak measurement is performed by a piece of calcite which rotates the polarization
state to

D) (IH) +1V)). (2.43)

D) — |®) e ) + B9 V) ) (2.44)

1
;=E<

where the birefringent phase shift ¢, can be approximated to

ke
o = 5@ + o, (2.45)

where £ is the coupling strength between the phase for the polarization state and the mo-
mentum (wave-number) in the z-direction, k,. The calcite is tilted to tune ¢y = 0 modulo
2.
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Figure 2.5: Fig.1 from [8]. The apparatus to reconstruct the trajectories. Single pho-
tons are split into two parts on a beam splitter, which represents the double-slit. Then,
the polarizer prepares the photons with a polarization |D) = (|H) + |V))/v/2. The weak
measurement is performed by a piece of calcite which rotates the polarization state to

<e_i%¢”“|H> + ei%¢k|V>> /V/2. Lenses L1, L2, and L3 allow us to measure the image plane

with various different distance. A polarization beam displacer is used to measure the polar-
ization of the photons in the basis |R), |L). A cooled CCD measures the final position of the
photons.

The lenses allow us to measure the image plane with arbitrary different distance. Before
post-selecting the position of the photons in the z-direction, by using a polarization beam
displacer, the polarization state with |L) = (|H) +i|V))/v/2 is displaced 2mm in the y-
direction while the polarization state with |R) = (|H) —i|V))/v/2 does not change. Finally,
the photons are observed on the cooled CCD (post-selection). The intensities I and I, at
the screen for each polarization state are

1- +I)  14si

= l@IR)P s (% 4 7Y < Lot B _1ien(e) o
2 4 2 2
1+ +I) 1—si

Iy = [(@IL)? = cos? (24 T) = =255 <2‘0’“ ) _ Sl;(“”’“). (2.47)

From (2.45), we can write the wave number in the z-direction as

kx 1 - IR_IL
Feo_ Z — ), 9.48
i §< (fRHL) %) (248)

where ¢y equals 0 modulo 27. The momentum weak value is measured from (2.48), and
Kocsis et al. reconstructed the trajectories by (2.42). This reconstructed trajectories coincide
with the trajectories predicted by the de Broglie-Bohm theory: see Fig. 2.6.
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Figure 2.6: Left: Fig.3 from [8]. Trajectories reconstructed of single photons. Right: Fig.3
from [12]. Predicted trajectories from the de Broglie-Bohm theory in the double-slit experi-
ment.

2.4 Weak measurement

So far we have reviewed several applications of the weak value. In this section we explain the
weak measurement and the interpretation of the weak value [27]. Then, we briefly review the
definition of the element of reality of Vaidman [28].

Indirect quantum measurement was implemented to measure the weak value in which the
object and the meter systems are prepared. The initial state is the product state of the meter
and the object systems:

p o= |2 @ ps, (2.49)
ps = |9)(l. (2.50)

The meter and the object states p evolve under the unitary operator U,, and the object
system becomes entangled with the meter system. The unitary operator is

Uy := exp [—i%p ® A] ) (2.51)

where g, p, and A are a coupling constant, the momentum of the meter system, and the
observable on the object system, respectively. Subsequently measuring a particular meter
position is equivalent to performing an operation M, on a reduced system state,

Ma(ps) = Tral(|e)(z] @ T)UwpU]] = Mup M, (2.52)
M, = (z|U,|®), (2.53)

where Try(+) is a partial trace on the meter Hilbert space and M, is a Kraus operator. Also,
we can measure a particular meter momentum p and is equivalent to performing an operation
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N, on a reduced system state,

Ni(ps) = Tral(lp){p| ® L)UrpUf] = Nopo N, (2.54)
Ny = (plUI®) = exp (224) (pl@), (2.55)

where the Kraus operator N, contains a purely unitary factor A that disturbs the system.

To post-select the object system, the experimenter has to select the outcome of the second
measurement for the object system after the interaction U,,. In other words, the experimenter
selects the outcome that satisfies a constraint. If we represent the second measurement as a
set of projection operators {II;} with parameter f, the total joint probabilities to obtain the
sets of measurement results (z, f) and (p, f) are

Pla,f) = e[l M(ps)], (2.56)
P(p.f) = Tr[IN;(p,)] (2.57)

The conditional probabilities that we get the result f for the second measurement are defined
as

) _ Trs[HfM ( s)]

Ple, f
PED = 30 = nime(p) (2:58)
i - Sl
E(p) = TrlUn(®)(®] @ p)UL. (2.60)

To obtain the conditional average for the meter position and momentum, we average (2.58)
and (2.59) over x and p, respectively,

o)y = /_ T v s P(z|f) = T;iﬁgf’;ﬁ] (2.61)
Hp)r = /_ N dpp P(p|f) = T;r[g;?;p ﬁ] (2.62)
Xr(ps) = Tral(z ® L)U,(|2) (@] ® ps)UL], (2.63)
Pr(ps) = Trgl(p @ L) Uy (|P) (P @ ps)UL]. (2.64)

To interpret (2.63) and (2.64), we use the canonical commutation relation,

Xr(p:) = X(ps) +9E{A pi}/2), (2.65)
Pr(pi) = Plpi), (2.66)
where
X(ps) = Tra[Us({z,|®)(®[}/2® p)U]], (2.67)
Plps) = Tra[Us({p,|2)(®[}/2© p,)U]]. (2.68)
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When the post-selection is an identity operator II; = I, the unitary operator U, is canceled
in (2.61) and (2.62) because of its cyclic property of total trace,

@y = (z)o+ g{Ao, (2.69)
s = (P, (2.70)

where ()¢ denotes the expectation value. The average shift from the initial meter position
is the expectation value of A. However, there is no shift in the momentum p because the
unitary operator U, and the momentum p commute Uy, p] = 0. Thus, the meter momentum
p does not contain information of A.

From the canonical commutation relation, we obtain the final exact expressions of (2.61)
and (2.62) as

Tr [l Xps] | Trg[I;E({A, ps})]

A= R E )] Y I E ()] (2.71)
o = e (2.72)

Then we expand (2.71) and (2.72) perturbatively with respect to the coupling strength g as

Ep) = Y1 (&) il 4)(p,), (2.73)

i
p) = 3L (4) W g 4y, (2.71)
Plp) = 3 () ol ) (), (2.75)

where the operation (adA)(-) = [A, -] is left-hand action of A in the adjoint representation of
its Lie algebra and indicates disturbance of the measurement of the operator A. Ignoring the
second oder in g, one obtains

g9 {p,2})o Trs[p(ad A)(ps)] | Tro(I{A, ps})

= 2.76
o)y — (x)o+ i 92 Tr. (T ps) +9 2Tr,(Ipy) (2.76)
9 oy Trs[ll;(ad A)(ps)]
— 2.
sy = {pho+ = {p)o Tea( ) (2.77)
Introducing complex valued weak values, we rewrite (2.76) and (2.77) as
Ho)r = (x)o+ %@(ﬂm&u) + gReA,, (2.78)
) = (pho+ 3 (pPo(2mA,), (2.79)

where A, =Tr (II;Ap,)/Trs(Ilfps). If the wave function ®(z) is purely real, so that the
measurement is minimally disturbing, then ({p, z}/2)¢ vanishes,

Upatho = / 02 (), p} B(x)

— —ih / do®*(z) (229 (z) + ®(z)), (2.80)
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because (2.80) is purely imaginary despite the real valuedness of the expectation value
{({p,x})o, so that the integral must be zero. {z,p} is Hermite, and hence (2.80) must be
real.

According to (2.78) and (2.79), the shift from the initial meters represents the real and
the imaginary parts of the weak values. Let us briefly review the conclusion by Dressel et al.
[27]. ReA,, gives directly the conditioned shift of the weak value A,,. Since the disturbance is
indicated by adA, there is no further perturbation of the measurement in (2.76) if the meter
state ®(z) is a real number. Thus, ReA,, is a conditioned average of A in the ideal limit. In
contrast, Im A, in (2.79) can be regarded as the disturbance of the measurement which is
indicated by adA in (2.77). As we have seen in (2.79), the imaginary part of the weak value
ImA,, is described by adA, which can be written as

a(+) = —i(adA)(-), (2.81)
from which the total probability P(f) can be changed by e,

P.(f) = Tr.[IL; exp(eda) (p.)], (2.82)

where exp(ed4)(ps) = exp(—ieA)ps exp(i€eA). Then, ImA, can be derived from the directional
derivative operation,

0
2ImA, = Py InP(f)| . (2.83)

e=0

Dressel et al. pointed out that

the imaginary part of the weak value is half the logarithmic directional derivative
of the postselection probability along the natural unitary flow generated by A [27].

Also, Dressel et al. claimed that the imaginary part of the weak value does not contain any
information about the measurement of A, but the disturbance of the weak measurement.

2.4.1 An element of reality

In this subsection, we briefly introduce the interpretation of the weak value discussed by
Vaidman based on the element of reality [28]. An element of reality is originally proposed by
Einstein, Podolsky, and Rosen [32]. The EPR definition of the element of reality is:

If, without in any way disturbing the system, we can predict with certainty(i.e.
with probability equal to unity) the value of a physical quantity, then there exists
an element of physical reality corresponding to this physical quantity [32].

The phrase “without in any way disturbing the system” implies that the non-existence of a
space-like separated interaction. Bell showed, however, that this type of element of reality is
not consistent [33].

Redhead proposed a different type of the element of reality:
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If we can predict with certainty, or at any rate with probability one, the result of
measuring a physical quantity at time t, then, at time t, there exists an element
of reality corresponding to this physical quantity and having value equal to the
predicted measurement result [34].

The definition introduced by Redhead does not mention that the value is measured while, in
EPR definition, the value is measured. In this definition proposed by Redhead, when an EPR
pair of spin-1/2 particles is considered, we cannot state that there are any element of reality
because we cannot predict the outcome of the measurement.

Let us briefly introduce the definition of the reality given by Vaidman. The initial meter
state is assumed to be

(z|®) = B(x) = (A%m) V42287 (2.84)

where A represents the width of the Gaussian distribution. If the initial state of the ob-
ject system is an eigenstate of the observable A, |®) = |a;), then Eq. (2.56) gives the joint
probability P(z, f) as

P(x, f) = (A%r) e (rmoe?/ad (2.85)

where we assumed II; = I;. a; is the eigenvalue of the observable A. The probability
distribution does not change its shape after the measurement, but the shift of the position.
The eigenvalue a; is considered to be the element of reality. Vaidman suggested to take into
account this property for the definition:

If we are certain that a procedure for measuring a certain variable will lead to a
definite shift of the unchanged probability distribution of the pointer, then there is
an element of reality: the variable equal to this shift [28].

The ideal measurement yields the shift of the eigenvalue for an ensemble even if the meter
state has a width A. However, if the initial state of the object system is a general state
|®) = > yla;), then the joint probability P(x, f)

P(z, f) = (A%1) 72 " fayPe(rmoad?/a%, (2.86)

i

changes its shape not only its position. The element of reality is recovered if we add a
“collapse” to one of its eigenstate. This is the definition done by Bohr for the element of
reality. However, the element of reality can be obtained after the measurement.

Aharonov et al. proposed new procedure to measure the physical value, instead of tak-
ing a very small value of A (which will lead to the strong measurement), by assuming that
the uncertainty in P is small so that the object system may not change during the mea-
surement. In this case, the interaction is very small, and hence this procedure is called the
weak measurement. The element of reality can be observed when the weak measurement is
considered.
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In the weak measurement, we assume A/g > q; for all eigenvalues a;. We can expand
(2.86) around @ = 0 as

P(ZB, f) _ (AZW)_l/z Z |ai|2e_(x_9“i)2/“ ~ (Azﬂ)—l/z Z |O~’i|2(1 _ (IE _ gai)Q/AQ)
(A%)~1/2em(omg KleulPar)?/A% (2.87)

12

which does not change the shape of the probability but shift its position, and the shift is
equal to the expectation value > |a;|?a;. According to Vaidman’s definition, the average
value > |a;|%a; is the element of reality.

So far, the post-selection of the object system has not been considered. The post-selection
is described by Iy = [¢)()|. When we take into account the effect of the post-selection, the

shift in the distribution probability is equal to the real part of the weak value of the observable
A:

a, = Wldle) _ 3 Wai) (2.88)

Let us show that the shift in P(z, f) coincides with the real part of the weak value Re A,,

P(z,f) = Zai&;(A%)’lﬂ exp (—(x = gai)2/2A2) exp (—(x - gaj)Q/QAQ) (Plai)(a;]v)

= Y aagain 2 (1 L. T2 () o)
1]

~ |<¢|¢)|2(A27r)‘1/2 (1 _ (z — 2§}AP2{eAw) )
~ [(y|o)[*(A%r) ! exp (_ - QQAE{e = ) : (2.89)

We can deduce the imaginary part of the weak value as well by changing the representation
of the initial meter state,

(p|®) = @(p) = (A—Q)M e PR, (2.90)
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Figure 2.7: The outline of the weak measurement. Firstly, we prepare the object and the
meter systems, let them weakly interact, measure the meter state, and finally post-select the
object state.

Then, the imaginary part of the weak value Im A, can be observed by the shift of the
distribution probability,
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Thus, the real and the imaginary parts of the weak values can be obtained from the shift
in the distribution probabilities, and hence the weak value can be regarded as an element of
reality.
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2.5 Weak measurement with the spin state

In this section we consider the time-dependent weak value of the projection operator I14. The
protocol of weak measurement can be described by Fig. 2.7. We prepare the product state of
the object and the meter states, make the product state entangle by weak interaction, and
then measure the spin state (the meter state). After the measurement of the spin state, one
singles out the events which successfully post-selects the object system.

We begin by considering the initial state (pre-selected state) |¢) at ¢ = 0 and the final
state (post-selected state) |¢)) at t = T. The pre-selected state |¢) evolves under the unitary
evolution U(t) = exp(—iHt/h): |¢(t)) = U(t)|¢). We assume that the measurement is
performed at time ¢. We may regard that the post-selected state evolves backward in time:
|Y(T —t)) = UN(T — t)|yp). As a meter system, we exploit a spin-1/2 state |s;) [35, 16], and
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suppose that the spin state |s;) does not evolve other than under the weak measurement. The
composite system of the meter and object is initially in the state

p = |si)(sil®|9){d| (2.92)
= [si)(sil ® ps, (2.93)

and evolves under U (t) until the weak measurement has been performed,

p(t) = lsi)(sil @ U)|e)(a|U (1) (2.94)
= [si)(si| @ [o(2)){&(1)] (2.95)
= |si)(sil @ ps(2), (2.96)

where p;s(t) = |p(t))(p(t)|. We describe the weak measurement as
Uy := exp [—igo, ® I14], (2.97)

where g is a coupling constant and II4 satisfies the condition, T4 = I14. We denote the Pauli
matrices as 0,0, and 0.

The measurements of the meter system are performed for o, and o, as described by

Mo, (ps(t)) = Tra [(loo)(00] @ L) Uup(t)UL] (2.98
No, (ps(t)) = Tra [(l){oy| ® T)Uup()U] - (2.99

After the measurement for the meter system, the object system is post-selected at time T,
and the joint probability that the post-selection is successfull is given by

Plos, f) = Trs [llpMo, (ps())] (2.100)
P(vaf) = Trg [HfNay<ps(t))} ) (2'101)

where II; = UN(T — )|)(|U(T —t) = [(T — t))((T — t)|. The total probability for
obtaining the post-selection readout f is also written as

P(f) = Trs [I;Trq [Unp(t)UL]] (2.102)

and then the conditional probability is defined as

P(o,|f) = %, (2.103)
P(o,|f) = P(%yj;)f). (2.104)

For the eigenvalue 1 of o,, the conditional probability P(o,, f) is

Plo,=+1,f) = %K@D(t —8)|o(t)) + (sing + cos g — )(W(T — 1)[Ia|6(1))|*, (2.105)
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where we have assumed that |s;) is the spin-down eigenstate of o,. Detailed calculations are
in Appendix A. Similarly, we get the conditional probabilities,

Plo.=—11) = Sl = DI6(H) + (~sing + cos g~ (T ~ )[Lalé (1)

(2.106)
Ploy=1.f) = SI0(T = 0Io() + (~1+ )T~ HIMs@)P,  (2107)
Ploy=-1.f) = %I<¢<T—t>|¢(t)>+(—1+eig)<¢(T—t)\HA\¢(t)>|2. (2.108)

From these probabilities, we can see how the initial object state is disturbed by the weak
measurement dependent on the coupling constant g. The total probability P(f) for obtaining
the post-selection result f is

P(f) = Y Plow,f)= Y Plo,f) (2.109)
or=%1 oy==*1
= [(W(T = 1)[p(t))[* + 2(1 — cos ) [(W(T — t)[IL4|p(t))|?
+2(—1 + cos g)Re [(¢(t)[)(T — £)) (W(T — t)|TLa|b(2))] - (2.110)

In the weak limit g — 0, the expectation value at the meter can be written as

<0x>d = Z O-Z‘P(O-x|f)

2sin gRe (o) (T = 1)) (Y (T — )[TLa[o(2))]

[((T = )[e(1))[?
= 2singRelly, (), (2.111)

(oy)a = Z oyP(oylf)

oy==%1

2sin gRe [i(o(t)|[(T — 1)) ((T" — 1)[TLa|6(1))]

[((T = B)]o(t))[?

= —2singlmIly, (t). (2.112)

(Y(T" —1)Ia[¢(2))

(W(T = 1)|o(1))

Thus, we can get the real and the imaginary parts of the time-dependent weak values T4, (t).

In general, the weak value is a complex number. Although all physical values must have a
real number, weak values may be measured by the weak measurements.

12

M4, (t) (2.113)

2.5.1 Example

In this subsection, we show how to measure the position weak value by using spin-1/2 state
as the meter system [35, 16], and how the measurement weakly disturbs the initial state. The
meter state is assumed to be the spin-1/2 down state at time ¢ = 0, and the total system is
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Figure 2.8: The joint probability with A = [""“dz|z)(z|, |¢) = (lz;) + | — 2:))/V2 and
|¢) = |xf), which we put the parametersas v;, =T =m=h=T=1,t =e¢=0.5, and z = 3
while changing the coupling constant g. Even if the coupling constant g becomes large, the
interference pattern can be seen, being compensated by smallness of e.

written as the product state of the object and the meter states. At an intermediate time £,
we rotate the Bloch sphere around the y-axis at a certain position, i.e., creating entanglement
between the object and the meter states. The angle of the rotation depends on the pre-
and post-selections, not only on the coupling constant g and the operator I14. Finally, the
expectation value of the meter system with the post-selection is measured (e.g. by the Stern-
Gerlach experiment). Then, as we see below, the weak value is obtained.

We begin by putting the projection operator II, = fﬁf dx |z) (x|, where € is supposed
to be infinitesimally small because we expect the position of the particle in a tiny region.
Naturally, I14 satisfies I3 = I14. We have shown in (2.111) and (2.112) that the real and
imaginary parts of the weak values appear in the meter expectation value in the weak limit
g — 0. If € is infinitesimally small, we can approximate II4 ~ 2¢|z) (x|, and in this limit the
coupling constant ¢ is not necessarily small as we have derived in (2.111) and (2.112). The
weakness is compensated by the smallness of €. Thus, by assuming that € is infinitesimally
small (the coupling constant g is not necessarily small), we obtain

(00 = 3 0.P(oul)),

~ desin gReTl,, (1), (2.114)
<Uy>d = Zo-yp(ay“c)a
oy==%
~ —desin glm I, (%), (2.115)
_ (0T - 1) |1|o(t))
el = ST =010y (2410

29



where II, = |z)(z|. If we put the post-selected state as the momentum eigenstate with the
momentum zero, 1)) = |p = 0), the time-dependent wave function ¢(x,t) = (x|4(t)) except
for the total phase can be observed [16]. By integrating II,,,(¢) over = with the weight x, we
have
(T = 1)]xle@)

(W(T =)o)

= /OO dx 1L, (t) x. (2.117)

o0

Tu(t) =

The basic idea goes as follows: the operator z can be expressed in the basis set {|x)}, and
the weak value z,,(t) is consist with the real value x and the complex conditional probability
1., (t) [36]. Meanwhile, the momentum weak value also can be derived similarly.

Let us evaluate the joint probability P(o, = +1, f) to know how the weak measurement
disturbs the system. Without using any approximation, we can get the exact joint probability
for any € and ¢ from (2.105),

2

(0t = 01o(0)) + Ging + cosg = 1) [ de(u(T ) slo(0)|
(2.118)

In this paper, as an example, we choose the double-slit thought experiment which is our main
interest in the following chapters. As we will see later, the pre- and post-selected states are
described as |¢) = (|2;)+|—2;))/v/2 and |¢) = |z;), respectively. The object system is evolved
under the free Hamiltonian H = p?/2m. For simplicity, by putting x; =T =m =h=T = 1,
t =€ = 0.5, and x = 3, we obtain Fig.2.8, and it is clear that the interference pattern is
observed for any coupling constant. We have presumed that € is small compared to x;. The
interference pattern can be seen even if the coupling constant g becomes large: Fig. 2.8.

P(Ux:+17f) =

N | —

2.6 Summary

This chapter mainly consists of the weak value and the weak measurement. We have seen
several applications of the weak value which allows us to intuitively interpret quantum me-
chanics. Not only the intuitive interpretation but also the intriguing aspect of the weak value
has been taken up by the quantum Cheshire cat [24]. Then, the weak measurement has been
introduced and the interpretation of the weak value has been performed.

We have confirmed that the position (momentum) weak value can be obtained by using
the spin-1/2 state, and the coupling constant g is not necessarily small if € is small enough,
which means that rotation of the angle is performed in the narrow region z + e. If the
interaction between the object and the meter systems has performed in a small region, then
the interaction becomes obviously weak. One may wonder if obtaining the position weak
value and the interference pattern simultaneously seems to contradict the complementarity.
However, due to the statistical nature of the weak value, the weak measurement does not
tell anything about each event. Thus, the position weak value is consistent with quantum
mechanics.
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Chapter 3

Quantum interference

Quantum interference is one of the most significant aspects of quantum mechanics. To analyze
the weak value, we exploit the quantum interference. In this chapter, the relation between
the imaginary part of the weak value and the interference effect becomes apparent, and we
successfully obtain a physical interpretation of the imaginary part of the weak value. Then,
this result is applied to the double-slit experiment, and we show that the connection between
the imaginary part of the momentum weak value and interference [29]. As another example,
the spin-1/2 system is considered and the importance of the choice of the path is shown.

3.1 (General argument

In this section, we show the relation between the weak value and interference. We show that
the weak value of A can be obtained from the transition amplitude [26, 27], and then we
define the quantum interference from the transition probability by introducing paths between
a pre- and post-selected states.

We begin by considering n-dimensional Hilbert space. We choose |¢) and |¢)) as the pre-
and post-selected states, respectively. The definition of the weak value of an observable A is

_ (wl4lg)
A=l 3.1)

Let us consider the transition amplitude,

K(a) := (Ylua(a)l9), (3.2)

which means, between the two states |¢) and |¢)), intermediately operating the unitary trans-
formation wuy () = exp [—icvA]. ul(a)[)) may be regarded as a family of post-selected states.
Taking the logarithmic derivative of K(«) with respect to o and taking the limit o — 0, one
obtains the weak value A,,,

1 0K(«)
=0 K(a) Oa

(3.3)



In [26, 27], « is regarded as the parameter of the back reaction on the system when the
measurement of A is performed. Instead of considering the parameter « as the back reaction
of the weak measurement, in this paper we utilize the parameter « to see the variation of the
transition probability.

We define the quantum interference by selecting an orthonormal set of states {|xx)},

T=>" Ixk) (xal (3.4)

Substituting (3.4) to (3.2) and taking the absolute square of the transition amplitude, we
have

2
(K@) = > @lua(e)x) (xxlo)
k
= DK@’ + ) Ki(@)K (o), (3.5)
k j#k
where Kj(a) := (Y|ua(a)|xr)(xk|¢) is the transition amplitude via intermediate state |xx).
The first, diagonal, part in (3.5) represents the classical transition probability while the sec-
ond, off-diagonal, part expresses the interference effect between different paths. The interfer-

ence is different depending on the choice of the basis. Of course, if the cross terms in (3.5)
are independent of «, the interference cannot be observed.

We point out here that whenever the interference pattern is discussed, we implicitly assume
the path which causes the interference pattern. Consider that we have the pre-selected state,

6) = / " delo), (3.6)

—0

which describes the slit of a finite width 20. The post-selection is the position eigenstate |z ).
The generator of the transformation (the momentum operator p, i.e., A = p) is acting on the
post-selection. We consider a massive particle which is governed by the free Hamiltonian,
U(T) = exp (—ip*T/2mh). The interference pattern is observed (see Fig.3.1) by regarding
the path as

Ko(a) = (2 |up()U(T)|z). (3.7)

Naturally, the interference term (the off-diagonal term in (3.5)) depends on a.

In the same vain, we prepare a Gaussian distribution for the pre-selection,
I2
o) q exp <_F>
= r——|7). 3.8
0= [ i) (39

The transition probability is also given by a Gaussian distribution: see Fig.3.1 from which
the interference term again depends on « if the partial path is given by (3.7). Nonetheless, we
usually do not regard the transition probability as interference. We regard that the Gaussian
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Fraunhofer diffraction

Xf-L

Gaussian distribution

Xf-L

Figure 3.1: Orange filled curve is the transition probability |K(a)* = [(z¢|u,(a)U(T)|¢)|*.
(Above) The transition probability for the pre-selection (3.6) is known as the Fraunhofer
diffraction. (Below) The transition probability for the pre-selection (3.8) is expressed by the
Gaussian distribution.

distribution of the transition probability is caused by the distribution of the particle not by
the interference. Namely, we implicitly assume only one path. Consequently, we assert that
the interference effect should depend on the choice of the path.

For each path Kj(a), the weak value A% is derived as (3.3):

ko <¢|A‘Xk>
= T
= igim - 9B(@) (3.9)

a—0 Kk(CY) Oa

To examine the variation of terms in (3.5) with respect to «, we take the logarithmic derivative
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of (3.5) and the limit o — 0:

L 1 0 9 9
T = 3 RKPoa <|K<a>| —;mk(a»), (3.10)
Ay =Y ALP,
k=1

where Py, := |K}.(0)|?/|K(0)|* is the relative probability for the intermediate process k. In
general, P, does not satisfy ), P, = 1. We call 7 the index of interference because this index
7 is defined by the interference term. The index of interference Z can be expressed as the
difference in the imaginary part of the weak value between the total process and the average
of the intermediate path with the relative probability P,. Note that, because we can express
the imaginary part of the weak value in terms of the logarithmic derivative of the probability
transition |K(0)]?, a tiny value of |K(0)* will make the imaginary part of the weak value
enormous [29].

= Im

, (3.11)

Several examples including the double-slit experiment and the spin-1/2 system are dis-
cussed in the following sections.

3.2 Double-slit experiment

In this section, as a simple example of the above discussion, we consider the double-slit
experiment. We show that the imaginary part of the momentum weak value is proportional
to the variation of interference fringes.

The double-slit experiment is expressed by a screen and a sheet with two narrow slits at
S+. The screen and the sheet are set in parallel to each other at a certain distance as Fig. 3.2.
A particle goes through these slits and makes interference fringes on the screen. However,
since it is difficult to describe the effect that the particle is passing through these slits, we
suppose a superposition of the particle localized around these slits at time ¢ = 0. Considering
the double-slit experiment, we have to take into account a two-dimensional problem. However,
we ignore the y-axis because the axis perpendicular to the screen plays no essential role. The
pre-selected state at time t = 0 is

Cr) - w)
|9) = 5 (3.12)

and the post-selected state at ¢t =T is
V) = lxg), (3.13)

where the post-selected state [¢) coincides with the measurement at the point ;. We assume
the free Hamiltonian H = p?/2m where m is the mass of the particle and p is a momentum
alongside the z-direction. The pre-selected state evolves under the unitary evolution U(t) =
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Yy

Figure 3.2: The double-slit thought experiment. The particle is localized around Sy at time
t = 0 and arrived at z; at time ¢ = 7T'. This particle cause interference on the screen, and the
orange filled curve represents the interference fringes(the transition probability) especially
when one choose the superposition of the position eigenstate as the pre-selected state. If
one prepare the superposition of the Gaussian state instead of the position eigenstate, the
transition probability becomes more realistic and is drawn in the dashed curve.

exp [-iHt/h|. The transition probability is derived from the Feynman kernel (propagator)
for the free Hamiltonian,

(2| U(T)|z:) = \/E exp (1%) , (3.14)

and hence the transition probability is

[WIUD)) = = cos® (5 (3.15)
From the transition probability (3.15), we can derive the condition that the interference pat-
tern becomes constructive. It can be shown that the condition derived from (3.15) coincides
with that of Young’s double-slit experiment by using the matter wave. The interference pat-
tern does not attenuate because the momentum is completely uncertain when we choose a
pre-selected state as the superposition of the eigenstate of the position, and the particle can
reach the screen immediately after passing through the double-slit. If we choose a superposi-
tion of a Gaussian distribution as the pre-selected state, we can demonstrate the experimental
result as the dashed curve in Fig. 3.2. However, we consider the superposition of the eigenstate
of the position for simplicity.

The transition amplitude can be expressed by

K(a) == (@lup(a)U(T)]|9), (3.16)
up() == exp [—iap)|, (3.17)
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where the unitary operator u,(«) expresses the shift of the post-selection alongside the screen
by a. To determine the path, we introduce an identity operator to divide the transition
amplitude K(«),

]I:/Ooodx\x>(:1:\+/0 dr|z) (. (3.18)

—00

Substituting the identity operator (3.18) to (3.16), then we split the transition amplitude into
to two parts:

K(a) = (@luy(a)U(T)|¢)
(Wlup(@UT)] = z:) | (Plup()U(T)|z:)
V2 V2 '

By using new states |¢+) = | £ 2;)/v/2, we define transition amplitudes as

Ki(e) = (@luy(a)U(T)[dx). (3.20)

The interference is caused by these two paths between K, («) and K_(«). In the double-slit
experiment, the post-selected state is the eigenstate of the position |zy). Because uf(a) is
the translation operator u}(a)|zs) = |2y — a), ul(e) moves the position xy to xy — . The
momentum weak value p,,, pi and p, are

(3.19)

b WU |y tan (35
v T RUD)Ne) T |

(3.21)
o _ WUl | apw 52

(WIU(T)| =) T

Because the imaginary part of the momentum weak values p: are zero, the index of interfer-
ence becomes
_|K_(0)” [K.(0)?
I = Im|p,—p, — Puy
[K(0)? [ K(0)[?
m%)

x,-tan(h T

T , (3.23)

= Imp,] =m
from which the variation of interference terms is represented by the imaginary part of the weak
value p,,, i.e., the index of interference is expressed by the imaginary part of the weak value
Pw- Apparently, the index Z becomes small when the interference pattern is constructive. In
contrast, the index Z diverges when the interference pattern is destructive: see Fig. 3.3.

We briefly explain the real part of the weak value p,. The momentum weak values p;
and p,, are contribution from the classical path between two eigenstates of the point, and
coincides with the classical motion (we show this later). The real part of the weak value p,, is
equal to the average of these two weak values p, Rep, = (pi + p,,)/2. Thus, the momentum
weak value Rep,, is equivalent to the average of the momentum for each classical path.
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Figure 3.3: Orange filled curve is the transition probability. The thick line is the imaginary
part of the momentum weak value (the index of interference). We have a = 7hT/2mux;.
Apparently the imaginary part is correspond to the interference pattern. The index diverges

when the interference pattern is destructive. In contrast, the index becomes zero when the
interference pattern is constructive.

3.2.1 A more general example for the double-slit experiment

Now, we prepare a more general pre-selection by exploiting a phase v and a real number R,
o) =~ (o) + RE| — ) (324)
V14 R?

and the post-selection [¢)) = |zf). A non-trivial split for the transition amplitude can be
realized by employing the following identity operator with phases 6 and 7,

00 0
I = (e"cosf+sinb) (ei” cos 6/ |z) (x|dx + sin 6 / |:c><a:|d:v)
0 —00

00 0
+ (—€"sinf + cos 6) (—e"’ sin@/ |z) (z|dx + cosﬁ/ |x>(:c|d:c) , (3.25)
0 —o0

from which the transition amplitude is split into two parts,

K(a) = (lup()U(T)|e)
= K, (a)+ K, (o), (3.26)
Kou(e) = {flup(@)U(TD)les), (3.27)
los) = (7 c036 + sin6) (7 cos O|z;) + Re™ sinf| — ;) , (3.28)

V1+ R?
o) (—einsin0+cos«9)( 0 gin Bl,) + Re® cos ] ) (3.20)
) o= —e Mgin f|x; e’ cosf| — x;)) , .
4 V1+ R?
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In this choice the index of interference becomes

Ky (0)] _p¢+| e+ (0 )q
KO 7% [K(0)P
oL 2Rsin (2227 + )
T1+R2+2Rcos(2mmf$’ +7)

. 2R sin*(26) cos 7 sin (7 + 5 xfxl + 77)

T = Im|p,—pt 2L (3.30)

, (3.31)

mT 1+ R?+ 2R cos <'y+m2$"$l>
(WlpU(T)|9)
(WU(T)|¢)
_ T 1—R?
T T'1+ R?+2Rcos (2222 + 4)
i 2Rsin (25225 + )
T 1+ R?+ 2Rcos (2mELE 4 )’

{WIpU(T)|p+)
WIU(T)le+)

i 0
S B o8 : (3.33)

r T cosf + Re' <7 - +7+17> sin 6
(LlpU(T)[p-)
(PlU(T)]e-)

) ) i 0
S B Y ST , (3.34)

. mQZfa:z
T Tr_ sin 6 + Rel(ﬁ T HM) cos 0

m 1 m 22+ x;
IK(0)]> = g (1+R2—|—2cos<h :;i +7>) (3.35)

(1 £ sin(26) cosn) (£ (1 — R?) cos(20) + 1 + R?)
AnhT(1 + R2)
(1 + sin(26) cosn) sin(26) cos ('y + + 77)
orhT(1 + R2) ’

+im (3.32)

Ko (0 =
xfmz

+R

(3.36)

from which we conclude that the index Z depends on the choice of division (the choice of
the phases 6 and 7) for the simple double-slit (thought) experiment. In our definition of the
index of interference, if we put the parameters § = 7/4 and n = 0 (it means we do not split
the transition amplitude), the interference is not observed. In contrast, if we have § = 0
(the selection of the path is similar to that in the previous section, (3.18)), the interference is
observed. The index Z is equal to the imaginary part of the momentum weak value, Im p,,.

Up to this point, we assumed superposition of two-position eigenstates as the pre-selected
state. To argue a more realistic version of the double-slit experiment, we should consider
finite width slit; this kind of discussions will be presented in section 3.3 and section 3.4.
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3.3 Fraunhofer diffraction

In the above discussion, we assumed that the slits have infinitesimally small width, and it is
not realistic. It is well known that interference pattern appears on the screen when a particle
passes a slit of a finite width. We consider the case in which the particle passes through each
slit of a finite width 20 and is diffracted, then we detect the particle on the screen. The
pre-selected state is given by

6) = / " dela), (3.37)

—0

and the post-selected state is the position eigenstate,

[¥) = lz)- (3.38)

The particle evolves under the free Hamiltonian H = p?/2m. Let us consider the unitary
operator u,(«) = exp(—iap). The transition amplitude is

K(a) = (@uy(a)U(T)|o) (3.39)
_ % %(Erﬁ (%+%)(%;_T—04—0) B (%+%)($J;_T—a+0) )

: : (3.40)

Erfilz] = Erfi[iz] - % /0 - ot dt, (3.41)

where Erfi[z] is known as the error function. To define the interference, we specify the path
by

I= /oo d |2)(z]. (3.42)

—00

The amplitude for each path is expressed as

Ko(o) = (zfuy(@)U(T)|z). (3.43)
The index of interference Z is described as
o 2
Z=1Im [pw —/ dxpd%} = Im [py], (3.44)
(PpU(T)]9)

w = AT 3.45

P = T 0) (34)

Pt = mxfT_ . (3.46)

The index 7 is non-zero, so that the interference pattern can be seen. This interference effect
is known as the Fraunhofer diffraction. The index of the interference is expressed by the
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Figure 3.4: Orange filled curve is the transition probability. The thick line is the imaginary
part of the momentum weak value (the index of interference). We have parameters m = h =
T =1 0=1/2 and —15 < xy < 15. Apparently the imaginary part corresponds to the
interference pattern.

imaginary part of the momentum weak value. When the transition probability is extremal,
the index Z becomes zero: see Fig. 3.4.

Let us briefly note another trivial interpretation in which the index of interference be-
comes zero. Namely, we interpret that the transition probability is generated by the initial
distribution of the particle in the width of 20, not by the interference, which coincides with
the selection of only one path. Then, the index of interference 7 is equal to zero.

3.4 Double-slit of a finite width

In the above discussion, we assumed that the double-slit experiment with infinitesimally small
width. Let us discuss the slit of a finite width. The center of the slits are at +x; and the
width is given by 20, then the pre-selected state is expressed as

Tit+o —z;+o
o) :/ dx |x) +/ dx |z). (3.47)

The post selected state is [¢)) = |z ) as before. We assume that interference is occurred when
the particles from each slits are interfered, so that we put this condition by substituting the
identity

11:/_0 d:c|:c><q:|+/oood:c\x><:c\. (3.48)

[e.9]
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We define the states by

+x;+0o
= d ) 3.49
o= [ o (3.49)
The transition amplitudes can be written as
K(a) = Ky(a) + K_(a), (3.50)
where
Ki(a) = (@luy()U(T)|ox) (3.51)
(e [ emna) g e ezara))
2V h AT KT
(3.52)
The index for interference is
K4 (0)]? _\K(O)IQ}
T—1 R — s , 3.53
S T (3:33)
(YpU(T)]¢)
W T T T 3.54
P = O 0) 354

P = U 6a)

In this case, the contribution from Fraunhofer interference is removed: see Fig. 3.5.

One may choose another case in which interference is caused by following path: each
transition amplitudes can be written

Ko(a) = (¢lup(a)U(T)]x), (3.56)

then the index for interference is
Trite | K. (0)) vite | K. (0)]
7z =1 w — dx p. - dx p,
" [p / PR / PR 0P
= Im|pyl, (3.57)

i —0

All effects including the Fraunhofer effect are taken into account.

Since the contribution from the Fraunhofer effect is small compared to the double-slit, we
only can see a tiny difference between (3.53) and (3.57): see Fig. 3.5.
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Figure 3.5: Orange filled curve is the transition probability. The thick and thin lines are
the imaginary part of the momentum weak value (the index of interference). Apparently the
imaginary part corresponds to the interference pattern. Thick and thin lines are describing
(3.53) and (3.57), respectively. We have the parameters as z; = 2, —15 < zy < 15, and
m=h=T=1whilec=1/4and o =1/2.
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3.5 Spin-1/2 system

In this section, by using the spin-1/2 system, we show a correlation between the spin weak
value and interference. In the double-slit experiment, the classical path is obvious and selected
without any doubt, but for the spin-1/2 system, we cannot decide the path a priori. A different
choice of the path deduces a different interference effect.

The eigenstate for the Pauli matrix o, is written as |+), |—). As the pre- and post-selected
states at £t =0 and ¢t =T, we have

9} = [+), (3.58)
|Y) = explifo,||+) = cosb|+) + sin 6| —). (3.59)

Here we consider the unitary transformation u];y(a) = exp [iao,] acting on the post-selection

¥),
uLy(a)W) = expliaoy||Y) = cos(0 + a)|+) + sin(0 + a)|—), (3.60)

and we assume that the state does not evolve in time: the unitary evolution is the identity
operator U(t) = I for simplicity. The transition amplitude K («) is defined as

K(a) = ($lug, (@)U(T)|6) = cos(9 + a). (3.61)
and the transition probability is
P(a) = |K(a)|* = cos®(0 + a). (3.62)

By taking the logarithmic derivative of the transition probability with respective to «, we
obtain

1 o [1=i0,U(T)9)
S ga Pl = Re o )
= Im[oy,] = —tané. (3.63)

Let us set the two paths between the pre- and post-selected state. To do so, we define the
eigenstate of the Pauli matrix o, by,

R) = () +i1-)) (369

1 :
L) = ﬁ(lﬂ —i[=)). (3.65)

In this basis, the completeness relation is written as
I=[R)(R|+ |L)(L], (3.66)
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and substituting (3.66) to (3.61),

K(a) = (@lug, ()| RYRIU(T)¢) + (¢|us, ()| L)(LIU(T)])

= Kpg(a)+ Kp(a), (3.67)
Kia) = (o, @I ENLIT(D]6) = ze ™ (3.65)
Kn() = (o, (@R} (RIV(T)I6) = 6. (369

By defining these two path K («a), Kr(a), we can argue the interference and see the cross
term when we observe the transition probability,

P(a) = |Kn(a) + Ki(a)* = [Kr(e)]” + |KL(o)]* + 2Re[Kr (o) K ()]

1 1
= 3 + 5 cos(2a). (3.70)

By substituting (3.11), the index of the interference is

7 = —tané. (3.71)

We can take any basis, and if we change the basis in (3.66) as
I= )+ + =)=, (3.72)

the index of interference becomes Z = 0 which means there are no interference.

3.6 Summary

Interference of the particle is one of the most important aspects of quantum mechanics. To
obtain physical interpretation of the weak value, we have utilized quantum interference. In
the discussion of interference, we should specify what are interfering, which corresponds to
the selection of the path. To do so, we must define the interference effect by subtracting the
contribution of each path from the total transition probability. As we have seen in several
examples, the interference effect very much depends on the choice of the path. By employing
this definition, we have shown that the interference effect can be expressed in terms of the
imaginary part of the weak value. In the double-slit experiment, the index of interference can
be written by the momentum weak value. In the spin-1/2 system, the index of interference
is represented by the spin weak value. We hope that our result of the relation between
interference and the weak value will be helpful to understand the weak value more deeply in
future.
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Chapter 4

Weak trajectory

In quantum mechanics, it is well known that defining a trajectory is difficult because an
observation of the position for the particle disturbs the momentum after the measurement
(the uncertainty principle). This principle prevents us understanding the quantum mechanics
intuitively. In this chapter, nevertheless, we regard the position weak value as the trajectory
(which we call the weak trajectory) because the position weak value coincides with the classical
trajectory in several examples. The correspondence between the position weak value and the
classical trajectory was proposed by Tanaka in the semiclassical approximation [37]. As
Tanaka pointed out, this property does not hold for general cases. We show that the position
weak value can be interpreted as the average of the classical trajectory if one admits the
complex probability [36, 38] while its imaginary part is relevant to interference [30]. We
examine the condition in which the imaginary part of the position weak value vanish. Besides,
by employing quantum eraser, we show that the weak value can specify which path the particle
takes for an ensemble while the interference pattern remains. Since the weak value is defined
for an ensemble, we cannot tell which path the particle takes for individual event. Thus, this
weak value is consistent with the complementarity. And finally, the position weak value of
the particle moving under the perfectly reflecting wall potential is examined.

4.1 Semiclassical approximation

We consider the quantum trajectory by employing the time-dependent position weak value.
Prior to our work, the weak trajectory was examined by the position weak value in semiclas-
sical approximation [37]. Semiclassical approximation shows us a direct correspondence of
quantum mechanics to the classical mechanics. As he claimed in his paper, because semiclas-
sical approximation is exact in several examples, it is important to investigate the trajectory
based on the weak value. In this section, we review the previous work done by Tanaka [37].

Let us consider the following generating function for convenience,

i

2(60).4) = Wlewp (— [ 11~ agtonar) o), (4.)
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where exp(-) is the time ordered exponential. It is easily shown that the weak value can be
P

derived by using the generating function,

(WIU(T = ) AU(1)]9)

WIUD)]9)

5ln Z(£(), A)
M o

From the stationary phase method, the generating function Z(£(-), A) can be exploited in the
semiclassical approximation. Note that we ignore operator ordering which induces the result
of only order O(h), so it does not affect the following semiclassical argument. To implement
the semiclassical approximation, an important assumption is asserted:

Aw(t)

ik (4.2)

for infinitesimally small values of £(-), quantum interference between multiple clas-
sical tragectories do not present in the semiclassical evaluation [37].

Namely, the classical trajectory (determined by the classical Hamiltonian H (z, p)— A(x, p)&(t)
with certain boundary conditions) is unique, and the semiclassical generating function follows
this trajectory. The generating function Z(£(-), A) is supposed to be in a single form,

where E and S are the amplitude factor and classical action, respectively,
E = ! (4.4)
B \/27rh8xf/8p(T)’ ’
T
S = / (p(D)i(1) — H + AE(1)) dt. (4.5)
0

The single term condition holds when A is small enough or the time scale is short. From the
single term condition, the weak value is obtained

o 85

= A(z(1),p(), (4.6)

where the value A(z(t),p(t)) is determined by the classical trajectory z(¢) and p(¢). One
may change the boundary condition as long as the single term condition holds. In several
examples, e.g. a coherent state, an anomalous (complex-valued) weak value can be obtained
[37].

The complex valued trajectory has a significant role in the quantum phenomena such as
tunneling effect though the complex valued trajectory is thought to be only a theoretical
frame work. Tanaka mentioned that this complex valued trajectory may be observed based
on the weak value. This result, however, relies on the semiclassical approximation. In the
following sections, we examine the position weak value from its definition without employing
any approximation.

+ O(h)
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4.2 Preliminary

Before discussing the main theme, let us consider a time-dependent weak value during t €
[0,T]. We denote the pre- and post-selected states as |¢) and |¢)), respectively. Assuming the
Hamiltonian H = p*/2m + V (z), the weak value of the observable A at time ¢ is defined as

PIUT = ) AU(#)|¢)
(lumle) -

where U(t) = exp(—iHt/h). The useful relation can be derived by taking derivative with
respect to time ¢,

Ay() = (47

A1) 1 WIU(T — 0[A HIU(0)6)
dt h WlU(T)le)

Eq. (4.8) can be seen as a generalization of Ehrenfest theorem because Ehrenfest theorem is

obtained when the post-selection is made by |[¢)) = U(T)|®).

We have useful relationships between the momentum and the position weak values from
(4.8):

. (4.8)

Pu(t) =0, (4.9)

. Pu(t)
Ty (t) = ——, 4.10
(1) =22 (410)
from which we conclude that x,,(t) is real when z,, is real at two boundaries. In particular,
if we have the position eigenstates for the pre-and post-selected states, the weak value x,,(t)
is real and coincides with the classical trajectory:

(2| U(T = )aUD)|z:) _ (= xi)t + 2T

wl) = Ty T

= 14(t). (4.11)

This classical picture seems to allow us to define the trajectory by the position weak value.
We then define the weak trajectory by the position weak value. From (4.9) and (4.10), we may
conclude that the weak value obeys the classical equation of motion. The classical picture
can also be derived in the case in which the potential is quadratic in x and a moving particle
under a constant magnetic field.

4.2.1 Harmonic oscillator
In this subsection, we show that, in a certain boundary condition, the position weak value

coincides with the classical trajectory for the harmonic oscillator Hamiltonian. The harmonic
oscillator Hamiltonian is given by

H=—+ —w’, (4.12)
2m 2



where m and w are a mass of the particle and the angular frequency, respectively. From (4.8),
we obtain

Pu(t) = —mw?z,(t), (4.13)
Fult) = J’T@, (4.14)

from which the weak values x,,(t), p,(t) are

Tu(t) = Asin(wt) 4+ Bcos(wt), (4.15)
pw(t) = mwAcos(wt) — mwB sin(wt), (4.16)

where A and B are complex values. If the weak values are real at each boundary, A and B are
real. In particular, if each boundary condition is described as the eigenstate of the position,
these weak values coincide with the classical trajectories.

4.2.2 Constant magnetic field

Let us show the case in which a particle with an electric charge is moving under a constant
magnetic field B. The Hamiltonian with an electromagnetic field is

A2
2m

where A and ¢ are a vector potential and a scalar potential, respectively. The electric charge
is denoted by e. The magnetic field is parallel to the z-direction with strength B, and hence
the vector potential and the scalar potential can be written as

B

w0 =0, (4.19)
where " describes the unit vector. By substituting these values, we obtain the Hamiltonian

1 e?B? e?B?
H = 5 <p2 + eB(yp, — xpy) + 1 2+ 1 y2) , (4.20)

where p,, p, represent the momentum in the 2- and y-directions, respectively. We obtain the
position and the momentum weak values with the Feynman Kernel for the Hamiltonian, but

48



instead of doing so we employ the useful relation (4.8). We show useful relationships bellow:

[z, ] = ih, (4.21)
[z, p.] = 2iha, (4.22)
[z, pz] = 2ihp,, (4.23)
B
o, H] = ih% + ih%, (4.24)
B
ly, H] = ih% - ih%, (4.25)
_.,eBp, . e? B2
[pz, H] =ik 5 ih i (4.26)
. esz . €2B2
=— — . 4.
[py, H] ih 5 ih Y (4.27)
By using these relationships, it turns out that the weak values satisfy
, Pz, (t)  eB
bl =220 1 22 0), (1.25)
, () eB
yw(t) = yT - %zw(t)a (429)
eB e B2
e, (1) = — t) — t 4.
Bea(t) = 5 pu () = S0, (1.30)
eB e? B?
Dy, (T) = —— t) — ——yul(l). 4.31
Pt = — o peat) = () (1.31)

These differential equations can be easily solved if we define the position and the momentum
weak values by

20 (1) 1= 2 (t) + 1y (t), (4.32)
Pzw (t) = Dg, (1) +1py,, (). (4.33)

The position and the momentum weak values, z,(t), p., (t) satisfies the following differential
equations:

Zu(t) = % - i%zw(t), (4.34)
ault) = i e (6) — ), (4.35)

from which the position weak value z,(t) is
eB eB
W) = Acos [ S24) + Bsin [ 224 4.36
2w (1) cos(2m)+ 31n(2m) (4.36)

where A and B are constant numbers which depend on the boundary conditions. Thus the
weak values z,,(t) and y,(t) are

() = Re {A cos (%t) } Bsin (%tﬂ , (4.37)

Yu(t) = Im [A cos (%t) + Bsin <%t)} : (4.38)
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As the classical mechanics, if the particle is moving between two points, the trajectory is
described by the circular motion in the z — y plane.

In the next section, we examine an elementary, but an important example: the double-slit
experiment. Feynman said the double-slit experiment cannot be explained by classical me-
chanics and is quintessential feature of quantum mechanics [2]. In the double-slit experiment,
we show the weak value does not hold naive classical picture.

4.3 Double-slit experiment

As we have shown above, the weak value x,, between two points coincides with the classical
trajectory. We consider the double-slit experiment as one of the simplest, but non-trivial
examples: see Fig.3.2. We are supposed to treat two-dimensional problem for the double-slit
experiment. The weak value of position perpendicular to the screen, however, is also linear
with respect to time ¢ and if the pre-and post-selected states are eigenstates of position, the
position weak value coincides with the classical trajectory as we have seen before. Hence, we
ignore the position weak value perpendicular to the screen.

The pre-selected state is expressed by the superposition of two position eigenstates:

1
V2

while the post-selected state is the position eigenstate |x). We assume the free Hamiltonian
H = p?/2m. The position weak value z,,(t) can be obtained from (4.8). Instead of doing
so, we employ the Feynman kernel (3.14) to derive the weak value. The position weak value
Ty (t) is

|9) = —= (lzs) + 1 —z3)) (4.39)

Zull) @09

@O — 02U + (U — DaU(0)] - )

U DNas) + {agU(T)] —
UM maie) + aUT)] - sy ()
|0y + {as U] — 22
zpt  xi(t —T)tan (”—gm’;’)

= i - , (4.40)

:ri(t) _ (xf|U(T = t)zU(t)| £ ;)

(x| U(T)| £ x3)

Ot 2,7
_ (xf]F”T) ril (4.41)

from which we conclude that x,,(¢) is linear with respect to ¢: see Fig.4.1. The position weak
value £ (t) coincides with the classical motion of the massive particle. Observing the real
part of the position weak value z,(t), it turns out that x,,(t) is average value of the weak
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Figure 4.1: The position weak value z,,(t) for various different post-selections with the den-
sity proportional to the transition probability |(¥|U(T)|¢)|?>. The orange and green lines
projected on the bottom and the left-back planes are drawn for the real and imaginary parts,
respectively. The position weak value z,,(t) is linear with respect to ¢.

Transition
Prob';lbility
/ _ nmhT

Lf

—3a —a a 3a
Figure 4.2: Black and gray lines are the real and imaginary parts of the weak value z,, at
a certain time ¢ € (0,7). We have a = whT/2mz;. Orange filled curve is the transition

probability. The imaginary part of the position weak value x,, diverges when the transition
probability vanish. Thus, we infer that the interference effect is related to Im z,,(t).
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values 2 (classical trajectories). From (4.40), we can say that the imaginary part of the weak
value disappears when the interference pattern is constructive (see Fig.4.2).

We have shown the connection between the imaginary part of the weak value p, and
interference in (3.23). By using (4.9) and (4.10), the index of interference Z can be related to
the position weak value,

(4.42)

IS

1
Imi,(t) = —Imp, =
m

(ol

The imaginary part of the position weak value x,,(¢) disappears when the transition proba-

bility is extremal as shown in Fig. 4.2.

As we have seen, the real part of the position weak value x,,(f) can be seen as the average
of the classical trajectories. We may consider the real part of the position weak value as the
particle nature while the wave nature appears in the imaginary part [29, 30]. We examine
whether this nature stands for another example in the next section.

4.4 Triple-slit experiment

To see the properties of the position weak value, we increase the number of the slit. We
suppose the triple-slit experiment in which each slit is placed equally spaced.

The triple-slit can be expressed by choosing the pre-selected state as

1

V3

where | + x;) and |0) describe the position of the slits while the post-selected state is the
position eigenstate |z ;) which represents the position on the screen. The particle is governed
by the free Hamiltonian. The position weak value x,,(t) is

|#) (i) +10) + [ — i), (4.43)

(2| U(T = 1)xU(1)[9)
(s |U(T)|)

(27 |U(T = )2U @)(|z:) +10) + |
(@ |U(T) i) + (2 [U(T)|0) + (x4 |U(T)] = )

Ty (1)

= —" , L (4.44)
3+ 2cos (% x%xl> + 4 cos (%xfol cos (%%)

The real part of the weak value x,, does not coincide with the average of the classical trajec-
tories %ft: there exists an extra term. The position weak value is linear with respect to the
time ¢ (see Fig.4.3). The imaginary part of the weak value x,, vanishes when the derivative
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Figure 4.3: The position weak value z,,(t) for various different post-selections with trans-
parency proportional to the transition probability |()|U(T)|¢)|>. The orange and green lines
projected on the bottom and the left-back planes are drawn for the real and imaginary parts,
respectively.

Transition
Probzlibility

/

oY

Figure 4.4: Black and gray lines are the real and imaginary parts of the weak value z,, at a
certain time ¢ € (0,7'). We have parameters m = h =T = z; = 1 and —6.3 < zy < 6.3.
Orange filled curve is the transition probability. The imaginary part of the position weak value
z,, vanishes when the transition probability becomes extremal. As the double-slit experiment,
we infer that the interference effect is related to Im x,,(¢).
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of the transition probability with respect to z; becomes zero. We can show the connection
between the weak value and the interference same as (4.42): see Fig.4.4.

The transition probability is proportional to

%1, | )
[(z4|U(T)|¢)|* ox 3+ 2 cos (% xj’:xz) + 4 cos (%xfoz> o (%%> |

and corresponds to the denominator of the position weak value. Thus, when the transition
probability becomes small, the weak value increases unless the numerator also becomes small.

It has turned out that the real weak value for the triple-slit experiment cannot be written
in the form of the average of the classical path, but if we admit the complex probability
[36, 38|, we obtain the picture that the position weak value is the average of the classical path
[30] as we show that in the following section.

4.5 Multiple-slit experiment

In the above discussion, we have shown non-trivial example, and it turned out that the weak
value is linear with respect to ¢t. In this section, we elucidate this result to the multiple slit
placed at 1, x9,...,z,, and show that the condition in which the weak value x,,(t) is real.
Besides, we show the real part of the position weak value is the average of the classical path
if one admits the complex probability [36, 38].

The particles are localized at xy,zs,...,x,, and the corresponding state (pre-selected
state) is
N
9) = ZQ’%): ¢ € C, (4.45)

=1

while the post-selected state remains to be the position eigenstate |z¢). The position weak
value x,,(t) is defined as

(z4|U(T = t)zU(t)|¢)

relt) (elUT)g) 7 (4.46)
and becomes,
Ty(t) = Z’]il]\fl<xf‘U(T)|xZ>xél(t) (0.47)
> iz Gl [U(T)|2:)
_ ot Tt ey U s
T f T Zfi1cz<$f’U<T)‘xl> (448)
_ Tt el U(D)) ( — ) 4.49
T Sy cila | U(T)a) ’ (4.49)
iy U@ —DaU@)ey) o Tt
A (U (T)]a:) T (4.50)

54



It is clear that (4.48) is linear with respect to t. Although the final position of this particle is
at x s, the initial value of z,,(t) is a complex number and depends on z;, s, and the coefficient
C;.

As discussed in [27], a real part of a weak value A is the conditional average of A and
does not contain the effect of disturbance of a weak measurement though a imaginary part
of weak value represents the disturbance. Besides this interpretation, we want to propose
that (4.47) may be interpreted as an average of the classical trajectories weighted with the
complex probability [36, 38]. To show that the weak value can be regarded as the average,
we define the weight w; as

el U]
T el dUD))

(4.51)

and substitute w; to (4.47),

Tu(t) = Zwizil(t). (4.52)

In general, the weight w; has complex value and satisfies > . w; = 1. Thus, (4.52) may be
regarded as the average of the classical path z*;(t) weighted with the complex probability w;
[30].

Let us consider the condition under which the imaginary part of the weak value vanishes,

ru(t) = Zwixiz(t)

N w; + w) w; — W
= S+ > (), (4.53)

then the condition under which the imaginary part of the weak value x,(f) vanishes,
Im[z,,(t)] = 0, is equivalent to

Z(wi — w2, (t) = 0. (4.54)

> (w; — w)z; = 0. (4.55)
Eq. (4.55) can be expressed in a more useful form [30]:
d 2
U@y =0. (4.56)
f
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We show the conditions (4.55) and (4.56) are equivalent. The condition (4.55) can be written
as

U(T)|x:)
(4.55) ZImexZ—ZIm {cz (2,0 (T)]é >mz]
=2 Ime <xf\U<T>1¢> ]

N |l (= 2T) UT) )
L ey PeriTGoI)

_ T [ GepU (D))
- 2w [

N N GL)

m Oxy
_RT 0 9
= S U@ (4.57)

So, the conditions (4.55) and (4.56) are the same.

We can rewrite the momentum and position weak values in terms of the logarithmic
derivative with respect to xy,

(e |U(T = pUB)]6) _ (U (T)]6)
(o, [U(T)[9) (e, U1}

= ih T Ina|U(T)]6), (458)
Lf

pu(t) =

from which the momentum weak value is independent of time ¢. Furthermore, the imaginary
part of this weak value can be expressed as

I fpuft)] =~ e U, (1.59)

from which (4.56) can be expressed by the momentum weak value. From (4.9), (4.10), and
(4.58), we conclude that the weak value of the position is linear with respect to time ¢:

LD e U)o, (4.60)
Ty

£ =y — ik
Ty(t) =xp —1 —

The equivalence of (4.60) and (4.49) can be shown by using (z¢|p = —ihd/dx(xy|.

Because (4.8) is independent on the pre- and post-selected states, we can show a more
general condition under which the imaginary part of the weak value x,(t) vanishes. From
(4.9) and (4.10), it turns out that the momentum weak value p,,(t) is independent of time ¢.
Thus, the position weak value x,,(t) is purely real if z,,(¢) is a real number at each boundary.
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So far, we have assumed V (x) = 0, but for a more general Hamiltonian H = p?/2m+V (z),
we can derive more general relationships,
Pu(t)

E(t) = U (4.61)

) = ~(50) ©, (462

v @I = )5 U()|g)
<ax>w“> - QUG (4.63)

from which, if x,, () is purely real at arbitrary time ¢, then p,(t) is also purely real. Taking
contraposition of this, if p,,(¢) have an imaginary part, then x,,(¢) also must have an imaginary
part.

Let us introduce another useful equation. Eq.(4.59) can be rewritten for the general
potential as
h d

Im[p, (T)] = —§d—xf1n\<$f|U(T)\¢>|2- (4.64)

When one of the boundary conditions is the position eigenstate, (4.61) and(4.64) are useful
to infer the weak value of the position for the general potential. In almost all of cases, we
cannot say anything about the weak value except at its boundary because of the potential.
The momentum weak value at the boundary can be calculated from (4.64), and if it has the

imaginary part, then we can infer that the position weak value also has a complex value from
(4.61).

4.6 The which-path information

So far, we could not observe the interference pattern and which path the particle took. To
conquer this difficulty, introduce the spin-1/2 state to specify which path the particle takes.
Depending on the choice at the screen, we can obtain the which-path information, or we can
completely lose this information: the interference fringe reappears (Quantum eraser [7]). In
this section, to get the which-path information, we introduce the spin-1/2 state to express
the path of the particle and examine the trajectory of the particle in terms of the weak value
29, 38].

We assume that the particle is equipped with the spin-1/2 states, |+) and |—) (the eigen-
states of the Pauli matrix o). Initially, the particle is localized at +x; with a certain spin,
1

V2
We obtain the path of the particle if we post-select the eigenstate of the Pauli matrix, |+)

(or |[=)), on the screen. This measurement, however, destroys the interference pattern on the
screen. This kind of discussion has been done by using a polarization of photon and is known

|¢) (lzs) @ |4) + | — =) @ |-)). (4.65)
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Figure 4.5: The double-slit thought experiment with the spin-1/2 state. The particle is
localized around Sy at time ¢ = 0 with the spin state |£) and arrived at z; at time ¢ =
T. When one observes which path the particle takes, the interference is washed away: the
figure on the left. However, when the which-path information is completely lost by the
post-selection, the interference pattern is reappeared: the figure on the right. The orange
filled curve represents the superposition of the position eigenstate with the spin as the pre-
selected state. If one prepare the superposition of the Gaussian state instead of the position
eigenstate(and the spin state), the transition probability becomes more realistic and is drawn
in the dashed curve.

as “quantum eraser” [7, 39, 40, 41]. We choose a post-selected state representing a point on
the screen with a certain spin-1/2 state,

[¥) = |2s) @ [cos(0/2)]+) + € sin(6/2)| )], (4.66)
where 7 is a real number that describes the phase. Depending on the choice of the post-
selection, the interference pattern on the screen is changed. For # = 0,7, the interference

pattern is washed away because which path the particle takes has been completely observed.

Instead, by putting 6 = 7, we recover the interference fringes, but we completely lose the

which-path information (see Fig.4.5). Let us define the spin-tagged position operator by
F =1 ® |£) (£ (4.67)
The position operator x is expressed by the sum of o7,
r@I=ax"4+2". (4.68)

We assume that the particle evolves under the free Hamiltonian H = p?/2m ® I so that the
spin state does not change during the unitary evolution U(t). The spin-tagged position weak
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values r(t) are

st = (| U(T — t)xtTU(t)|o)
’ Wlomle)
(g —x;) + Ta) cos(0/2)
"~ T(cos(6/2) + eixsin(6/2)) (4.69)
_ cos(0/2) N
"~ cos(6/2) + eixsin(6/2) Talt), (4.70)
ro(t) = (WIU(T — )z~ U(t)|o)
’ Wlom)e)
_ (t{wy+ a3 — Tay))sin(6/2)
~ T(sin(6/2) + e~xcos(6/2))’ (4.71)
_ sn(6/)
~ sin(0/2) + e "X cos(6/2) ®), (4.72)

where y is equals to 2ma z;/hT — 1, and z5(t) is the classical trajectory defined in (4.41).
It is easily shown that, if we put § = 7/2, Rex is proportional to the classical trajectory,
i.e., Reaxt = :Uﬁ /2. Roughly speaking, this discrepancy can be explained by the following
picture: the spin-tagged position weak value is equal to the value of the classical trajectory
times the probability of finding the particle with the spin |£)(=£|. The imaginary part of the
weak value % (t) can be still understood in terms of the interference: see Appendix B.

Since we have post-selected the particle at the position zy, the particle must be at the
position zy. To adjust the disagreement between classical trajectories and Re 2 (t), we define
re-scaled weak value ' (¢) so that 2} (7") is equal to xy,

TE(t) = a5 (t). (4.73)

w cl

In Fig. 4.6, the orange and the green lines denote the real part of zf (t) and ., (t), respectively,
and the density of these lines are proportional to the transition probability. If we obtain the
path of the particle, the interference fringes are washed away. However, by implementing the
weak measurement, we can show the path of the particle without destroying the interference
pattern. Besides, we can also show the real part of these weak values correspond to the
classical trajectory. It seems paradoxical because we observe the trajectory of the particle
and the interference pattern simultaneously. Measuring wavelike and particlelike behavior
together contradicts the complementarity. To measure weak values, we have to prepare an
ensemble of the initial state. The spin-tagged position weak value is the result of many trials,
and for each trial the weak value does not tell us which path the particle takes. Thus, the
complementarity is satisfied because we couldn’t observe the which-path information for each
event.

We can generalize this result by introducing the multiple-slit experiment and a set of N
states {|i)} to specify which path the particle takes. We begin by preparing the pre-selected
state as

N
6) =D cilwi) @ i), ¢ € C. (4.74)

i=1
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0=0: (1) X f

Figure 4.6: The position (with the spin) weak value Z (¢) with various post-selection z; while
changing the parameter § = 0,7/2, 7. The green and orange lines describe z (¢) and &, (t),
respectively, and density is proportional to the transition probability |(|U(T)|®)|*.

Usually, if one gets the which-path information, it will destroy the interference pattern, but
we can recover interference instead of obtaining its path. This choice can be realized by the
post-selection,

N

) = eilzy) @ i), e; € C. (4.75)

=1

As we can see (4.75), if we choose e; = ¢;; for all 7 and some j, we observe the path, so that
the interference pattern is washed away. In contrast, if e; = 1/v/N, we find the interference
patten although we lose the which-path information. Intermediately, to observe the specific
particle from one of the slits i, define the spin-tagged position operator x?,

7' =2 |i) i, (4.76)
where Y. 2" = 2 ® I. The spin-tagged position weak value z? () becomes
QIU(T - D)a'U(1)]9)

WU
iy (t)eie (U (7))

doicilwp|U(T) i)

where z%,(t) is the classical trajectory defined in (4.50). To simplify the weak value, we define

2, (t)

(4.77)
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weight w; as
v = G @U@ s)
2. e (| U(T) i)

The weight w;, in general, has a complex valued number and satisfies Zf\il w; = 1 as complex
probability [36, 38]. By using (4.78), we can rewrite the weak value z,(t),

(4.78)

7l () = 2w, (4.79)

This value is proportional to the classical value. To adjust this discrepancy, we define the
re-scaled weak value

#i (1) = 2 i), (4.80)

where we require the criteria that the weak trajectory corresponds to xy at time ¢t = T
(because we have already known the particle is at x; by the post-selection). By specifying its
final position, we can infer its initial position, and this re-scaled weak value corresponds to
the classical trajectory.

4.7 Superposition of an infinite number of the position
eigenstate

So far, we assumed a superposition of the discrete state for the pre-selection. In this section
we consider the following state as the pre-selected state for the later discussion:

16) = / drie(z)las), (i) € C, (4.81)

which describes generalization of the multiple-slit experiment (4.45). As the post-selected
state, we consider the position eigenstate |x). The particle evolves under the free Hamilto-
nian. In this case, the position weak value is

(| UT —t)zU(1)|)
(zg|U(T)|9)
J daic(xi){zy|U(T — t)zU (¢)|z:)
T dasc(w:) g [0 es)
fdeiC(ﬂﬁi)(xﬂU(T)|$i>xiz(t)
Jdwic(z) (x| U(T)|zi)
where ¢

L (t) is the classical trajectory defined in (4.50). To simplify this expression, we
introduce w(x),

Ty(t) =

(4.82)

c(x)(z|U(T)|)
J e(@){a U (T) )’
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w(zr) = (4.83)



which, in general, is a complex number and satisfies [ dzw(z) = 1. If one admits the complex
probability, the position weak value can be written by the form of the average of classical
path [30],

rult) = / s ()2 (8). (4.84)

The condition in which the imaginary part of the weak value disappears can be expressed,

/ dari(w(wi) — w* ()2 (£) = 0, (4.85)

from which we will see only the time independent term:

/dxi(w(xi) —w*(z;))x; = 0. (4.86)

Eq. (4.86) can be expressed exactly same as (4.56) though we omit the derivation.

For example, we put the pre- and post-selected states as the momentum eigenstate |p)
and the position eigenstate |zy), respectively. Then, one finds that the position weak value
T, becomes,

{2, |U(T = t)=zU(0)|p)
{7 |U(T)|p)

J 755 exp [iB] (2| U(T — )2U (1))

755 exp [18] {4 |U(T) i)
755 exp [iB2] {af [U(T) )y, (1)

Ty(t) =

- z; p; : (4.87)
5 exp i8] {ay |U(T)] i)
It is easily shown that the position weak value () is
(27| U(T = )2U (1) p) p
Ty(t) =z +—(t-1T), (4.88)
(e U(T)Ip) T
and similarly the momentum weak value p,,(t) is
U(T —t)pU(t
pult) = g U = )pU®)lp) _ (4.89)

(s |U(T)lp)

We can realize (4.88) and (4.89) in a classical way: the particle has momentum p at t = 0
and, moving along side the z-direction until ¢ = T, get at xy. This can also be derived from
(4.9) and (4.10). Since |p) is the momentum eigenstate, the momentum weak value is

Pw(t) = p. (4.90)
Att =T, z,(t =T) correspond to its final position ;. Hence we obtain

To(t) = 25 + %(t — 7). (4.91)
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Obviously, the position weak value x,,(t) is purely real, and it can be easily shown that the
condition (4.56) is satisfied,

d , d

— x| UT)p)? = —

2o AU = -
d 1

= Qo ko

2
) (§]
e_l 2mh T

We consider a more non-trivial example for the reality of the weak value. We have the
pre-selected state as the complex Gaussian distribution,

¢) = / dpel®® 07| 1) (4.92)

where o and 3 are real numbers and do not depend on z;. Note that this pre-selected state is
neither eigenstate of the position nor the momentum. The transition amplitude (z;|U(T)|¢)
is

. 2x?a+2xfﬂ—%T52
2441 Tq

(x7|U(T)|¢) = {

(4.93)
W1+ Z%Ta
The weak values p,(t) and x,,(t) are

B

Tyt 3
(1) = , 4.94
Pu(t) 7oL (4.94)

h Trox + 8

zu(t) =25 — (T - t)aﬁ7 (4.95)

and these weak values are purely real. The conditions (4.86) and (4.56) is also consistent,
and can be checked straightforwardly.

4.8 Lloyd’s mirror

In this section, we consider the Hamiltonian with the potential. So far, we have discussed
some simple cases including the Hamiltonian with the quadratic potential and the particle
moving under a constant magnetic field can coincide the classical motion in several situations.
However, in this section, we show non-trivial example which does not obey the classical
trajectory even if one selects position eigenstates for the pre- and post selections [30].

Let us consider the potential V(z) as V(z) = oo for x < 0 and V(z) = 0 for 2 > 0. The
boundary condition is that the wave function vanishes at = 0, which is known as Dirichlet
boundary condition. More detailed discussion about the different boundary condition is in
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Figure 4.7: Lloyd’s mirror experiment. The particle is localized around S, at time t = 0
and arrived at x¢ at time ¢ = T'. In classical optics, the light can take the path toward the
screen via the wall (mirror) and straight forwardly toward the screen. This particle cause
interference on the screen, and the orange filled curve represents the interference fringes (the
transition probability) especially when one choose the position eigenstate as the pre-selected
state. If one prepares the Gaussian state instead of the position eigenstate, the transition
probability becomes more realistic and is drawn in the dashed curve.

[42]. We assume that the particle moves under the free Hamiltonian in the y-direction,
and reaches at the screen as Fig.4.7. In general, we must consider two-dimensional system.
However, as long as we focus on the weak value along the z-direction, we can ignore the
contribution from the y-direction because of its definition. Hence, our main concern is one-
dimensional system with the perfectly reflecting wall potential.

We obtain the Feynman kernel K(z,t;x,t0) = (z|U(t,t9)|zo) by substituting a set of
eigenstates of the Hamiltonian {|xx)},

K(z,t;x0,t9) = (x|U(t,10)|x0)
= /dk (@|U(t, to) [Xi) (X |o0)

_ / dk {3 )

= /dk Xe ()X (g)e T Er(t=to)/h (4.96)

where Fj is the eigenvalue of the Hamiltonian for the eigenstate |xx). From the Dirich-
let boundary condition, it is well known that the solution for the Schrodinger equation is
superposition of the plane wave,

1 ikx —ikx
Xk<x>:<I|Xk>:ﬁ(e —e ) (4.97)
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where L is L = w. By using (4.96), one can write the Feynman kernel,

K(z,t;x0,t) = /dkixk(:l:)x;;(xo)e_iEk(t_tO)/h

2 1
(t—to)

2
= [ ee

m mE=r0)” i otz0)2
_ e Mohtt—ty) — e 2h(t—tg) | | 4.98

This is similar to the double-slit experiment except for the phase. The domain of this Feynman
kernel is defined in > 0. The transition probability P(z,t;xg, ) is

2m rT
P(ZL', t, Zo, to) = ‘K(l', t, Zo, to)’2 = m Sin2 (mh(t——oto)) . (499)
Naturally, the interference pattern can be seen and is known as Lloyd’s mirror. One may
expect that the position weak value is same as the double-slit experiment, but the behavior
of the weak value is completely different. We will examine the weak value of the position. For
simplicity, the pre- and post-selected states are position eigenvalues |z;) and |x), respectively,
and the position weak value z,,(t) is defined,

(x| UT —t)aU@t)|z)  fy deK(xy, T;2,T — t)eK (z,t;2;,0)

relt) (a0 Kleg, Tz00)

(4.100)

This weak value can be rewritten by error function Erfi(z) and is not linear with respect to ¢
anymore,

—jm ST t(zs—x;)+Tx; -
i (t($f—$i)+Txi)Erﬁ {(%+ )% %]

Tu(t) = i T :
(¢ Dk

s i\ (“tlzptz)+Tz) /m
e'n T (t(xy + ;) — Twy) Erfi [(% + i) Srededize) g}
AT (T—t
i S C(4.101)

The weak value z,,(t) can be calculated numerically, and we show the behavior of the weak
value z,(t) in Fig.4.8. Note that the real part of the position weak value Re x,,(t) behaves
wildly when the interference patten destructive. By using (4.61), whether the weak value
Zw(t) has a complex number can be shown without calculate z,,(t). Im p,(7) is derived from
the transition probability,

10 9

Im py(T) = —==— In|(zf|U(T)|x;)|", (4.102)

20x f
and is easily shown that Im p,,(T") = —max; cot (mx fz;/RT) /RT. Thus, in general, p,(T) is a
complex number, so we can infer that Im z,,(7) also has a complex number from (4.61) even
though z,,(¢) is a real number at boundaries.
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0

Figure 4.8: The weak value for position z,,(¢) in the complex plane for a number of different
post-selections with the density proportional to the transition probability |(z¢|U(T)|z;)[*.
The real and imaginary parts are described in orange and green lines and projected on the
bottom and the left-back planes, respectively.

In chapter 3, we have treated the interference. Let us briefly mention the interference. In
classical optics, the interference results in the interference between the light reflected on the
wall and straightly toward the screen. However, in this case, a infinite number of the paths
are interfered each other, and the interference pattern is appeared on the screen.

4.9 Summary

In this chapter, we have shown the behavior of the weak value x,(f) in several models in-
cluding multiple-slit (thought) experiment and Lloyd’s mirror experiment. In the double-slit
experiment, we have found that the real and imaginary parts of the weak values can be re-
garded as the average of the classical trajectory and the interference effect, respectively. The
real part of the position weak value Re x,(t), however, cannot be interpreted as the average
of the classical trajectory if we consider multiple (more than two) slit experiment. We found
that the averaged nature of the weak value is rediscovered when one admits the complex
probability. Then, quantum eraser is utilized to obtain which-path information. At the slit
one can distinguish the particle, but, which path the particle takes is completely erased by
the post-selection at the screen, and the interference fringes can be observed [7]. Although
the which-path information seems to be completely lost in quantum eraser, by employing the
spin-tagged position weak value, we can find which path the particle takes for an ensemble
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without destroying interference. Since the weak value is defined for an ensemble not for indi-
vidual event, this result does not contradict the complementarity. Finally, we have examined
the weak value z,(t) with a non-vanishing potential, V(z) = oo for # < 0, which is known
as Lloyd’s mirror. The weak value z,,(t) is a smooth function of time ¢ and has a complex
number in general even though x,(t) is real at each boundary.
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Chapter 5

Conclusion and discussions

The aim of the present thesis is to interpret several quantum phenomena based on the weak
values and thereby clarify the role of the weak value in quantum mechanics. It is pointed out
that the weak value is useful to understand quantum mechanics intuitively. In particular, we
have focused on the time-dependent position weak value and regarded it as the weak trajectory
because in several examples the weak trajectory coincides with the classical trajectory. We
all know that defining the trajectory is impossible in quantum mechanics because of the
uncertainty principle. Similarly, we are aware of the difficulty of determining path of the
particle in the double-slit experiment. The weak value, however, is defined in the weak limit
not disturbing the initial state, so that we can obtain the values of noncommuting observables.
Namely, without destroying the interference we can observe the position weak value. We
have investigated the interference effect of the particle, because quantum interference is a
quintessential phenomenon in quantum mechanics as Feynman pointed out [2].

To discuss interference, the path between the pre- and post-selections is defined by de-
composing the transition probability in terms of a certain basis. Then, we have shown that
the imaginary part of the weak value is related to the index of interference [29]. As examples,
the double-slit (thought) experiment and the spin-1/2 system are examined. In the double-
slit experiment, the index of interference is expressed in terms of the imaginary part of the
momentum weak value alongside the screen. When the interference is destructive, the index
of the interference (the imaginary part of the momentum weak value) diverges. Also, the
imaginary part of the position weak value can be related to the index of interference through
a dynamical relationship. In contrast, the index of the interference becomes zero when the
interference becomes constructive. In addition, the spin-1/2 state has been investigated. The
post-selected state is slightly rotated around a certain basis. The index of the interference is
described by the imaginary part of the spin component.

To investigate the meaning of the real part, the position weak value is exploited, which
we regard as the weak trajectory. We have shown that the weak trajectory between position
eigenstates under the free Hamiltonian is purely real and coincides with the classical path.
It seems that the weak value allows us to discuss the quantum path in the language of the
classical world. To confirm this, we have studied multiple-slit (thought) experiment. In the
double-slit experiment, the position weak value is just the average of the classical trajectories.
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One may wonder if, in general, the real part of the position weak value is the average of
the classical trajectories. This feature, however, does not hold for the three (or more) slit
experiment. Nonetheless, the position weak value can be seen as the average of the classical
trajectory if one admits the complex probability. We also have shown that the imaginary
part of the weak value x,(t) can be related to the indicator of interference effect, i.e., the
imaginary part vanishes when the interference becomes extremal [30]. So far, our argument
is restricted to the multiple-slit experiment, but by extending the pre-selected state to the
arbitrary one, this interpretation of the imaginary part of the weak value x,,(t) can also be
established. Indeed, for the momentum eigenstate and the complex Gaussian state, we have
confirmed that the conclusion obtained above is valid.

At this point, the position weak value can be interpreted as the average, but we cannot
specify which path the particle has taken. We have introduced the particle with a spin degrees
of freedom so that we can obtain the which-path information we want. If one measures the
spin state other than its position on the screen, the interference pattern will be washed
away. Interference also cannot be observed when one obtains the which-path information. To
preserve the interference pattern, we may choose to erase the which-path information. When
this is done, we are usually unable to predict the trajectory of the particle for each event.
In terms of the weak value, however, we can recover the capability of telling which path the
particle takes without destroying the interference pattern. If the weak value is “re-scaled”, the
position weak value coincides with the classical trajectory. Obtaining its trajectory without
destroying interference does not contradict the complementarity, because the weak value is
defined for an ensemble, not for an individual event [29, 30].

Up to this point, our argument is restricted to the free Hamiltonian. We have shown an-
other example, Lloyd’s mirror, that causes an interference pattern on the screen. In classical
optics, the paths can be described either by one which straightforwardly moves toward the
screen or the other which is reflected by a wall (this is not a smooth function). In quan-
tum mechanics, Lloyd’s mirror can be expressed by a perfectly reflecting wall potential, and
the Feynman kernel (propagator) for this potential has been already known. The position
weak value can be numerically calculated, and it has turned out that the weak value has an
imaginary part and is a smooth function of time. The behavior of the imaginary part of the
weak value x,,(t) is not trivial, but we can predict whether x,,(t) has an imaginary or not by
simply taking the derivative of the transition probability with respect to x; (final position
of the particle), and we find that z,,(¢) has the imaginary part generally. Consequently, the
connection between the imaginary part and the interference is confirmed [30]. Although our
analysis is based on some assumptions, the results we obtained allow us to understand the
motion of the quantum particle more intuitively. It is obvious that, in order to understand the
weak value or quantum trajectories more deeply, far more general cases should be examined.

Since the weak value is obtained under the weak limit, we may say that the weak mea-
surement allows us to peep at the intermediate value which cannot be achieved by the strong
measurement. Ideally, the weak value does not depend on the type of weak measurement one
performs, which implies that the weak value represents some sort of physical value for the
ensemble.

Our purpose of the present paper has been to make clear the role of the weak value in
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quantum mechanics and thereby to comprehend the quantum phenomena intuitively. We
have successfully explained the interpretation of the imaginary part which has been regarded
to be obscure up to this point. Besides, we have shown that the weak value can be understood
by the average of the classical value in several special cases. Our study suggests that the weak
value can be regarded as a reasonable physical quantity. To elaborate our discussion, more
general potential should be studied. It is our hope that our study can provide a help to assign
a role of weak values in quantum mechanics.
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Appendix A

Weak measurement (detailed
calculation)

In section 2.5, we omitted the detailed calculation of the joint probability. In this appendix
We will show the detailed derivation.

The joint probability is expressed as

P(ou,f) = Tr, [Tra [(jou)(ou] @ ) Uup())US)] ]
= Tr, [Trg [U}(Jou) o] © TT)Uup(t)]] (A1)

where

Ul (loz = +1){0n = +1| @ I;)U,,
cos(gA)ILs cos(gA) — sin(gA)ILf cos(gA) cos(gA)IIf cos(gA) — sin(gA)Ils cos(gA)
1| - cos(gA)Isin(gA) +sin(gA)Ilrsin(gA) 4 cos(gA)Ilfsin(gA) — sin(gA)Ilfsin(gA)

cos(gA)ILs cos(gA) — sin(gA)IIs cos(gA) cos(gA)I s cos(gA) + sin(gA)IL; cos(gA)
+cos(gA)ssin(gA) — sin(gA)IIrsin(gA) 4 cos(gA)Ifsin(gA) + sin(gA)I;sin(gA)

By using following relations

0 A)2n o0 2n
cos(gA) = nz; (?Zn))' =1+ nz:l (2g—n>!A (A.2)
= 1—A+ Acosy, (A.3)
sin(gA) = Asing, (A.4)
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the joint probability is

P(Jx:+17f)

T 51600 (0] coslg )Ty cos(g) + sin(g )1 cos(g)

+ cos(gA)Issin(gA) + sin(gA)Ilf sin(gA))

Refsin g($(8) AT — £)) (T — )|6(t)) + (—1 + cos 9) (T — )| Al ()]
L sin? gl (T — 1) Alp(0))

2
+%|(@/}(T = )](1)) + (=1 + cos g)(U(T — )| Alo(t)) | (A.5)
%W(f —t)|(t)) + (sing + cos g — (W (T — t)|Al(1))[*. (A.6)

Similarly, other joint probabilities can be obtained.
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Appendix B

Interference of quantum eraser

In this appendix, we show the relation between the quantum interference and the imaginary
part of the weak value for the double-slit experiment in which we can observe the spin-tagged
position weak value.

The pre-selected state at t = 0 is expressed by the superposition of two position eigenstates
with the spin states |£),

16) = —=(lz) ® |4) + | — ) ® |-)), (B.1)

2

Sl

while the post-selection is
1
V2

so that the interference pattern can be observed. When the state evolves under the free
Hamiltonian, the transition probability is

AU D)) = 5o o (55 (B.3)

|¥) 7)) ® (|4+) + 1)), (B.2)

Let us define the spin-tagged momentum operators,
Pt =p@|E) (. (B.4)
The momentum operator p is sum of p*,
pRI=pt+p. (B.5)
We begin by defining the translation operator w,: (o)
Uyt (@) := exp [—iap™], (B.6)

which translates the position of the particle with the spin |+) by «, then the transition
amplitude between the pre- and post-selected states can be expressed,

Ki(a) == (lups ()U(T)]9). (B.7)
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To observe interference, we introduce an identity operator to divide the transition amplitude
Ky(o),

]I:/Ooodx|x)(x|+/0 dz|z) (] (B.8)

—00

Let us substitute the identity operator (B.8) to (B.7). Then the transition amplitude is split
into to two parts,

Ki(a) = (dlup=(a)U(T)|9)

(Wfupe (@U(T)| — 2i) @ |4) | @lups(U(D)]s) @ | =)

= + B.9
7 5 (B.9)

By using new states |¢.) = | £ 2;) ® |4)/v/2, we define transition amplitudes,
Kig(a) = (Blups(@)U(T)|0x). (B.10)

The interference is caused by the phase difference between Ky 4 (o) and Ky (). In the case
of this example, the post-selected state is eigenstate of the position |z;). The weak value of
momentum p,,, p; and p, are

- {(WpTU(T)l¢) _ i Tf T
b (WIU(T)|®) T(1 + eix)’
(B.11)
Py = (@pU(T)|¢+) _ s T T (B.12)

(WIU(T)|0+) T

where x is equal to the 2ma x; /RT. Since the imaginary part of the spin-tagged momentum
weak values pt are zero, the index of interference (3.11) for the translation of the particle
with the spin |4) becomes

|K, —(0)] K. . (0)]?
T = Im|p) —po, st = P oo
|K(0)? K (0))2
— ;) tan (2L
_ Im ] = ) h T B.1

from which the variation of interference terms is represented by the imaginary part of the
weak value pt. The variation of interference fringes correspond to the imaginary part of the
weak value p .

Since we have (4.8), we can safely say that the derivative of the spin-tagged position weak
value z7f(t) with respect to time ¢ is proportional to the spin-tagged momentum weak value
pt. Thus, the imaginary part of the spin-tagged position weak value Im x}(¢) can be regarded
as the interference effect.
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