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ABSTRACT

For many active phenomena in space plasmas, such as the substorm in the

Earth’s magnetosphere, the solar flare, and the dynamics in pulsar magnetosphere,

it has been suggested that “magnetic reconnection” often plays an important role

in their energy release. In general consensus of magnetic reconnection, the topo-

logical change of magnetic field lines leads to the release of magnetic field en-

ergy and results in the dynamical plasma processes. From previous theoretical

and observational studies, it is suggested that the mechanism of magnetic recon-

nection may not be understood by only a single solution and highly depends on

the scale and the plasma behavior on which we are focusing. For this reason,

the dynamics has been studied by both the collisionless kinetic and the magneto-

hydro-dynamic (MHD) approaches, so far. In either cases, reconnection dynamics

has been mainly studied in a laminar equilibrium, and the efficient mechanism to

convert the magnetic field energy into kinetic and internal energy of plasmas has

been suggested. On the other hand, the effect of turbulence, which seems to be

natural and essential in high magnetic Reynolds number plasmas, has not been

established yet. This dissertation aims to address some suggestions on the rela-

tionship between turbulence and reconnection dynamics from collisionless kinetic

and MHD reconnections with different viewpoints.
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As for the collisionless kinetic reconnection, we consider the reconnection as

the source of turbulence. In the kinetic scale, there exists plenty of free energies,

such as non-uniformity and the pressure anisotropy, and we may expect a lot of

plasma instabilities compared to the MHD system. Along with such a way of

thinking, Chapter 2–3 focused on the self-generated fluctuations in magnetic re-

connection. In Chapter 2, we considered the condition when magnetic reconnec-

tion becomes turbulent based on the nonlinear kinetic simulations and the local

linear analysis. The results showed that whether the reconnection exhausts be-

come turbulent or not strongly depends on the ion plasma beta in the initial inflow

regions, βi0: the reconnection jet becomes turbulent in the low beta condition,

βi0 < 0.1–0.2. On this issue, the excitation and suppression of Alfvénic modes

in the plasma sheet boundary layer (PSBL) is discussed. The local analysis for

the PSBL suggests that as the ion beta increases, the damping rate of ion-scale

Alfvén waves becomes larger and suppresses the ion-scale fluctuations. In addi-

tion to the PSBL dynamics, we tried to explain global unstable mode observed in

reconnection jets. This unstable mode appears across the current sheet and cannot

be explained by only the PSBL dynamics shown in Chapter 2. Then, in Chap-

ter 3, in order to discuss the nature of the global mode in jets, we presented a

linear eigenmode analysis including both non-uniformity and pressure anisotropy

effects. The analysis suggests that the global mode observed in the reconnection

jet is the slow Alfvén type mode, where the globally-appearing magnetic pressure

gradient force weakens the magnetic tension force, and is very sensitive to the

pressure anisotropy. As a result, the mode has efficient growth rate and could con-
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tribute to the generation of fluctuations in the anisotropic ion-scale reconnection

jet.

In Chapter 4, the macroscopic MHD reconnection dynamics is focused. We

considered the effect of pre-existing turbulence in the MHD scale current sheet,

and how turbulence affects the current sheet dynamics is investigated using a

Reynolds-averaged MHD model. In the model, equations of time evolution for

turbulent quantities (such as cross-helicity and turbulent energy) are solved in ad-

dition to the mean MHD equations, and the coarse-grained effect was considered.

Namely, the effect is included in Ohm’s law as a turbulent electromotive force

term, and mean and fluctuating field quantities develop with interacting each other

through it. The results suggest that the initial current sheet develops in three ways,

depending on the strength of turbulence: slow laminar reconnection, turbulent re-

connection, and turbulent diffusion without magnetic reconnection. In the second

turbulent-mediated reconnection case, the turbulent energy and cross-helicity de-

velop near the magnetic neutral point through the interaction between mean and

the fluctuating field, and the localized turbulent diffusion leads the fast magnetic

reconnection. Because turbulence takes the central role in magnetic field diffusion

instead of the kinetic-originated resistivity, the current sheet may not necessarily

be as thin as the kinetic scale.
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CHAPTER 1
General Introduction

This study focuses on the relationship between turbulence and magnetic
reconnection. Because magnetic reconnection is a multiscale phenomenon
ranging from magneto-hydro-dynamic (MHD) to electron-scale, both mi-
croscopic and macroscopic viewpoints would be needed, depending on the
situation or the scale on which we focus. We focused on magnetic recon-
nection in high magnetic Reynolds number plasmas, where non-linearity
becomes important. In particular, magnetic reconnection in two different
scales (MHD and ion-scales) are considered, and for each cases the relation
to turbulence is discussed. This Chapter briefly introduces basic signatures
and problems in macro and micro-scale magnetic reconnection. Then, we
refer to two different viewpoints on the relationship between turbulence
and magnetic reconnection presented in this dissertation.
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1.1. AN INTRODUCTION TO MAGNETIC RECONNECTION AND THE RELATION TO
TURBULENCE

§ 1.1 An introduction to magnetic reconnection and

the relation to turbulence

In geophysical, astrophysical, and experimental phenomena, we often encounter
the situations where topological change and rapid diffusion of magnetic field are
indispensable to account for them. The important idea, which could satisfy the
above requirements, are known to be “magnetic reconnection”. Basically, mag-
netic reconnection changes the topology of magnetic field and rapidly converts
energy of magnetic field into that of plasmas, when the anti-parallel magnetic
fields are closely lying with each other. The concept of magnetic reconnection
originates from 1940s [31], and the importance has been widely-recognized to
explain many active phenomena such as the solar flare [70] and magnetospheric
dynamics [21], where the explosive energy release is indispensable to account for
them. The reconnection dynamics strongly depends on the scale and the plasma
condition such as the magnetic Reynolds number, Rm. Then, magnetic reconnec-
tion has been observed in both magneto-hydro-dynamic (MHD) and small kinetic
scales by both remote and in-situ observations, suggesting multi-scale phenom-
ena. So far, many studies have discussed the role of magnetic reconnection in
various phenomena, and they are recently classified according to the character-
istic spatial scale of magnetic reconnection and the magnetic Reynolds number
[48]. Fig. 1.1 shows various phenomena where magnetic reconnection is consid-
ered to play the key role, and they are classified depending on the characteristic
spatial scale of reconnection and the magnetic Reynolds number. This diagram
is adapted from [48] and drawn by using the data listed in Table I of their paper.
The horizontal axis is the ratio of the reconnection size, LR, to the ion inertial
length, λi = ωpi/c (where ωpi is the ion plasma frequency), and the vertical axis
is the magnetic Reynolds number. For example, the system approaches the MHD
approximation in large LR/λi, while it should be discussed by the kinetic treat-
ment in small LR/λi. On the other hand, as Rm increases, the non-linear nature
becomes very important. In this way, the viewpoint and the approach to under-
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CHAPTER 1. GENERAL INTRODUCTION

stand reconnection dynamics would differ, depending on the scale or the situation
on which we are now focusing.
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Figure 1.1: Various phenomena where magnetic reconnection are considered to
take place are shown in log10 (Rm)–log10 (LR/λi) space (the data were adapted
from Table I in [48]).

The present study focuses on magnetic reconnection in high Rm situations,
which is expected in many astrophysical phenomena. For the dynamics in high
Rm plasmas, the system is generally expected to develop into turbulence through
non-linear couplings, and understanding the relation to turbulence would be an
important issue. In particular, we consider the relationship from both the macro-
scale (MHD) and micro-scale (kinetic) viewpoints separately, and aim to address
new insights to the turbulent magnetic reconnection study. In what follows, ba-
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1.1. AN INTRODUCTION TO MAGNETIC RECONNECTION AND THE RELATION TO
TURBULENCE

sic issues (problems) on MHD and kinetic scale reconnections are introduced,
respectively. Then, how turbulence plays a part in each of them is considered.

Macroscale magnetic reconnection

Figure 1.2: Schematic views of (a) Sweet–Parker and (b) Petschek reconnection
models.

First, let us begin with an MHD scale current sheet without pre-existing turbu-
lence. Imagine the current sheet, whose width is much larger than the ion inertial
length. For the laminar MHD approximation, the basic reconnection nature was
first modeled by Sweet and Parker [87, 71]. The schematic view is shown in Fig.
1.2(a). The model assumes a finite collisional resistivity everywhere in the cur-
rent sheet between the anti-parallel magnetic field. The Ohmic diffusion slowly
converts magnetic field energy to the thermal energy of plasmas everywhere in the
elongated current sheet and, at the same time, leads the topological change of the
magnetic field. Then, the thermal pressure gradient force and the Lorentz force by
the reconnected magnetic field accelerate plasmas. This energy conversion rate
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CHAPTER 1. GENERAL INTRODUCTION

(usually called as “reconnection rate”) is shown to be proportional to R−1/2
m (Rm

is the magnetic Reynolds number) by considering a simple law of conservation
of mass. Since the magnetic Reynolds number is extremely high in space plas-
mas (Rm ∼ 1012 in solar corona), the Sweet-Parker reconnection rate is known to
be much smaller than that of observations [103]. Subsequently, Petschek solved
this problem by introducing slow-mode shocks [72] (see Fig.1.2(b)). This model
assumed a localized diffusion region near the reconnection point, and it was sug-
gested that two pairs of slow-mode shocks attached to the diffusion region acceler-
ate plasmas. The reconnection rate can be expressed as a function of ∝ 1/ lnRm

and explains the realistic energy conversion rate well, even in a high magnetic
Reynolds number plasma. This model has been also realized by nonlinear MHD
simulations [91, 77]. If the localized resistivity (often called as “anomalous re-

sistivity”) is assumed in the current sheet, the magnetic field energy is locally
changed into the internal energy of plasmas and the magneto-sonic waves expand
from the diffusion region. Since the phase speed of slow magneto-sonic waves
oblique to the ambient magnetic field is much smaller than that of fast magneto-
sonic waves, the inflowing speed becomes super-sonic only to slow-mode waves
and slow-mode shocks form outside the diffusion region. Also, the existence of
slow-mode shocks has been observed by in-situ observations [76]. In this way,
the Petschek model has been one of major candidates for the fast reconnection
in high Rm plasmas, and seems to resolve both theoretical and observational re-
quirements, however, it masked the important physics: where does the localized
resistivity (diffusion region) come from?

Without turbulence, it has been considered that the origin of anomalous re-
sistivity is due to the smallest electron scale physics. In the electron scale, in
addition to the collisional resistivity, other physical resistivity may be allowed in
the generalized Ohm’s law:

E = ηcollisionJ︸ ︷︷ ︸
MHD resistive

+
me

e

dVe

dt
− 1

ene

∇ · ←→Pe︸ ︷︷ ︸
kinetic scale, resistive

−Ve ×B︸ ︷︷ ︸
non−resistive

, (1.1)
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1.1. AN INTRODUCTION TO MAGNETIC RECONNECTION AND THE RELATION TO
TURBULENCE

where Ve is the electron bulk velocity, d/dt = ∂/∂t + Ve · ∇, and
←→
Pe is the

electron pressure tensor arising from the non-gyro motion of electrons near the
magnetic neutral point (B ∼ 0). In collisionless system, the second electron
inertial resistivity and the third electron non-diagonal pressure term dominate,
when the thickness of the current sheet approaches ion to electron inertial length
[94, 39]. However, in the MHD scale current sheet, such kinetic resistivity is
absent, because the current sheet is much thicker than the ion inertial length and
the electron inertial length. Also, in a high magnetic Reynolds number region, the
collisional resistivity is ignorable and there seems to be no resistivity in the MHD
current sheet to trigger the fast magnetic reconnection. In this way, the Petcheck
model has an ambiguous point that should be clarified, even though it has been
still considered to be an important candidate for the fast reconnection in high Rm

plasmas.

Recently, one of important possibilities resolving the above issue, the idea so
called as “plasmoid instability” attracts much attention [82, 60, 93]. Generally
by the collisional resistivity, magnetic reconnection develops into relatively slow
Sweet-Parker type in low magnetic Reynolds number, Rm < O(103). However as
Rm increases, the secondary (thirdly, fourth, ...) tearing instability takes place in
the elongated Sweet-Parker current sheet and reconnection becomes even faster.
The threshold from Sweet-Parker to the plasmoid instability is suggested to be
Rm ∼ O(104), and beyond the reconnection rate ceases to depend on the magnetic
Reynolds number [5]. This would be one of important ideas for the fast magnetic
reconnection without assuming any resistive model in the MHD scale.

In this study, we consider an alternative way, turbulence, to account for the
efficient energy conversion rate in macroscale magnetic reconnection. The above
plasmoid instability assumes an elongated initial current sheet with low level fluc-
tuations so as not to disturb the growth of the tearing mode instability [26]. Cer-
tainly such a situation would be possible, but it may be just a fraction of possi-
ble situations in high Rm plasmas, where many non-linear effects could partic-
ipate in the dynamics. Then, let us begin with the assumption that turbulence
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is pre-existing in the background of the initial current sheet. It seems to be
more natural way of thinking for us to assume pre-existing turbulence in thick
MHD scale current sheet in a high magnetic Reynolds number space, because the
scale gap between injection and dissipation scales is enough large for waves to
interact with each other without strong dissipation. For example, many in-situ
observations suggest that the region where reconnection takes place is often in
the turbulent state (such as solar wind [64, 75], magnetopause [35], magnetotail
[45], etc.). Such a role of turbulence was first discussed by [65]. They simu-
lated a current sheet with weak background fluctuations under the incompressible
MHD approximation, and it was reported that small scale fluctuations developed
in the reconnection point and enhanced viscous and resistive dissipation. Another
study theoretically suggested that, in the strong Alfvénic turbulence, the recon-
nection rate does not depend on electric resistivity but rather on the property of
turbulence (such as the characteristic scale length and power of the fluctuation)
[54]. That scenario has been examined in MHD simulations, where external tur-
bulence is continuously forced in a current sheet [51]. The effect of turbulence on
the macroscopic reconnection rate has also been investigated in large-scale (high
magnetic Reynolds number) two-dimensional simulations. By such high magnetic
Reynolds number simulations, we see that there exist a critical Reynolds number
and turbulent power above which turbulence greatly affects reconnection, and the
reconnection rate has weaker dependence on electric resistivity than does Sweet-
Parker reconnection [61]. Recently, another viewpoint on the relationship between
turbulence and reconnection has been presented according to the theory of MHD
turbulence [101]. In that study, it is suggested that the generation of cross-helicity
W ≡ 〈v′ · b′〉 (where v′ and b′ are respectively the characteristic velocity and
magnetic field of turbulent motion, and the brackets represent ensemble average)
would enhance the rate of reconnection. In the current understanding, there is
no consensus about what turbulent mechanism accelerate macro-scale reconnec-
tion in high Rm plasmas. Also, the previous numerical studies continuously force
turbulence throughout the simulations, and it is difficult to evaluate the recon-
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TURBULENCE

nection rate. At least, to understand where turbulent energy comes from, how it
is sustained in reconnection system, and what turbulent mechanism enhance the
reconnection rate is important in the present macro-scale turbulent reconnection
study.

Microscale magnetic reconnection

Another interest of this study is microscale reconnection dynamics. Imagine a
current sheet whose thickness is about an ion inertial length and the scale gap
is LR/λi ∼ 102. Because the electron diffusion region is shown to be seam-
lessly connected to ion scale by previous kinetic simulations [20, 58] (at the mini-
mum, two-dimensional anti-parallel magnetic field configuration discussed in the
present study), this study focus on a relatively large ion scale beyond electron
scale. 1 First of all, let us introduce the basic understanding of ion-scale collision-
less magnetic reconnection. In the ion-scale, there are several effects in addition
to MHD dynamics:

a) Hall effects,

b) Electron pressure effects,

c) Ion kinetic effects.

First two effects can be simply understood by the two-fluid model. By the
fluid equation of motion of electrons and the charge neutral condition ene = qini,

1 As for the electron diffusion region physics, for example, see [38]. In addition to inertial
and non-diagonal electron pressure resistivity, importance of small scale turbulence for the dif-
fusion process is recently a hot topic. (For example, in the strong guide-field reconnection, it is
shown that electron scale turbulence is enhanced in the electron diffusion region, and not only
electron inertia and non-diagonal pressure effects but also turbulent transport could facilitate mag-
netic field annihilation [19, 12]. In the case of anti-parallel field reconnection, it is suggested
that the electromagnetic turbulence is intermittently enhanced and the turbulent transport also fa-
cilitates anomalous resistivity [25]. Another study suggest that the saturation level of the lower
hybrid mode around the current sheet becomes larger by the coupling with the Kelvin-Helmholtz
instability, and it could enable further magnetic field dissipation [84].)
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one obtains the following generalized Ohm’s law:

E = ηcollisionJ −
Vi ×B

c
+

1

4πene

J ×B − 1

ene

∇ ·
←→
Pe −

me

e

dVe

dt
. (1.2)

Normalizing this equation using Alfvén velocity VA ≡ B0/
√

4πmini, character-
istic spatial scale L, and time scale T = L/VA gives

Ê = η̂collisionĴ − V̂i × B̂︸ ︷︷ ︸
MHD scale

+

(
λi

L

)
Ĵ × B̂ −

(
λi

L

)
∇̂ ·
←̂→
Pe︸ ︷︷ ︸

ion scale

−
(
λe

L

)(
me

mi

)1/2
dV̂e

dt̂
,︸ ︷︷ ︸

electron scale

(1.3)

where λi and λe are respectively ion and electron inertial lengths. (The hatˆstands
for normalized quantities, e.g., Ê = cE/(B∗VA∗), where B∗ and VA∗ is magnetic
field and Alfvén velocity used for the normalization.) When the characteristic
spatial scale length gets close to the ion inertial length, the third Hall term and the
fourth electron pressure term of Rhs of Eq.(1.3) contribute to the dynamics. In the
reconnection literature, the importance of Hall effects are often discussed in terms
of fast reconnection. For example, enhancement of the linear growth rate [89]
and the non-linear reconnection rate [80] by the Hall effect is suggested. Also
the comparison of reconnection rates among MHD, Hall-MHD, hybrid (where
ions are treated as particles and electrons as a fluid), and full-particle simulations
suggests that reconnection rate may be controlled by Hall physics [7]. 2 As for
the electron pressure effect is often discussed in terms of diffusion region physics
as mentioned above [94, 39].

The third ion kinetic effects c) cannot be explained simply by the above Ohm’s
law Eq.(1.3), but play an important role in ion-scale reconnection outflow jets. To

2 Certainly many works addressed the importance of Hall effects on the reconnection rate, but it
is still under discussion whether only Hall effects control reconnection. It is because, for example,
pair-plasma simulations, where the Hall term is absent, usually show efficient reconnection rate,
too [4, 88].
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explain this, Fig.1.3 shows reconnection exhausts obtained by the hybrid simu-
lation. (Note that preceding studies have already shown these basic structures
[59, 81]. See also Chapter 2) From top to bottom, (a) magnetic field lines, (b)
x-component of ion bulk velocity, (c) out-of-plane electron current, (d) out-of-
plane ion current, and (e) the out-of-plane (Hall) magnetic field are shown. Mag-
netic field lines reconnect with each other at (x, y) = (0, 0), and reconnection
exhausts with wide flare-angle are observed. Also in Fig.1.3(e), quadrupole out of
plane Hall magnetic field forms. Such signatures (opened jets and hall fields) can
be observed in Hall-MHD simulations [63]. One of notable differences between
Hall-MHD (MHD) and particle simulations is the current profile in reconnection
outflows. In the case of Hall-MHD reconnection, a bifurcated current structure
forms in opened reconnection exhausts as MHD simulations. On the other hand,
if ion kinetic effects are taken into account, a single current sheet, whose width
is about ion-gyro radius, forms as shown in Fig.1.3(d). Subsequently, in the lat-
ter half of the ’90s, it began to be reported that this current sheet at the center of
the reconnection jet becomes unstable and may contribute to generation of tur-
bulence. So far, there is no clear consensus on the mechanism to destabilize the
current sheet in the scale LR/λi ∼ O(101−2). But the relationship between turbu-
lence and kinetic scale magnetic reconnection has been also pointed out by in-situ
observations, where kinetic effects would become important. For example, in the
Earth’s magnetotail, the property of current sheets was extensively investigated by
the Geotail satellite [68], and a power-law magnetic field spectrum was observed
[45]. The spectrum has a unique “kink” structure near the ion cyclotron frequency,
suggesting a multiscale phenomenon with Alfvénic turbulence. In addition, the
Cluster satellite provided multi-spacecraft data of turbulence accompanying mag-
netic reconnection, and the properties of turbulence, such as wave dispersion, have
been discussed [22].
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1.2. OBJECTIVE AND ORGANIZATION OF THIS DISSERTATION

§ 1.2 Objective and organization of this dissertation

We refer to our viewpoints on the relationship between turbulence and magnetic
reconnection in the reconnection studies. Fig. 1.4 briefly summarized the above
introduction. First of all, our main target is fast magnetic reconnection in high
Rm plasmas whose importance is widely accepted in many explosive geophysical
and astrophysical phenomena. So far, we would have four possible ways to get
efficient energy conversion rate through magnetic reconnection: Petschek-type re-
connection, reconnection induced by pre-existing turbulence, plasmoid instability,
and kinetic reconnection. (We classified these four reconnections in the current
understanding, but this may not be always robust and they may weave each other.)
In particular, we focus on the second “turbulence induced macro-scale reconnec-
tion” and the last “self-generation of turbulence in kinetic scale reconnection”.
(The other two processes are important, but beyond the scope of this dissertation.)
Objectives of these two reconnection studies are as follows:

I) When and how do plasma instabilities occur during the ion-scale kinetic
magnetic reconnection? (in Chapter 2 and 3)

In kinetic reconnection, it has already known that the reconnection rate is
enough high to explain the realistic phenomena. So, the main interest is not
in the reconnection rate. The main objective is to understand the ingredients
(plasma instabilities) that break a laminar flow in the well developed recon-
nection jets. This discussion is applicable to the case where the scale gap
between overall reconnection size and kinetic scale is small. The reconnec-
tion dynamics is investigated without imposing background turbulence by
direct numerical simulations including ion kinetic effects.

II) How does the pre-existing fully-developed turbulence affect the macro-scale
reconnection dynamics? (in Chapter 4)

The main objective of this issue is to suggest an idea for the turbulence-
mediated fast reconnection process which may lead to an alternative way of
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understanding on macroscale fast reconnection problems. Here, we want to
understand the macro scale reconnection dynamics, and consider this using
a turbulence model.

Issue I is discussed in Chapter 2 and 3. We limit the discussions to the basic
anti-parallel magnetic field configuration. Then, wave excitation and suppression
in reconnection jets are discussed from the viewpoint of self-generation of tur-
bulence by an electromagnetic hybrid code (where ions are treated as particles
while electrons are a mass-less fluid) and a linear analysis. Issue II is discussed
in Chapter 4. In this case, we consider a thick MHD scale current sheet in the
pre-existing background turbulence, and the turbulent effect is discussed using a
Reynolds-averaged MHD model. (In the current computational resources, it is
quite difficult to solve well-developed turbulence in the inhomogeneous system
directly, and the model calculation is needed.) The model deals with turbulent
effects, such as the turbulent diffusion and transport, as coarse-grained integrant
embedded in the macroscale system. Then, how turbulence changes reconnection
dynamics is discussed. Finally, we summarize these two issues and consider their
future perspectives in Chapter 5.

13
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Figure 1.4: The relationship between turbulence and fast magnetic reconnection
in high Rm plasmas.
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CHAPTER 2
Self-generation of Alfvénic fluctuations in the ion-scale

reconnection jets

Self-generated fluctuations in ion-scale collisionless magnetic reconnection
is discussed using an electromagnetic hybrid code, where ion kinetic effects
are included. This Chapter focuses on the points that when turbulent struc-
tures develop in ion-scale reconnection jets without pre-existing background
turbulence. It is shown that reconnection jets become turbulent specifically in
low beta plasmas, βi0 < 0.1–0.2 (βi0 is the ion plasma beta in initial inflow
regions), and the reconnection rate slightly exceeds that of high βi0 cases. Sta-
tistical analysis shows that the fluctuations consist of outgoing Alfvénic fluc-
tuations. As the probable origin of Alfvénic waves, dynamics in the plasma
sheet boundary layer (PSBL) and the current sheet are discussed. It is sug-
gested that the PSBL dynamics plays an important role for wave excitation
and suppression in reconnection jets. In the PSBL, beam ions, which has been
accelerated in jets, could drive Alfvén waves through the non-resonant ion–
wave interaction in MHD to ion-scale, kλi < 0.5 (λi is ion inertial length),
independent of βi0. On the other hand, because the beam ion temperature in
the PSBL is strongly correlated with that of inflowing ions, the wave damping
rate by the beam ions turned to be controlled by βi0. Local linear analysis sug-
gest that the damping signature changes in βi0, and energy of Alfvén waves is
converted into the thermal energy of ions before they cascade down to smaller
scales.
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2.1. INTRODUCTION

§ 2.1 Introduction

This Chapter in particular focuses on the unstable nature in ion-scale reconnection
jets including ion kinetic effects. We start with a current sheet without pre-existing
background turbulence. Also, we assume the region where the scale gap between
overall reconnection scale and the kinetic scale is relatively small, LR/λi ∼ 101−2.
Then, when and how laminar reconnection may fail is discussed using kinetic
simulations. Based on the previous studies, the probable agents to drive Alfvénic
fluctuations in reconnection jets are briefly introduced. Then, the motivation of
this study is mentioned.

2.1.1 Unstable structures observed in ion-scale reconnection jets

Figure 2.1: Schematic views of (a) MHD (Petschek-type) reconnection and (b)
ion-scale reconnection.
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CHAPTER 2. SELF-GENERATION OF ALFVÉNIC FLUCTUATIONS IN THE ION-SCALE
RECONNECTION JETS

As introduced in Chapter 1, the structure of ion-scale reconnection is different
from that of MHD reconnection. Because such a difference is important in the
following discussions, Fig.2.1 again explains this difference. In the MHD case,
due to two pairs of slow mode shocks, bifurcated current sheets form. Then, ve-
locity, density, and magnetic field structures are almost uniform inside the jet. On
the other hand, in the ion-scale reconnection, a thin current sheet forms due to
the Speiser type motion of ions near the diffusion region, and the magnetic field
and density are nonuniform. Basically, the jet structure is decomposed into three
regions: the central current sheet and two plasma sheet boundary layers (PSBLs).
Such a thin ion current sheet was known to be stable when the system is in sev-
eral tens of ion inertial lengths, L/λi ∼ O(10), by kinetic particle simulations.
However, as the computational resource increases, it turned out that the current
sheet becomes unstable in larger scale reconnection (L/λi ∼ 102) [59, 50, 2]. The
present study pays much attention to this unstable nature in reconnection outflow
jets. The characteristic spatial and time scales with which we deal are respectively
L/λi ∼ O(101−2) and tΩi ∼ O(101−2), where λi is ion inertial length and Ωi is
ion cyclotron frequency. On this unstable nature of reconnection jets, there have
been several competing candidates to generate such unstable reconnection out-
flow structures: The current driven, the boundary (PSBL) driven, and the global
coupling modes.

One of possible clues for the first current driven mode is a Weibel instability.
The Weibel instability is driven by either temperature anisotropy T⊥/T‖ > 1 [97]
(where T⊥ and T‖ are respectively temperatures perpendicular and parallel to the
local magnetic field) or counter-streaming components [24]. A current sheet is
preferable to such an instability, and it has already been introduced for the cur-
rent disruption mechanism in the Earth’s magnetotail [62] (which is called as an
ion Weibel instability). In terms of an application to magnetic reconnection, the
Weibel instability is recently discussed in pair-plasma simulations. It is reported
by the pair-plasma simulations that there are mainly two possible locations where
the Weibel instability becomes important: In front of reconnection jets [109] and
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inside the reconnection jets [88, 17]. In the pair-plasma case, it is known that the
temperature anisotropy, T⊥/T‖ > 1, becomes enough large for the Weibel mode
to generate fluctuations in the jets [88] but does not affect the global reconnection
rate [16]. On the other hand, in the ion-electron system, the role of Weibel mode
in the reconnection jet is not yet understood.

Another probable agent which makes such current sheets unstable is ion tem-
perature anisotropy in the boundary between inflow and outflow regions, i.e., in
the PSBL. Effects of the ion temperature anisotropy and the heat flux on the re-
connection boundary has been widely investigated by Geotail observations [46].
For example, Fig.2.2(a) and (b) show the slow-mode shock observation in the
Earth’s magnetotail region. In Fig.2.2(a), physical quantities such as magnetic
field and plasma flow velocity change consistent with slow-mode shocks across
the boundary (UT 15:30). Figure 2.2(b) shows the ion and electron temperature
anisotropy, and it has been shown that Ti,‖/Ti,⊥ > 1 and Te,‖/Te,⊥ ∼ 1 in the
reconnection jet. It has also been reported by kinetic simulations that the ratio
Ti,‖/Ti,⊥ becomes larger than unity in the reconnection jet [56, 59, 20]. In such a
situation, an anisotropic parameter εani ≡ 1 − 0.5(βi,‖ − βi,⊥) (where βi,‖ is the
ion plasma beta parallel to the local magnetic field) often becomes smaller than
zero [58, 40]. From the viewpoint of the pressure anisotropic MHD, εani < 0

is the condition required for the fire-hose instability. For example, Fig.2.3(a)–(c)
show the phase velocities of slow, intermediate, and fast modes depending on the
anisotropic parameter εani. As εani becomes smaller (Ti,‖/Ti,⊥ becomes larger),
the intermediate mode ceases to propagate and finally becomes unstable. The
possibility of the fire-hose instability in the reconnection outflow region has been
discussed in kinetic simulations, and it is shown that such unstable structures are
present in anti-parallel configurations but not in the guide-field reconnection be-
cause such a fire-hose mode appear in the direction parallel to the magnetic field
[50].

On the other hand, from the kinetic viewpoints, it is known by both obser-
vations and simulations that the ion temperature anisotropy Ti,‖/Ti,⊥ is due from
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(a)

(b)

Figure 2.2: A slow shock observed on January 14, 1994 when the Geotail satel-
lite was at (XGSE, YGSE, ZrmGSE) = (−96.1RE, 8.4RE, −4.5RE) (from [76]
and [43]). From top to bottom, (a) magnetic field strength, polar and azimuthal
angles in the Geocentric Solar Ecliptic (GSE) coordinate system (where XGSE =
earth-sun line, ZGSE = ecliptic north pole, and YGSE is chosen in such a way that
it satisfies the right-handed system), ion and electron densities, the ion bulk flow
velocity, and its direction as well as magnetic field, and ion and electron tempera-
tures, and (b) ion and electron pressure anisotropy.
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Figure 2.3: Friedrichs diagram with different anisotropic parameters (left εani =
1.0; center εani = 0.1; right εani = −0.1). Black, red, and blue lines respectively
stand for fast (black), intermediate (red), and slow (blue) modes. These phase
velocities are calculated by the linear analysis of MHD equations with the CGL
anisotropic pressure model [15]. (As for main parameters, plasma beta perpen-
dicular to the magnetic field is set to β⊥ = 0.1, and adiabatic indexes parallel and
perpendicular to the magnetic field are respectively set to γ‖ = 3 and γ⊥ = 2.

the existence of two ion components: One is a field aligned beam component
originated from the current sheet in the reconnection jet, and the other is a cold
component from the inflow region [44, 59]. Figure 2.4 shows such two ion com-
ponents obtained by the hybrid simulation. From the top to the bottom, ion veloc-
ity distribution function fi(vi,x, vi,y) (log scale), spatial distribution of Ti,‖/Ti,⊥,
and magnetic field lines are shown. These two beam/inflowing ion components
could trigger various kinetic instabilities, and such instabilities have been often
discussed in terms of the Earth’s bow shocks [29, 73]. These discussions could
be also applicable for the instability in the reconnection jet, and the possibility
was partially discussed using hybrid simulations [2]. For example, in the direc-
tion parallel to the magnetic field, at least four types of electromagnetic unstable
modes exist, and their possibilities have already been discussed in association
with the dynamics in the PSBL in the Earth’s magnetotail [30]. They mainly dis-
cussed two types of growing modes: The left-handed polarized (ion-cyclotron)
mode driven by the ion temperature anisotropy Ti,‖/Ti,⊥ < 1 of individual ion
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Beam Ions!

Inflowing Ions!

Figure 2.4: (a) The ion velocity distribution function fi(vi,x, vi,y) in the region
where Ti,‖/Ti,⊥ > 1, (b) the spatial distribution of ion temperature anisotropy
Ti,‖/Ti,⊥, and (c) magnetic field lines in magnetic reconnection. These figures
can be obtained by hybrid simulations (almost the same results can be observed
by full-particle simulations [20].).
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components (the ion cyclotron anisotropy instability [28]), and the right-handed
polarized (whistler) modes driven by the relative bulk velocity of two components,
which macroscopically appears as ion temperature anisotropy Ti,‖/Ti,⊥ > 1 (reso-
nant and non-resonant mode instabilities [29, 98]). Here, it should be noted that in
the kinetic scale no unstable mode is identical to the collisionless fire-hose mode
(non-resonant mode is similar but not the same), because, in reconnection outflow
jets, the ions consist of two components not of one anisotropic ion components.
Such a discrepancy between MHD and kinetic signatures also makes discussions
of these instabilities in magnetic reconnection difficult. The detailed analysis for
the instability in PSBL has not been presented by the particle simulations for mag-
netic reconnection, and we should make clear how the PSBL dynamics contributes
to the development of turbulent reconnection jets.

Another studies, which also focused on the ion temperature anisotropy Ti,‖/Ti,⊥

in reconnection jets, explained the instability of the thin current sheet as a global
coupling mode of fire-hose and Kelvin-Helmholtz instabilities [2, 79]. They used
an Alfvénic branch of incompressible MHD, and evaluated the growth rate by
connecting different three layers: One anisotropic outflow layer between the other
two isotropic inflow layers. They explained both temporal and spatial scales of
the current sheet fluctuations by that fluid model and provided good agreement
with the result of their ion-kinetic hybrid simulation.

2.1.2 Objective of this study

So far, possible agents of the instability in ion-scale reconnection jets have been
suggested, but detailed analysis, such as parameter dependence of the reconnec-
tion jets, does not exist. In collisionless plasmas, wave–particle interactions, such
as cyclotron resonance (damping) will have a large impact on the dynamics, and
such a system is expected to evolve in different ways, depending on the plasma
parameters. This Chapter aims to provide an understanding of the complicated
signature of reconnection jets, including such aspects. First, we consider the con-
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ditions when turbulent reconnection exhausts are observed, and show that current
sheets develop into Alfvénic turbulence, particularly for low beta reconnection.
Next, keeping the parameter dependence in mind, ingredients to generate Alfvén
waves are discussed based on the local linear analysis: the current driven and the
PSBL driven modes. (The analysis for the global mode mentioned in the introduc-
tion is discussed in Chapter 3, because it needs further analysis and discussions
beyond the local analysis.) In Section 2.2, the simulation model and the setup are
introduced. We show the results and discuss them in Sections 2.3 and summarize
them in Section 2.4.

§ 2.2 Numerical Model and Setup

A two-dimensional (in x-y plane) electromagnetic hybrid code, where ions and
electrons are respectively treated as kinetic particles and a mass-less fluid, is
adopted to investigate self-generated turbulent structures in ion-scale reconnec-
tion outflows. The basic equations that we solve are as follows:

mi
dvi

dt
= qi (E + vi ×B) , (2.1)

dxi

dt
= vi, (2.2)

E = − 1

qini

∇ ·
←→
Pe − Ve ×B + λr∇×B, (2.3)

Ve = Vi −
1

qini

∇×B, (2.4)

ni =

∫ ∞

−∞
fi(xi,vi, t)dvi, (2.5)

Vi =
1

ni

∫ ∞

−∞
vifi(xi,vi, t)dvi, (2.6)

∂B

∂t
= −∇×E. (2.7)
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λr is the resistive length. In addition to the above set of equations, a charge neutral
condition ene = qini is assumed, where subscripts e and i respectively stand for
electrons and ions, and an ion is assumed to be a proton hereafter. The electron is
assumed to be adiabatic gas with isotropic pressure (

←→
Pe = pe

←→
I and pe ∝ nγadi

e =

nγadi
i , where γadi = 5/3 is an adiabatic constant). The above quantities are normal-

ized using the proton mass, mp, the ion cyclotron frequency, Ωi∗ = eB∗/(mpc),
and the ion inertial length, λi∗ = Ωi∗/VA∗, where VA∗ = B∗/

√
4πmpni∗ and the

subscript ∗ stands for the quantity in the initial inflow region (see Chapter C). ni∗

is the ion density. Grid intervals in both x- and y-directions are set to 0.33 λi∗.

Figure 2.5: A schematic view of hybrid particle simulation domain.

In the hybrid simulation, ions are randomly distributed in the simulation do-
main, while the electromagnetic fields are located on the grid points (see Fig.
2.5). Each ion moves around by Eqs.(2.1)–(2.2) in the given electromagnetic
fields, and the electromagnetic fields develop with the effect of ion bulk quantities,
Eqs.(2.5)–(2.6). In this study, the above equations are solved by the algorithm of
general predictor-corrector loops, which has been successfully used in collision-
less shocks, current sheets, collisionless magnetic reconnection, beam dynamics

24



CHAPTER 2. SELF-GENERATION OF ALFVÉNIC FLUCTUATIONS IN THE ION-SCALE
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and global simulation of the interaction of solar wind with objects1[98].

Figure 2.6: Initial configuration for the simulation.

Initially, we assume a Harris current sheet with no guide magnetic field (Bz =

0) [37], and the configuration is shown in Fig. 2.6. The magnetic field, density,
and velocity profiles are given by

B = B0 tanh

(
y

δc

)
ex, (2.8)

ni(y) = ni0 + nic cosh−2

(
y

δc

)
, (2.9)

Vib = 0, (2.10)

Vic = −
2v2

i,th

δc
ez (2.11)

where Subscripts 0 and c stand for the quantity in the initial inflow region and the
1 Details of hybrid simulations are described in [57]. Hybrid codes are known to be numerically

unstable in low density plasmas, and some authors begin to address its solution [27, 1].
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central current sheet, respectively (B0 = 1, ni0 = 1). δc is a half thickness of the
initial current sheet and δc is set to 1.2 λi∗. ex is an unit vector in x-direction, and
the initial current is in the z-direction. vi,th = (Tic/mi)

1/2 is the thermal velocity
in the current sheet, where Tic is the ion temperature in the current sheet. In the
current sheet, the ion temperature, Tic, is set to Tic = 0.125. The electron temper-
ature is uniformly given, Tec = Te0 = 0.01. The ion density at the center of the
current sheet nic is determined by the relation, nic(Tec + Tic) = B2

0/(8π), which
stems from the total pressure balance in the y-direction between the current sheet
and the lobe regions. The simulation box is in the range of −256 ≤ x/λi∗ ≤ 256

in x-direction and −64 ≤ y/λi∗ ≤ 64 in y-direction. Periodic boundary condi-
tions are assumed in x-direction, while perfect conducting walls [59] are assumed
at y/λi∗ = ±64. The number of super-particles in each cell is about 250 in initial
inflow regions (∼ 103 super-particles in the current sheet). We drive reconnec-
tion by imposing the time-independent resistivity, λr(x, y), at the center of the
simulation box as λr(x, y) = λ0 cosh−2

[
− (x/lx)

2 − (y/ly)
2], where λ0 is the

resistive length and set to 0.075. lx and ly are set to lx = 1.2 λi∗ and ly = 0.6 λi∗,
respectively. So far, it has been suggested that the resistivity originates from the
electron physics, such as the electron inertial effect [94], the non-diagonal elec-
tron pressure effect [39], and anomalous transport induced by turbulence [12, 25].
This diffusion region physics is currently a hot topic, and the detail description is
beyond the capability of the present hybrid simulation study. The choice of the
above resistivity leads to well-developed reconnection jets. (At least, the exis-
tence of the large-scale reconnection jets has been often reported by the Earth’s
magnetotail observations [76] and full-particle simulations [20, 58].)

In the present study, the dependence of the initial ion plasma beta on the devel-
opment of the reconnection exhausts is investigated. Parameters are summarized
in Tab.2.1. We change the ion plasma beta in initial inflow regions by varying
ion temperature Ti0 with Alfvén velocity constant (Runs A–D). In other words,
we change the ion cyclotron radius. All other parameters are the same among A–
D. Note that the initial temperature is given isotropically and the ion temperature
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anisotropy, which we discuss below, is generated by the inherent physics in colli-
sionless magnetic reconnection. The ion temperatures parallel and perpendicular
to the local magnetic field are defined by

Ti,‖ =
mi

ni

∫ ∞

−∞
(|vi − Vi| cos θ)2 fi(xi,vi, t)dvi, (2.12)

Ti,⊥ =
mi

2ni

∫ ∞

−∞
(|vi − Vi| sin θ)2 fi(xi,vi, t)dvi, (2.13)

where θ = arccos [(vi − Vi) ·B/ (|vi − Vi|B)]. The total ion temperature Ti can
be written by Ti = (Ti,‖ + 2Ti,⊥)/3 in the above definitions. The plasma beta in
Run A is nearly equivalent to that in the Earth’s distant magnetotail. For example,
Ti0 is equivalent to ∼ 50 eV if we choose normalization velocity as VA∗ = 103

km/s (which is characteristic Alfvén velocity in the Earth’s magnetotail lobes).

Table 2.1: Simulation parameters for reconnection.

Run βi0 Ti0/(mpV
2
A∗) ni0/ni∗ VA0/VA∗

A 0.02 0.01 1.0 1.00
B 0.08 0.04 1.0 1.00
C 0.18 0.09 1.0 1.00
D 0.32 0.16 1.0 1.00

§ 2.3 Results and Discussion

2.3.1 Ion beta dependence on the development of fluctuations in

reconnection jets

Basic signature of unstable current sheet

Let us begin with the basic signature of the unstable current sheet. (Note that the
unstable current sheet has already shown by previous studies [59, 50], but this
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Figure 2.7: From top to bottom, snapshots of the total current, jz, and magnetic
field lines at (a) tΩi∗ = 100, (b) 200, and (c) 300 for the βi0 = 0.08 case are
shown. Magnetic neutral point is located in (x, y) = (0, 0), and only a part of
simulation box is shown here.
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and the reconnection jet region. (b) Fourier spectra calculated by regions s1 (the
initial current sheet), s2 and s3(the reconnection jet) shown in Fig.(a). The spectra
are averaged with time.
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part addresses detail signatures that when and where the instability takes place.)
Figure 2.7 shows the time evolution of the total electric current, jz, and magnetic
field lines in βi0 = 0.08 case. The snapshots are taken at time tΩi∗ = (a) 100, (b)
200, and (c) 300. (Only a part of the simulation box is shown here.) The magnetic
field lines reconnect with each other at x/λi∗ ∼ 0, and a thin current sheet forms
at the center of the reconnection jet (see the snapshot at (b) tΩi∗ = 200). Thick-
ness of the current sheet is about an ion gyro radius and the current is mainly
carried by Speiser-type motion of the ions [85, 23]. Subsequently, the current
sheet becomes unstable (see the snapshot at (c) tΩi∗ = 300). In order to closely
discuss where and when such unstable structures emerge, we show time evolution
of Bx and By at y/λi∗ = 0 in Fig. 2.8(a). Reconnection starts in tΩi∗ = 60–80

and By is strengthened in the pile-up region. In tΩi∗ < 150, the laminar recon-
nection develops without fluctuations. Fluctuations first emerge in the precursive
plasmoid (see x/λi∗ ∼ −60 in Fig. 2.7(b) and Fig.2.8(a)), and subsequently the
unstable structure appears inside the reconnection jet. When the current sheet be-
comes unstable, the sheet length exceeds ∼ 30–50 λi∗ (t ∼ 200–250 Ω−1

i∗ ). Since
the boundaries in the x-direction are in x/λi∗ = ±256 and far from the neutral
point, the fluctuations are not affected by boundary conditions. Also, because the
flow speed is super-Alfvénic in the neutral sheet, y/λi∗ ∼ 0, these fluctuations
stem from the upstream dynamics. As the size of the jet becomes larger, the cur-
rent sheet shows turbulent structures. Figure 2.8(b) shows power spectra of the
magnetic field in the initial current sheet, s1, and in the reconnection jet, s2–s3

(respectively calculated using the data in the white boxes in Fig. 2.8(a)), and the
spectra develops as time passes.

Ion beta dependence on the development of jets

One of the important suggestions that should be addressed in this unstable jet
signature is that the evolution quite differs depending on the ion plasma betas,
βi0. Figure 2.9 shows the current sheet structures of the reconnection exhausts
depending on βi0. The z component of the total current jz is shown in the contour
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panels. The plasma jets encounter pile-up regions at |x| /λi∗ ∼ 130. In all cases,
fluctuations in the reconnection jets are observed from a distance |x|/λi∗ ∼ 30

away from the X-point. However, on increasing the distance from the X-point,
the evolution of these fluctuations shows a different behavior: these current sheets
easily break up as βi0 decreases.
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Figure 2.10: Power spectra for the magnetic field components, Bx, By and Bz, in
the range −120 < x/λi∗ < −60 for y/λi∗ = 0. The black and green lines denote
the power spectra for Runs A and D, respectively.

Figure 2.10 shows these differences in the power spectra |Bx(k)|2, |By(k)|2,
and |Bz(k)|2 on a logarithmic scale. The magnetic field components, Bx, By, and
Bz, at y/λi∗ = 0 in the range −120 < x/λi∗ < −60 are chosen to calculate
the spectra. The spectra are averaged over 20 Ω−1

i∗ with time. In Fig. 2.10(b),
the magnetic field cascades down to the smaller scales (a few ion inertial lengths)
specifically in low beta cases, while not so in high beta cases. The reason for this
would be related to wave excitation and damping processes occurring inside the
reconnection jet, and details will be discussed in the next subsection.

In addition to the difference in the spectra, there is also changes in the recon-
nection rate. Figure 2.11 shows time profiles of the inflow Alfvén Mach number,
MA,in, the inflow velocity, Vin, the reconnected magnetic field, ΛR, and reconnec-
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tion electric field, ER,:

MA,in ≡
1

2Dx

{∫ +Dx/2

−Dx/2

dx

[
Vy

VAL

∣∣∣∣
y=−Dy/2

− Vy

VAL

∣∣∣∣
y=+Dy/2

]}
, (2.14)

Vin ≡
1

2Dx

{∫ +Dx/2

−Dx/2

dx
(
Vy|y=−Dy/2 − Vy|y=+Dy/2

)}
, (2.15)

ΛR ≡
1

Lx

∫ +Lx/2

−Lx/2

dx |By(x)|y=0 , (2.16)

ER ≡
1

DxDy

∫ +Dx/2

−Dx/2

dx

∫ +Dy/2

−Dy/2

dy |Ez(x, y)| , (2.17)

where Dx = 30 λi∗, Dy = 10 λi∗, and Lx is the box size in the x-direction. VAL

is the local Alfvén velocity. In low beta turbulent reconnection, the reconnection
rate slightly exceeds that of high beta cases, which implies further energy transfer
occurs in turbulent jets.

Property of fluctuations

Let us discuss the properties of such low beta turbulent reconnection jets. To grasp
the nature of fluctuations and their spatial distribution quantitatively, we introduce
a turbulent statistical quantity, cross-helicity,W(x, y) ≡ 〈(V ′

i ·B′) / (|V ′
i | |B′|)〉,

which is often used to discuss Alfvénicity of turbulence, e.g., in the solar wind
[64, 34]. Here, the cross-helicity is normalized by |V ′

i | |B′| for the purpose of
convenience. The brackets 〈〉 represent a time averaged value. Note that the wave
momentum is carried by the ions (me = 0), and the cross-helicity is defined using
only the ion bulk velocity. The terms V ′

i and B′ are the fluctuating parts of ion
bulk velocity and magnetic field, respectively. (The velocity fluctuation is defined
by V ′

i = Vi − 〈Vi〉.) Basically, a finite cross-helicity distribution is related to the
generation or asymmetric propagation of Alfvén waves.

Figure 2.12 shows the spatial distributions of: (a) the mean magnetic field,
〈Bz〉, (b) the temporal magnetic field, Bz, (c) the mean ion velocity, 〈Viz〉, (d)
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Figure 2.12: Spatial distributions of: (a) the mean Hall magnetic field, 〈Bz〉,
(b) the Hall magnetic field, Bz, at t = 330 Ω−1

i∗ , (c) the mean ion flow velocity,
〈Viz〉, (d) the ion flow velocity, Viz, at t = 330 Ω−1

i∗ , and (e) the (normalized)
cross-helicity 〈(V ′

i ·B′) / (|V ′
i | |B′|)〉. Time averages 〈〉 are taken in the range of

t = 300–330 Ω−1
i∗ for 31 data. In Fig. (e), the region where the fluctuation level is

low, |V ′
i | |B′| < 5× 10−4, is masked for convenience.
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the temporal ion velocity, Viz, and (e) the cross-helicity,W . The time range used
to calculate the integration, 〈〉, is t = 300–330 Ω−1

i∗ . In time-averaged exhausts,
the out-of-plane Hall magnetic field and ion velocity, which are generated by the
in-plane Hall current and the out-of-plane ion Speiser motion, respectively, are
still present in Figs 2.12(a) and (c). In such mean field structures, fluctuations
emerge. It is important to note that the fluctuation variables, such as velocity and
magnetic field, are not distributed randomly but have a certain correlation. Figure
2.12(e) shows this correlation, i.e., a quadrupole structure of the cross-helicity.
A finite cross-helicity distribution denotes a situation where the fluctuations are
Alfvénic and predominantly consist of outgoing Alfvén waves. Cross-helicity be-
gins to appear from the ion current region, and the origin of these waves seems
to be mainly outside the electron diffusion region, where electron kinetic effects
becomes important and the physics is beyond this hybrid model. Outside the elec-
tron diffusion region, inflowing magnetic field energy is converted into ion kinetic
energy through electrostatic acceleration in the current sheet, and these ions ob-
tain free energy as temperature anisotropy and bulk flow energy as mentioned in
the introduction of this Chapter (seeFig. 2.4). It is suggested that a part of the free
energy is once again released as wave energy, and not only the ions but also the
Alfvén waves would transfer energy outward.

2.3.2 Alfvénic fluctuations in reconnection jets: Local analysis

The problem—and our main interest— is why such Alfvénic fluctuations appear
specifically in low beta plasmas. In this section, we investigate the upstream jet
regions, |x| /λi∗ < 60, where waves are expected to grow linearly. That is, keep-
ing the ion beta dependence in mind, the possible ingredients to generate Alfvénic
waves in the PSBL and the current sheet regions are discussed, based on the local
analysis.
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Figure 2.13: Physical quantities in the reconnection jets for Run C are shown.
From top to bottom: (a) the spatial distribution of the ion temperature anisotropy,
Ti,⊥/Ti,‖, and (b)–(e) the distribution of physical quantities in the red dashed line.
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Plasma sheet boundary layer

First, let us focus on the dynamics in the PSBL. In the PSBL, the ion anisotropy,
Ti,‖/Ti,⊥ > 1, is enhanced and is one of the most probable free energy sources for
waves. Figure 2.13 shows: (a) ion temperature anisotropy, Ti,⊥/Ti,‖, and (b)–(e)
the cross-sectional physical quantities outside but close to the edge of the current
sheet. For 30 < x/λi∗ < 60 in Figs 2.13(c) and (d), the magnetic field is mainly in
the x-direction, (|B| ' Bx), and the transverse fluctuations (By, Bz, Ey, and Ez)
can be clearly observed, which implies an Alfvénic mode excitation is occurring.
In this region, Ti,‖ is always a few times larger than Ti,⊥, as seen in Fig. 2.12(b).
For further discussion, we show the ion velocity distribution function, fi(vx, vy),
for Runs A–D in Fig. 2.14. These velocity distribution functions are calculated by
integrating super-particles inside the white boxes shown in Fig. 2.9. The velocity
is normalized to the local Alfvén velocity, where the subscript L denotes the local
quantity inside the white box (see also Table 2.2). These ion distribution functions
consist of beam ions (the right-side component) and inflowing ions (the left-side
component). It is important to note that both the relative velocity, V0 (' 2VAL '
1.2VA∗), and the beam-to-total density ratio, nb/niL (' 0.4–0.5), have about the
same value independent of βi0. This means that the inflowing ions gain about the
same magnitude of energy, ' mi∗V

2
A∗/2, during non-gyro motion at y/λi∗ ∼ 0.

In addition, the temperature of the beam ions shows good agreement with that of
the inflow ions, which is because the ion motion is quasi-adiabatic even for the
non-gyro motion. (In the jet, almost all ions experience the Speiser type motion,
and such ion motion is shown to be nearly adiabatic [11, 14].)

Let us discuss the linear properties of electromagnetic modes driven by the
two ion components in the PSBL as a function of βi0. The dispersion relation for
these components is

k2c2

ω2
= 1 +

∑
j=e,c,b

[
ω2

p,j

ω2
ζ

(0)
j Z(ζ

(±1)
j ))

]
(2.18)

[28] (only parallel modes are discussed here). The subscripts j = e, c and
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the Maxwellian fits for the inflowing ions and beam ions, respectively.

Table 2.2: Local quantities inside the white boxes shown in Fig. 2.9.

Run BL niL VAL nb/niL Tc/(mi∗V
2
AL)

A 0.60 1.09 0.57 0.48 0.03

B 0.66 1.27 0.58 0.38 0.12

C 0.65 1.21 0.59 0.40 0.27

D 0.66 1.26 0.59 0.40 0.48
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b represent electrons, core ions (inflowing ions), and beam ions, respectively.
ωp,j is the plasma frequency, Z is the plasma dispersion function, and ζ

(n)
j =

(ω − kVj + n |Ωj|) /
(√

2kvj,th

)
, where vj,th is the thermal velocity parallel to the

magnetic field vj,th ≡
(
Tj,‖/mj

)1/2. Figure 2.15 shows the imaginary and real
parts of ω, which are normalized to the local cyclotron frequency ΩiL. The param-
eters used to draw Fig. 2.15 are summarized in Table 2.2, and are estimated from
the ion distribution functions shown in Fig. 2.13. We assumed that Tb/Tc = 1

(beam/core temperature ratio) and V0 = 2.1 VAL (the relative bulk velocity be-
tween beam and core ions). (Also, Te = 0.01 is used.) In Fig. 2.15(a), both the
parallel and anti-parallel whistler waves are unstable (γ > 0) in kλiL < 0.5, inde-
pendent of the initial conditions, but the damping signatures (γ < 0) are different,
depending on the ion plasma beta. In the reconnection jet frame, since the relative
bulk speed of the two ion components is not fast enough to excite whistler waves
from cyclotron resonance, the waves are excited by non-resonant interactions in-
dependent of βi0 [30]. On the other hand, since the beam temperature is strongly
correlated with the inflow temperature through the quasi-adiabatic motion, the
thermal broadening of the beam ions contributes to wave damping on increasing
the temperature of the inflowing ions. This damping signature is briefly explained
using Fig.2.16. This figure explains the interaction between beam ions (core ions
as well) and Alfvénic waves in the plasma rest (reconnection jet) frame for the
Run D case. The green solid line represents the cyclotron resonance condition be-
tween beam ions (Tib = 0) and Alfvén waves, ω − kVb −ΩiL = 0. Vb is the beam
speed in the plasma rest frame, Vb = V0(niL−nb)/niL, and is estimated using the
data shown in Table 2.2. The dashed green line represents the thermal broadening
of beam ions, and the blue shaded area represents the cyclotron damping region
due to beam ions. As temperature of beam ions increases, the cyclotron damping
region broadens and the Alfvén (whistler) wave energy in kλi∗ & 1 is absorbed
by beam ions. That is, as the value of βi0 increases, the wave energy is once again
converted into ion (thermal) energy in kλi ∼ 1, before cascading down to smaller
scales. These results suggest such a difference appears in βi0 ∼ 0.1–0.2 in the
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PSBL, and this provides good agreement with nonlinear simulation results, where
the fluctuations are suppressed in the cases of βi0 = 0.18 and 0.32 (Run C and D).

In addition, it is worth noting that waves driven in the PSBL could contribute
to the generation of turbulence in the neutral sheet. In the outflow jets, the local
Alfvén velocity in the PSBL is ∼ 0.6 VA∗, and is VAL ∼ 0.1 VA∗ in the current
sheet. Therefore, the refractive index for the Alfvén wave, NA ∝ V −1

AL , decreases
as |y| /λi∗ increases, and the PSBL Alfvén waves are always refracted into the
current sheet.

Current sheet

As another candidate, we briefly refer to the possibility of a local Weibel insta-
bility in the current sheet. Figure 2.17 shows the ion temperature anisotropy,
Ti,⊥/Ti,‖, and magnetic field in the cross section y/λi∗ ' 0. The simulation
data are the same as those shown in Fig. 2.13. At the center of the current
sheet, Ti,⊥/Ti,‖ is almost unity, and the anisotropy is much smaller than that of
the pair–plasma system [88] (independent of the value of the initial plasma beta).
In addition, in Fig. 2.17(b), By (the eigenvector of the Weibel mode) is stable
compared with Bx and Bz. Therefore, we concluded that the Weibel mode does
not participate in the ion–electron reconnection dynamics. As for the Bx and Bz

fluctuations, we suggest that these are attributable to the coherent kinking current
structure seen in Fig. 2.7 (clearly observed for −70 < x/λi∗ < −30). Such a
coherent current fluctuation itself may not be explained solely by the local effects
discussed above. This point was first pointed out by [2] based on the simple MHD
model. However, a discussion on such a global mode itself is beyond the scope of
this local analysis.

§ 2.4 Summary

We have discussed the self-generated fluctuations in collisionless ion-scale mag-
netic reconnection based on the results of the hybrid simulation and the local linear
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Figure 2.17: Physical quantities in the reconnection jets for Run C are shown.
From top to bottom: (a) the spatial distribution of the ion temperature anisotropy,
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analysis. The unstable signature of the reconnection jet has already been reported
by some preceding studies [59, 50, 2]. Also, some possible mechanisms to gen-
erate fluctuations (such as the Weibel mode in the current sheet [88, 17] and the
instability in the PSBL [30]) have been suggested, but their detailed contribution
to the ion-scale jet dynamics has not been so clear. We carefully analyzed the
reconnection jets obtained by the hybrid simulation with different initial condi-
tions, and addressed some important issues on the condition and the ingredients
to control wave activities in the reconnection jet.

1 Whether the reconnection jet becomes turbulent or not is related to the ion
plasma beta, βi0, in the inflow region. The simulation results show that the
jet becomes turbulent in low beta cases (βi0 < 0.1–0.2), while it looks less
turbulent in high beta cases.

2 The local linear analysis in the PSBL showed that the ion temperature anisotropy
is enough large to excite Alfvén waves independent of βi0 in the PSBL. On
the other hand, the wave damping signature is different depending on βi0:
the damping rate becomes large as βi0 increases (βi0 > 0.1–0.2). This
threshold seems to be in good agreement with nonlinear simulation results,
suggesting the importance of wave excitation and suppression in the PSBL.

3 In the current sheet of the present ion-electron system, the temperature
anisotropy, T⊥/T‖, is small compared to that of the pair–plasma system,
and the Weibel mode does not participate in the ion-electron reconnection
jet dynamics.

In the low beta condition, we checked the correlation between magnetic field
and velocity fluctuations by using the cross-helicity, and the fluctuations in the jets
are shown to consist of outgoing Alfvénic wave packets that transfer the electro-
magnetic energy outward. Also, the reconnection rate in the low beta case slightly
increases compared to the high beta case. Local analysis in upstream regions,
|x| /λi∗ < 60, suggests that PSBL dynamics would play an important part in gen-
eration and suppression of Alfvénic modes, while the Weibel mode is irrelevant to

44



CHAPTER 2. SELF-GENERATION OF ALFVÉNIC FLUCTUATIONS IN THE ION-SCALE
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the ion-electron reconnection jet dynamics. In the PSBL, because both the beam
speed and the density show little difference for all βi0 cases, the Alfvén waves
could be driven by non-resonant interactions at longer wavelengths (kλi∗ < 0.5)
independent of βi0. At the same time, we note that ion motions in jets preserve
temperature information well, and that the damping rate caused by hot beam ions
may be controlled by the ion beta in the inflow regions. Local linear analysis sug-
gests that low beta jets (βi0 < 0.1–0.2) are free from wave damping for the smaller
scales, kλi∗ > 0.5. In addition, since the local Alfvén velocity in the neutral sheet
is small compared with that in the PSBL, the Alfvén waves driven in the PSBL are
refracted toward the neutral sheet and contribute to the generation of turbulence
in the reconnection jets. Observations of low βi0 turbulent reconnection jets in the
Earth’s magnetotail have been presented recently [22] and our results seem to be
consistent with them. On the other hand, in high βi0 cases, the wave damping rate
is enough large to suppress Alfvénic modes in kλi∗ ∼ 1 and the fluctuations in
this range would not survive in the reconnection jets. As a result, the high beta
reconnection outflow is suggested to be laminar without small scale fluctuations.

In the above discussions, it should be noted that the reconnection jet has strong
inhomogeneity across the outflow and the unstable nature in such a complex sys-
tem will not be explained by only the above local discussions. At least, the glob-
ally emerging structure (e.g., kinking current sheet structures observed in Fig 2.9)
cannot be explained by only the above local discussions. This point is discussed
in the next Chapter 3 in detail.
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CHAPTER 3
Analysis for a global magneto-hydro-dynamic mode in

reconnection jets
A global magneto-hydro-dynamic mode observed in reconnection jets is dis-
cussed by a linear eigenmode analysis. The main objective of this Chapter is
to account for the global instability observed in the nonlinear reconnection jet
(namely, a kinking current sheet structure beyond the discussions by the local
analysis in Chapter 2). Aside from the reconnection jet, it has been suggested
by the previous linear eigenmode analysis that there are three MHD unstable
modes in the streaming current sheet: the resistive tearing, the non-resistive
sausage, and the non-resistive kink modes. According to the previous analy-
sis with isotropic plasma pressure approximation, the resistive tearing and the
non-resistive sausage modes dominates in the streaming current sheet, and it is
suggested that the kink mode is unimportant in the current sheet dynamics. In
order to resolve such discrepancy between simulations (including anisotropy)
and the previous analysis, we considered the linear stability including both non-
uniformity and pressure anisotropy effects. We carefully investigated properties
of unstable modes in the streaming current sheet, and the analysis suggests that
the symmetric sausage mode is an Alfvén type mode, and the property seems
to be independent of non-uniformity and the pressure anisotropy. On the other
hand, the kink mode shows the slow Alfvén type property, where the globally-
appearing magnetic pressure gradient force always weakens the magnetic ten-
sion force, and is sensitive to pressure anisotropy effects. Additionally, the linear
growth rate of the kink mode considerably exceeds that of the sausage mode
in the case of p‖/p⊥ > 1 (p‖ and p⊥ are the pressures parallel and perpendic-
ular to the ambient magnetic field), suggesting an importance of kink mode in
reconnection jets of anisotropic plasmas.
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§ 3.1 Introduction

Dynamics in MHD to ion-scale reconnection jets are theoretically investigated. In
Chapter 2 the origin of Alfvén waves in the PSBL and a current sheet was dis-
cussed from a local kinetic viewpoint. However, only the local discussion cannot
explain the global unstable structure across the current sheet in reconnection jets.
Figure 3.1 again shows the time evolution of such a global current sheet structure.
The parameter and the model of this simulation are the same as the hybrid sim-
ulation Run C in Chapter 2, and the X-point is located at (x, y) = (0, 0). The
kinking current sheet structure appears when both the time and the spatial scales
become ∼ 102 Ω−1

i∗ and ∼ 102 λi∗, where Ωi∗ and λi∗ are respectively the ion
cyclotron frequency and the ion inertial length in the inflow region. In the recon-
nection jet, magnetic field non-uniformity (a current sheet at the center of the jet),
ion (electron) bulk velocity, and the ion pressure anisotropy develop in a macro-
scopic scale. The main target of this Chapter is to clarify the behavior of such a
global mode in ion-scale reconnection jets, including ingredients, such as pressure
anisotropy and non-uniformity in jets. The brief introduction and the objective is
mentioned below. In section 3.2 and 3.3, the linear analysis of the above global
mode is presented.

3.1.1 Preceding studies on the streaming current sheet dynamics

After Furth, Killeen, and Rosenbluth (FKR) made a great progress for a current
sheet stability [26], many succeeding studies on the nature of a current sheet,
such as Hall [89] and pressure anisotropy effects [13], have been made. As one
of such studies, the property of a current sheet with finite plasma flow has been
investigated by some researchers [78, 83, 55, 2].

The stability of the collimated jet has been investigated with and without mag-
netic field. For example, in the case of neutral fluid, the collimated jet nature
has been investigated, and it is known that the jet has both symmetric and anti-
symmetric unstable modes [6]. In the MHD case, the property of a magnetized
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jet was first investigated by nonlinear MHD simulations [78]. They examined the
current sheet stability with the plasma flow along the ambient anti-parallel mag-
netic field, and found that the tearing mode grows faster than that of the usual
Harris current sheet. Then, it was shown theoretically by the linear eigenmode
analysis that the growth rate and the unstable wavenumber of the tearing mode
become larger as the flow speed increases [83]. Subsequently, the linear analysis
of the magnetized jet with isotropic pressure approximation showed that there are
three possible global unstable mode in jets: the resistive streaming tearing mode,
the non-resistive kink and sausage modes [55]. The sausage mode symmetrically
grows with respect to the neutral sheet, while the kink mode anti-symmetrically
grows. They suggest that the sausage mode grows much faster than the kink mode
and the kink mode is unlikely to grow in the parameter associated with reconnec-
tion jet.

On the other hand, as the computational resources increases, some hybrid sim-
ulations, which include ion kinetic effects beyond MHD, began to report that the
kink mode appears in nonlinear MHD to ion-scale reconnection jets [59, 50, 2].
The appearance of kinking current sheet structure in reconnection jets was first
pointed out in [59], and the modeling of the global reconnection jet structure was
attempted by [2]. They consider three layers associated with reconnection jet
structures: two lobes and the outflow region between them. Using the model,
they attempted to explain basic properties, such as growth rate and wavelength.
They seem to explain the unstable signature in the reconnection jets. However,
the detailed analysis, such as eigenvector and parameter dependence, has not been
shown, and whether the kink mode exceeds the sausage mode or not is still am-
biguous.

3.1.2 The objective of this Chapter

The objective of this Chapter is to explain the non-local instability observed in
reconnection jets. For this purpose, at least, we aim to understand
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1 the property of the global unstable modes,

2 non-uniformity in the reconnection jet,

3 pressure anisotropy,

in parallel, and discuss the instability in anisotropic inhomogeneous reconnec-
tion jets. In what follows, a simple three layer model, which is the first attempt
to discuss the global mode in reconnection jets, are first introduced in Section
3.2, and the remaining problem to explain the instability in jets are mentioned.
Then, in Section 3.3, the property of unstable modes, including the effects of
non-uniformity and pressure anisotropy, are discussed by the linear eigenmode
analysis.
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§ 3.2 Linear analysis by the simple three layer model

In this section, the basic properties of global unstable modes are discussed based
on a simplified three layer model that was suggested by [2]. Among three modes
shown by [55], non-resistive modes can be considered here in association with the
reconnection jet.

3.2.1 A review of Arzner & Scholer three layer model

In the well developed X-type magnetic reconnection, the outflow region mainly
consists of two lobes (inflow regions) and a jet region. In order to discuss a global
MHD instability there, Arzner and Scholer considered simplified three layers as
shown by Fig.3.2. In each layer, we could assume different physical quantities
which reflect the parameters in reconnection outflows (such as the density, the
velocity, and the pressure anisotropy).

Figure 3.2: A schematic view of the three layer model in the x-y plane.

Since the objective is to discuss the kinking current sheet structure in recon-
nection jets, they use the y component of the equation of motion and the induction
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equation:

ρ0
dṼy

dt
= −∂p̃t

∂y
+ ε0 (B0 ·∇) B̃y, (3.1)

∂B̃y

∂t
= − ∂

∂x

(
Vx0B̃y −Bx0Ṽy

)
, (3.2)

Ṽy =
dỹ

dt
, (3.3)

where d/dt = ∂/∂t + (V0 ·∇), p̃t is the total perturbed pressure, and ε0 is an
anisotropic parameter, defined by 1−

(
p‖ − p⊥

)
/B2

x0. For the purpose of conve-
nience, the fluctuation of y displacement, ỹ, is introduced in their analysis. Am-
bient magnetic field, B0, is in the x-direction, and only parallel modes are dis-
cussed here with inhomogeneity in the y-direction, i.e., ∇ = (ikx, ∂y, 0). Note
that the pressure perturbation may couple with Alfvén waves because of the non-
uniformity in the y-direction. Combining Eqs. (3.1)–(3.3) gives the equation,

ξrỹ =
∂p̃t

∂y
, (3.4)

where ξr = ρ0 (kxV0 − ω)2 − ε0k
2
xB

2
0 . The subscript r stands for the region on

which we focus (r = 1, 2, 3, or r = jet, lobe). In order to consider the non-
uniformity in the y-direction, the total pressure is assumed to be the form of p̃t,r =

φre
−kxy + ψre

kxy. Since the amplitude of the perturbation goes to zero in y →
±∞, it is reduced to the form of

p̃t(x, y) = exp [i (kxx− ωt)]×


φ1e

−kxy (y > δjet)

φ2e
−kxy + ψ2e

kxy (−δjet ≤ y ≤ δjet)

φ3e
kxy (y < −δjet)

(3.5)

Then, the connectivity of p̃t and ỹ at y = ±δjet for different three layers gives the
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relationship for the above coefficients, φr and ψr,

1 −1 −e2kxδjet 0

0 e2kxδjet 1 −1

ξ2 −ξ1 ξ1e
2kxδjet 0

0 ξ3e
2kxδjet −ξ3 ξ2





φ1

φ2

ψ2

ψ3


= 0, (3.6)

and taking the determinant expansion of the above 4×4 matrix gives the following
dispersion relation for the three layer interaction mode,

(
ξ2
lobe + ξ2

jet

)
tanh (2kxδjet) + 2ξlobeξjet = 0. (3.7)

For simplicity, symmetric lobes are assumed (r; 2 = jet, 1 = 3 = lobe). In
the above model, we need nine parameters to discuss the global stability: the
half-thickness of the plasma jet, δjet, the densities, ρ0,jet and ρ0,lobe, the bulk flow
velocities, V0,jet and V0,lobe, the local Alfvén velocities, VA,jet and VA,lobe, and the
pressure anisotropy, ε0,jet and ε0,lobe. From Eq.(3.1) and the setup (three layers
with different velocity), the instability considered to be the pressure anisotropy
(such as fire-hose and mirror instabilities) and velocity shear (such as Kelvin-
Helmholtz instability (KHI)) coupling mode.

3.2.2 Results and Discussion: parameter dependence of the insta-

bility and modes

Here, the instability in reconnection jets and the basic properties are discussed
using the above three layer model. In the followings, the parameters related to
the above model is evaluated using nonlinear hybrid simulation results that was
presented in Chapter 2, and the detailed properties of unstable modes, such as
eigenvectors and the parameter dependence, are investigated.
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Physical quantities in the nonlinear reconnection jet

Let us first check the realistic reconnection jet parameters from hybrid simulation
data presented in Chapter 2. The left panels in Fig. 3.3 show the cross sectional
quantities in x/λi∗ = 45 for Fig.2.7 associated with the three layer model; the
ion density, ni, the x-component of the ion bulk velocity, Vix, the local Alfvén
velocity, VAL = B/

√
ni, and the anisotropic parameter, εani = 1−

(
p‖ − p⊥

)
/B2.

The vertical black dotted lines at y/λi∗ = ±3 divide the region into a jet and two
lobes, and the averaged values in the lobe and the jet regions are shown in the
right panels. The color in the left panels represents the ion beta in the initial
inflow regions and is the same as that shown in Chapter 2.

The ion density, the outflow velocity, the Alfvén velocity, and the pressure
anisotropy are roughly the same in the jet region independent of the ion beta. As
discussed above, because the model is sensitive to outflow speed and the pressure
anisotropy, Vx,jet and εani,jet are chosen as free parameters. The other parameters
are set as Table 3.1. Additionally, the jet width, δjet = 3.0 λi∗. The listed quantities
are normalized as ni = ni/ni∗ and VA = VA/VA∗ = VAB

−1
∗
√
ni∗, where ni∗ and

B∗ are normalization constants.

Table 3.1: Parameters from hybrid simulations for magnetic reconnection

Density, ni Outflow velocity, Vix Alfvén velocity, VA Pressure anisotropy, εani

Lobe 0.9 0.0 0.9 1.0

Jet 1.5 Free parameter 0.5 Free parameter

Basic property in isotropic jets

First, the property of the global mode in isotropic plasmas is examined using the
parameter shown in Table 3.1. εani,jet is set to unity, because of the isotropy. We
have four solutions in Eq.(3.7), and two of them are growing modes. Figure 3.4
shows the growth rates for these two physical modes as a function of wavenumber
and jet speed. The white dashed line on the contour plot is a threshold for the KHI
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Figure 3.3: Left panels: Physical quantities associated with parameters of three-
layer model in the cross section x/λi∗ = 45. Right panels: Averaged values and
the standard deviations in jet and lobe regions for each Run.
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occurring between a lobe and a jet. This threshold is calculated by considering
only the upper connectivity between the lobe and jet regions. These two modes
are unstable beyond the KHI threshold.

Sausage

0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

kΛi*

V
x
,j

et

HaL 0 1.4 Γ�Wi*

Kink

0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

kΛi*

V
x
,j

et

HbL 0 1.4 Γ�Wi*

Figure 3.4: Growth rates of the global unstable modes as a function of the
wavenumber and the jet speed. The white dashed line corresponds to the thresh-
old of KHI between the jet and the lobe regions. Fig. (a) and (b) are two growing
modes of Eq.(3.7).

Figure 3.5 shows the corresponding real and the imaginary parts of these two
solutions at Vx,jet = 1.5 in Fig. 3.4. Left and right contours respectively show the
growth rates for the sausage and the kink modes. These modes become unstable
from kxδjet ∼ O(0.1) and the growth rate increases as kx becomes larger. For
the same reason as the KHI analysis, this is because the model assumed wafer-
thin discontinuities in the boundary between lobes and a jet. In more realistic
situations, it should have a cut-off, if the boundary has a finite thickness. The
propagation speed is almost the same as the phase velocity of the Alfvén wave in
lobes, VAL = 0.9. Additionally, the phase speed in the kink mode is smaller than
that of the sausage mode.

Let us further discuss the eigenvectors of these two modes that was not dis-
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Figure 3.5: Real (blue solid line) and imaginary (red solid line) parts of two
solutions of Eq.(3.7) with εani,jet = 1.0 and Vx,jet = 1.5.

cussed by [2]. Noting the relation

ψjet =
ξlobe − ξjet
ξlobe + ξjet

φjete
−2kxδjet (3.8)

in Eq.(3.6) gives the eigen functions for the three layer model:

p̃t(x, y) = pamp(y)e
i(kxx−ωt), (3.9)

Ṽy(x, y) = Vamp(y)e
i(kxx−ωt), (3.10)

B̃y(x, y) = Bamp(y)e
i(kxx−ωt). (3.11)

In the following discussions, only the eigen functions in the jet region are shown,
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and the amplitude can be calculated as

pamp(y) =
φjet

ξlobe + ξjet

[
(ξlobe + ξjet) e

−kxy + (ξlobe − ξjet) ekx(y−2δjet)
]
, (3.12)

Vamp(y) = i
kxV0 − ω
ξjet

∂pamp

∂y
, (3.13)

Bamp(y) = i
kxB0

ξjet

∂pamp

∂y
. (3.14)

Note that φjet is given arbitrarily.

Figures 3.6 and 3.7 show the eigen functions calculated using the wavenumber
and the frequency of the unstable modes. The wavenumber used here is kx = 0.6,
and the amplitude and the two dimensional distribution are shown. The mode
shown in Fig.3.6 corresponds to the mode shown in Fig.3.4(a) and 3.5(a), and
is the non-resistive streaming sausage mode [55]. On the other hand, the mode
in Fig.3.7 is the eigen function of Fig.3.4(b) and 3.5(b), and is the non-resistive
streaming kink mode. In each figure, the one-dimensional amplitude (pamp, Vamp,
and Bamp in the left plots) and the two-dimensional eigen functions (right contour
plots) are shown.

The total pressure of the sausage mode has the symmetric pressure perturba-
tion. Comparison of p̃ with B̃y suggests that the pressure gradient force, −∂yp̃,
is absent in the region where the magnetic tension force reaches a maximum (for
example at x ∼ −2.5), and the phase velocity of this mode may be controlled
by the magnetic tension force. Thus, the sausage type mode would be an Alfvén
type mode. In addition, in the neutral sheet (y ∼ 0), the total pressure gradient is
almost zero.

In the kink mode, it shows the anti-symmetric total pressure perturbation
across the neutral sheet. The pressure gradient force is absent in the region where
the magnetic tension force becomes the maximum, and the mode is also suggested
to be an Alfvénic mode. On the other hand, −∂yp̃ is non-zero in the neutral sheet,
and the spatial inhomogeneity such as the magnetic field and velocity, whose ef-
fects cannot be taken into account in this model, may change the property of this
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Figure 3.6: From top to bottom, the one- (left panels) and two-dimensional (right
panels) eigenfunctions of the total pressure, p̃, the flow velocity, Ṽy, and the mag-
netic field, B̃y, in the jet region are shown, respectively. These eigenfunctions are
calculated using the solution at (k, Vjet) = (0.6, 1.5) in Fig.3.4(a).
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Figure 3.7: From top to bottom, the one- (left panels) and two-dimensional (right
panels) eigenfunctions of the total pressure, p̃, the flow velocity, Ṽy, and the mag-
netic field, B̃y, in the jet region are shown, respectively. These eigenfunctions are
calculated using the solution at (k, Vjet) = (0.6, 1.5) in Fig.3.4(b).
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unstable mode. This point is discussed in the next section 3.3.

Based on the three layer model, the major points on the properties of unstable
modes in the isotropic reconnection jet are:

i Both the sausage and the kink modes are attributed to the interaction of
KHIs in two boundaries, and the unstable condition is almost the same as
the KHI between the lobe and the jet without three layers.

ii The sausage mode is suggested to be an Alfvén type mode, and the property
may not be affected by the magnetic field inhomogeneity.

iii The kink mode would be also an Alfvénic mode. But, the pressure gradient
effect is still large in the neutral sheet and the nature may be changed by
the non-uniformity such as magnetic field and velocity, which are not taken
into account in this model.

Anisotropic pressure effects

The pressure anisotropy effects on the above isotropic discussions are presented
here. As shown in Fig.3.3, the anisotropic parameter εani,jet is smaller than unity in
reconnection jets, and the parallel pressure exceeds that of perpendicular pressure.
Figure 3.8 shows the growth rates of both the sausage (left panels) and the kink
(left panels) modes with different jet speed, V0,jet = 1.5, 1.0, and 0.5.

In the slow jet case, Vx,jet = 0.5, the growth rates of the kink and sausage
modes slightly differ, but in either case strong anisotropy is needed to trigger the
instability (stronger than that in the nonlinear hybrid simulation). In the rela-
tively fast jet case, Vx,jet = 1.5, where both kink and sausage modes are unsta-
ble in the isotropic limit, either of them have broad unstable regions in kx–εani

space. Since the magnetic tension force in anisotropic plasmas can be expressed
as εani (B ·∇) B, the tension force suppresses KHIs in two boundaries as p‖/p⊥
(εani) increases. As the jet speed decreases, the unstable region shrinks and be-
comes even smaller than the fire-hose marginal condition, εani = 0. This would
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Figure 3.8: Growth rates of the sausage and the kink modes as a function of the
anisotropic parameter in jets. From top to bottom, V0,jet = 1.5, 1.0, and 0.5 cases
are shown.
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be because the centrifugal force by the large parallel pressure, p‖, in the jet is sta-
bilized by the tension force in the outer isotropic lobes. The sausage mode has
a broad unstable range compared to the kink mode, and the sausage mode seems
to occur easily in anisotropic reconnection jet as suggested by preceding isotropic
studies [55]. However, the above results contradict to the nonlinear particle sim-
ulations, where the kink mode dominates in the jet, and we need more detailed
analysis to understand the global instability in the reconnection jet.
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§ 3.3 Linear eigenvalue analysis for reconnection jets

The property of the unstable modes in reconnection jets are discussed by an in-
compressible anisotropic MHD eigenvalue analysis. In what follows, the basic
equations and setup are presented. Next, the detailed property of unstable modes
in the incompressible approximation and the effects of non-uniformity and pres-
sure anisotropy are investigated.

3.3.1 Basic Equations and Setup

In the three layer model presented in Section 3.2, the reason why the kink mode
dominates in reconnection jets remains ambiguous. So, in order to discuss the
kink and sausage modes in the non-uniformity and the pressure anisotropy without
assuming the connectivity used in the three layer model, the eigenmode analysis
for the incompressible anisotropic plasma is presented. The instability will be
associated with the structural change of the current sheet, and the compressibility
is neglected to eliminate the additional elements. The basic equations are

∂V

∂t
= −∇ ·

[(
p⊥ +

B2

2

)
←→
I + V V − εaniBB

]
+ ν∇2V , (3.15)

∂B

∂t
= ∇× (V ×B) + η∇2B, (3.16)

where ν and η are respectively the kinematic viscosity and the magnetic diffusiv-
ity.
←→
I is the unit tensor. (In what follows, we consider the current sheet stability,

and the velocity and the magnetic field are respectively normalized by the Alfvén
velocity and the magnetic field outside the current sheet. Spatial scale is normal-
ized by the half thickness of the current sheet.) The density is assumed to be
constant in space and set to unity. εani is an anisotropic parameter and defined by

εani = 1−
p‖ − p⊥
|B|2

, (3.17)
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where p‖ and p⊥ are respectively pressures parallel and perpendicular to the am-
bient magnetic field, B. The magnetic field and the velocity are decomposed
into zeroth- and first-order components, B = B0 + B̃ and V = V0 + Ṽ , and
Eqs.(3.15)–(3.17) are linearized. The first-order fluctuation of the anisotropic pa-
rameter is calculated as

ε̃ani = 2
B̃x

B0

(
p‖0 − p⊥0

)
−
p̃‖ − p̃⊥
B2

0

' 2B0B̃x (1− εani0) , (3.18)

and the relation p̃‖ = p̃⊥ is assumed. This comes from the difficulties solving
the double adiabatic equations [15] without guide field. (We cannot avoid the
singularity at B = 0.)

Both B0 and V0 are in the x-direction and have non-uniformity in the y-
direction, B0 = (B0(y), 0, 0) and V0 = (V0(y), 0, 0). In the zeroth field, a Harris
current sheet is assumed,

B0(y) = Blobe tanh

(
y

δharris

)
, (3.19)

where δharris is the half thickness of the current sheet. The velocity, V0, is given
by

V0(y) = Vjetsech
2

(
y

δjet

)
, (3.20)

where Vjet is speed at the center of the jet, and δjet is half width of the jet.

In the following analysis, the stream function, V = ∇ × (ezψz), and the
vector potential, B = ∇×(ezAz), are introduced for the purpose of convenience.
Linearized Eqs. (3.15) and (3.16) can be written as

ωXx = Y x, (3.21)

where x = t(ψ̃z, Ãz) (the superscript t represents the transposed matrix). X and

66



CHAPTER 3. ANALYSIS FOR A GLOBAL MAGNETO-HYDRO-DYNAMIC MODE IN
RECONNECTION JETS

Y are 2× 2 matrix:

X =

 ∂2 0

0 1

 , (3.22)

Y =

 kx

(
V0∂

2 − ∂2
yV0

)
+ iν∂4 kx

[
∂2

yΦ− Φ∂2 + ∂y (Ψ∂y)
]

kxB0 kxV0 + iη∂2

 , (3.23)

where ∂2 = −k2
x+∂2

y , Φ = εani0B0, and Ψ = 2B0 (εani0 − 1). Calculation domain
in the y direction is in the range of −Ly < y < Ly. At ±Ly, the conducting wall
boundary condition is assumed: ψz = 0, Az = 0, ∂2

yψz = 0, and ∂2
yAz = 0

(By = 0, Vy = 0, ∂yBx = 0, ∂yBz = 0, ∂yVx = 0, and ∂yVz = 0), where the
non-resistive Ohm’s law is used.

The derivative, ∂y, is a second-order accurate central-difference scheme. The
simulation parameters used in the following results are summarized in Table 3.2.
The magnetic Reynolds number and the Reynolds number are defined by Rm =

δharrisVA/η and Re = δharrisVA/ν, respectively. VA is the Alfvén velocity outside
the current sheet and VA = 1. The Reynolds number and the half thickness of the
discontinuity are fixed to Re = 1.0× 103.
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3.3.2 Results and Discussion

Basic unstable modes in an incompressible streaming current sheet

First of all, basic features of the unstable modes in an incompressible streaming
current sheet are reviewed for convenience. Note that these unstable modes them-
selves have been already shown by preceding studies with isotropic plasmas [55].
The detailed property and the anisotropy effects are investigated in the next sub-
sections to explain the instability in the reconnection jet. Here, half width of the
jet is always set to δjet = δharris. Figure 3.9 shows the growth rate, γ, of the most
unstable modes at Rm = 5.0 × 102 as a function of wavenumber and jet speed
with both linear (left contour plot) and logarithmic (right contour plot) scales.
The growth rate is normalized by the Alfvén transit time, τA = δharris/VA. And
in Fig.3.10, all the unstable modes are shown along the cross-sections, Vjet/VA =

0.0, 1.5, and 2.2, with different magnetic Reynolds numbers (Rm = 250; dashed
line, Rm = 750; dotted line).
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Figure 3.9: The growth rate of the most unstable mode in the streaming current
sheet as a function of kx and Vjet. The left and right panels are respectively shown
in linear and logarithmic scales, and the region where γ = 0 is masked in the
right panel. The jet width δjet is equivalent to δharris, and the magnetic Reynolds
number is Rm = 5.0× 102.
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2.5× 102 and 7.5× 102 cases, respectively.
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Figure 3.11: The eigenvectors of the tearing mode at Vjet/VA = 0 and
kxδharris = 0.25 (top four panels), non-resistive sausage mode at Vjet/VA = 2.2
and kxδharris = 0.45 (middle four panels), and non-resistive kink mode at
Vjet/VA = 2.2 and kxδharris = 0.75. Left plots show real parts of ψ̃z and Ãz,
and right contours show stream (blue lines) and magnetic field lines (black lines).
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In the case of Vjet/VA = 0.0, it shows a basic resistive tearing mode (symmet-
ric mode) in kxδharris < 1, and the growth rate properly follows the FKR R

−3/5
m

law. The upper four panels of Fig.3.11 show eigenfunctions for the tearing mode
for Vjet/VA = 0.0 and kxδharris = 0.25. The left plots show the real part of ψ̃z

and Ãz, and the right contours show the real part of ψ̃ze
ikxx and Ãze

ikxx (they
correspond to stream and magnetic field lines, respectively). As Vjet increases
(see the Vjet = 1.5 case), the symmetric mode shifted to large kx and the maxi-
mum growth rate increases, which has been reported by [83, 55]. In longer wave-
lengths, the symmetric unstable mode shows resistive nature, while non-resistive
in shorter wavelengths. In the faster jet case (see the Vjet = 2.2 case), both the
wavelength and the growth rate of the symmetric mode increase, and it ceases to
depend on the magnetic Reynolds number. The eigenfunctions with Vjet/VA = 2.2

and kxδharris = 0.45 are shown in the middle four panels of Fig.3.11. This mode
symmetrically grows and shows a wedge shaped structure. Additionally, a anti-
symmetric mode becomes unstable beyond Vjet/VA ∼ 2. This mode does not
couple with a resistive mode and is almost independent of Rm as shown by [55].
The eigenfunctions are shown in the bottom four panels of Fig.3.11, and both flow
and magnetic field lines show the kinking structure.

Properties of unstable modes

To discuss the signatures of sausage and kink modes in nonuniform system, let us
further consider the force balance between the pressure gradient and the magnetic
tension terms. The y-component of the first-order linearized equation of momen-
tum can be written as

dṼy

dt
= −∂y (p̃m)︸ ︷︷ ︸

f̃p

+ ε0 (B0 ·∇) B̃y︸ ︷︷ ︸
f̃t

, (3.24)

where p̃m = B0B̃x is the magnetic pressure. Figure 3.12 shows the real part of
eigenfunctions of p̃m, f̃p, and f̃t for the sausage (upper six panels) and the kink
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Figure 3.12: The real part of p̃m, f̃p, and f̃t in one- (left plots) and two-dimensions
(right contours) in the case of Vjet/VA = 2.5 and kxδharris = 0.50. The black
solid lines are corresponding magnetic field lines. Upper panels show the sausage
mode, and the lower panels show the kink mode.
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(bottom six panels) modes. In the right contour plots, the magnetic field lines
are overlaid for reference. For the purpose of comparison, <(f̃p) is normalized
by the maximum value in tension force. In either side of the jet, fluctuations are
produced by KHI and the magnetic field in the jet are stretched and relaxed as
illustrated in Fig.3.13 (or consider the x-component of the induction equation).
Then, the globally produced magnetic pressure gradient force in the y-direction,
fp, begins to couple with Alfvén modes.

Figure 3.13: A schematic view of sausage (left panels) and kink (right panels)
modes. The black lines represent magnetic field lines. The red and the blue arrows
respectively stand for f̃t and f̃p in Eq.(3.24).

In the sausage mode case, the perturbation of the magnetic field pressure sym-
metrically appears across y = 0, and there is no magnetic pressure gradient force
near the neutral sheet. Also, the gradient force appears in the wave node as shown
in the bottom panel of Fig.3.13 and the mean restoring force is not changed dras-
tically. This property is almost the same that was suggested by the three layer
model, and the sausage mode is suggested to be a simple Alfvén type mode.

On the other hand, the kink mode is sustained not only by the magnetic tension
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force but also the magnetic pressure gradient force near the neutral sheet. The
gradient force appears in the anti-node and is in the direction which weaken the
restoring tension force. Thus, the kink mode shows a slow Alfvén type behavior
and the unstable property would be affected by the magnetic field strength or
pressure anisotropy in contrast to the three layer model.

Pressure anisotropy effects

For the streaming current sheet stability, the pressure anisotropy is an important
factor to suppress and enhance the instability. The left two panels of Fig.3.14
show the maximum growth rate and the corresponding wavenumber for the tear-
ing mode as a function of the anisotropic parameter, εani. The jet speed is set
to Vjet/VA = 0. The growth rate of the tearing mode decreases as the parallel
pressure increases, εani < 1, and goes to zero below εani = 0.4.

The right two panels of Fig.3.14 show the maximum growth rates and the
corresponding wavenumbers for the sausage (black) and kink (green) modes. The
jet speed is Vjet/VA = 2.2. The growth rate of the sausage mode is γmaxτA ∼
0.06–0.07 independent of the pressure anisotropy. On the other hand, the growth
of the kink mode increases as the pressure anisotropy, p‖/p⊥, increases. This
behavior is related to the slow Alfvén type property of the kink mode. In the
kink mode, the transverse force, dṼy/dy, is sustained by both magnetic tension
force and global magnetic pressure gradient force. Consider y-component of the
equation of motion and the induction equation:

∂tṼy + V0∂xṼy = −∂y(B0∂yÃz)− ε0B0∂
2
xÃz, (3.25)

∂tÃz = ∂xV0Ãz −B0Ṽy. (3.26)

For the kink mode case, the first term of Eq.(3.25) cannot be neglected. Thus, near
the current sheet, letting ∂y → δ−1(= δ−1

jet = δ−1
harris), ∂t → −iω, ∂x → ikx, and
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Figure 3.14: The maximum growth rates and the corresponding wave numbers of
the resistive tearing mode with Vjet = 0.0 (left plots), the non-resistive kink mode
with Vjet = 2.2 (the right green line), and the non-resistive sausage mode with
Vjet = 2.2 (the right black line) as a function of the anisotropic parameter εani.
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eliminating Ãz from Eq.(3.25) gives[
(ω − kxV0)

2 − V 2
A

(
ε0k

2
x −

1

δ2

)]
Ṽy = 0. (3.27)

Then, the solution is

ω = kxV0 ± VA

√
ε0k2

x −
1

δ2
. (3.28)

This equation means that the magnetic pressure gradient force produced in the jet
reduces the threshold for the fire-hose instability (FHI), ε0 < 0, and the reduced
unstable condition becomes kxδ < 1/

√
ε0. Hence the growth rate of the global

kink mode is determined by the coupling between KHI and the reduced FHI. On
the other hand, in the sausage mode case, the pressure gradient force can be ne-
glected and the solution may be expressed as, ω = kxV0 ± kxVA

√
ε0. Thus, the

sausage mode is a coupling mode of KHI and the pure FHI. In this way, only the
growth rate for the kink mode increases below the pure FHI marginal limit, i.e.,
ε0 > 0. The difference comes from the global magnetic pressure gradient force.
Since the non-uniformity in a jet was not taken into account correctly in the three
layer model, both the sausage and kink modes would show the similar response to
the pressure anisotropy.

Width of the jet and the current sheet

The above discussions were limited in the case of δjet/δharris = 1, but the ratio,
δjet/δharris is also an important factor to suppress and enhance the instability. Fig-
ure 3.15 shows the maximum growth rate for the sausage and the kink modes
as a function of δjet/δharris. As δjet/δharris decreases, the growth rates of both the
sausage and kink modes increases. In particular, the kink mode is much more sen-
sitive to the ratio, δjet/δharris. In the case of δjet/δharris < 1, because both magnetic
pressure gradient force and the magnetic tension force decreases, it is natural that
the kink mode dominates as the hydrodynamic case [6]. (Note that in the mag-
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netized jet with anisotropic plasmas, only the magnetic tension force decreases as
p‖/p⊥ becomes large.)
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Figure 3.15: The maximum growth rates of the sausage (black line) and kink
(green line) modes, depending on δjet/δharris.

Next, let us discuss the anisotropy effect in both narrow (δjet/δharris < 1)
and wide jets (δjet/δharris > 1). Figure 3.16 shows the maximum growth rates
of the kink (green line) and the sausage (black line) modes as a function of the
anisotropic parameter, εani. In the narrow jet case (left panel), where the magnetic
field is weak, both the kink and the sausage modes do not show strong dependence
on the anisotropy compared to the case of δjet/δharris = 1 (see the upper right panel
in Fig.3.14). This is simply because the unstable modes are in the hydrodynamic
limit and the magnetic field is less important. On the other hand, in the wide
jet case (right panel), where magnetic field is important, the growth rate of the
kink mode strongly depends on the anisotropy. This suggests that KHI could
couple with FHI even in the case of δjet 6= δharris as discussed in the case of
δjet/δharris = 1.
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Figure 3.16: The maximum growth rates of the sausage (black line) and kink
(green line) modes for the narrow (δjet/δharris = 0.5; left panel) and wide jets
(δjet/δharris = 1.5; right panel) depending on the anisotropic parameter, εani.

§ 3.4 Summary

In the previous Chapter 2, we showed the nonlinear development of reconnection
jets, and the ingredients that could generate and suppress Alfvénic fluctuations
were discussed by the local viewpoint. However, the reconnection jet is non-
uniform and the globally oscillating (kinking) mode could not be explained by
only the local analysis. In this Chapter 3, we discussed such global unstable modes
by the linear eigenmode analysis that includes both non-uniformity and pressure
anisotropy effects. In the preceding studies with isotropic pressure plasmas, it
has been suggested that the kink mode may be unimportant and the tearing and
sausage modes were believed to dominate in the magnetized plasma jet. But in
the ion-scale reconnection jet, both non-uniformity and the pressure anisotropy
develop owing to the ion kinetic effects, and the previous discussion may not
necessarily be applicable to the reconnection jet.

So, we first considered the kink and sausage modes based on the simple three
layer model by [2], but we could not explain the reason why only the kink mode
dominates in reconnection jets. Then, we investigated a streaming current sheet
stability in the anisotropic plasmas by the eigenmode analysis, and aimed to give
a clear understanding of the unstable mode in reconnection jets. Important issues
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added to the non-local growing modes are mainly following points:

• The sausage mode is suggested to be an Alfvén type mode, and the unstable
condition may be understood by the combination of KHI and the pure FHI
in a magnetized jet with anisotropic plasmas.

• The kink mode is suggested to be a slow Alfvén type mode, and it is sen-
sitive to both the pressure anisotropy and the ratio, δjet/δharris. In the case
of δjet = δharris with anisotropic plasmas p‖ > p⊥, the growth rate becomes
much larger than that of the isotropic case. Near the current sheet, the pure
FHI threshold is largely modified by the magnetic pressure gradient force.
Because the unstable nature of the kink mode is determined by the combi-
nation of KHI and the modified FHI, the kink mode has enough growth rate
in the range of 0 < εani < 1. The relation between the jet and the current
sheet widths is also an important factor for the growth of the kink mode.
In the case of δjet/δharris < 1, the jet approaches hydrodynamic case and
the kink mode dominates. In the case of δjet/δharris > 1, KHI could couple
with the modified FHI as in the case of δjet = δharris, and the kink mode
dominates in the jet with anisotropic pressure, p‖ > p⊥.

In the scale of LR/λi ∼ 101−2, ion kinetic effects produce pressure anisotropy,
p‖/p⊥ > 1, and the kink mode is suggested to dominate compared to other sym-
metric modes from the above linear analysis 1. Also, because the kink mode
is an MHD mode, the free energy source is the bulk momentum like a Kelvin-
Helmholtz instability. On the other hand, the wave excitation and damping in
the PSBL discussed in Chapter 2 occurs by the non-uniformity of velocity space,
fi(vi,x, vi,y), and the free energy source is different from the MHD mode. There-
fore, the unstable reconnection dynamics may not be described by one element,
but would be a complex system. As a result of such competing processes (insta-
bilities), the reconnection jet will develop into turbulent state.

1 Even in the nonlinear phase, the saturation level of the kink mode is much larger than that
of other modes, if the pressure anisotropy is enough large, εani < 0.5. This issue is shown by
nonlinear hybrid simulations in Appendix A.
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CHAPTER 4
Effects of fully-developed MHD turbulence on the

macroscopic reconnection dynamics

This Chapter focuses on the role of MHD turbulence on the macro-scale
reconnection dynamics. The fully-developed MHD turbulence is assumed
in the initial current sheet, and the macroscopic effects are discussed from
a Reynolds-averaged MHD model. The model calculation suggests that the
initial Harris current sheet could develop in three ways, depending on the
strength of turbulence: laminar reconnection, turbulent reconnection, and
turbulent diffusion. The turbulent reconnection explosively converts the
magnetic field energy into both kinetic and thermal energy of plasmas, and
generates open fast reconnection jets. In the turbulent magnetic reconnec-
tion, turbulent quantities such as turbulent energy and cross-helicity form
in the diffusion region through the interaction between mean and turbulent
fields. A localized distribution of turbulent energy near the neutral point
enhances the effective magnetic field diffusion and leads to efficient recon-
nection rate. Also, cross-helicity effects suppress the turbulent diffusion
in the downstream jet and contribute to localization of the diffusion region
and further enhancement of the reconnection rate. This turbulent-mediated
process would give one of the important ways to understand macro-scale
reconnection dynamics [41].
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§ 4.1 Introduction

This study focuses on the relationship between magnetic reconnection and MHD
turbulence in a macroscopic scale. In particular, it is based on the viewpoint how
the macro-scale reconnection dynamics are modified in the presence of turbu-
lence. In this section, a turbulence model, which is an important concept of this
Chapter, is introduced.

Turbulence model

In the area of hydrodynamic turbulence studies, there are mainly three ways to
deal with turbulent phenomena: the direct numerical simulation (DNS), the large
eddy simulations (LES), and Reynolds-averaged Navier–Stokes (RANS) model.
This study adopted the third Reynolds-averaged model, and only DNS and RANS
are introduced. Figure 4.1 schematically shows their differences. DNS directly
solves the Navier–Stokes equation without any approximation, and aims to resolve
at all scales ranging from large phenomenological to small dissipation scales. This
method guarantees high-accuracy of the resolvable turbulent motion, while fails
to describe the small turbulent motion near the grid scale. To investigate the role
of fully-developed turbulence in a high magnetic Reynolds number, this study
adopted the concept of the Reynolds-averaged simulation model [53]. This model
is based on the concept of Reynolds decomposition, which decomposes a quantity
into mean and fluctuating variables, and aims to describe properties of turbulence
(such as the energy cascade and the dissipation rate). In the following passage,
the concept of Reynolds averaging and how to model microscopic turbulent effects
are introduced in association with the method of this study.

Reynolds decomposition and mean field equations

In the mean field approach, the physical quantities such as velocity v and magnetic
field b are decomposed into mean and fluctuating turbulent parts, and they are
considered separately; v = V + v′ and b = B + b′, where capital letters stand
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MACROSCOPIC RECONNECTION DYNAMICS

Figure 4.1: A schematic view for turbulence simulation models: direct numerical
simulation (DNS) and Reynolds-averaged model.
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for mean field. Here, the fluctuating part is not necessarily small compared to
mean field, but vanishes after ensemble averaging; 〈v′〉 �

〈
(v′)2〉1/2

, where the
brackets 〈 〉 stand for ensemble averaging.

This study starts with incompressible MHD equations to introduce a Reynolds-
averaged turbulence model,

∂v

∂t
= −∇ ·

(
vv − bb + pt

←→
I

)
+ ν4v, (4.1)

∂b

∂t
= ∇× (v × b− ηj) , (4.2)

where pt = p+ b2/2 is total pressure and
←→
I is an unit tensor. Decomposing vari-

ables into mean and turbulent parts and taking ensemble averaging give following
mean field equations:

∂Vi

∂t
= − ∂

∂xj

(ViVj −BiBj + PtIij)−
∂Rij

∂xj

+ ν
∂2Vi

∂x2
j

, (4.3)

∂Bi

∂t
= εijk

∂

∂xj

[
εklm

(
VlBm − η

∂Bm

∂xl

)
+ EM,k

]
, (4.4)

where

Rij =
〈
v′iv

′
j − b′ib′j

〉
, (4.5)

EM,k = εklm 〈v′lb′m〉 , (4.6)

are respectively Reynolds stress and electromotive force, which reflect the infor-
mation of turbulence and could contribute to the macroscopic (mean field) dy-
namics. The most important part of modeling turbulence is how to model these
correlation terms. Reynolds stress, 〈v′v′ − b′b′〉, could be assumed to be small in
magnetic reconnection, and is neglected in the present study as a first step. Then,
let us begin with how to model the electromotive force, 〈v′ × b′〉.
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Modeling of electromotive force for MHD turbulence

The simplest way to evaluating the electromotive force, 〈v′ × b′〉, is so called first-

order smoothing approximation [67] (may be regarded as quasi-linear analysis).
Since both total and mean field equations are given, subtracting mean field from
total field equations gives following equations for turbulent fields:

∂v′i
∂t

= − ∂

∂xj

(
v′iVj + Viv

′
j − b′iBj −Bib

′
j + v′iv

′
j − b′ib′j +Rij

)
+ ν

∂2v′i
∂x2

j

(4.7)

∂b′i
∂t

= εijk
∂

∂xj

[
εklm

(
v′lBm + Vlb

′
m + v′lb

′
m − η

∂b′m
∂xl

)
− EM,k

]
(4.8)

First-order smoothing approximation usually makes some assumptions. For ex-
ample in Eq.(4.8), fluctuation of magnetic field b′ is assumed to be smaller than
the mean magnetic field, B, and the term εklmv

′
lb

′
m − EM,k is dropped. (Note that

this assumption may restrict discussions for the low Rm case.)

First, let us consider the case that the mean velocity, V , can be neglected. In
this case, the equation of the fluctuating magnetic field becomes

∂b′i
∂t
∼ εijk

∂

∂xj

(εklmv
′
lBm) = Bj

∂v′i
∂xj

− v′j
∂Bi

∂xj

. (4.9)

Integrating this in time gives

b′i =

∫ t

−∞
dt′

(
Bj

∂v′i
∂xj

− v′j
∂Bi

∂xj

)
, (4.10)

and substituting this into (4.6) gives

εijk

〈
v′jb

′
k

〉
=

∫ t

−∞
dt′εijk

〈
v′jBl

∂v′k
∂xl

− v′jv′l
∂Bk

∂xl

〉
(4.11)

For simplicity, let us replace the time integral with τ (characteristic time scale of
turbulence) and assume homogeneity and isotropy. (Velocity is isotropic v′x ∼
v′y ∼ v′z and invariant under rotations. Also non-diagonal terms vanish.) For
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example, x-component of the first term of RHS of Eq.(4.11) becomes

{v′ × [(B ·∇) v′]}x ∼ Bxv
′
x

(
∂xv

′
z − ∂xv

′
y

)
∼ Bxv

′
z

(
∂yv

′
x − ∂xv

′
y

)
= −1

3
Bx (v′ · ω′) , (4.12)

where ω′ = ∇× v′. In this way, the electromotive force becomes

〈v′ × b′〉 ∼ −τ
3
〈v′ · ω′〉B − τ

3

〈
v′2〉 J , (4.13)

where 〈v′ · ω′〉 and 〈v′2〉 are, respectively turbulent kinetic helicity and energy.
This is often expressed as

〈v′ × b′〉 = αtB − βtJ , (4.14)

where αt = −τ 〈v′ · ω′〉 /3 and βt = τ 〈v′2〉 /3 are turbulent transport coeffi-
cients for the first-order smoothing approximation, which reflect the information
of fluctuations.

Substituting Eq.(4.14) into Eq.(4.4) gives

∂B

∂t
= ∇× (V ×B + αtB)−∇× [(η + βt) J ] , (4.15)

αt contributes to magnetic field generation and βt contributes to the enhancement
of effective magnetic field diffusion. Large fluctuation level (turbulent energy)
enhances the βt effect, and the helicity enhances the αt effect.

In more realistic cases, one should consider the effects of mean velocity and
vorticity. In the above model, the velocity shear is neglected and the mean flow is
dropped by a simple Galilean transformation. However, in general, this assump-
tion fails, and the large scale velocity shear should be also taken into account in
the model. In this case, one can obtain the following electromotive force after
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some algebraic calculation1 as

〈v′ × b′〉 ∼ αtB − βtJ + γtΩ, (4.19)

with turbulent transport coefficients

αt =
τ

3
H, βt =

2τ

3
K, γt =

2τ

3
W . (4.20)

H ≡ 〈b′ · j ′ − v′ · ω′〉, K ≡ 〈v′2 + b′2〉 /2, and W ≡ 〈v′ · b′〉 are respectively
turbulent residual helicity, turbulent energy, and cross-helicity. Hence in general
cases, not only αt and βt effects, the cross-helicity (γt) effect should be taken into
account. One can simply understand Eqs.(4.19) by the basic MHD equations for

1 From Eqs.(4.7) and (4.8),

∂

∂t
(v′ × b′)i = εijk

(
v′j
∂b′k
∂t

+ b′k
∂v′j
∂t

)
= εijk

(
v′jBl

∂v′k
∂xl
− v′jv′l

∂Bk

∂xl
+ v′jb

′
l

∂Vk

∂xl
− v′jVl

∂b′k
∂xl

+ b′kBl

∂b′j
∂xl

+ b′kb
′
l

∂Bj

∂xl
− b′kv′l

∂Vj

∂xl
+ b′kVl

∂v′j
∂xl

+ v′jb
′
l

∂v′k
∂xl
− v′jv′l

∂b′k
∂xl

+ v′jεklm
∂EM,m

∂xl
− ηv′j

∂2b′k
∂x2

l

−b′kv′l
∂v′j
∂xl

+ b′kb
′
l

∂b′j
∂xl
− b′k

∂Rjl

∂xl
+ νb′k

∂2v′j
∂x2

l

)
. (4.16)

Taking ensemble average and also making homogeneous and isotropic assumptions [100]

〈f ′ag′b〉+ 〈g′af ′b〉 =
2
3
δab 〈f ′ig′i〉 (4.17)

(where f ′ and g′ are fluctuating variables) gives the time evolution of ensemble-averaged electro-
motive force:

∂

∂t
〈v′ × b′〉 ∼ − (V ·∇) 〈v′ × b′〉+ 〈b

′ · j′ − v′ · ω′〉
3

B

−
〈
v′2 + b′2〉

3
J +

2
3
〈v′ · b′〉Ω + RT (3rd), (4.18)

where RT (3rd) represents remaining terms which includes 3rd-order correlation terms.
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turbulent fields (Eqs.(4.7) and (4.8)):

∂v′i
∂t

= Bj
∂b′i
∂xj︸ ︷︷ ︸

αt,magnetic

+ b′j
∂Bi

∂xj︸ ︷︷ ︸
βt,magnetic

− v′j
∂Vi

∂xj︸ ︷︷ ︸
γt

−Vj
∂v′i
∂xj

+ (nonlinear terms), (4.21)

∂b′i
∂t

= Bj
∂v′i
∂xj︸ ︷︷ ︸

αt,kinetic

+ b′j
∂Vi

∂xj︸ ︷︷ ︸
γt

− v′j
∂Bi

∂xj︸ ︷︷ ︸
βt,kinetic

−Vj
∂v′i
∂xj

+ (nonlinear terms), (4.22)

where only the terms related to αt–γt effects are shown. For example in Eq.(4.21),
if mean velocity shear is present, background turbulence amplifies velocity fluc-
tuation and contributes to the γt effect in the electromotive force. As well, mean
magnetic field shear and mean magnetic field contribute to αt and βt effects.
(In more detail and intuitive explanations, see [100].) Above explanations are
based on some assumptions for the sake of simplicity (isotropic assumption in
Eq.(4.17) and a first-order smoothing approximation where the nonlinear terms
in Eq.(4.21)–(4.22) are dropped), but one can also derive Eq.(4.19) by evaluating
nonlinear terms in Eq.(4.21)–(4.22) (which is valid even in the case Rm � 1)
from the closure theory of turbulence [107] 2.

2 Yoshizawa introduced a closure theory called as a two-scale direct-interaction approximation
(TSDIA) [104, 105], which extended the direct-interaction approximation for homogeneous tur-
bulence [52] to inhomogeneous one. Using TSDIA analysis, turbulent transport coefficients can
be expressed by

αt =
1
3

∫
dk

∫ t

−∞
dt′G(k, t, t′) [−Hvv(k, t, t′) +Hbb(t, t, t′)] , (4.23)

βt =
1
3

∫
dk

∫ t

−∞
dt′G(k, t, t′) [Qvv(k, t, t′) +Qbb(k, t, t′)] , (4.24)

γt =
1
3

∫
dk

∫ t

−∞
dt′G(k, t, t′) [Qvb(k, t, t′) +Qbv(k, t, t′)] , (4.25)

where G is the response function for inhomogeneous turbulence, and Hvv, Hbb, Qvv , Qbb, and
Qvb are spectral functions for turbulent kinetic helicity, current helicity, kinetic energy, magnetic
energy, and cross-helicity, respectively. The reduced model for turbulent transport coefficients
may be expressed as αt = CατH, βt = CβτK, and γt = CγτW , where the time integration is
replaced by the characteristic time scale of turbulence and the spectral information is integrated
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Equations of turbulent energy, cross-helicity, and residual helicity

In the above subsection, modeling of turbulent electromotive force was intro-
duced. The electromotive force is determined by turbulent transport coefficients
αt, βt, and γt. And in a simplified case, these turbulent transport coefficients
depend on turbulent statistics such as turbulent energy K, cross-helicity W , and
turbulent residual helicity H as shown in Eq.(4.20). Usually, turbulent transport
coefficients are given by ad hoc parameters or some spatiotemporal functions es-
timated by observations and theoretical analogy, but one can also construct equa-
tions for spatiotemporal evolution for them.

Since equations for turbulent field are strictly given, one can calculate equa-
tions of time evolution of K,W , andH

∂K
∂t

=

〈
v′ · ∂v

′

∂t
+ b′ · ∂b

′

∂t

〉
, (4.26)

∂W
∂t

=

〈
b′ · ∂v

′

∂t
+ v′ · ∂b

′

∂t

〉
, (4.27)

∂H
∂t

=

〈
b′ · ∂j

′

∂t
+ j ′ · ∂b

′

∂t
− v′ · ∂ω

′

∂t
− ω′ · ∂v

′

∂t

〉
. (4.28)

After some algebraic calculations, one obtains following equations:(
∂

∂t
+ V ·∇

)
G = PG + TG − εG + fG, (4.29)

where G represents turbulent quantities such as K, W , and H. PG , TG , εG , and
fG are respectively production, transport, dissipation rate, and source terms for
turbulence. In the following study, the source term fG , which stands for the source
of turbulence beyond the MHD approximation, is neglected. PG , TG , and εG can

with respect to wave number k. Cα, Cβ , and Cγ are model constants, and they are estimated as
Cα = O(10−2), Cβ = O(10−1), and Cγ = O(10−1) by the direct numerical simulations of the
Kolmogorov flow test problem [36].
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be written by3

PK = −〈v′ × b′〉 · J −Rij
∂Vj

∂xi

, (4.31)

TK = (B ·∇)W + ∇ · T ′
K, (4.32)

εK = ν

〈(
∂v′i
∂xj

)2
〉

+ η

〈(
∂b′i
∂xj

)2
〉
, (4.33)

PW = −〈v′ × b′〉 ·Ω−Rij
∂Bj

∂xi

, (4.34)

TW = (B ·∇)K + ∇ · T ′
W , (4.35)

εW = (ν + η)

〈(
∂v′i
∂xj

)(
∂b′i
∂xj

)〉
. (4.36)

T ′
K and T ′

W are higher-order terms [105]. (As a first step such terms are neglected
here, but should be taken into account in future works.) The above equations are
for turbulent energy and cross-helicity. Because the volume average of turbulent

3 For example in the turbulent energy case, one obtains the following formulae from Eq.(4.7)
and (4.8):

v′i
∂v′i
∂t

+ b′i
∂b′i
∂t

= −Vj

(
v′i
∂v′i
∂xj

+ b′i
∂b′i
∂xj

)
︸ ︷︷ ︸

advection related

−
(
v′iv

′
j − b′ib′j

) ∂Vi

∂xj
+

(
v′ib

′
j − b′iv′j

) ∂Bi

∂xj︸ ︷︷ ︸
production related

+Bj

(
b′i
∂v′i
∂xj

+ v′i
∂b′i
∂xj

)
−

(
v′iv

′
j − b′ib′j

) ∂v′i
∂xj

+
(
v′ib

′
j − b′iv′j

) ∂b′i
∂xj︸ ︷︷ ︸

transport related

−ν
(
∂v′i
∂xj

)2

− η
(
∂b′i
∂xj

)2

︸ ︷︷ ︸
dissipation rate related

− v′i
∂Rij

∂xj
+ εijkb

′
i

∂EM,k

∂xj
+ ν

∂2

∂x2
j

(
v′2i
2

)
+ η

∂2

∂x2
j

(
b′2i
2

)
. (4.30)

Working out a sum and taking ensemble averaging gives Eq.(4.29)–(4.33).
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energy and cross-helicity are both conserved MHD quantities, the equations for
the time evolution are rather robust. For example, if η � 1 and ν � 1 in Eqs.
(4.1)–(4.2), the time evolution of the volume average of the cross-helicity can be
calculated as

∂

∂t

∫
V

(v · b) dV =

∫
V
{−b · [(v ·∇) v]− b ·∇pt + v · [∇× (v × b)]} dV

(4.37)

=

∫
S

[
−v2

2
b− ptb + (v × b)× b

]
· dS.

So, it conserves in the periodic system. On the other hand, the residual helicity is
not the conserved quantity and how to construct the αt related equation is a chal-
lenging problem. Preceding mean field approach suggests that the αt effect may
be small compared to other effects if the helicity of mean field is small [9, 106].
This study consider the most basic reconnection problem, where the helical struc-
ture is zero in the initial current sheet, B · J = 0, and the αt effect is neglected.
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§ 4.2 Numerical Model and Setup

4.2.1 Numerical model

The simulation model presented here is based on the Reynolds-averaged MHD
concept shown in the previous section. Basic equations, which describe motion of
mean fields, are written by

∂ρ

∂t
+ ∇ · (ρV ) = 0, (4.38)

∂

∂t
(ρV ) + ∇ ·

[
ρV V +

(
P +

B2

2

)
←→
I −BB

]
= 0, (4.39)

∂

∂t

(
P

γadi − 1
+
ρ

2
V 2 +

B2

2

)
+∇ ·

[(
γadi

γadi − 1
P +

ρ

2
V 2

)
V + E ×B

]
= εexc, (4.40)

∂B

∂t
+ ∇×E = 0, (4.41)

E + V ×B + 〈v′ × b′〉 − ηJ = 0, (4.42)

where velocity is normalized by the Alfvén velocity (see Appendix for the nor-
malization). εexc = 〈v′ × b′〉 · J + εK is an energy exchange term between mean
and turbulent fields. γadi is an adiabatic constant and set to 5/3. Additionally,
the electric resistivity η = 2.0× 10−2 is assumed to avoid a numerical instability.
Here, we applied the model for inhomogeneous MHD turbulence [105, 108, 100]
(TSDIA). The electromotive force 〈v′ × b′〉 are expressed as

〈v′ × b′〉
model
= − βtJ + γtΩ, (4.43)
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and, here, turbulent transport coefficients βt, and γ are expressed as

βt = CβτK, (4.44)

γt = CγτW (4.45)

using characteristic time scale of turbulence τ . Cβ and Cγ are model constants of
O(10−1) as is discussed in the previous section. In this study, these constants are
set to Cβ = Cγ = 0.3. It is checked that the simulation results do not strongly
depend on their exact values. The turbulent energy K = 〈v′2 + b′2〉 /2 and cross-
helicityW = 〈v′ · b′〉 are solved by [102];

∂K
∂t

= −〈v′ × b′〉 · J + (B ·∇)W − (V ·∇)K − εK, (4.46)

∂W
∂t

= −〈v′ × b′〉 ·Ω + (B ·∇)K − (V ·∇)W − εW . (4.47)

εK and εW are dissipation rates for turbulent energy and cross-helicity, respec-
tively, and expressed as

εK
model
=
K
τ
, (4.48)

εW
model
= CW

W
τ
, (4.49)

where CW is a model constant [99], and set to 1.0–2.0. The characteristic time
scale of turbulence τ is assumed to be constant through simulations, and is an
important simulation parameter which control dissipation rates of turbulent energy
and cross-helicity. Instead of above τ -constant model, one may further develop
the model by solving equations of εK and εW .

The above set of Eqs.(4.38)–(4.49) is solved using the fourth-order Runge-
Kutta and fourth-order central difference scheme, and numerical errors of physical
quantities (ρ, P , V , B, K, W) are controlled using diffusive flux introduced by
[74]. (In the present study, the hyper-diffusive type scheme [95] is also examined
to solve Eqs.(4.38)–(4.49). The result shows the same result but it is found that
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Figure 4.2: A schematic view for the interaction between mean and turbulent
fields.

the present code can save calculation time compared to the hyper-diffusive type
one.) The numerical error of ∇ · B is cleaned by either diffusion-iteration type
[74] or advection-diffusion type schemes [18]. (It is checked that both of them
produce the same results.) Simulation time interval ∆t is determined by ∆t =

MIN(∆t,adv,∆t,turb) (such as a hyper-diffusion method [95]), where ∆t,adv and
∆t,turb are respectively time intervals determined by CFL conditions depending
on the total wave speed (Vwave ≡ |V | + VA +

√
γadiP/ρ) and turbulent transport

coefficients (βt and γt).

4.2.2 Initial conditions

In this simulation model, we must give the initial conditions for both the mean
field (such as B and P) and the turbulent field (such as K andW). Since this study
is a first challenge for magnetic reconnection using a Reynolds-averaged MHD
procedure, the simplest setup for magnetic reconnection is applied and the system
is in two-dimensions (x-y plane). Grid intervals ∆x and ∆y are set to unity, and
the size of simulation box is Lx × Ly = 2048 × 512. Boundary conditions in x
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and y directions are, respectively, periodic and Neuman-type (∂y = 0) conditions.

Figure 4.3: Initial conditions and boundary conditions.

As for the initial mean field, a Harris equilibrium [37] is assumed: The mean
magnetic field is given by

B = Bx0 tanh

(
y

δc

)
ex +By0

10∑
m=1

sin

(
2πmx

Lx

)
ey, (4.50)

where ex and ey are, respectively, the unit vectors in x and y directions. δc (= 0.02

Ly) is the half thickness of a current sheet. Magnetic field perturbation to trigger
reconnection is set to By0/Bx0 = 2.0× 10−3. The plasma beta outside the current
sheets is set to βp = 0.5, and the spatial distribution of P is determined to satisfy
the pressure balance. The electric resistivity η = 2.0× 10−2 is given uniformly in
both time and space to avoid unphysical numerical reconnection.

As for the initial turbulent field, we assume W = 0 and K = 1.0 × 10−2

everywhere. We found that the magnitude of K did not change the basic property
of turbulent reconnection. In addition, a steady state of turbulent energy, ∂tK = 0,
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is assumed in the initial current sheets. Because Ω = V = 0 andW = 0 at the
center of the initial current sheets, the initial balance for K becomes

0 = βtJ
2 − εK. (4.51)

(Eqs.(4.46) and (4.48) are used.) Therefore it holds τ0 = C
−1/2
β |J |−1

y=0 in the
steady state (Here Eqs. (4.44) and (4.48) are used.) In the present simulation,
τ0/τA ∼ 2, where τA ≡ δc/VA is the Alfvén transit time. In order to investigate
the relationship between turbulence and reconnection, the characteristic time scale
of turbulence τ should be given in this model. Noted that τ is constant through-
out each simulation run. Simulations are executed with different τ values, and
the characteristic cases A–D are summarized in Table 4.1. (The total number of
simulation runs corresponds to the number of points in Fig. 4.6.) It is again em-
phasized that τ controls the dissipation rate of turbulent energy εK, and changing
the dissipation rate stands for controlling the energy transfer from large scale to
smaller scales. If τ/τ0 is much smaller than unity, εK becomes εK � 1. In this
case, since the energy transfer from large scale to the smaller scales exceeds that
injected by the mean field, K → 0 and the system will develop into laminar flow.
On the other hand, in the case of τ/τ0 � 1, it is expected that the system quickly
becomes turbulent, and reconnection will not occur owing to strong turbulent dif-
fusion. (Here it is noted from Eq. (4.15) that the turbulent diffusion of the mean
magnetic field increases as K increases.) Therefore, in this study, we focus on the
most interesting parameters around τ/τ0 ∼ 1.

Table 4.1: Main simulation parameters

RUN A · · · B · · · C · · · D
τ/τ0 0.05 · · · 0.5 · · · 1.2 · · · 3.0
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§ 4.3 Results and discussions

Let us first discuss the basic signatures of turbulent magnetic reconnection, such
as the spatial structures, the reconnection rate and the cross-helicity effects, in-
cluding βt and γt effects. Figures 4.4 and 4.5–4.6 respectively show the structure
of reconnection and the reconnection speed, depending on the characteristic time
scale of turbulence, τ . In Fig. 4.4(a)–(d), the z components of the electric current
(upper color contours) and the magnetic field lines (lower contours) at t/τA = 150

are shown. Time is normalized by the Alfvén transit time, τA. From top to bot-
tom, τ/τ0 = 0.05, 0.5, 1.2, 3.0 cases are shown. The black arrows overlaid on
the magnetic field lines stand for the plasma flow. Fig.4.5 shows the reconnection
electric field, ER, the inflow Alfvén Mach number,MA, and the reconnected flux,
ΛR. They are defined by

ER ≡
1

DxDy

∫ +Dx/2

−Dx/2

dx

∫ +Dy/2

−Dy/2

dy |Ez| , (4.52)

MA ≡
1

2Dx

∫ +Dx/2

−Dx/2

dx

∣∣∣∣∣
(
Vy

VA

)
y=+Dy/2

−
(
Vy

VA

)
y=−Dy/2

∣∣∣∣∣ , (4.53)

ΛR ≡
1

Lx

∫ +Lx/2

−Lx/2

dx
|By|y=0

Bx0

, (4.54)

where Dx and Dy are characteristic length to measure above values, and respec-
tively set to 0.1Lx and 0.1Ly. The line colors represent each Run, and the notation
is shown in the figure. The reconnection rate (ER,MA, and ΛR) at t/τA = 150 is
shown in Fig.4.6.

Results suggest that the reconnection develops in three ways depending on the
time scale of turbulence. For the small τ case (τ/τ0 . 0.5; Fig.4.4(a) and (b)),
a Sweet–Parker-type current sheet forms as shown by resistive MHD simulations
[8, 92], and reconnection is more gradual than other cases. The reconnection
rates are shown by black and blue lines in Fig.4.5 and 4.6. Magnetic fields begin
to reconnect with each other at t/τA ∼ 10, and the reconnected magnetic field
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Figure 4.6: The reconnection electric field, inflow Alfvén Mach number, and the
reconnected magnetic flux at time t/τA = 150 are shown. The horizontal axis is
τ parameter that control the dissipation rate of turbulence.
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4.3. RESULTS AND DISCUSSIONS

gradually increases as time goes on. At t/τA = 150, the reconnection speed
reaches a steady state, and ER,MA, and ΛR are almost the same independent of
τ as long as τ/τ0 < 0.5. In this case, the turbulent energy decreases in the initial
current sheet (discussed later) and becomes smaller than the electric resistivity,
i.e., βt < η. So the reconnection develops into a simple Sweet–Parker-type.

On the other hand, for the large τ (τ/τ0 = 3.0), the initial current sheet (with
thickness∼ 0.02 y/Ly) quickly broadens as shown in Fig.4.4(d). At the first stage,
the out-of-plane electric field, ER, increases, while the reconnected magnetic field
flux remains constant as shown in Fig.4.5 (the green line). In the steady state
(t/τA = 150), the reconnection rate becomes even smaller than that of Sweet-
Parker reconnection. The magnetic field energy is certainly converted into the
thermal energy, however, the reconnection does not take place and there is no
energy conversion into the kinetic energy.

In the moderate parameter (τ/τ0 ∼ 1) where the initial turbulent energy is
sustained in the current sheet, Petschek-type two pairs of current sheets [72] form
as shown in Fig.4.4(c), and reconnection jets with wide flare-angle, whose out-
flow velocity is almost the Alfvén velocity in the inflow region, are observed. In
t/τA = 20–30, the reconnection switches to fast one, and the reconnection rate
(MA) reaches ∼ 0.06–0.07. The existence of fast Petschek-type reconnection it-
self has been supported by the results of anomalous resistivity models [77, 90],
that assume specific functions for the electric current or the plasma flow at the
neutral X-point. However the inherent physical processes such as the anomalous
resistivity and a scale-coupling problem has been treated as an open issue. One
of important contributions of this study in reconnection researches would be in
the point that the physics of magnetic field diffusion could be explained by the
enhancement and suppression of MHD turbulence.

Let us further discuss the role of turbulence in the above fast turbulent recon-
nection. Figure 4.7 shows the time profile of the spatial maximum values such as
turbulent energy, Kmax, and the turbulent electromotive force, EM,max. The color
stands for each simulation Run as the same manner in Fig.4.5, and the profile in
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Figure 4.7: Time profiles of maximum (spatially) values. From the upper left to
lower right, the profiles of the turbulent energy, K, the cross helicity,W , the tur-
bulent coefficients, βt and γt, contributions of the electromotive force, |βtJ | and
|γtΩ|, the ratio |W| /K, and the electromotive force EMare shown, respectively.
The color notation is the same as Fig.4.5.
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Figure 4.8: From top to bottom, spatial distributions of turbulent energy, K,
cross-helicity,W , the ratio, |W| /K, z component of the electric current, Jz, and
the vorticity, Ωz, are shown. The upper left, the upper right, and the lower panels
respectively show their snapshots at t/τA = 15 (before the onset of fast reconnec-
tion), t/τA = 25 (after the onset), and t/τA = 40 (before the saturation).
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fast magnetic reconnection is shown by the red solid line. In addition to the time
profile of the maximum values, Fig. 4.8 shows the spatial distributions of turbu-
lent energy, K, cross-helicity, W , the ratio, |W| /K, z component of the electric
current, Jz, and the vorticity, Ωz. The upper left, the upper right, and the lower
panels in Fig. 4.8 respectively show the variables taken at t/τA = 15 (before the
onset of fast reconnection), t/τA (after the onset), and t/τA = 40 (before the satu-
ration of reconnection rate). Before the onset of fast reconnection (t/τA . 20), the
production of turbulent energy is almost equivalent to the dissipation rate in the
current sheet for the case of τ/τ0 ∼ 1, andK remains small. On the other hand, K
decreases outside the current sheet because the dissipation rate exceeds the pro-
duction. This is seen in Fig. 4.8 in time t/τA = 15, and the fluctuation of turbulent
energy in the x direction is due to the initial perturbation of mean magnetic field
given by Eq.(4.50). In this phase, both cross-helicity,W , and vorticity, Ωz, remain
small, and the ratio |W| /K = |CγτW| /(CβτK) = |γt| /βt � 1. So, the βt pro-
duction term of equation (4.46), −〈v′ × b′〉 · J ∼ βtJ

2, dominates in the current
sheet. As time passes, the inhomogeneity of the mean electric current becomes
larger and the production rate exceeds dissipation rate, i.e., βtJ

2 > εK. After the
onset (t/τA > 20),K is localized near (x, y) ∼ (0, 0) as shown by Fig. 4.8 in time
t/τA = 25. In this time, |W| /K � 1 and the βt effect mainly contributes to the lo-
calization of K. (AfterW increases, the cross-helicity transport effect contributes
to the further location of K. This point is discussed later.) Then, the increasing
turbulent energy facilitates the effective diffusion of the mean magnetic field and
triggers reconnection in macroscopic scale. Subsequently, topological change in
the mean magnetic field and vorticity develops. The electric current and vorticity
generate the cross-helicity. |γt| /βt begins to increase around (x, y) ∼ (0, 0) from
time t/τA ∼ 25 (see the spatial distribution in Fig. 4.8 and the time profile in
Fig. 4.7 ). Once |γt| /βt increases, K and W evolve according to both βt and
γt production effects. In this way, both turbulent energy and cross-helicity form
in magnetic reconnection. K and W saturate at t/τA ∼ 100 and sustain their fi-
nite values. Note that in the diffusion current case (green line) the ratio |W| /K
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becomes smaller than that of turbulent reconnection, and the electromotive force
soon drops to zero.
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Figure 4.9: The upper contour plots show the spatial distributions of the turbulent
energy K and the cross-helicityW near the magnetic neutral point in the case of
τ/τ0 = 1.2. Middle panels show contributions of Eq.(4.55) at y = 0 and Eq.(4.56)
at y = 0.01. (Black-dashed= LHS, blue= production, purple= advection, red=
transport, and dark-green= dissipation rate terms, respectively.) Bottom panels
show a breakdown of the production term shown in the middle panels, Eqs.(4.57)
and (4.58). (Black-dashed= total, blue-dotted= βt related, and purple-dotted= γt

related terms.) These snapshots are taken at time t/τA = 150.

Figure 4.9 shows the spatial structure of K and W (upper contours) the de-
tail contribution to produce and suppress them (middle and lower plots) at the
saturated time, t/τA = 150. Middle plots show the contribution of production,
transport, advection, and dissipation terms at y = 0 for K and y = 0.01 for W ,
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respectively. The color corresponds to the following equations:

∂K
∂t

= −〈v′ × b′〉 · J︸ ︷︷ ︸
production

+ (B ·∇)W︸ ︷︷ ︸
transport

− (V ·∇)K︸ ︷︷ ︸
advection

−εK,︸︷︷︸
dissipation rate

(4.55)

∂W
∂t

= −〈v′ × b′〉 ·Ω︸ ︷︷ ︸
production

+ (B ·∇)K︸ ︷︷ ︸
transport

− (V ·∇)W︸ ︷︷ ︸
advection

−εW .︸ ︷︷ ︸
dissipation rate

(4.56)

In the bottom plot, the breakdown of the production term is shown. The color
follows βt and γt effects:

−〈v′ × b′〉 · J︸ ︷︷ ︸
K production

= βtJ
2︸︷︷︸

βt effect

−γtΩ · J ,︸ ︷︷ ︸
γt effect

(4.57)

−〈v′ × b′〉 ·Ω︸ ︷︷ ︸
W production

= βtJ ·Ω︸ ︷︷ ︸
βt effect

−γtΩ
2.︸ ︷︷ ︸

γt effect

(4.58)

The left panels of Fig. 4.9 explain turbulent energy. Turbulent energy is locally
strengthened in the reconnection point as discussed above, and the effective mag-
netic field diffusivity increases (hereafter, turbulent diffusion region). This leads
to the local enhancement of the internal energy and the resultant fast reconnection
through slow-mode shocks. In the middle panel, ∂K/∂t ∼ 0 (the black dashed
line) and the turbulent energy is in a steady state. The production (blue line) bal-
ances with the dissipation rate (green), and the cross-helicity transport (red solid)
balances with the advection (magenta solid). In the details of the production, the
turbulent energy is produced by the βt effect (see the blue dotted line in the bottom
plot of Fig.4.9), and the γt effect (magenta dotted line) is absent in y = 0. The
turbulent energy is supplied by the mean field energy, and this may be interpreted
as energy cascade from larger scales. Imagine a fully-developed power spectra in
the Fourier space. The energy in large scales is injected from mean field though
the production term, and the energy cascades down to the smaller scale with the
dissipation rate, εK. Then the turbulent energy is dissipated and converted into the
internal energy. In the steady state, the injection energy and cascading energy bal-
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ance. In addition, the turbulent energy produced near the X-point is advected by
the mean plasma flow, and the advected energy is transported along the ambient
magnetic field by the γt transport effect.

Figure 4.10: A schematic view of turbulent magnetic reconnection.

Then, how about the cross-helicity which is attributed to the γt transport coef-
ficient? Right panels of Fig.4.9 explain the cross-helicity formation. A quadrupole
cross-helicity distribution emerges around the turbulent diffusion region. From the
middle and bottom panels, the cross-helicity is sustained by the balance among
the production (blue solid), the advection (magenta solid), and the dissipation rate
(green solid). The production consists of both βt (blue dotted) and γt effects,
and the cross-helicity forms in the region where the mean velocity shear becomes
large. Physically, the distribution of cross-helicity may be interpreted by the prop-
agation of Alfvén wave packets in addition to the interaction between the mean
and turbulent fields. Figure 4.10 illustrates such a relation. In the vicinity of the
neutral point, K > 0 and W ∼ 0. With the viewpoint that the distribution of
cross-helicity is related to the propagation of an Alfvén wave or asymmetry of the
Alfvén wave packets, Alfvén waves equally propagate in both parallel and anti-
parallel direction to the ambient magnetic field. In either edge of the diffusion
region where W 6= 0, Alfvén waves propagate outward along the ambient mag-
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netic field. In Eq.(4.56), since the energy is large near theX-point, the direction of
∇K is always toward X-point. For example in the upper right region of Fig.4.10,
the second transport term in Eq.(4.56) becomes positive, + (B ·∇)K > 0, and
contributes to the generation of cross-helicity. Once the cross-helicity is gener-
ated, it begins to transport turbulence. In the left hand side reconnection jet of
Fig.4.10, it can be considered that the wave energy decreases at the center of the
jet through the Alfvén wave propagation. In this region, the second transport term
in Eq.(4.56) becomes negative, + (B ·∇)W < 0, and the turbulent energy is
suppressed before it is advected to the downstream region. The model suggests
that the above transport effects participate in the dynamics in addition to the pro-
duction and the dissipation processes.
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Figure 4.11: The top and middle panels respectively show turbulent energy and
cross-helicity when the cross-helicity effect is included. The bottom panel shows
turbulent energy in the case that cross-helicity is switched off (Eq.(4.47) is not
solved).
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We discuss the importance of such transport effects in an alternative way. Fig-
ure 4.11 shows the distributions of K andW with the cross-helicity effect (upper
and middle contours), and the distribution of K without the cross-helicity effect.
In the latter case, W is always set to zero and Eq.4.47 is switched-off. Without
cross-helicity, the evolution of turbulent energy is determined by the βt produc-
tion, advection, and dissipation effects, and the transport effect is absent. In that
case, the turbulent energy produced near the X-point is advected into the down-
stream region, and the turbulent diffusion region elongates compared to that with
the cross-helicity effect. Then, such a spatial difference affects the reconnection
speed. For example in Fig.4.5, the time profile of the reconnection speed (for
example, see inflow Alfvén Mach number, MA) without cross-helicity effect is
shown by a red-dashed line. As time passes, reconnection speed drops, suggest-
ing that the turbulent transport plays a part in macroscopic dynamics.
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§ 4.4 Summary

In this Chapter, the relationship between turbulence and reconnection dynamics
was investigated from macroscopic viewpoint. The discussion is based on the
assumption that fully-developed turbulence already exists in a current sheet, and
the main interest is in the point that how turbulence affects macro scale recon-
nection dynamics. To investigate such turbulent current sheet dynamics, a MHD
Reynolds-averaged simulation model was newly developed. In the model, equa-
tions of time evolution for turbulent variables (such as cross-helicity and turbulent
kinetic energy) are solved in addition to the mean field MHD equations. Turbulent
effects are included in Ohm’s law as turbulent electromotive force, and turbulent
and mean field quantities develop with interacting each other through it.

It is suggested that the initial current sheet develops in three ways, depend-
ing on the strength of turbulence: laminar reconnection, turbulent reconnection,
and turbulent diffusion. In particular, the turbulent reconnection explosively con-
verts the magnetic field energy into both kinetic bulk and thermal energy of plas-
mas. This turbulent-mediated reconnection develops, balancing the energy in-
jection from mean field with the dissipation rate. In the onset phase, the balance
breaks and the βt effect begins to contribute to the localization of turbulent energy.
As time passes, through the interaction between mean and fluctuating fields, the
vorticity and the quadrupole cross-helicity distribution form near the turbulent dif-
fusion region. In the steady state of turbulent diffusion region, the turbulent energy
is mainly supplied from mean field (through the production term), and the produc-
tion balances with the dissipation rate. If the cross-helicity is absent, the turbulent
energy enhanced in the diffusion region is advected with the bulk flow and the
diffusion region elongates. On the other hand with the presence of cross-helicity,
the transport effect (arising from the inhomogeneity of cross-helicity along the
magnetic field) suppresses turbulent diffusion and the diffusion region shrinks.

The main factor that enhances the reconnection rate is localization of the turbu-
lent diffusion region as suggested by Petschek theory and the nonlinear MHD sim-
ulations, but it should be again emphasized that the present model could give an
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alternative way of the fast reconnection process through turbulent effects, without
assuming any unknown resistive model. Additionally, such turbulent-mediated
process would, for example, play an important role in the region where there is
a large gap between the overall and dissipation scales. It is not clear whether
reconnection around the dissipation scale really develops into a huge-scale phe-
nomenon. Assuming the existence of turbulence, however, the thickness of the
current sheet may not necessarily become as thin as the dissipation scale, if βt > η.
Instead of dissipation-scale physics, turbulent diffusion could macroscopically
change the topology of (mean) magnetic fields.

In this study, the model allows us to investigate the role of turbulence in the
macroscale dynamics even for the high magnetic Reynolds number case. How-
ever, the results and suggestions are based on some assumptions, and we need to
consider the limitations of the present model and the relation to other frameworks
such as the DNS and the LES. Then, the model needs to be improved through
mutual understanding with such frameworks and observations in future works. In
what follows, the important assumptions of our present model and difference from
previous turbulent reconnection studies are discussed.

(I) We injected the background turbulence only at t = 0. Once the simula-
tion starts, K andW self-consistently develop without forcing background
turbulence. On the other hand, the previous DNS studies usually force the
background turbulence throughout simulations.

(II) The feedback from the turbulent field is considered by the modeling of the
electromotive force, i.e., Eq.(4.43).

(III) The present model controls the property of turbulence (the dissipation rate,
εK = K/τ ) using the parameter, τ .

(I) We initially assume background turbulence, where K = 10−2 andW = 0.
Letting the characteristic velocity and magnetic field fluctuation v′ ∼ b′, the tur-
bulent energy becomes K ∼ v′2 and v′/VA ∼ 0.1. (Velocity is normalized by the
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Alfvén velocity in the initial inflow regions.) Also, by the simple dimensional rela-
tion, the turbulent transport coefficient may be expressed as βt = CβτK ∼ Cβv

′l′,
where l′ is the mixing length. In the case of fast turbulent reconnection, τ/τ0 ∼ 1,
the coefficient is initially βt ∼ 0.1 (see Fig. 4.7). The mixing length and the
time scale of turbulence can be estimated as l′/δc ∼ 0.3 and τ/τA ∼ 2. So, the
mixing length is shorter than the half thickness of the current sheet, and the time
scale is shorter than that of mean field magnetic reconnection. The amplitude of
fluctuations is in the same order as the preceding DNS reconnection studies that
assume the pre-existing turbulence [51, 61]. One of major differences from the
previous DNS studies is the energy injection of turbulence. We inject turbulence
only at t = 0 and the turbulent quantities such as K andW develop through the
interaction with the mean field, while the previous studies are forcing turbulence
throughout the simulations. This difference may originate from the concept of
turbulence. For example, the pre-existing major theory for turbulent reconnec-
tion [54] is based on the theory of homogeneous anisotropic turbulence [32]. The
theory seems to have advantage to describe anisotropic turbulence in magnetized
plasmas, but there is no energy injection from the larger scale (because the mean
field is assumed to be homogeneous and there is no free energy in large scale). So,
in order to obtain the reconnection rate based on the homogeneous anisotropic tur-
bulence theory, one needs to inject ad-hoc turbulence continuously. On the other
hand, our study is based on the inhomogeneous isotropic turbulence, and there
is no need to assume the background turbulence. The turbulent energy is sup-
plied by the inhomogeneity of mean field. However, the effect of anisotropy is not
necessarily included in the present framework, and the results may not correctly
describe the dynamics in the region where the magnetic field is strong. So far,
no one knows the solution of anisotropic turbulence in the inhomogeneous sys-
tem, but solving such a discrepancy is an important issue in the future turbulent
reconnection study.

(II) In the concept of the Reynolds decomposition, the key point of modeling
turbulence is how to consider the higher order correlation terms. In this study, we
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discussed the turbulence effect in magnetic reconnection based on the modeling
for the electromotive force [105]. As for the relation to DNSs, the model is exam-
ined by the Kolmogorov flow test problem, and the model constants are estimated
by the DNS [36]. However whether it holds in the reconnection system or not
is not so clear (for example, as discussed in (I), the model may not provide the
correct result outside the current sheet, where strong magnetic field exists), and
the model applicability should be also examined by the DNS for the reconnection
system in future works.

As for another issue related to the present model, the effects other than βt and
γt effects may become important in more general cases. For example, if the guide
magnetic field (Bz 6= 0) exists in the mean field (namely, the presence of the mean
field current helicity, J ·B 6= 0), the mean current helicity would cascade down
to (produce) the smaller scale current helicity. In this case, αt dynamo effect may
not be neglected.

(III) We consider that turbulence is not simple fluctuations but has some signa-
tures such as the energy cascade and the dissipation. In this study, the signatures
are given by the constant parameter, τ , and we controlled the dissipation rate,
εK = K/τ . Because we control the nature of turbulence, we need to consider this
model constant carefully.

At least, the assumption for the spatiotemporally-independent constant τ may
overestimate the turbulent diffusion in the case of τ/τ0 � 1. For example in the
case of τ/τ0 = 3.0 (the turbulent diffusion case without magnetic reconnection),
τ/τA ∼ 6 and it is nearly equivalent to or faster than the mean current sheet evo-
lution (see Fig. 4.7). Such an unnatural aspect implies the requirement of more
accurate model. Noting the simple dimensional relation, βt ∼ τK ∼ K2/εK, one
of such solutions may be to construct the equation for the dissipation rate, εK,
which is known as K–εK model in hydrodynamic turbulence studies. The dissipa-
tion rate given by the Reynolds decomposition is expressed as Eq.(4.33), and the
complex correlation of derivative of fluctuations may be directly derived by the
Eq.(4.7)–(4.8). Alternatively, in the field of engineering, a simplified model is of-
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ten used in accordance with an assumption that the dissipation rate should be large
in the region where K is large. Based on this assumption, a dimensional analysis
for Eq.(4.46) gives the equation of the dissipation rate for MHD turbulence [105].

Aside from the Reynolds-averaged model, considering the relation to other
frameworks such as the DNS and the LES is important. Primarily, properties
of turbulence should be determined through the non-linear wave couplings and
other non-linear plasma dynamics. And the timescale of turbulence, as well as the
dissipation rate of turbulent energy, should be determined according to the nonlin-
ear dynamics. So far, we have no clear answer that what mechanism determines
the property of turbulence in the reconnection system. It may be the parametric
(decay/modulational) instability for large amplitude Alfvén waves [33, 42] or in-
teractions among weak Alfvén waves [86]. It may be the non-linear couplings
among eddies in the current sheet similar to the hydrodynamic turbulence. Or,
it may be interpreted as a result of the production and coalescence of magnetic
islands induced by the plasmoid instability [47, 3]. In either cases, the importance
would be in the point that how do we grasp the coarse-grained macroscale dynam-
ics, and the comparison between DNSs (LESs) and the turbulence model will be
an interesting and essential issue.
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CHAPTER 5
Concluding remarks

In many geophysical and astrophysical explosive phenomena, the fast energy
release due to magnetic reconnection is considered to be indispensable as intro-
duced in Chapter 1, and this dissertation focused on the relationship between
turbulence and magnetic reconnection in high Rm plasmas with the strong non-
linearity. In high Rm plasmas, magnetic reconnection is mainly divided into two
scales, i.e., MHD and kinetic scales, and the relation to turbulence for each of
them was considered. In macroscale MHD reconnection, we discussed evolution
of the turbulent current sheet based on the Reynolds-averaged model, and the rela-
tion between pre-existing turbulence and magnetic reconnection has been studied.
In microscale kinetic reconnection, self-generation of Alfvénic fluctuations in re-
connection jets was discussed based on the direct particle simulation and the linear
analysis.

The macroscale discussions were given in Chapter 4. In MHD scale discus-
sions, where the scale gap between the kinetic scale and the reconnection size
is large, the reconnection study has had a difficulty in explaining the explosive
energy release in a consistent manner. In particular, one of the most difficult prob-
lems has been to answer how to trigger fast reconnection in a thick MHD scale
current sheet. In the laminar MHD current sheet, the possible element that causes
magnetic field diffusion would be collisional resistivity, ηcollisionJ , which is often
negligible in a high magnetic Reynolds number. If the pre-existing fluctuations
can be neglected, the current sheet slowly gets thinner according with the FKR
tearing mode instability [26]. And in the nonlinear phase, it may finally reach ki-
netic scales through the plasmoid chains [93] and trigger fast reconnection. Such
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an idea is interesting and theoretically seems to be robust to account for the fast
energy release even in a high magnetic Reynolds number place. Aside from such
ideas, this study sought another way to account for the fast reconnection problem
in macroscale. We think that turbulence may give an alternative way of under-
standing this problem and discussed how the pre-existing turbulence affects the
evolution of the current sheet based on the concept of Reynolds decomposition.
With the presence of turbulence, the effect may be expressed as higher order cor-
relation terms such as the electromotive force, 〈v′ × b′〉MHD. Based on the theory
of inhomogeneous turbulence [105], we took into account the turbulent diffusion
and the cross-helicity effects in the electromotive force as turbulent transport coef-
ficients (βt and γt), and developed a self-consistent Reynolds-averaged model for
magnetic reconnection. The simulation results suggest that there are three ways
for the current sheet evolution, depending on the strength of turbulence: the lami-
nar Sweet–Parker reconnection, the Petschek reconnection induced by turbulence,
and the turbulent diffusion without reconnection. Based on the viewpoint of fast
magnetic reconnection in high Rm plasmas, it is interesting to consider where the
above two reconnections are embedded in the previous reconnection studies (e.g.,
in Fig. 1.4). In the first case, the background turbulence becomes weak (because
the dissipation rate exceeds the production rate of turbulence), and the laminar
Sweet–Parker reconnection slowly evolves. On the other hand, the Sweet–Parker
reconnection is shown to be unstable to the plasmoid instability by the DNS for
high Rm plasmas [5], and the system will finally get the fast energy release. In the
second case, where moderate turbulence is sustained by the balance between the
production and the dissipation rate of turbulence, the turbulent current sheet de-
velops into the Petschek type fast reconnection. This fast reconnection is achieved
through the interaction between mean and turbulent fields. The diffusion region of
this reconnection does not necessarily become as thin as the kinetic scale. Instead
of kinetic physics, property of turbulence (such as production, transport and dissi-
pation rate) could determine the width and the strength of the effective magnetic
field diffusion. In this sense, turbulence may give account on the explosive energy
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release by the Petschek reconnection without assuming any resistive model.

On the other hand, we still have problems to solve in determining turbulent
transport coefficients as discussed in Chapter 4. One problem is the accuracy and
the applicability to magnetic reconnection of this model. This point should be
improved, taking clues from observations and other frameworks such as DNSs
and LESs. Another problem is the relation to other turbulent reconnection ideas.
For example, another theory [54] evaluated the reconnection rate based on the
homogeneous anisotropic turbulence model [32] and implies that the turbulence
transport coefficients may be determined by the anisotropic signature of turbu-
lence. Of course, the scale and the basic concept of turbulence may differ, the
detailed discussion for the discrepancy should be made in future works.

In the micro scale discussion in Chapter 2 and 3, we focused on the small
scale-gap situation where kinetic effects should be taken into account. Initially,
we assume a current sheet without turbulence, and the sheet width is about an ion
inertial length. In kinetic scale, the fast reconnection could be triggered by the
electron physics (such as the electron inertial [94] and the non-diagonal electron
pressure effects [39]) even in the absence of pre-existing turbulence, and such a
situation has been affirmed by experimental and in-situ observations for the small
electron-scale diffusion region [49, 110]. Then, our interest is not in the diffu-
sion region physics that triggers the fast reconnection in high Rm plasmas, but
in the self-generated turbulence in non-linearly developed reconnection jets. In
particular, we focused on the ion-scale dynamics and discussed how and when
the Alfvénic fluctuations emerge owing to the inherent ingredients (plasma in-
stabilities) in reconnection. Even if we start with a quiet current sheet without
pre-existing fluctuations, the reconnection jet becomes turbulent when the jet size
becomes 101−2 λi (tΩi∗ ∼ 102) as reported by previous studies [59, 50, 2]. In the
kinetic scale, the system has abundant sources, such as non-uniformity and pres-
sure anisotropy, for plasma instabilities even inside the reconnection jet. Because
the ion-scale reconnection jet is highly complex and nonuniform, we may not be
able to attribute the origin of Alfvénic fluctuations in jets to a single cause. At
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least, we addressed some issues on the PSBL dynamics and the global reconnec-
tion jet dynamics: the condition (βi0 < 0.1–0.2) and the possible mechanism that
causes Alfvénic fluctuations in reconnection jets. The local analysis of the PSBL
distribution function suggests that any Alfvénic fluctuations would decay by the
kinetic damping effects, and the threshold for the development of Alfvénic fluctu-
ations with kλi > 1 is in βi0 < 0.1–0.2. Additionally, we discussed the origin of
Alfvénic fluctuations by global viewpoint. We considered the effect of anisotropy
in addition to the previous isotropic analysis, and confirmed that the ion pressure
anisotropy is an essential ingredient to account for the non-local instability in re-
connection jet.

It is interesting to consider the region where such self-generated turbulence by
kinetic reconnection becomes important. For example in magnetosphere, where
kinetic effects should be taken into account almost everywhere, turbulence has
attracted much attention [111]. The turbulence may become important to explain
the magnetospheric convection (induced by turbulent transport), particle heating
(dissipation of electromagnetic field energy through turbulence), and particle ac-
celeration (power law spectrum by the stochastic scattering process in turbulence),
etc.1 As was briefly mentioned in Chapter 1, turbulence is often observed in the
region where reconnection takes place such as magnetopause [35] and the mag-
netotail [45][22], and reconnection is regarded as one of the important sources
of turbulence. (As another example, the penetration of solar wind turbulence
[64][75] may be an important clue.) Then, the above self-generated turbulence
in the ion-scale reconnection is considered to play a part in the generation of tur-
bulence in magnetosphere. On the other hand, it should be noted that this study
was limited in the two-dimensional anti-parallel magnetic field configuration. The
self-generation mechanism would strongly depends on the situation where recon-
nection takes place (such as the plasma beta, the guide field, 2 the kind of plasmas),

1 For example, the ion particle acceleration remains one of major outstanding problems in
magnetospheric physics. In the magnetotail region, high energy ions (up to 106 eV) are often
observed [66], but it is known that MeV ions cannot be explained by the simple electrostatic
acceleration in magnetic reconnection.

2 For example, in the case of guide field reconnection, it has been shown that, a secondary

118



CHAPTER 5. CONCLUDING REMARKS

and the study on the self-generated mechanism in kinetic reconnection is still de-
veloping. In future works, it will be important to investigate the self-generating
mechanism for many other cases and consider how the turbulence affects other
outstanding problems such as the particle acceleration.

electron tearing instability takes place in reconnection separatrix regions and the turbulent recon-
nection outflow develops [16].
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CHAPTER A
Nonlinear behavior of the streaming current sheet in

anisotropic plasmas

In Chapter 3, the linear stability of the streaming current sheet was discussed
in terms of reconnection jet dynamics, and it is suggested that both anisotropy
and non-uniformity are important factors to explain the non-local mode in jets.
Here, we discuss nonlinear evolution of the streaming current sheet in anisotropic
plasmas. Because there is no mechanism to produce PSBL ion beams in the fol-
lowing system (setup), only the nonlinear behavior of the streaming current sheet
is briefly investigated.

Model and setup

The simulation model adopted here is the hybrid code shown in Chapter 2. One
may think that solving the anisotropic MHD equations with the double adia-
batic equations [15] may be a better strategy to discuss the nonlinear nature of
the streaming current sheet. However, the double adiabatic model has a difficult
problem in solving the singular point (|B| ∼ 0). Thus the hybrid model is used to
avoid such difficulties.

Initially, the anti-parallel magnetic field is given by

B = exB0

[
tanh

(
y

δjet

)
− tanh

(
y − 0.5Ly

δjet

)
− 1

]
, (A.1)

and two current sheets are located at y = 0 and 0.5Ly as shown in Fig. A.1.
Ly is the system size in the y-direction, and the spatiotemporal resolution are

121



Figure A.1: A schematic view of the setup and boundary conditions
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Figure A.2: A setup of the hybrid simulation in the case of βi0 = 0.5, Vjet = 1.0,
εani = 0.5, and δjet = δharris = 1.5 λi∗. The cross-sectional quantities in the
y-direction are shown. They are averaged in the x-direction, and only the lower
current sheet is shown.
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respectively ∆tΩi∗ = 10−2 and ∆x = λi∗/3.0. Boundary conditions in both x-
and y-directions are periodic. The number of super-particles in each cell outside
the current sheets are fixed to Ncell = 200. The ion temperatures in the lobe
and the neutral sheet are assumed to be identical for the purpose of simplicity
in giving the ion pressure anisotropy. The anisotropic Harris sheet equilibrium
is sustained by the pressure balance perpendicular to the magnetic field, and the
thermal velocity for each ion, vi,th, is given by Maxwellian defined by Ti,⊥. The
x component of the ion velocity which includes the bulk jet and the pressure
anisotropy is given by

vix(yi) = vi,th

1 +

[
|B(yi)|2 (1− εani)

ni(yi)Ti,⊥

]1/2
 + V0(yi) (A.2)

where εani = 1−ni

(
Ti,‖ − Ti,⊥

)
/ |B|2 and yi is the particle location for each ion.

The bulk velocity V0(yi) is given by Eq.(3.20) in Chapter 3, and the plasma flow
is added only in the lower current sheet. In the following discussions, εani is given
as a constant value in space. Because Ti,⊥ is constant in space, Ti,‖(y) is chosen
so that εani becomes constant as shown in Fig.A.2. The simulation parameters are
shown in Table A.1. Basically, the parameters are chosen in association with the
ion-scale reconnection jet shown by nonlinear simulations.

Table A.1: Simulation parameters for the streaming current sheet

Figure βi0 δjet/λi∗ εani Vjet Lx × Ly (∆x) njet/nlobe

Fig. A.2 0.5 1.5 0.5 1.0 512× 256 2.0

Fig. A.3(a) 0.5 1.5 0.1–1.0 1.0 512× 256 2.0

Fig. A.3(b) 0.5 2.0 0.1–1.0 1.0 512× 256 2.0

Fig. A.3(c) 0.5 2.5 0.1–1.0 1.0 512× 256 2.0

To discuss the nonlinear property of the global mode in anisotropic reconnec-
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tion jet, only two points are checked: (1) how does the saturation level depend on
the pressure anisotropy, and (2) does the kink mode really grow in the nonlinear
system beyond the symmetric mode.

The saturation level and the dominant mode in the anisotropic jet
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Figure A.3: The time history of 〈By〉 for (a) δjet/λi∗ = 1.5, (b) 2.0, and (c)
2.5 cases. In each case, time profile of 〈By〉 is shown for different anisotropy,
εani = 0.1–1.0.

Here, the saturation level is examined using the current crossing component,
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By. We use the following integrated value,

〈By〉 ≡
1

2δjetLx

∫ Lx

0

dx

∫ +δjet

−δjet

dy |By(x, y)| . (A.3)

Figure A.3(a)–(c) show the time history of 〈By〉 for different sheet widths (δjet/λi∗ =

1.5, 2.0, and 2.5 cases, respectively). The initial background pressure anisotropy
is denoted by the line-style and the color shown in the right-hand-side of the fig-
ure. Among all cases, the baseline 〈By〉 ∼ 0.01 is due to the background Alfvén
waves produced by the thermal fluctuation. The current sheet instability clearly
appears as the anisotropic increases in the time scale focused in the present study,
tΩi ∼ O(101−2).
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Figure A.4: The maximum values of 〈By〉 in time are shown with different sheet
widths and the anisotropic parameters.

Figure A.4 shows the maximum value of 〈By〉 in time. The maximum value
does not depend on the width of the current sheet, suggesting that the Hall effect
seems to be irrelevant to the saturation. On the other hand, it is sensitive to the
pressure anisotropy. The saturation level becomes large in εani < 0.5, the kink
type mode dominates there. Figure A.5 shows the ion density in the x-y plane.
From top to bottom, the ion density and magnetic field lines for the cases of (a)
εani = 0.1, (b) εani = 0.2, and εani = 1.0 are shown at the time tΩi∗ = 150.
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Figure A.5: Ion density and magnetic field lines for (a) εani = 0.1, (b) εani = 0.2,
and (c) εani = 1.0 cases at the time tΩi∗ = 150. The width of the initial jet is
δjet/λi∗ = 1.5 in all these cases.
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Figure A.6: The spatiotemporal diagram for Bx(x, t) at y/λi∗ = 0.

Figure A.6 shows the time evolution of the streaming current sheet in the most
unstable case, εani = 0.1 and δjet/λi∗ = 1.5. This figure shows the spatiotem-
poral distribution of Bx(x, t) in y/λi∗ = 0. In the linear state (tΩi∗ ∼ 50–100),
the kink mode appears in the wavelength ∼ 100−1δjet. Subsequently, the system
evolves into nonlinear phase. The mode quickly cascades inversely and generates
longer wavelength modes with larger amplitude. In future works, the detail analy-
sis should be done through the comparison with the linear Vlasov analysis for the
non-uniform jet.
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CHAPTER B
Some theoretical notes

Yokoi–Hoshino reconnection model with turbulent transport effects

Based on the Reynolds decomposition, Yokoi and Hoshino has made a theoretical
prediction on turbulent magnetic reconnection [101]. Here, their ideas are briefly
summarized. They considered the steady state reconnection, whose inflow Alfvén
Mach number (reconnection rate) is modified by the presence of βt (turbulent
diffusion) and γt (cross-helicity) effects. The reconnection rate predicts that the
reconnection would be enhanced as the cross-helicity effect becomes larger.

The basic equations are mean field equations which include the turbulent trans-
port effects, βt and γt:

∂Ω

∂t
=

[(
V − γt

βt

B

)
×Ω +

7

5
βt∇2

(
V − γt

βt

B

)
+ (E + V ×B)

]
, (B.1)

∂B

∂t
= [V ×B − βt (∇×B) + γt (∇× V )] , (B.2)

where Eq.(B.1) is the rotation form of Eq.(4.4). In addition, they considered mod-
ifications of mean fields (V and B) to discuss how the mean field could be modi-
fied by the turbulent transport effects (βt and γt effects):

V = V0 + Ṽ , (B.3)

B = B0 + B̃, (B.4)

where Ṽ and B̃ are modified mean fields. Substituting this into Eq.(B.1) and
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(B.2) gives following equations for modified mean fields:

∂Ω̃

∂t
= ∇×

[(
Ṽ − γt

βt

B

)
×Ω0 +

7

5
βt∇2

(
Ṽ − γt

βt

B

)]
, (B.5)

∂B̃

∂t
= ∇×

[
V × B̃ − βt

(
∇× B̃

)
− γt

(
∇× Ṽ

)]
. (B.6)

In the steady state, one notes that there are special solutions for Ṽ and B̃

Ṽ =
γt

βt

B, (B.7)

B̃ =
γt

βt

V . (B.8)
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Figure B.1: Reconnection rate (inflowing Alfvén Mach number) modified by the
cross-helicity effect,MA.

Since γt/βt ∝ K/W , these relations suggest that generation of cross-helicity
could change the mean field. They considered that such turbulent effect could
change the inflow conditions. Defining the unmodified reconnection rate (inflow-
ing Alfvén Mach number) asMA0 ≡ V0/VA, the resultant reconnection rate mod-
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ified by βt and γt effects can be calculated as

MA =
V0 + Ṽ

VA

=


M2

A0 +

(
γt

βt

)2

1 +M2
A0

(
γt

βt

)2


1/2

, (B.9)

where Eqs.(B.3)–(B.4) and (B.7)–(B.8) are used and V0 · B0 = 0 is assumed in
the inflow region, here. The modified reconnection rate is shown in Fig.B.1, and
it is shown that the cross-helicity generation changes the structure of the inflow
region and enhances the resultant reconnection rate.
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CHAPTER C
Numerical Methods

Normalization manner and some test problems for the simulation model adopted
in this dissertation (an electromagnetic hybrid code, a plasma dispersion solver,
and a Reynolds-averaged MHD model) are briefly summarized for references.

§ C.1 Normalization

An electromagnetic hybrid model

Basic equations consist of the equation of motion of ions, Faraday’s law, general-
ized Ohm’s law, and Ampere’s law in CGS Gauss unit:

mi
dvi

dt
= qi

(
E +

vi ×B

c

)
, (C.1)

dxi

dt
= vi, (C.2)

∂B

∂t
= −c∇×E, (C.3)

E = − 1

eni

∇pe −
Ve ×B

c
+ λr∇×B, (C.4)

Ve = Vi −
c

4πeni

∇×B. (C.5)

ni =

∫ ∞

−∞
fi(xi,vi, t)dvi, (C.6)

Vi =
1

ni

∫ ∞

−∞
vifi(xi,vi, t)dvi. (C.7)
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The velocity, the time scale, and the spatial scale are respectively normalized by
Alfvén velocity, ion cyclotron frequency, and ion inertial length:

mi
dvi

dt
= qi (E + vi ×B) , (C.8)

dxi

dt
= vi, (C.9)

∂B

∂t
= −∇×E, (C.10)

E = − 1

ni

∇pe − Ve ×B + λr∇×B, (C.11)

Ve = Vi −
1

ni

∇×B, (C.12)

where

mi/mp → 1, qi/e→ qi, Ωi∗t→ t, λi∗∇→∇, (C.13)

x/λi∗ → x, v/VA∗ → v,

B/B∗ → B, cE/(VA∗B∗)→ E, Vi/VA∗ → Vi, Ve/VA∗ → Ve,

ni/n∗ → ni, pe/(mpn∗V
2
A∗)→ pe, λr/λi∗ → λr.

where mp is proton mass. The subscript ∗ stands for the normalization constant.
λr = ηc2/(4πVA∗) is the resistive length and its resistivity is due to the electron-
ion interactions which can not be considered in ion-particle and electron-fluid
hybrid models.

A plasma dispersion solver

In this paper, velocity distribution functions for particles are assumed to consist
of superposition of multicomponents,

fi =
ni

(2π)3/2 σiv3
i,th

exp

[
−

(
vi,‖ − Vi

)2

2v2
i,th

−
v2

i,⊥

2σiv2
i,th

]
. (C.14)
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The subscript i represents ions. σi ≡ Ti,⊥/Ti,‖ determines temperature anisotropy
for each ion component. vi,th is the thermal velocity parallel to the magnetic
field and defined by vi,th ≡

(
Ti,‖/mi

)1/2. ni and Vi are number density and bulk
velocity, respectively.

Then, the parallel propagation mode is discussed:

k2c2

ω2
= 1 +

∑
j

ω2
p,j

ω2

[
ζ

(0)
j Z(ζ

(0)
j ) + (1− σj)

Z ′(ζ
(1)
j )

2

]
, (C.15)

where ζ(n)
j = (ω − kVj + nΩj) /

(√
2kvj,th

)
and Z(ζ) is a plasma dispersion

function 1. The spatial and time scales are normalized by the ion inertial length

1 The plasma dispersion function can be expressed as

Z(ζ) =
1√
π

∫ ∞

−∞

exp
(
−z2

)
z − ζ

dz, (C.16)

In order to avoid singularity by Landau and cyclotron resonance, we used the series expansion
method. The formulations are summarized as follows:

Z(ζ) =



If cos
[
2π
h
<(ζ)

]
≤ 0,

h

π

{
M∑

n=1

[
e−n2h2 2ζ

n2h2 − ζ2

]
− 1
ζ

}
+ i
√
πe−ζ2

A0(ζ),

else if cos
[
2π
h
<(ζ)

]
> 0,

h

π

{
M∑

n=1

[
e−(n−1/2)2h2 2ζ

(n− 1/2)2 h2 − ζ2

]}
+ i
√
πe−ζ2

A1(ζ),

where

A0(ζ) =



0

2
1− e−2πiζ/h

2

, A1(ζ) =



0 (=(ζ) > π/h)

2
1 + e−2πiζ/h

(|=(ζ)| < π/h)

2 (=(ζ) < −π/h)

, (C.17)
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and the ion cyclotron frequency.

k2 = ω2 +
∑

j

m−1
j

[
ζ

(0)
j Z(ζ

(0)
j ) + (1− σj)

Z ′(ζ
(1)
j )

2

]
, (C.18)

where

ω/Ωi∗ → ω, kλi∗ → k, vj/VA∗ → vj, (C.19)

nj/n∗ → nj, mj/mi∗ → mj.

A Reynolds-averaged model

Mean field equations are assumed to be the resistive MHD equation including
the turbulence transport effect in the induction equation. The basic equations are
normalized in Alfvén unit, and the normalized equations are shown in Eq.(4.38)–
(4.49), where

t/T∗ → t, L∗∇→∇ (C.20)

ρ/ρ∗ → ρ, v/VA∗ → v, b/B∗ → b, (C.21)

p

ρ∗V 2
A∗
→ p,

ec

B∗VA∗
→ e,

ηc2

4πVA∗L∗
→ η. (C.22)

The subscript ∗ stands for the normalization constant, and

VA∗ =
L∗

T∗
=

B∗√
4πρ∗

. (C.23)

Since the equations for K and W are derived by assuming the incompressible
condition ρ/ρ∗ = 1, they are respectively expressed as K = K/V 2

A∗ and W =

W/(B∗VA∗).

and h = 0.484375, M = 14 are adopt as [96].
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§ C.2 Some test problems

The electromagnetic hybrid model

Figure C.1 shows plasma wave dispersions for parallel propagating electromag-
netic mode; whistler (ω > 0) and ion-cyclotron (ω < 0) modes. Test parameters
are given by the ion temperature Ti = 10−4, the electron temperature Te = 0.0,
the total number of grids Nx = 512, the time interval ∆t = 0.01 Ω−1

i , the total
time-steps = 8192, and the grid interval ∆x = λi/3.
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Figure C.1: Whistler and ion-cyclotron modes calculated using (left) magnetic
field and (right) electric field data .

The plasma dispersion solver

Parallel propagating electromagnetic unstable modes are checked. The plasma
consists of beam and main ion components, and electrons. Parameters used here
are summarized in Table C.1 [28]. Figure C.2 shows the dispersions of right-
handed polarized electromagnetic waves (ωreal/ |ωreal| = +1; i.e., whistler waves).
Black solid and red dashed lines respectively stand for the real and the imaginary
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Table C.1: Simulation parameters for an ion/ion beam instability.
ni,b/ne Ti,b/Ti,m Te/Ti,m Tj,⊥/Tj,‖ mi/me βi,m VA/c

0.01 10.0 1.0 1.0 1896 1.0 1.0× 10−4

parts of each mode. The wave mode in k > 0 propagates in the same direction as
beam ions, while that in k < 0 propagates oppositely. Among the cases (A)–(D),
the relative bulk velocity, v0, between main- and beam-ion components differs.
As the relative bulk velocity increases, both resonant (k > 0) and non-resonant
(k < 0) instabilities can be seen as is shown by [28].

MHD part of the Reynolds-averaged model

As examples of one-dimensional test problems, a famous shock-tube problem [10]
is shown for reference. The parameters are summarized in Table C.2. Nx stands
for the number of grids, and the subscripts ρL and ρR respectively represent the
physical quantities in x < 0 and x > 0. Free boundary conditions are assumed at
x/Lx = ±0.5. The black circles and dotted lines in Figure C.3 show numerical
results. Here, ε is internal energy density (ε ≡ p/ [ρ (γadi − 1)]). From left to
right, an expansion fan, a slow compound wave, a contact discontinuity, a slow-
mode shock, and a fast rarefaction wave form.

As an example of a two-dimensional test problem, the time evolution of MHD
vortex are shown [69]. Boundaries are periodic in both x- and y-directions. Total
number of grids are set toNx×Ny = 512×512. Profiles of velocity and magnetic
field are given by

V =


sin (2πy)

− sin (2πx)

0

 , B = B0


sin (2πy)

sin (4πx)

0

 , (C.24)

where B0 = (4π)−1/2. An adiabatic index and the plasma beta are respectively
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Figure C.2: Dispersion relations of right-handed polarized electromagnetic
modes. Real and imaginary parts are shown by the black-solid and the red-dashed
lines, respectively.
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set to γadi = 5/3 and βp = 2γadi. Additionally, the plasma pressure and density
are given by p = B2

0βp/2 and ρ = γadip, respectively. Figure C.4 shows time
evolution of the plasma density. Time is normalized by Alfvén transit time τA =

Lx/VA = 512.

Table C.2: Simulation parameters for the shock-tube problem
Nx γadi ρL/ρR pL/pR VL/VR BL/BR

1024 2.0 1.0/0.125 1.0/0.1 0/0 (0.75, 1.0/− 1.0, 0.0)
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Figure C.3: Simulation results of the shock-tube problem. Both black circles and
black lines stand for the numerical results.
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141





REFERENCES

[1] T. Amano, K. Higashimori, and K. Shirakawa. A robust method for handling
low density regions in hybrid simulations for collisionless plasmas. Journal of
Computational Physics, 275:197–212, October 2014.

[2] K. Arzner and M. Scholer. Kinetic structure of the post plasmoid plasma sheet
during magnetotail reconnection. J. Geophys. Res., 106:3827–3844, March
2001.
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