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Abstract 
The cryovolcanism of Enceladus should have been less active 

than at present otherwise the global shape of the satellite would 

display significant clues indicative of such a high discharge rate 

over billions of years. However, the exact estimate of the duration of 

current cryovolcanism is almost impossible from geological 

observations of Enceladus alone because its high activity erases 

previous records. For this reason, I study small satellites near 

Enceladus rather than directly study the surface of Enceladus; I 

focus on the interaction between these satellites and the E-ring 

because Enceladus generates plumes composed of gas and particles, 

which forms Saturn’s tenuous E-ring. I have identified diverse 

evidence indicating that the E-ring particles accumulate on the 

small satellites, such as Helene, Telesto, Calypso, Methone, and 

Pallene, which have received little attention by science community 

until now. Nevertheless, high-resolution images of the satellites 

have been obtained during the past decade through the Cassini 

mission. Especially, nearly the entire surface of Helene has been 

imaged in high-resolution, which enables me to preform detailed 

investigation of its geological features. Based on the images of 

Helene, I have developed a shape model, measured the distribution 

of craters, and examined geological features. As a result, I find that 

the E-ring particles have accumulated preferentially on the leading 

hemisphere of Helene, which results in the deficiency of small 

craters as well as the development of numerous streaky depressions 

formed by mass movement. Furthermore, I find that Telesto, 

Calypso, Methone, and Pallene have spherical shapes with 

unusually smooth surfaces, which can also be explained by the 

accumulation of the E-ring particles. Finally, I conclude that the 

ages of the E-ring deposits on the small satellites are likely to be at 

most 100 Ma. This collectively indicates that the cryovolcanic 

activity currently occurring on Enceladus is ephemeral. 
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Introduction  
The giant planet Saturn has more than 50 officially-named 

satellites. Their sizes range from Titan (with a diameter of 5152 

km) to Aegaeon (~0.5 km), and therefore, the satellites exhibit a 

wide diversity. Here I divided saturnian satellites into a few classes: 

small satellites (with radii < 100 km), such as Pan, Atlas, Pandora, 

Prometheus, Janus, Epimetheus, Methone, Pallene, Telesto, 

Calypso, and Helene and mid-sized satellites (with radii < 800 km), 

such as Mimas, Enceladus, Tethys, Dione, and Rhea. The mid-sized 

satellites commonly present a nearly spherical shape in hydrostatic 

equilibrium while the small satellites have an irregular shape. 

Saturn’s small satellites are suitable to study the geology on 

small satellites of giant planets. This is because small satellites 

were not imaged at sufficient resolution for geological examinations 

before the Cassini spacecraft encountered at Saturn. Voyager 1, 2 

and Galileo spacecraft have obtained the images of Jupiter’s small 

satellites, Metis, Amalthea, and Thebe, Uranus’ satellite, Puck, and 

Neptune’s satellite, Larissa, which allow showing an irregular 

shape with heavily-cratered surface while the geological features 

except for large craters are difficult to be distinguished. I note that 

other small satellites are imaged at only a dot. On the other hand, 

Cassini observations in the last decade have acquired numerous 

high-resolution images of saturnian small satellites: for example, 

437 images for Helene (500 m/pixel to 24 m/pixel), 208 images for 

Janus (2 km/pixel to 170 m/pixel), and 64 images for Epimetheus 

(1km/pixel to 220 m/pixel). Interestingly, the results up to now 

imply that the geology of the small satellites presents curious 

phenomena unlike that of mid-sized satellites or asteroids. 

Previous studies proposed that the formation and evolution 

of saturnian small satellites were much different from those of 

mid-sized satellites. Pan, Atlas, Prometheus, and Pandora have 

been formed by the accumulations of the A-ring (e.g. Porco et al. 

2007). This is evidenced by (i) their densities, which imply their 

structures are a rubble pile (Porco et al. 2007), (ii) their volumes, 

which fill the Roche lobes of the satellites (Porco et al. 2007), (iii) 
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their disk-like shapes, which are made of ring particles swept up by 

the satellites (Charnoz et al. 2007), and (iv) their spectra similar to 

A-ring (Filacchione et al. 2010, Buratti et al. 2010). Janus and 

Epimetheus are originated from aggregates of the breccia after a 

larger satellite has been disrupted in early Saturn system, which is 

suggested by (i) the low densities, which is almost the same as each 

other (~0.63 g/cm3) and (ii) the surface features, which resemble 

each other (Stooke 1993, Stooke and Lumsdon 1993). Over all, small 

satellites may have been formed by disruption and re-accretion 

rather than originated from saturnian subnebula (Johnson and 

Estrada 2009).  

Also, the morphologies of the small satellites are much 

different from those of asteroids, whereas many small satellites are 

expected to have the environment similar to asteroids in terms of 

the tiny gravity and the absence of the endogenic process. Asteroids, 

such as Gaspra, Ida, Mathilde, Eros, Itokawa, and Vesta, have been 

observed by several spacecraft, which reveal varieties of small 

bodies in terms of their characteristics, formation processes, 

chemical compositions, surface processes, and so on. Interestingly, 

the surface morphologies of the asteroids are dominated by not only 

impact cratering but also seismic shaking, igneous process, or 

global sorting processes (e.g. Sullivan et al. 2002, Richardson et al. 

2004, Miyamoto et al. 2007, Zuber et al. 2011). Saturnian small 

satellites also appear unique features dissimilar to asteroids, for 

example, a smooth surface on Atlas, streaky depressions on Helene, 

spherical shapes of Methone and Pallene, or pond-like deposits on 

Janus and Epimetheus.  

These examples indicate the small satellites have likely 

evolved in their own particular ways, unlike mid-sized satellites 

and asteroids. Hence, the small satellites can contribute to enhance 

for our understanding of small bodies and will provide a clue to 

understand the history of Saturn system, including Saturn itself. 

Based on this view, I carefully study geological features of saturnian 

small satellites, using the newly-developed shape models, image 

analyses, mapping the surface features, or numerical simulation. I 

subdivided this thesis into three parts; the research of Helene in 
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Part 1, Atlas in Part 2, and Janus and Epimetheus in Part 3.  

As a result, I conclude that the interaction between 

satellites and ring materials play an important role to surface 

processes on the small satellites. Until now, the surfaces of 

satellites are known to be influenced by rings, for example, 

hemispheric albedo dichotomies on mid-sized satellites in E-ring 

(Buratti and Veverka 1984, Ostro et al. 2010, Verbiscer et al. 2007). 

However, the surface alternations are limited to be surficial 

phenomenon with sub-micron in depth. Contrary, small satellites 

appear thick deposits of ring materials, which cause the unique 

features of the small satellites, as shown in the following parts.  

This result implies that small satellites significantly record 

the history of Saturn’s ring system. This is because ring systems are 

generally ephemeral (for example, E-ring particles are as old as 8 

years (Ingersoll et al. 2011)) while the deposits of ring particles 

lying on small satellites are expected to have much more stable. I 

show a best example to discuss the lifetime of cryovolcanism on 

Enceladus based on the surface of small satellites in Part 1. Part 1 

includes main results and discussions of this thesis. I note that the 

contents of Part 1 and Part 2 have been published in Hirata et al. 

(2014) and Hirata and Miyamoto (2012), respectively. 
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Part 1

1. Satellites of the E-ring  
1.1. The endogenic activity of Enceladus 

Enceladus, with 252 km in radius, is one of saturnian 

satellites. Despite of its small size, Enceladus has the endogenic 

activity. This is suggested by geyser-like plumes composed of icy 

particles and water vapor (Kargel 2006), which are discovered by 

the Cassini spacecraft in 2005. The mean density of Enceladus is 

1609 kg/m3, which indicates that Enceladus has an icy mantle with 

a rocky core (e.g. Matson et al. 2009). In addition, possible interior 

structure in Enceladus is suggested to contain a subsurface ocean 

(Porco et al. 2006a). A primary thermal source of the activity is 

generated by tidal heating and radioactive decay (e.g. Spencer et al. 

2009). 

Previous studies suggest that Enceladus has not been active 

at its current level. First, Kargel (2006) shows that no geological 

evidence exists to support a large change in its radius, which would 

be expected if the current mass-loss rates have been maintained. 

Second, Roberts and Nimmo (2008) shows that the current energy 

output of Enceladus is difficult to sustain over Solar System history. 

Third, Enceladus’ current heat flux greatly exceeds that occurring 

in equilibrium with its current eccentricity given the time-averaged 

Q of Saturn (Meyer and Wisdom 2007), suggesting that the current 

activity may be greater than average. Finally, recent global 

geophysical models show that Enceladus can exhibit episodic 

activity, with short periods of intense activity interspersed with long 

quiescent epochs (Showman et al. 2013).  

Those studies imply that the cryovolcanism on Enceladus 

has not been maintained over Solar System history, however, its age 

is unclear. This is partly because the crater chronology is not 

adaptable on Enceladus. In other word, the crater density on 

Enceladus does not directly indicate when Enceladus’ cryovolcanism 

has begun but shows a state of dynamic equilibrium between the 

cratering and resurfacing rates. Instead of Enceladus, I focus on 
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other satellites in the E-ring and examine the E-ring deposits on the 

satellites. Because the E-ring is considered to be originated from the 

cryovolcanism of Enceladus (Kempf et al. 2008), surfaces of 

satellites in the E-ring region have an important clue to understand 

the endogenic history of Enceladus.  

1.2. The E-ring and accumulation on satellites 

Saturn’s E-ring is a wide tenuous ring system, beginning 

beyond Mimas and ending around Titan (Kempf et al. 2008). There 

are 5 mid-sized satellites in the E-ring; Mimas, Enceladus, Tethys, 

Dione, and Rhea (Fig. 1). The mid-sized satellites have been 

observed at high resolution by the Cassini spacecraft. The E-ring 

material has obviously been accumulated on their surfaces. For 

example, the leading hemispheres of Dione and Tethys are 1.8 times 

and 1.1 times, respectively, brighter than their trailing hemispheres 

(Buratti and Veverka 1984). The dichotomies have been suggested 

to result from differential accumulation of E-ring material on their 

surfaces (Ostro et al. 2010, Verbiscer et al. 2007). However, no 

depositional features have been reported on the satellites in the 

E-ring region except for those on Enceladus (e.g. buried craters) 

(Kirchoff and Schenk 2009). Contrary, small satellites, such as 

Telesto, Calypso, and Helene, likely retain more information of the 

E-ring because of the absence of the endogenic process. I thoroughly 

examine all high-resolution images obtained by the Cassini 

spacecraft through November 2013. As a result, I find that possible 

depositional features ubiquitously exist on the small satellites. 

1.3. Small satellites in the E-ring region 

There are 7 small satellites in this region (Fig. 1, Table 1). 

Among them, Methone, Pallene, Telesto, Calypso, and Helene have 

been observed at relatively high resolution by the Cassini spacecraft. 

Anthe and Polydeuces are not imaged at sufficient resolution to 

examine their surface features. Cassini observation also reveals 

their detailed orbital elements (Jacobson et al. 2008), sizes (Porco et 

al. 2007), surface features (Thomas et al. 2013), and spectra 

(Buratti et al. 2010, Filacchione et al. 2010), though their masses 

and densities are still unknown. Visual and infrared spectra of 

these small satellites indicate that their surfaces appear to be 
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covered by the E-ring material (Filacchione et al. 2013). Thus, the 

surface features may hold an important key to understand the 

possible influence of the E-ring material. 

Pallene and Methone, discovered in 2004 from images 

obtained by the Cassini spacecraft (Porco et al. 2005), are satellites 

known as the Alkyonides, located within Enceladus. The 

highest-resolution image obtained for Pallene (Fig. 2G) shows only 

its outline (Fig. 2G). High-resolution images have been obtained for 

Methone (Fig 2H), which show only part of the leading hemisphere. 

Telesto and Calypso (Fig. 2E, F), discovered in 1980 from 

Earth-based observations (Seidelmann et al. 1981), are located at 

L4 and L5 points of Tethys, respectively. Although high-resolution 

images are obtained for these satellites, their areal coverage is 

limited; only parts of leading and tailing sides for Telesto and 

Calypso. 

Helene, also discovered in 1980 from Earth-based 

observation (Lecacheux et al. 1980), is located at L4 point of Dione. 

Different from satellites discussed above, many high-resolution 

images have been obtained for Helene during several Cassini’s 

flybys (Fig. 2A-D, 3). Therefore, I can study the geological features 

of Helene based especially on high-resolution images. 
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Figure 1 Satellites of the E-ring 

(left) Conceptual figure showing orbits of satellites in the E-ring 

region (brighter color in the background). Three mid-sized satellites 

and seven small satellites are shown. Red and blue arrows indicate 

relative velocities of satellites and E-ring particles (see text), 

respectively. Note that the velocity of both satellites and the E-ring 

particles are faster in inner orbits. Mid-sized (right upper) and 

small (right lower) satellites located at the E-ring region shown in 

the same scales. (L) and (T) indicate that the image is the leading 

and the trailing side, respectively. For this image, I use 

N1495319334, N1546295078, W1649316019, N168712110, 

N1563643679, N1630076968, N1514163666, N1644754662, 

N1506184171, N1665947247, and N00189072. 
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Table 1 Satellites in the E-ring region. 

 Semi-major 

axis (km) 

Mean-radius 

(km) 

Mimas 185,539 198 

Methone 194,440 1.6±0.6 

Anthe 197,700 ~1.0 

Pallene 212,280 2.2±0.3 

Enceladus 237,948 252 

Tethys 294,619 531 

Telesto 294,710 12.4±0.4 

Calypso 294,710 10.6±0.7 

Dione 377,396 561 

Polydeuces 377,200 1.3±0.4 

Helene 377,420 16.5±0.6 

Rhea 527,108 764 

 

 

Figure 2 Small satellites in the E-ring.  

(A) Helene’s leading hemisphere (N1687119539). Insets indicate locations of 

(B) and (C). (B) Close-up image of the streaky depressions (N1687119539; 42 

m/pixel). (C) The highest-resolution image of Helene (N1646317865; 24 

m/pixel). (D) Helene’s trailing hemisphere (N1563643679). (E) Calypso’s 

leading hemisphere (N1644754662). (F) Telesto’s leading hemisphere 

(N1630076968). (G) Anti-Saturn side of Pallene with Saturn as a background 

(N1665947247). (H) Methone’s leading hemisphere (N00189072). 
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2. Geological studies of Helene 
Through 7 flybys between 2006 and 2011, the Cassini 

spacecraft obtained 437 high-resolution images of Helene (500 

m/pixel or better). All of the raw data are available for free via 

NASA's Planetary Data System (http://pds.nasa.gov/). Those images 

show Helene’s non-uniform appearance. While sub-Saturn side of 

the trailing hemisphere shows numerous impact craters close to be 

saturated, the leading hemisphere appears to be generally smooth 

without small craters. 

2.1. Shape model of Helene 

For a critical evaluation of the distribution of craters and 

other geological features, estimate of areas for particular parts of 

the body are needed, which requires a shape model of Helene. 

Fortunately, high-resolution images aerially cover almost entire 

surface of Helene, except for relatively small regions at its north 

pole and trailing hemisphere (Fig. 3). Also, the aerial coverage of 

each image overlaps with at least one or two other images, which 

can be used as a stereo pair to develop a simple shape-model 

sufficient enough for the above purpose.  

To develop a shape model, I follow a previously proposed 

method (Hartley and Zisserman 2004) by using 16 high-resolution 

images shown in Table 2 as follows; 1) Split the surface of Helene 

into 10 parts; 2) Select 3 images from the 16 high-resolution images 

showing a particular part of the body; 3) Identify at least 8 

corresponding points in all of these 3 images (Fig. 3); 4) Measure 

both relative locations of these corresponding points and camera 

positions of 3 images using the epipolar geometry, which results in 

forming a local shape model. I perform the process of 2) to 4) for all 

10 parts of Helene before binding the local shape models into a 

single very-rough shape model. Because the camera positions are 

now precisely determined, I perform stereo analyses for all of the 16 

high-resolution images to increase the corresponding points, which 

results in obtaining exact locations of in total 750 points to improve 

the quality of the shape model. I compare the resultant shape model 

to all of the high-resolution images obtained by the Cassini 
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spacecraft to confirm that the shape model properly reproduces both 

outlines and features in these images. 

Moreover, I calculate the local gravitational gradients for the 

entire surface of Helene. I constructed the numerical shape model 

as the assemblage of 7492 small tetrahedrons, whose densities were 

assumed to be the same. The leading hemisphere is specifically 

analyzed carefully by defining 1024 polygons. To derive the local 

gravity, I i) measure the distance between the geometric center of a 

single tetrahedron at the centroid of a given polygon; ii) calculate 

the gravitational vector from the distance and the volume of the 

tetrahedron; iii) perform i) and ii) for all tetrahedrons consisting of 

the shape model; iv) integrate these gravitational vectors obtained 

by iii) to obtain the total gravity acceleration from entire Helene at 

the given polygon; v) calculate the inner product between the 

normal vector of the polygon and the total gravitational vector on 

the polygon to obtain the angle of the slope; vi) remove the 

component along the normal vector of the polygon from the 

gravitational vector to obtain the direction of the local gravity on 

the polygon; vii) perform i) to vi) for all 1024 polygons consisting of 

the surface of leading hemisphere.  

Assuming that the center of mass coincides with the 

geometric center of Helene, I also develop a topographic map of 

Helene based on the shape model (Fig. 4A and Table 3). This 

enables me to identify the existences of basins, which are divided by 

ridges. The north pole is located within a large depression, whose 

diameter is about or a little larger than 15 km. This is nearly equal 

to the mean radius of Helene, which makes the overall shape of 

Helene unevenly (the volume of equatorial regions far exceeds that 

of polar regions). The most stable axis, where the principal moment 

of inertia achieves the largest value for the geometry of Helene, is 

close to its actual rotation axis.  

2.2. The distribution of craters on Helene 

As observed on most satellites of Saturn, Helene has 

numerous craters. Using the high-resolution images, I identify more 

than 70 craters, which are not uniformly distributed over the 

surface of Helene. The distribution of identified craters is shown in 
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Fig. 5 and 6. Then, craters are identified by (i) a circular depression 

with a rim, (ii) a depression imaged with a resolution of at least 5 

pixels for clear understanding of its shape, and (iii) a depression 

identified in more than one image. Larger craters (> 10 km) on 

north and south polar terrain are also verified by my shape model.  

Based on the crater density, I can identify three distinct 

regions (Fig. 4B), whose crater size-frequency distributions in a 

relative plot (i.e. R-plot) are shown in Fig. 5. R-plot means the ratio 

of the differential form of cumulative crater-size distribution to a 

size-frequency distribution with differential slope equal to 3. Error 

bars are defined as ±R*N-0.5, where N is the number of craters 

between a bin. For these analyses, I follow the method of Crater 

Analysis Technique Working Group (1979). 

The largest crater on Helene is probably the large 

depression at the north polar-region, whose diameter is ~15 km, if 

the depression is formed by a single crater. Other than this 

depression, at least 5 craters are larger than ~10 km in diameter 

and at least 8 craters are 5 to 10 km in diameter. They are almost 

uniformly distributed over the entire surface of Helene. Contrary, 

the number of small craters (below 5 km in diameter) varies 

significantly depending on regions; I identify three distinct regions 

based on the crater densities, such as (1) heavily cratered terrain 

(red in Fig. 4B), which covers the sub-Saturn side of the trailing 

hemisphere (I identify 38 craters ranging from 0.7 km to 10 km in 

diameter), (2) moderately cratered terrain (yellow in Fig. 4B), which 

covers the anti-Saturn side of the trailing hemisphere (22 craters 

ranging from 0.2 km to 12 km), and (3) less cratered terrain (blue in 

Fig. 4B), which covers the leading hemisphere (14 craters ranging 

from 1 km to 10 km). I note that crater identifications in the 

moderately cratered terrain suffered from low solar-incidence 

angles in most images of this region.  

The high crater-density on the trailing hemisphere indicate 

that Helene is basically an old object; based on the crater 

chronology of Saturn system discussed in Zahnle et al. (2003), the 

surface age of the heavily cratered terrain on the trailing 

hemisphere may be estimated as older than ~1.0 Gy. Also, the 
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distribution of large craters (> 5 km) indicates that the age of 

Helene is older than ~1.0 Gy. These two estimates coincide very well, 

which likely supports the idea that the body of Helene itself is 

formed in the earlier Saturn system. On the other hand, the 

deficiency of craters on the leading hemisphere (blue region of Fig. 

4B, consisting at least 33 % of the entire surface of Helene) 

indicates that a process of either erasing a crater or prohibiting to 

form a crater may be acting (or have been acting) on the leading 

hemisphere. 
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Table 2 Images used for developing the shape model of Helene. 

Image Date (UTC) Range (km) Res. (m)  Sub-Cassini 

Lat.        Lon. 

 Sub-Solar  

Lat.         Lon. 

N1519536732 2006-2-25 67836 423.7 -0.4 96.6 -18.5 187.2 

N1519537272 2006-2-25 68271 426.4 -0.4 93.6 -18.5 188.0 

N1534480072 2006-8-27 50353 314.5 73.8 31.0 -16.2 237.9 

N1534483492 2006-8-27 61949 387.0 75.4 138.9 -16.2 243.0 

N1563643679 2007-7-20 38890 242.9 -2.5 316.2 -11.4 13.4 

N1563644326 2007-7-20 38466 240.3 -2.6 321.6 -11.4 14.4 

N1506207298 2008-11-24 69067 431.4 25.7 347.3 -3.9 329.6 

N1646315085 2010-3-3 22073 137.9 -3.8 4.0 3.2 193.1 

N1646319549 2010-3-3 18821 117.6 -3.6 183.0 3.2 199.9 

N1646320608 2010-3-3 28482 177.9 -2.2 186.0 3.2 201.5 

W1646317554 2010-3-3 1911 119.4 -42.4 116.4 3.2 196.9 

W1646317899 2010-3-3 4113 256.9 -18.2 164.8 3.2 197.1 

N1675165048 2011-1-31 31434 190.3 -3.5 114.3 8.2 173.3 

N1687119135 2011-6-18 7355 44.5 2.7 147.3 10.1 19.2 

N1687121104 2011-6-18 9800 59.3 1.3 87.4 10.1 22.2 

N1687121464 2011-6-18 11031 66.8 1.0 81.8 10.1 22.8 

 

 

 

Figure 3 Images used for constructing the shape model.  

Not all of them; see Table 2. Red lines connect the same signature 

points between images. (Image numbers from left to right, 

N1646319549, N1687121104, N1646315085, and N1563643679). 
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Figure 4 Topography and crater distribution of Helene.  

(A) Global topographic map of Helene with colors representing 

topographic height relative to the geometric center. (B) Regional 

map with heavily cratered terrain (red), moderately cratered 

terrain (yellow), less cratered terrain (blue), features unidentified 

(gray), and no images obtained (white). Black circles indicate large 

craters (~10 km in diameter). 
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Figure 5 Crater size-frequency. 

(a) The cumulative crater size-frequency distribution (km-2) on 

Helene. (b) The relative size-frequency distribution of Helene. 

Colors represent regions in Fig. 4B 
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Table 3 The shape model of Helene. 

 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 

10 15719 16069 17066 17412 17580 17316 17762 18518 18627 19301 

20 15719 16118 17164 17965 17136 16887 16965 17477 17615 19290 

30 15719 16788 17667 17833 16614 15878 16488 17165 17942 19555 

40 15719 16832 18213 17387 16331 15584 16611 17680 18183 19842 

50 15719 17436 18514 18063 16891 16483 17713 19066 19259 20455 

60 15719 17083 18489 18551 17935 17599 19735 20206 21084 21303 

70 15719 16629 18600 19465 18868 19917 21033 21439 21834 21483 

80 15719 16860 18305 19950 20168 20823 20662 20580 21029 21519 

90 15719 16642 18014 19834 20371 19991 19891 19973 20445 20190 

100 15719 17323 17578 19500 20204 19788 19120 19000 19083 19171 

110 15719 16775 17773 18689 19949 19526 18859 18368 18413 18304 

120 15719 16493 17154 18547 19206 19136 18405 17958 17485 17800 

130 15719 16950 17247 19127 18399 18584 17652 17296 17209 17786 

140 15719 16684 17029 18054 17497 16505 16472 17584 17829 18238 

150 15719 16422 17193 17202 15845 15814 16503 17854 18791 18907 

160 15719 16620 17375 16870 15976 16579 17272 18618 19780 19309 

170 15719 16422 16842 17088 16409 17156 18150 19477 19448 19366 

180 15719 16471 16842 16941 17107 17454 17799 18700 18445 18991 

190 15719 16169 16379 16599 15755 15712 16400 17789 18065 18734 

200 15719 15829 16120 16469 15041 14804 16174 17994 18074 18438 

210 15719 15892 15939 16302 14986 14933 16598 17877 18345 19109 

220 15719 15463 15705 16039 15444 16170 16367 17738 17904 19962 

230 15719 15426 15421 15729 15655 15901 16347 17168 18645 19985 

240 15719 15245 15316 15385 15476 15630 16243 18403 19761 20758 

250 15719 15033 15019 15713 15213 15810 17398 19787 20155 19799 

260 15719 14827 15143 15834 15317 15910 17476 18864 19565 19366 

270 15719 14721 14828 15979 15638 15834 16764 18138 19620 19654 

280 15719 14721 14764 16167 16272 16289 17253 17600 19152 20311 

290 15719 15081 14699 16137 17002 17549 18013 18626 19235 20560 

300 15719 14751 15010 15727 17884 18929 18927 19303 19840 20999 

310 15719 14631 14698 15496 16788 19341 21007 20913 21313 23335 

320 15719 14689 14624 15242 16385 19013 21797 23464 22170 23716 

330 15719 14990 15116 15254 16356 18645 21024 22527 22825 24493 

340 15719 15095 15299 16394 17989 18658 20591 22377 23696 24295 

350 15719 15495 16033 17199 18424 18873 19090 20513 22235 23889 

360 15719 15448 16041 17513 18104 17938 18441 19771 20585 21219 

* The distance (in meter) between the geometric center and the 

surface based on the shape model of Helene (latitudes in horizontal 

lines and longitudes in vertical lines) 
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Table 3 Continued 

 10 20 30 40 50 60 70 80 90 

10 21110 21699 20990 21250 17418 15180 14501 14501 14123 

20 19741 20372 21452 20763 18191 14735 14735 14287 14123 

30 19724 20289 21407 20435 17267 15683 14287 13796 14123 

40 20360 20946 20984 20420 18149 15075 15075 13796 14123 

50 20839 21721 21270 19618 17323 15790 14996 14996 14123 

60 21115 20943 19210 18956 17693 16577 14996 14415 14123 

70 21676 21636 19871 18491 18358 15799 15257 14415 14123 

80 21169 20968 20128 18906 18127 16118 15257 14874 14123 

90 20488 20593 20619 19961 18550 17017 14874 14874 14123 

100 19355 19766 19965 19896 18960 17602 15093 14395 14123 

110 18664 18971 19565 19568 18650 16792 15093 14395 14123 

120 18336 18792 19290 19966 18449 16860 15425 15425 14123 

130 18842 18882 19463 19914 18576 17229 14680 14680 14123 

140 18975 19689 19493 19744 18066 16745 15382 14680 14123 

150 19892 20587 20282 19704 18495 15688 15688 14085 14123 

160 19437 20404 20255 20236 18057 15872 14906 14085 14123 

170 19885 19626 19090 19412 18021 16207 14906 14085 14123 

180 18384 18796 18067 18318 17847 15978 15370 14443 14123 

190 18416 18646 19504 19225 17566 15339 14443 14443 14123 

200 18809 18173 18182 18656 17500 15912 14443 14443 14123 

210 20217 18599 18611 18428 16851 15108 15108 13802 14123 

220 19348 18668 19876 17972 16686 15618 14365 13802 14123 

230 18947 18183 19082 17919 16843 15618 14365 13802 14123 

240 18796 18120 17904 17510 16841 14891 14891 13802 14123 

250 19151 18110 18039 18296 15774 15774 14141 14141 14123 

260 19405 18434 19003 18438 16835 14970 14141 14141 14123 

270 20183 19375 20207 19341 16546 14970 14970 14141 14123 

280 21280 21238 21525 20015 16663 15683 14633 13796 14123 

290 21432 21322 21044 19289 17001 14633 14633 13796 14123 

300 22323 21829 21497 18880 16428 15365 13796 13796 14123 

310 24042 23414 21414 18364 16768 15365 14376 13796 14123 

320 24860 24022 23296 19191 15850 14376 14376 14376 14123 

330 25153 26533 24608 19913 17419 15850 14376 13888 14123 

340 25363 25322 24404 20236 16073 14820 13888 13888 14123 

350 23330 22643 21239 21370 17362 14820 13888 13888 14123 

360 22822 21701 20832 20573 18902 15577 14501 13888 14123 
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Figure 6 The distribution of craters on Helene. 

The distribution of craters (red circles) on Helene on a cylindrically-projected 

global image created from images listed in Table 2. Black region lacks 

images (craters cannot be identified in this region). Note that I identified 

craters in raw images rather than this projected image. Some craters on the 

anti-Saturn side of the trailing hemisphere (longitude 180-270°) might 

remain unidentified due to low solar incident angles of the images.  
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3. Surface feature on Helene 
3.1. Streaky depressions 

One of the notable features found on Helene is a linearly 

curved gully-like depression (hereafter streaky depressions) (Fig. 

2A-C). Their depths are difficult to measure, but are probably a few 

tens of meters from the shadow measurement. Streaky depressions 

commonly exist on a slope as a group with sharing their directions. 

As for the case of craters, the distribution of streaky depressions 

varies significantly from place to place; For example, numerous 

streaky depressions found on slopes of a basin of the leading 

hemisphere (Fig. 2A), while no such depressions are found on the 

trailing hemisphere (Fig. 2D). Importantly, I find that a terrain 

with streaky depressions has a small number of craters, while a 

terrain covered by numerous small craters has no streaky 

depressions. In other words, all streaky depressions only exist in 

the less cratered terrain shown in Fig. 4B. 

I critically compare the local gravity and the direction of 

streaky depressions. As a result, I find (1) all streaky depressions 

strictly follow the local gravity (Fig. 7); (2) A streaky depression 

exists only on a slope but not on a flat terrain; (3) The minimum 

slope-angle for the existence of a streaky depression is about 7 

degree. These findings indicate that the streaky depression are 

results of (or associated with) some kind of mass movement 

processes. This may explain the fact that the general appearance of 

a streaky depression is similar to terrestrial gullies formed on 

powdery snow deposits or sand dunes.  

Terrestrial gullies sometimes show structures--such as 

alcoves (funnelform depressions extending from the top of the slope), 

channels (linear depressions extending from the narrow stem of an 

alcove), and fans (cone-shaped deposits crossed by streams)--that 

indicate transport of material from the top to bottom of the slopes 

(McClung and Schaerer 1993). Analogously to such terrestrial 

gullies, streaky depressions on Helene sometimes exhibit alcoves 

and channels (Fig. 2C), further supporting the idea that streaky 

depressions are formed by gravity-induced mass movements. 
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Perhaps, the deficiency of fans may be due to the tiny gravity, which 

can make the particles be easily to spread. 

3.2. Unusual smoothness of the leading hemisphere of Helene 

The unusual smoothness of the leading hemisphere is 

evidenced by the lack of shadows, even at the areas with large 

illumination angles. The smoothness likely indicates that the 

surface of Helene is covered by small particles. Unlike craters in 

heavily cratered terrain, the shapes of large craters on the leading 

hemisphere are not quite simple; their inner shapes are not 

parabolic but somehow flattened. Also, almost no small craters can 

be identified on the leading hemisphere.  

These may indicate that fine particles has deposited and 

modified or erased craters only on the leading hemisphere. This 

idea might also be supported by the fact that streaky depressions, 

presumably resulted from mass-movement of fine particles on the 

surface, only exist on the leading hemisphere.  

3.3. Origin of the fine particles on the leading hemisphere 

I consider that these fine particles come from the E-ring 

because (1) Helene exists in the orbit of the E-ring, which may 

indicate that material from the E-ring continuously fall into Helene; 

(2) The visual and infrared spectra of Helene are known to be 

similar to that of the E-ring (Filacchione et al. 2010); and (3) The 

leading hemisphere appears to be abundant in small particles than 

other regions, which is most easily explained by accumulation of the 

E-ring material on Helene. In fact, Hamilton and Burns (1994) 

shows that accumulation of the E-ring material occurs mostly on 

the leading hemisphere, because an angular velocity of a particle of 

the E-ring is slower than that of Helene when the particle reaches 

around Helene after its emission from Enceladus. Dione, which is 

the co-orbital satellites with Helene, is known to have an albedo 

dichotomy (the leading hemisphere is 1.8 times brighter than the 

trailing hemisphere) (Verbiscer et al. 2007), which is considered as a 

result of accumulation of the E-ring material to Dione’s leading 

hemisphere (Buratti and Veverka 1984, Jaumann et al. 2009). As a 

result, particles supplied from the E-ring can be considered to cause 

the appearance of the leading hemisphere of Helene as I mentioned 
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above.  

 

3.4. Thickness of the E-ring material on Helene 

Shadows of streaky depressions indicate that the thickness 

of the E-ring material are typically a few tens of meters, which 

implies that the E-ring deposits in which the depressions form must 

be at least ten meters thick. Moreover, the leading hemisphere 

shows the near-absence of small craters (less than ~3 km across; Fig. 

5). This indicates that the deposits are unlikely to be more than a 

few hundred meters thick. Therefore, I estimate that the thickness 

of the deposits on Helene accumulated from the E-ring is between 

10 and 300 m.  
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Figure 7a Surface gravity on Helene. 

The leading hemisphere of Helene (N1687120437) with arrows indicating the 

directions of the local gravity (color represents slopes). Blue lines indicate 

streaky depressions. The regions enclosed by yellow or red lines are the 

regions with and without streaky depressions, respectively. Streaky 

depressions exist on steeper (> ~7 degree) and strictly follow the directions of 

surface gravity. Inset shows the total areas of both regions as a function of 

slope angle, whose values are shown in Table 4.  
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Figure 7b Surface gravity on Helene. 

The Leading hemisphere of Helene (N1687120437). This image is used for 

the background of Figure 7a. 
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Table 4 Angles of slopes to areas 

Angle Area with streaky 

depressions (km2) 

Area without streaky 

depressions (km2) 

Total (km2) 

0 ~ 1 0.00 2.23 2.23 

1 ~ 2 0.70 2.88 3.58 

2 ~ 3 1.54 4.81 6.35 

3 ~ 4 3.86 11.62 15.48 

4 ~ 5 7.04 16.75 23.79 

5 ~ 6 6.65 13.18 19.83 

6 ~ 7 8.48 16.88 25.36 

7 ~ 8 14.75 21.54 36.30 

8 ~ 9 17.52 10.81 28.33 

9 ~ 10 17.58 14.17 31.75 

10 ~ 11 23.97 13.37 37.34 

11 ~ 12 31.08 9.52 40.60 

12 ~ 13 35.80 10.27 46.08 

13 ~ 14 32.15 9.22 41.36 

14 ~ 15 29.45 4.93 34.38 

15 ~ 16 27.17 2.86 30.04 

16 ~ 17 21.58 2.34 23.92 

17 ~ 18 19.83 3.88 23.72 

18 ~ 19 12.43 5.35 17.78 

19 ~ 20 11.34 1.18 12.53 

20 ~ 21 7.18 3.59 10.78 

21 ~ 22 6.09 1.96 8.05 

22 ~ 23 6.36 0.57 6.93 

23 ~ 24 3.87 0.49 4.36 

24 ~ 25 2.31 0.00 2.31 

25 ~ 26 0.55 2.67 3.22 

26 ~ 27 1.44 1.83 3.27 

27 ~ 28 2.05 0.00 2.05 

28 ~ 29 1.63 0.00 1.63 

> 29 1.07 0.00 1.07 
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4. Accumulation of E-ring 

material on other satellites 
I show the surface of Helene is strongly influenced by the 

E-ring material. This might be true for other satellites in the E-ring 

region, especially, Calypso, Telesto, Pallene, and Methone because 

of higher densities of the E-ring near the orbits of these satellites 

(Fig. 8).  

4.1. Telesto and Calypso 

Telesto and Calypso have unusually smooth surfaces similar 

to each other (Fig. 2E, F). In fact, craters on Telesto and Calypso 

generally exhibit softened blanketed morphologies with indistinct 

rims (and sometimes such craters are almost entirely erased), 

similar to craters on the leading hemisphere of Helene. Large (>5 

km diameter) craters on Telesto and Calypso appear to be buried 

just as small craters are on Helene. Also, Calypso exhibits streaky 

depressions (Fig. 2E), which are similar to those on Helene. I 

examine the crater size-frequency distribution on the leading 

hemisphere of Telesto (Fig. 9), which is consistent with that on the 

leading hemisphere of Helene. Spectral observations demonstrate 

the contribution of the E-ring material on their surfaces (Buratti et 

al. 2010), which supports the view that, as with Helene, the E-ring 

material accumulated on these satellites into thick deposits.  

4.1.1. The depth of the E-ring material on Telesto and Calypso 

Despite the above similarities, Telesto and Calypso are 

different from Helene in several aspects. For example, these 

satellites accumulate the E-ring material more than Helene. In fact, 

Telesto and Calypso almost completely lack large craters (>5 km 

diameter). Moreover, the few existing craters are almost entirely 

erased. Furthermore, the global shapes of Telesto and Calypso are 

closer to a smooth ellipsoid. This fact suggests that the depth of the 

E-ring deposits on Telesto and Calypso are at least several hundred 

meters, which is roughly twice as deep as those on Helene. This 

difference may be due to the densities of the E-ring. The E-ring is 

known to be denser closer to Enceladus (Verbiscer et al. 2007). 
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Therefore, the E-ring at the orbit of Telesto/Calypso exhibits higher 

brightness than at the orbit of Helene, which may explain the 

thicker deposits on Telesto/Calypso relative to those on Helene.  

4.1.2. Lack of hemispheric dichotomy for Telesto or Calypso 

Unlike Helene, Telesto and Calypso appear to have smooth 

surfaces and few small craters even on their trailing hemispheres 

(though Calypso’s trailing hemisphere has yet to be observed at 

high resolution), which suggests that Telesto and Calypso lack any 

dichotomy (Fig. 10). This diversity may be explained by the motion 

of the E-ring particles.  

The dynamics of the E-ring particles is difficult to directly 

observe and can be surprisingly complex due to the competing 

effects of the gravity of satellites, solar radiation pressure, 

electrostatic grain potential, the Lorenz forces, the 

plasma-sputtering, and plasma drag (Horányi et al. 2009, Horányi 

et al. 2008). Nevertheless, these forces cause large orbital 

eccentricities or an increasing of semi-major axes, which result in 

correspondingly large radial excursions of E-ring particles in just a 

few years (Horányi et al. 2009, Horányi et al. 1992). Especially, 

large orbital eccentricities of E-ring particles having the semi-major 

axis close to Enceladus can play an important role in the 

hemispheric dichotomies on satellites.  

Within the orbit of Enceladus, E-ring particles move faster 

than satellites. This causes E-ring particles to collide preferentially 

onto the trailing side of Mimas. On the other hand, beyond the orbit 

of Enceladus, E-ring particles move slower and are overtaken by 

satellites, which causes E-ring particles to collide preferentially 

onto the leading sides of Dione and Tethys. This can also explain 

Helene’s hemispheric dichotomy. I note that average angular 

velocity of an E-ring particle relative to an encountered satellite 

depends on distance from Saturn. This would naturally cause the 

impact distribution of particles onto the satellite surface to vary 

with distance from Saturn. Because Tethys is closer to Enceladus 

than Dione, the average velocity of E-ring particles in the orbit of 

Tethys is less decelerated compared with that in the orbit of Dione. 

Therefore, interactions with particles might not be concentrated 
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significantly on the leading hemisphere of Tethys, Telesto, and 

Calypso. In fact, this view is consistent with both the small but not 

negligible albedo difference (1.1 times) between the leading and 

trailing hemispheres of Tethys and enhanced albedo difference (1.8 

times) of Helene. 

The lack of a hemispheric dichotomy on Telesto and Calypso 

may be due to not only E-ring particle dynamics but also to possible 

non-synchronous rotation of these satellites. Non-synchronous 

rotation re-orients the satellite, causing the leading and trailing 

hemispheres to migrate across the satellite figure and preventing 

preferential particle deposition on any specific hemisphere of the 

satellite. 

4.2. Pallene and Methone 

Pallene (Fig. 2G) has a featureless smooth spherical shape, 

which is unusual for a body of only ~2.2 km in radius. Methone (Fig. 

2H) also shows an unusual smooth surface without undulation. 

Methone is likely quite similar to Pallene in terms of size, shape, 

and smooth appearance (e.g. Thomas et al. 2013). I note that such 

characteristics are quite unusual for small satellites or bodies 

including asteroids. The mean radii of Pallene and Methone 

indicate that their gravities are not large enough to maintain their 

spherical shapes.  

Spherical shapes of Pallene and Methone (perhaps also 

Anthe, the other of the Alkyonides) are also possibly related to the 

E-ring. Interestingly, the density of the E-ring material around 

Pallene is also large (denser than Tethys) and its orbit is near 

Enceladus. Therefore, I consider that the E-ring material also 

accumulates on Pallene or Methone globally to bury original 

irregular shape of the satellites resulting in forming its current 

spherical shape. Otherwise, it might be complicated by the 

existence of the co-orbital ring and the arc coexisting with both 

Pallene and Methone, whose materials might originate from these 

satellites (Hedman et al. 2009). 

In any case, both of these tiny satellites are difficult to 

immediately accumulate material released by impacts, which may 

temporary form the ring or arcs. Nevertheless, these released 
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materials, originally from both the E-ring and satellites, should 

re-accumulate on the satellites because of the confinement of dust 

in resonances with Mimas or Enceladus. These processes may 

explain their unusual smooth surfaces and spherical shapes. I 

suspect that Anthe also has a spherical shape with a smooth 

surface. 

4.3. Mid-sized satellites 

Unlike the small satellites, the E-ring deposits on Tethys 

and Dione are probably quite thin because (1) these satellites’ 

radar-optical albedo appear to decrease with distance from 

Enceladus (Ostro et al. 2010); (2) crater statistics (Kirchoff and 

Schenk 2010) indicate no deficiency of craters on either Tethys or 

Dione, in contrast to Helene and Telesto; and (3) high-resolution 

images of Tethys and Dione show no unambiguous evidence for 

thick deposits, such as streaky depressions. Nevertheless, albedo 

(Verbiscer et al. 2007), spectral (Filacchione et al. 2010), and 

thermal inertia (Howett et al. 2010) measurements indicate thin 

but non-zero deposits of E-ring particles on these mid-size satellites. 

Thus, E-ring particles are likely deposited widely on Tethys and 

Dione, but the resulting deposits are much thinner than those on 

the small satellites. Possible explanations are differences in the 

dynamics of E-ring particles among the satellites or higher impact 

velocity onto the mid-sized satellites, however, the reasons for this 

difference are unknown. 
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Figure 8 Brightness profile of the E-ring. 

Brightness profile of the E-ring as a function of radial distance from 

Saturn based on (Baum et al. 1981). Brighter value means the 

E-ring being denser. As shown in this image, brightness in the orbit 

of Enceladus is the highest and that of Tethys, Telesto, and Calypso 

are higher than that of Helene. 
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Figure 9 Relative size-frequency distributions of craters.  

Relative size-frequency distributions of craters of heavily cratered 

terrain (H), moderately cratered terrain (M), and less cratered 

terrain (L) of Helene as well as the trailing hemisphere of Telesto 

(Telesto), heavily cratered terrain on Tethys (Tethys), and heavily 

cratered terrain on Dione (Dione). The data for Tethys and Dione 

come from Kirchoff and Schenk (2010). 
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Figure 8 Telesto and Calypso. 

Telesto (upper) and Calypso (lower) at the same scale, showing 

smooth surfaces in both leading and trailing hemispheres (upper 

left N1514163666, upper right N1630076968, lower left 

N1506184171, lower right N1644754662). 
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5. Implications to the age of the 

cryovolcanism of Enceladus 
5.1. The age of the E-ring deposits  

I estimate the age of the E-ring deposits based on the 

cratering rate. The high crater density on the trailing hemisphere of 

Helene indicates that Helene is basically an old satellite. Based on 

the crater chronology of the saturnian system (Zahnle et al. 2003), I 

estimate that the age of the heavily cratered terrain is ~4.0 Gy (and 

at least ~1.0 Gy), which coincides with the age estimated from the 

distribution of large craters (>5 km). I also find that the distribution 

of craters exceeding 5 km in diameter on Helene and Telesto are 

generally similar to those of Dione and Tethys (Fig. 9), which 

indicates that, in general, the original crater densities of small 

satellites are similar for these mid-sized satellites.  

On Helene’s E-ring deposit, whose area is 1,637 km2, I 

identify 5 craters of ~200 m in diameter but not exceeding 1 km. 

This clearly indicates the deposits are young, but estimating the age 

can be more complicated than the Moon. This is mostly due to the 

lack of dated samples from the saturnian satellites and to the 

difficulty in determining the cratering rate, which should be 

estimated theoretically based on the populations and orbits of 

potential impactors. According to Dones et al. (2009), potential 

impactors come from (i) main-belt asteroids, (ii) trojan objects of the 

gas giants, (iii) Centaurs and ecliptic comets, (iv) Saturn’s irregular 

satellites, (v) planetocentric bodies, and (vi) Nearly Isotropic 

Comets. Especially, Zahnle et al. (2003) estimates that primary 

impactors on saturnian satellites are trans-Saturnian objects such 

as Centaurs.  

Therefore, the theoretical study for cratering rate (Zahnle et 

al. 2003) is based either on (A) the crater densities on the Moon, 

Europa, Ganymede, and Triton, and (B) the statistics of encounter 

with potential impactors. Their populations and orbital properties 

(Gladman et al. 2001) are studied with ground-based observations, 

even though the accurate size-frequency of small objects is still 
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unknown because of their great distances. Zahnle et al. (2003) 

estimates the cratering rate for the outer Solar System, including 

that on saturnian small satellites; for example, the cratering rate (D 

> 1 km) on Helene is (A) 2.0x10-7 craters per 103 km2 per year if I 

assume that small objects obey a nearly collisional distribution and 

(B) 2.0x10-9 craters per 103 km2 per year if I assume the size–

number distribution is like that inferred at Jupiter. Therefore, 

assuming this cratering rate, the age of the E-ring deposits on 

Helene is likely to be 0.3-5 My (the former case) or 200-500 My (the 

latter case).  

On the other hand, according to Dones et al. (2009) if major 

potential impactors originated from heliocentric objects, such as 

Centaurs, impact cratering on saturnian satellites should exhibit a 

hemispheric dichotomy because heliocentric impactors strongly 

favor cratering of the leading hemisphere. However, small craters 

on saturnian satellites do not show such dichotomies, which may 

imply that planetocentric impactors, such as secondary or 

sesquinary impactors, are dominant to form smaller craters. If I 

assume that the heavily cratered regions on Helene, which have 100 

craters larger than 1km in diameter per 103 km2, was formed more 

than 4 Gy and that the cratering rate is constant for its life time, I 

obtain ~40 My for the age of the E-ring deposit on Helene. Or, if I 

assume the crater distribution on Dione (Kirchoff and Schenk 2010), 

whose Trojan satellites include Helene, indicate that the crater 

formation rates of > 1km craters is 7.5x10-6 craters per 103 km2 per 

year and of > 200 m craters is ~10-7 craters per 103 km2 per year, I 

obtain ~50 My for the age of the E-ring deposit on Helene.  

I note that these estimates include ambiguities in their 

assumptions. However, importantly, all these independent 

estimates coincide around several ten My. Thus, I conclude several 

tens of million years or younger for the most likely ages of the 

E-ring deposit on Helene. 

5.2. The cryovolcanism of Enceladus  

The E-ring deposit on Helene is fairly thin, as thick as a few 

ten or hundred meters, while the depth of a crater is relatively deep 

enough (a crater with a few hundred meters in diameter should 



Part 1 

- 42  - 

 

have a few ten meters in depth). In other words, the E-ring 

depositions are difficult to bury newly-formed craters (larger than 

~1 km in diameter) after initiation of the deposition. In addition, 

Helene and Telesto, which partly appear the heavily cratered 

surface, must be significantly older than that of the E-ring. Thus, I 

consider that the deposits on Helene are suitable to discuss when 

the Enceladus’ cryovolcanism has begun. If so, the accumulation of 

the E-ring material has begun at most 100 My ago as a result of 

initiation of cryovolcanism on the surface of Enceladus. 

Interestingly, the age of the E-ring deposits on Helene is consistent 

with the previous estimate of the endogenic activity in Enceladus I 

mentioned in section 1.  

Otherwise, the E-ring deposits may be occasionally eroded 

by a large impact. Such a large impact may potentially remove a 

large amount of surface material from Helene because of Helene’s 

tiny gravity. In addition, small satellites, such as Helene, may be 

ephemeral because the orbits of the small satellites are not as stable 

as those of mid-sized satellites. If so, the age of the E-ring deposits 

may be older than I estimated above. I think the issues may be 

subjects of future investigations.  
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Part 2 
This part shows my previous study which discussed the 

geological features on Atlas, a small inner satellite of Saturn. In 

summary, I found the interaction between the main ring and Atlas, 

which form the unusual surface of Atlas. This content has been 

published in Hirata and Miyamoto (2012). 

Atlas has an enigmatic saucer-like shape explained by an 

accumulation of particles from A-ring of Saturn. However, its 

unusual smooth surface remains unexplained. Gardening through 

continuous particle impact events cannot be a unique explanation 

for the smoothness, because Prometheus does not exhibit a similar 

surface, though it too would have experienced a similar 

bombardment. Here, a detailed investigation using close-up images 

of Atlas reveals the surface to be (1) covered by fine particles (i.e., 

probably as small as several tens of micrometers); (2) mostly void of 

impact craters (i.e., only one has been thus far identified); and (3) 

continuously smooth, even between the equatorial ridge and the 

undulating polar region. These findings imply that some sort of 

crater-erasing process has been active on the surface of Atlas. From 

electro-static analyses, I propose that the upper-most layer of the 

fine particles can become electro-statically unstable and migrate as 

a result of dust levitation, which resulted in erasing craters on the 

surface of Atlas. If true, Atlas would represent the first recognized 

body where resurfacing is dominated by dust levitation. 
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1. Small satellites of A-ring 
 Saturnian inner satellites coexist with surrounding ring in 

the same orbit, which indicates interaction between satellites and 

ring materials should occur. Saturn has the most massive, diverse 

and extensive ring system in the solar system. Saturnian rings are 

divided into D, C, B, A, F, G, and E-ring from within outward, 

depending on their properties and regions. Especially, A, B, and C 

rings are known as the main ring. The locations and characteristics 

of these satellites are shown in Fig. 11 and Table 5, respectively. 

 Pan, Daphnis, and Atlas are located at Encke gap, Keeler 

gap, and outer edge of A-ring, respectively (Fig. 12). Atlas was 

discovered in 1980 from images taken by Voyager 1 (Smith et al. 

1981). After that, Pan was discovered in 1990 from reanalysis of 

images taken by Voyager 2 (Showalter 1991). Following them, 

Daphnis was discovered in 2005 from images taken by Cassini 

(Porco et al. 2005). Prometheus and Pandora, located at inner and 

outer edge of F-ring, respectively (Fig. 13), are discovered in 1980 

during Voyager 1 flyby (Smith et al. 1981). These satellites are also 

known to be shepherd satellites whose gravities serve to maintain 

sharp edges of rings or gaps. These satellites are the innermost 

satellites of Saturn system, which mean the much strong tidal force 

acts on these satellites. 

 The shapes of small satellites in the A-ring region are close 

to a disk, with equatorial radii of 16.5 and ~19.5 km, and polar radii 

of ~10.5 km and 9 km for Pan and Atlas, respectively (Charnoz et al. 

2007). Both Atlas and Pan have a prominent equatorial ridge, which 

is roughly symmetric around the equator of the body, resulting in 

their overall shapes being close to a disk (Daphnis may also have 

the same nature). In contrast to Atlas’s or Pan’s symmetric shape, 

the shapes of Prometheus and Pandora are simply close to oblate 

distorted ellipsoid. Except for a small asteroid, 1999KW4, no other 

solar bodies are known to have similar shapes of Pan or Atlas 

(Minton 2008). The disk-like shape of 1999KW4 is likely related to 

the strong centrifugal force caused by its fast rotation speed (e.g. 

Walsh et al. 2008). However, this effect cannot explain the shapes of 
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Atlas or Pan because their rotation periods T (~14hours) are too 

slow to form their equatorial ridges (Charnoz et al. 2007). On the 

other hand, tidal force is also inadequate to explain their shapes 

because the saturnian tidal stress simply elongates the satellites in 

the radial direction rather than creating an equatorial ridge 

(Charnoz et al. 2007). Charnoz et al. (2007) propose that the 

equatorial ridges of Atlas and Pan are kilometer-thick piles of 

ring-particles, whose orbital distributions have been flattened 

enough to accrete into equatorial ridges. Thus, the accretions of the 

ridges occur after the flattening of the rings but before complete 

depletion of ring material from the surroundings, such as A-ring. In 

fact, the spectra of these satellites obtained by Cassini are quite 

similar to that of A-ring (Filacchione et al. 2010, Buratti et al. 2010) 

and these satellites have low densities, as low as half of ice (Porco et 

al. 2007) (Table 5), which is considered to indicate rubble pile 

structures consisting of icy ring particles, supporting the idea of 

growth of the satellite by accretion. 

 Ring materials of A-ring or F-ring cannot accrete onto these 

satellites under their self-gravity at the present time because their 

surfaces spread out of their Roche lobe. Roche lobe is the 

gravitational equipotential surface which contains L1 point. If the 

surface materials are fluid and expand Roche lobe, then the surface 

materials escape to the planet through L1 point. The volume of a 

satellite relative to that of Roche lobe simply depends on its density 

and distance from the planet. This density can be described as the 

critical density. Ring particles of A-ring or F-ring are also lower 

than this critical density, which means ring materials cannot also 

accrete under their self-gravity. 

 Furthermore, the observed densities of satellites of A-ring 

and F-ring regions are close to the critical densities of these 

satellites, which mean that these satellites entirely fill their Roche 

lobe and ring materials can no longer accrete onto their surface 

(Porco et al. 2007) (Table 5). The observed spectra and satellites’ 

shapes indicate these satellites have formed by accretions of A-ring 

materials, however, A-ring particles cannot also form satellites as I 

mentioned above. This indicates the existence of high density 
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buried core (or cores) at the centers of satellites (Fig. 14). Thus, high 

density embryos should have initially existed before these satellites 

have formed (Charnoz et al. 2007). In fact, the polar region of Atlas 

is characterized by both similarly-sized (a few km-scale) mounds 

and depressions, which might reflect the internal structure of Atlas. 

Porco et al. (2007) also proposed that similarly-sized buried cores 

exist at the center of Atlas.  

 The high resolution images of Atlas show that Atlas has 

unusual smooth surface (Fig. 15). Note that surface features of Pan 

or Daphnis are unfortunately unknown. For example, no crater has 

been found on the surface of Atlas (Charnoz et al. 2007), which is 

surprising because the A-ring contains numerous large particles (up 

to a few km size), and some should have impacted on Atlas during 

accretion. In addition, a lot of impact craters should be also formed 

after Atlas’s formation in the same way as other Saturn’s satellites.  
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Figure 9 The locations of saturnian small satellites.  

 

 

Table 5 Inner small satellites. 

 Semi major 

axis (km) 

Mean radius 

(km) 

Mass 

(×10
19

g) 

Density 

(g/cm
3
) 

Porosity 

(%) 

Roche lobe 

(%) 

Pan 133584 14.2±1.3 0.495 0.41±0.15 54 109 

Daphnis 136504 3.9±0.8 0.0084 0.34±0.21 62 125 

Atlas 137670 15.1±1.4 0.66 0.46±0.10 49 89 

Prometheus 139380 43.1±2.7 15.67 0.47±0.065 48 85 

Pandora 141720 40.3±2.2 13.56 0.50±0.085 44 76 

Janus 151460 89.6±2.0 188.91 0.63±0.063 30 49 

Epimetheus 151410 56.7±1.9 53.07 0.69±0.13 23 44 

*1 The ratio of the Volumes of satellites out of Roche lobe 
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Figure 10 Satellites of A-ring region. 

(a) Pan (~3km/pixel) (PIA08405), (b) Daphnis (N00156643), (c) The trailing 

hemisphere of Atlas (~1km/pixel) (PIA08405).  

 

 

 

Figure 11 Satellites of F-ring region. 

(a) Prometheus (N00150211) and (b) Pandora (N00039262). The high 

resolution images of Prometheus and Pandora show these satellites have 

numerous craters, in contrast to the case of Atlas. In detail, Prometheus has 

more numerous small craters than Pandora. 
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Figure 12 Hypothesized cross-section of Pan and Atlas.  

The similarly-sized mounds and depressions at the polar region may be 

explained by the existence of a bumpy core (or similarly-sized cores). 

Smoothness of the bumpy polar region indicates the existence of a thin layer 

that consists of the same materials as the equatorial parts of Atlas.  

 

 

 

Figure 13 The highest-resolution image of Atlas.  

This image shows its southern hemisphere at the resolution of 

~320m/pixel (PIA08405). 
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2. Geological study of Atlas 
 As discussed above, previous works (Porco et al. 2007, 

Charnoz et al. 2007) only revealed its shape and low density with 

discussions regarding its formational process. However, the unusual 

smoothness of the surface of Atlas remained unexplained. I find the 

smoothness holds important key in understanding the evolutionary 

history of Atlas, Pan, and some other small satellites of Saturn. In 

the following, I describe my new geological observations of Atlas 

and propose a new theory to explain my findings. 

2.1. Unusually-smooth surface of Atlas 

 More than 1,500 images of the satellites Pan and Atlas were 

obtained from the Narrow Angle Camera onboard Cassini 

spacecraft. They include 70 images with resolutions higher than 

1km/pixel (as of January, 2011). Images of Atlas (Fig.15, 16a) 

obtained on June 12, 2007 have the highest resolution of ~320 

m/pixel. I scrutinize all of these images to understand the surface 

conditions of both satellites (images of visible-near IR and infrared 

spectral ranges were also obtained, but these are at low resolutions 

(several dots for entire Atlas) and thus inappropriate to study 

surface conditions). Although the resolutions for images of Pan and 

Daphnis are limited, there is no significant difference in surface 

conditions as compared to Atlas. 

 All high-resolution images of Atlas suggest it has a smooth 

and featureless surface without any obvious craters (Charnoz et al. 

2007). The lack of craters may indicate that (1) Atlas was formed in 

its present form and has never experienced any major impact; (2) 

the structure of Atlas is too fragile to allow a crater to maintain its 

original form; (3) the momentum of impact is efficiently absorbed by 

the rubble-pile structure (Hirata et al. 2009); or (4) craters existed 

until some kind of surface process erased them.  

 Based on the accretion scenario for the formation of Atlas, 

as discussed in the previous section, I find (1) is unlikely because (a) 

the radio occultation experiment of Voyager indicates that the 

A-ring is abundant in particles larger than km-size (e.g. Marouf et 

al. 1983), and therefore; (b) Atlas should have numerous craters 
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produced by impacts of km-size or larger particles at the time of 

accretion; (c) the current shape of Atlas should have developed at 

the time of accretion if no other surface process were active; and (d) 

other small satellites near the A-ring, such as Pandora and 

Prometheus, have numerous craters on their surfaces. 

 By scrutinizing the highest-resolution images, I newly 

identify a circular structure (Fig. 16b, 16c), which I interpret as a 

crater based on the following reasons (Fig. 16d): (a) the circular 

feature can be identified from its higher brightness, which implies 

the existence of a circular mound (interpreted here as a crater rim); 

(b) the brightness value of the circular mound appears to be 

constant along the illumination direction, which indicates the 

reflection angles (and thus the overall elevations) of the left- and 

right-side of the mound are the same; and (c) the center of the 

circular mound is in the shadow, which suggests the existence of a 

depression.  

 The identification of a crater is important because I can 

then rule out the possibilities of (2) and (3) in the above discussion. 

Therefore, the deficiency in craters likely implies that some sort of 

crater-erasing process has been active on the surface of Atlas.  

 There is the possibility that the deficiency of craters on 

Atlas is originated by its rubble-pile structure, whose size is almost 

identical to Roche lobe; large impacts may cause bulk 

reorganization, which completely remove the clue of impacts. 

However, this idea is difficult to reconcile with Prometheus and 

Pandora, which are expected to have rubble-pile structures and fill 

its Roche lobe (Porco et al. 2007) but still do have numerous craters, 

suggesting neither for the case of Atlas. 

2.2. Resurfacing process on Atlas 

 The polar region of Atlas is characterized by both 

similarly-sized (a few km-scale) mounds and depressions, which 

might reflect the internal structure of Atlas. Porco et al. (2007) 

proposed that similarly-sized buried cores exist at the center of 

Atlas (Fig. 14). However, no topographic irregularities below a few 

km-scale can be found, which gives the smooth-looking surface even 

at the polar region. The important question I consider in this study 
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is why the smooth surface of the equatorial region is continuous to 

the polar region (Fig. 16b).  

 The illumination angle of the highest-resolution image (Fig. 

16d) is unfortunately unknown; however, the illumination obviously 

comes from the left in this image. Due to the shape of the satellite, 

illumination angles are large enough at some areas to study surface 

states and structures. In general, no obvious roughness or shadows 

are found on the surface of Atlas except for the newly-identified 

crater (see above) and relatively large undulations at polar regions. 

 I propose that surface smoothness and the deficiency in 

shadows, even at the areas with large illumination angles, indicate 

that the surface of Atlas is covered by small particles. The 

continuity in the smoothness between the equatorial and polar 

regions can most easily be explained by that the surfaces of these 

regions are covered by the same materials in similar size-fractions. 

Particles that have accreted to the equatorial region also cover the 

cores of Atlas to form the bumpy polar region as suggested by 

Charnoz et al. (2007). However, accumulations of particles do not 

seem to occur globally; the current orbital shape of the A-ring 

indicates that particle accumulations likely concentrated at the 

region of the equatorial ridge, which is the main cause for the 

saucer-like shape of Atlas. Therefore, the continuity in the 

smoothness between the equatorial and polar regions indicates that 

fine particles on Atlas migrate and deposit through certain 

processes. Such processes may result in eliminating surface 

structures, including craters. 

 Migrations of materials on the surface of a small body are 

generally considered to be quite limited due to the lack of endogenic 

processes, water, and atmosphere. On small asteroids such as Eros 

and Itokawa, surface materials are redistributed by processes 

related to impact cratering, including re-deposition of ejecta 

material and migration of particles due to seismic shaking (e.g. 

Richardson et al. 2004, Miyamoto et al. 2007). Gardening effect due 

to continuous impacts of meteoroids may apparently contribute to 

resurface the airless bodies; for example, the locally smooth 

surfaces of the Moon and asteroids are sometimes explained by this 
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process (Sullivan et al. 2002). This may partially explain smooth 

local regions on some small saturnian satellites. For example, 

Calypso, Telesto, and Helene are located at the E-ring, which is 

consisted of μm-size particles (Kempf et al. 2008). Therefore, the 

surface smoothness of these satellites might be maintained by 

continuous impacts of micro-meteoroids. However, this does not 

seem to work for Atlas. It is true that Atlas is located in the Roche 

division, and thus, is expected to be continuously hit by the 

materials of Roche division, which is known to be not empty (Porco 

et al. 2005). However, Prometheus is also located in the Roche 

division, though the surface of Prometheus is not smooth. Therefore, 

I consider the unusual smoothness of Atlas cannot be explained by 

gardening effect due to continuous impacts of meteoroids. 

 Nevertheless, fine particles may migrate on Atlas due to the 

Coulomb force, which may cause levitation of fine particles on the 

surface of a small body when the particles covering the surface are 

electrically charged by the photoelectric effect (e.g. Whipple 1981). 

Once dust is levitated, horizontal migration might easily occur 

depending on the local gravitational and electrostatic states.  

 Dust levitation was first discovered on the lunar surface (e.g. 

Gold 1973, Whipple 1981) and suggested to occur on asteroids (e.g. 

Lee 1996, Colwell et al. 2005, Hughes et al. 2008). Lunar swirls, 

such as Reiner Gamma, which are albedo anomalies associated with 

strong crustal magnetic fields on the Moon, are considered to be 

resulted from migration due to dust levitation (Garrick-Bethell et al. 

2011). Although generally considered as a minor surface process, 

the possibility of dust levitation has been implied for particles 

consisting the rings of Saturn (e.g. Nitter et al. 1998, Graps et al. 

2008). In the following sections, I show that dust levitation likely 

plays a significant role in the inner saturnian system irrespective of 

its relatively large distance from the Sun (9AU – 10AU). 

2.3. Dust levitation on Atlas 

 The surface of a solid body without atmosphere, such as an 

asteroid and the Moon, is charged positively because electrons are 

emitted by the photoelectric effect (Whipple 1981). On the Moon or 

an asteroid, this positive charge is neutralized by electrons provided 
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from solar wind plasma. However on Atlas, the solar wind plasma is 

minimized by the saturnian magnetosphere at around 2.28Rs, 

where Rs is Saturn radii, while the positive charge on Atlas is 

neutralized by electrons provided by saturnian plasma. Thus, the 

electric charge at the surface of Atlas can also achieve the 

equilibrium state balanced between the supply of electrons from 

saturnian plasma and the photoelectron emission. In the following 

sections, I first determine the regions where dust levitation can 

occur in the saturnian system and estimate the largest size of 

particles that can migrate under the conditions of the surface of 

Atlas by following the theoretical model of Colwell et al. (2005). This 

theoretical model was developed for rocky objects, such as the Moon 

or asteroids, however, it could be acceptable for even icy satellites 

because the relative permittivity of an ice is not much different from 

that of a rock. 

2.3.1. Conditions for dust levitation 

 When the surface of Atlas is charged positively, the electric 

charge per unit area of photoelectron emitted by photoelectric 

effects is given by, 
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where Qs is the electric charge on the surface, F is the number of the 
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photoelectron quantum efficiency, e is the quantum of electricity 
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where nsp is the electron density of the saturnian plasma, kTsp is the 

average temperature of saturnian plasma, and me is the electron 
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mass (me=9.11×10-31kg). By balancing equations (1) and (2), I obtain 

the electric potential of the surface, Φs, which depends on both nsp 

and kTsp.  

 Generally, smaller values of nsp or kTsp/e are favored for a 

dust to levitate (Fig. 17a, b). In addition, the critical values of nsp 

and kTsp/e are estimated to be in the order of 1.0 electron•cm-3 and 

10eV, respectively. Based on Cassini’s observations (Coates et al. 

2005, Morooka et al. 2009, Gustafsson and Wahlund 2010), in this 

case, there are only two regions in the saturnian system where both 

of these values are below the critical values; 1) the region outside 

the orbit of Titan; and 2) the region that lies within A-, B-, and 

C-rings, including the orbits of Atlas and Pan (Fig. 17c). Cold and 

dense electron (extensived from 2.3Rs to ~10Rs) and hot and 

tenuous electron region (from ~5Rs to ~25Rs) are originated from 

the cryovolcanism on Enceladus and the atmosphere of Titan, 

respectively (Gombosi et al. 2009). In addition, cold and tenuous 

electron region around main ring is explained as a result of 

absorption of the plasma by particles of a dense main ring (Wahlund 

et al. 2005). 

2.3.2. Largest particle-size for levitation 

 On Atlas, nsp varies from 0.1 to 100 electron•cm-3 due to its 

orbit, while kTsp/e is constantly a few eV regardless of the location 

in the orbit (Coates et al. 2005). To simplify the discussion, I adopt 

0.1 electron•cm-3 and 2.0eV for nsp and kTsp/e, respectively. These 

values give the electric potential on the surface of Atlas, Φs, as large 

as 3.62V. On the other hand, the electric field on the surface of Atlas 

can be estimated by the following equation on the basis that 

photoelectron energy is in the Maxwellian distribution (Grard and 

Tunaley 1971): 
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given by: 
pe
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v

iFY
n
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0,  , where vpe is the average photoemission 

velocity; vpe is 8.8×105m•s-1 when kTpe/e=2.2eV. 

 The variation in the electric charge of drifting dust particles 

is given by the following equation: 
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where Ipe is the emission of photoelectron by the photoelectric effect, 

Ie is the collection of photoelectrons from the surface, and Isp is the 

collection of electrons from saturnian plasma. Ipe, Ie, and Isp are 

given, respectively, by the following three equations (Havnes et al. 

1987), assuming that dust particles are spherical: 
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where rd is the radius of particle, Φd is the surface electric potential 

of a dust particle, and npe is the density of photoelectron depending 

on height. The value of npe is   2

0, 2/1


 Dpe zn   (Grard and Tunaley 1971). 

When an equilibrium state is achieved, the left-hand side of 

equation (4) equals zero. In this case, I can analytically solve the 

equations (4), (5), (6), and (7) to obtain the surface electric potential 

of a given dust particle, Φd, depending on the height of the particle 

from the surface of Atlas. 

 Assuming that a dust particle is both spherical and 

homogeneously distributed, the mass and the electric charge of each 

particle are given by 4/3πrd
3ρd and 4πrdε0Φd, where rd is the radius 

and ρd is the density of a particle. By balancing both the Coulomb 

(4πrdε0ΦdE) and the gravitational (4/3πrd
3ρdg) forces, I can estimate 

the largest size of any particle that can be levitated as follows: 
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 03 , where g is gravity acceleration. I use ρd＝900kg•m-3 as 

the average density of ice and g=0.00082m•s-2 as the average 
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surface gravity acceleration. As a result, rd simply reduces to a 

function of the particle height from the surface. The maximum 

radius that can be levitated is ~2.8μm, which stables at a height of 

~46m (Fig. 18a).  

 

2.3.3.  Migration of a levitated particle 

 Particles near the surface should be charged individually 

and may acquire significantly different electrostatic potentials than 

the surface depending on such as illumination conditions and 

elevations. This as well as variations in local conditions (such as 

slope angels) might be major causes of particle migrations. 

Although a dust particle at a height below Debye length is 

negatively charged and interacts with the surface due to the 

Coulomb and gravitational forces, a dust particle above the height 

of the Debye length will be positively charged and thus can levitate 

for a long period because the Coulomb force cancels that of gravity.  

 Here I consider the acceleration forces of a levitated particle. 

For the simplicity sake, I assume the surface is perpendicular to the 

gravitational force, where the accelerations occur only in the 

vertical direction (Colwell et al. 2005):  

gE
m

Q

dt

zd

d

d 
2

2

 , (8) 

where md is the mass of the dust particle. Integrating equations (4) 

and (8), I can obtain the trajectories for particles (for example, those 

for a particle of rd =1.0μm with five different speeds off the surface 

are shown in Fig. 18b). I find that if the particle is levitated at 

0.1m/s, it stays within the dense part of the photoelectron layer and 

therefore remains negatively charged. Thus, such particle will 

immediately return to the surface due to both gravity and the 

electric forces. On the other hand, if a particle is levitated at slightly 

faster velocity (say, 0.2m/s), the particle becomes positively charged 

at the height of the Debye length and then accelerated upward. 

Afterward, the particle can suspend around 1km high for a long 

time. In summary, due to the small surface gravity on Atlas, a 

positively-charged particle can easily rise above the sheath even if it 

has a slower initial vertical velocity.  
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2.3.4. Dynamics of launching a particle 

 In the above model, an initial particle velocity is assumed 

without an initial particle charge (as assumed in the model of 

Colwell et al. 2005). Initial particle velocity is assumed to be given 

by the electrostatic force, however, in fact, uncertainty exists in the 

physical mechanism for particles to be released from the surface 

(e.g. Hartzell and Scheeres 2011). Assuming Gauss’s law (σ = ε0E0), 

the charge density per unit area (σ) on the surface of Atlas can be 

estimated to be 7.29×10-12 C•m-2 (=4.55×107 electron•m-2), where E0 

is the electric field on the surface of Atlas and can be obtained by 

Eq.3 (E0 = 0.82 V/m). Assuming that the surface is covered with 

μm-size dust particles, the number of μm-size particles in a unit 

area is larger than 1012. In this case, the average electric charge per 

one particle is below the elementary charge, which means one 

particle takes one elementary charge while ten thousand particles 

are uncharged. Therefore, the electrostatic force becomes negligible 

for dust on Atlas at least theoretically. However, this is true even for 

the Moon and other airless bodies. Hughes et al. (2008) estimates 

that the largest strength of the nominal electric-field on the lunar 

surface is approximately 10 V/m. On the other hand, Hartzell and 

Scheeres (2011) shows that the electric field strength required to 

overcome the lunar gravity and cohesive forces (for separating a 

dust from the surface) is almost 1,000,000 V/m. In other words, the 

electric field strength theoretically required to loft a particle is 

significantly larger than observations, which remains unexplained. 

Therefore, Hartzell and Scheeres (2011) suggests that the charge on 

the dust particles is greater than that predicted by Gauss’ law. In 

fact, Gauss’ law simply gives the average charge on the dust 

particles, while the charge on a dust particle will vary in time 

depending on the emission of photoelectrons and the collisions with 

electrons from the plasma. Thus, there will be a non-uniform 

distribution of charges at the scale of a dust particle, while adhering 

to Gauss’ law on the larger scale (Hartzell and Scheeres 2011).  

 The forces acting on a dust particle on the surface of airless 

bodies induce the gravity force ( gmF dgrav  ), the surface cohesive force 
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(Fco), and the electrostatic force (Fes). The surface cohesive force can 

be described as 
dco rCSF 2 , where C and S is constant, adopting the 

van der Waals force as the cohesive force. The electrostatic force is 

described as 
0EQF des  , where Qd is estimated to be πrd

2ε0E0 though 

Gauss’ law. Because the charging of dust particles is amplified 

beyond the levels predicted by Gauss’ law as shown above, I use Qd 

=CampQd, where Camp is constant and is estimated to range from 

4.04×104 to 1.04×109, by following the model of Hartzell and 

Scheeres (2011). Therefore, the electrostatic force is now described 

as 
0EQCF dampes  . Assuming that a particle can be separated from the 

surface when the electrostatic force (Fes) overcomes the gravity force 

(Fgrav) and the surface cohesive force (Fco), electric field strength 

required to separate a particle from the surface (Ereq) can be 

estimated as 
2/1
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 , (9) 

where the values of Camp, C, and S are 5.01×106, 5.14×102 kg•s-2, 

and 0.1~1, respectively, following the model of Hartzell and 

Scheeres (2011). Fig. 19 shows the electric field strength required to 

launch a particle from the surface (Ereq) of the Moon, Eros, and 

Atlas as a function of particle’s size. Note that, assuming the same 

surface electric fields, the particle on Atlas can be launched much 

easier than on the Moon and Eros. Even though electric field on the 

surface of Atlas is about one-tenth of those of the Moon and Eros, 

the minimum value of Ereq in the case of Atlas is also one tenth of 

that of the Moon and Eros. Therefore, I consider that the electric 

field on the surface of Atlas is strong enough for launching of dust 

particles as happening on the Moon (and perhaps Eros).  

2.4. Global migration of dust particles on Atlas 

 I find that the electro-static levitations of particles would 

occur above the photoelectron layer. Because the scale of 

topographic irregularities on Atlas, such as a crater, is generally 

larger than the Debye length, the photoelectron layer should 

roughly follow the topography. I note that the generation of the 

photoelectron sheath partly depends on the solar incident angle, 
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which is locally controlled by topography. An ultimate example is 

the shadowed region, where sheath becomes absent and thus 

particles fall back to the surface even though the particles remain 

positively charged due to photoemission over a shadowed part of the 

surface. Importantly, particles on the shadowed regions are stable 

because the electrostatic repulsion cannot occur. Thus, a depression, 

such as a crater, likely traps dust particles migrated from the 

surrounding regions. 

 I also show that the size of the dust particle to migrate is a 

few μm. Although such phenomena occurs only for an extremely 

thin layer below the surface, a dust particle on the summer 

hemisphere of Atlas should be unstable for up to ~10 years, due to 

the orbital parameters of Saturn and the Sun (this occurs because 

the axial tilt of Saturn is 26.73 degrees while Atlas's orbital 

inclination to the equator plane of Saturn is 0.0). In other words, 

dust particles can migrate for a considerably longer time in the 

summer hemisphere because the summer hemisphere of Atlas is 

almost always dayside due to these orbital elements. On the other 

hand, in the winter hemisphere all of the particles should have 

settled to the surface. In this way, dust particles will migrate 

toward the winter hemisphere from the summer hemisphere. 

Therefore, a dust layer accumulates particles increasing its 

thickness, contrasting with the slowly-eroding dust layer in the 

summer hemisphere. 

 Migrations and depositions of particles may have been 

active cyclically for a long enough period to completely bury 

geological features on the surface of Atlas. If I assume only the 

uppermost particle can migrate in one saturnian season (10 years), 

the thickness of a mobile layer per one season is as thick as the 

typical particle size (say, ~10μm). Thus, on the dayside, particles 

may be eroded (as a result of particle migration) at the rate of 10μm 

per 10 years. This rate is fast enough to erase all of the craters on 

the surface of Atlas. Diameters of craters on Atlas cannot be larger 

than ~10km without being disrupted because the average diameter 

of Atlas is 30km. Assuming that the diameter-to-depth ratio of a 

crater is 10 to 1 (Melosh 1989), the depth of a large crater (say 1km 
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in diameter) is likely ~100m, which gives the volume of the crater as 

3.93×107m3. This volume is equivalent to only 1cm depth of dust 

particles on the entire surface of Atlas, whose area is 3.70×109m2. 

Thus, if Atlas is resurfacing at the rate of 10μm per 10 years, this 

crater may be buried in only ~10000 years. Even large craters can 

be erased in a few tens of millions of years. 
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Figure 14 Crater on Atlas 

(a) White box indicates the location of (b) (PIA08405). (b) Close-up of 

the transition area between the equatorial and polar regions 

showing continuity in the surface smoothness. The white arrow 

indicates the newly-discovered circular feature, interpreted here as 

a crater, whose close-up image is shown in (c). (c) Close-up image of 

the crater-like feature, whose brightness along the line between A 

and B crossing the center of the circular feature is indicated in (d). 

(d) Brightness (%) along the line between A and B shown in (c). 

Because the illumination comes from the left in (c), the brightness 

curve can be interpreted as results of topographic characteristics 

from A to B, such as a small mound (a crater rim), a large 

depression (the crater), a large mound (a crater rim), and a small 

depression (the shadow of the rim). 
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Figure 15 Electron density and temperature on Saturn system 

(a) The electron density of saturnian plasma vs electric potential of 

surface with the assumed values of kTsp as 0.1, 1.0, and 10eV. (b) 

The average electron temperature of saturnian plasma vs electric 

potential of surface with 0.1 or 1.0 electron•cm-3 for nsp. When nsp is 

larger than 10 electron•cm-3, electric potential of surface becomes 

zero. (c) Approximate observation value of the electron density and 

the average electron temperature of Saturn system. The regions 

where both of these are smaller than the critical value for dust 

levitation are limited to the regions around the A-, B-, and C-ring 

and outside the orbit of Titan. 
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Figure 16 The fate of a levitated particle 

(a) Comparison of the gravity force (Fg) and the Coulomb force (Fc) 

as functions of heights and particle size. (b) The fate of particles 

levitated from the surface (the heights of particles are shown as a 

function of time for the case of rd =1.0μm at the solar noon on Atlas 

with different initial velocities). All particles are accelerated up 

above the photoelectron layer except a particle with 0.1m/s, which 

remains within the photoelectron layer. 
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Figure 19 The electric field strength required to launch a particle 

from the surface. 

The electric field strength (Ereq) of the Moon, Eros, and Atlas as a 

function of particle’s size. I assume the density of particle in the 

Moon and Eros as 3500kg•m-3. I use g= 1.622m•s-2 and 0.0055m•s-2 

as the average surface gravity acceleration of the Moon and Eros, 

respectively. 
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3. Discussions of satellites of 

A-ring and F-ring region 
 I show that there are only two regions in the saturnian 

system where small particles on the surface can be charged and 

levitated, such as 1) the region outside the orbit of Titan and 2) the 

region that lies within A-, B-, and C-rings, including the orbits of 

Atlas and Pan. I note that the physical model adopted here is also 

applicable for many other airless bodies in the solar system or 

Saturn system. Another important issue, which makes Atlas 

different from other bodies, is the amount of dust. If dust is not 

supplied from other processes, the amount of dust on the surface of 

a body is limited due to the escapement of dust from its tiny gravity, 

the solar radiation pressure, potentially gravitational perturbation, 

or other reasons. In fact, a dust of Eros and Itokawa are quite 

limited or only locally concentrated on their surfaces (e.g. 

Richardson et al. 2004, Miyamoto et al. 2007). On the other hand, 

the cases of satellites of A-ring and F-ring regions, Pan, Daphnis, 

Atlas, Prometheus, and Pandora, are different; my geological 

investigation indicates that fine particles likely cover the entire 

surface of satellites. Particles covering satellites of A-ring probably 

come from A-ring (e.g. Porco et al. 2007, Charnoz et al. 2007), which 

contains many particles smaller than several tens of micro meters 

as following reasons. 

 An individual ring particle cannot be directly observed, 

however, these macroscopic properties can be seen as the entirely 

ring property. At the same time, the ring properties reflect the 

property of an individual ring particle. Cassini space mission, 

Voyager space mission, and Hubble space telescope reveal 

numerous features of ring system. The physical size of ring particles 

can be estimated using the radio and/ or staller occultation 

experience. The Voyager radio occultation in 1980 and the 

Earth-based 28 Sgr stellar occultation in 1989 conclude that 1) 

particle size distributions range 1 cm to 10 m, 2) these power laws 

are close to 3, and 3) μm-size particles are few (Tyler et al. 1983, 
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Marouf et al. 1983, Zebker et al. 1985, French and Nicholson 2000). 

Therefore, there are no dust particles in ring, at least alone. On the 

other hand, analyses of the ultraviolet, visual, and infrared spectra 

of ring conclude that ring particles range a few μm to a few ten μm 

(Clark et al. 1986, Doyle et al. 1989, Nicholson et al. 2008). The 

spectra features can be considered to show that the surface of ring 

particles consists of more dusty particles even though the possibility 

that these observations indicate the frosty surface or roughness 

surface of ring particles cannot rule out. In addition, the thermal 

inertia values of ring particles derived from recent Cassini 

observation support show ring particles has deep dusty layers. Ring 

particles cool down when they cross the shadow region of Saturn or 

saturnian rings. After ring particles pass through the shadow 

region, ring particles heat up again due to the solar radiation. 

Observed these thermal changes, the thermal inertia values can be 

estimated. The analyses of the thermal inertia values show that 1) 

ring particles are likely to have a deep dusty regolith layer, and 2) 

even small particles with the fast rotation period also have dusty 

regolith layers (Morishima et al. 2011). These results of the thermal 

inertia indicate ring particles have not the frosty surface or 

roughness surface but regolith layers consisting of dusty particles. 

Also, the internal density of a ring particle is estimated using the 

observation of non-axisymmetric ring brightness and N-bodies 

simulation. Non-axisymmetric brightness in reflected light of the A- 

and B-ring is observed, which indicates the existence of 

micro-structure due to the self-gravity of ring particles (e.g. Cuzzi et 

al. 2010). Dynamical simulations for formation of these wake 

structures in the A and B rings show that the internal density of 

ring particles is close to the half of ice (Salo et al. 2001, Stuart et al. 

2010), which indicates that the porosity of a ring particle is so high. 

Based on these observations, Cuzzi et al. (2009) summarizes actual 

ring particles are likely to be chunky aggregates or dense grape 

clusters consisting of dusty particles. These aggregates are 

incessantly disrupted and/or unionized due to due to collisions 

against each other and some interactive forces, such as the Van der 

Waals force. Therefore, A-ring is probably enriched in dusty 
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particles, whose size-fraction is sufficiently small enough to be 

electro-statically levitated when deposited on the surface of 

satellites of A-ring and F-ring regions.  

As a result, I conclude that the smoothness of Atlas’s surface 

is formed by the special environments, where 1) satellites of A-ring 

and F-ring regions has the source of a large amount of dusty 

particles, and 2) satellites of A-ring region are located at inner 

saturnian magnetosphere characterized by lower electron density 

and cooler electron temperature. In addition, these different 

environments cause the different features between satellites of 

A-ring regions and satellites of F-ring regions. 
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Part 3 
Janus and Epimetheus, located within the orbit of Mimas, 

have a co-orbital ring system. This part discusses the geological 

features of Janus and Epimetheus and their interaction with the 

ring system.  

Spectral data and high-resolution images of the satellites 

are obtained by recent Cassini mission. Through detailed 

investigations of high-resolution images, I find that both satellites 

consist of distinct two terrains, dark and bright terrains. The dark 

terrain is identified on gravitational lowlands all over the satellites. 

The dark terrain on both Janus and Epimetheus are similar in 

terms of their (1) flat smooth surfaces, (2) albedos darker than 

surrounding bright terrain, (3) sharp edges, (4) depths as deposits, 

and (5) bluer colors. I find that this dichotomy may be explained by 

the accumulation of Janus-Epimetheus ring. 

 

 

 

 

 



Part 3 

- 70  - 

 

1. Janus and Epimetheus 
Janus and Epimetheus are small saturnian satellites 

located within the orbit of Mimas. The satellites are known as the 

co-orbital moons, coexisting at the same orbit. Janus and 

Epimetheus were first discovered by Dollfus (1967) and Walker 

(1967), respectively. However, the satellite observed by Walker 

(1967) was regarded as Janus until Fountain and Larson (1978) 

pointed out that two distinct objects existed at the horseshoe orbit. 

Such unusual orbit was predicted but not detected within the Solar 

System until Janus-Epimetheus system was discovered.  

Also, the Cassini spacecraft discovers a tenuous ring at the 

vicinity of the satellites, Janus/Epimetheus ring (hereafter JE-ring). 

JE-ring is a faint dusty ring, whose semi-major axis ranges between 

149,000 and 154,000 km from the center of Saturn (Porco et al. 

2006b). The ring particles are considered to be originated from 

Janus or Epimetheus.  

The densities of the satellites are lower than ice, which 

means these satellites have high porosity (Table 5). Assuming pure 

ice, porosities of these satellites are around 30%, which is close to 

the values of Asteroid Eros or Ida (Belton et al. 1995). This value 

indicates Janus and Epimetheus have either immense monolithic 

structure with cracks or rabble pile structure. The interior pressure 

of a satellite is not enough to melt own materials (Stooke and 

Lumsdon 1993). Previous work (Stooke and Lumsdon 1993) 

suggests that, after a larger satellite have been disrupted in early 

Saturn system, aggregates of breccia have been formed, resulting in 

formations of Janus and Epimetheus.  

 The surface features of these satellites resemble each other. 

Janus and Epimetheus are observed by Voyager and Cassini 

spacecraft, which reveal a lot of surface features, such as grooves 

(Morrison et al. 2009) and heavily-cratered surfaces (Stooke 1993, 

Stooke and Lumsdon 1993). This high crater density on the 

satellites indicates the satellites may be as old as several Gy, even 

though cratering rate on small inner satellites remains uncertain.  

Janus and Epimetheus are poorly-understood satellites. In 
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this part, I report and discuss their geological features. In detail, I 

find that non-uniform brightness distribution exists on their 

surfaces, the dark terrain and the bright terrain (Fig. 20). I show 

the nature of these terrains in the former part of Part 3. Moreover, I 

find the accumulation of the JE-ring may play a role to form the 

dark terrain, which is shown in the latter part of Part 3. 
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Figure 17 The bright terrain and the dark terrain. 

High-resolution images of (a, b) Janus (N1627319821) and (c, d) 

Epimetheus (N1575363079). (b) and (d) are close up images of (a) 

and (c). White arrows indicate the boundary between the bright 

terrain and the dark terrain. 
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2. Geological study 
I start with an overview of the available Cassini ISS and 

VIMS images by 2010. In detail, I carefully examine 208 images for 

Janus and 64 images for Epimetheus. Moreover, I analysis 200 

images for Janus (Table 8) and 40 images for Epimetheus (Table 8) 

obtained by VIMS camera. VIMS camera consists of two channels, 

visual and infrared. The VIMS Visual instrument possesses 96 

spectral channels that measure radiation between 0.35 and 1.05 μm, 

while the VIMS infrared instrument operates between 0.86 and 5.2 

μm and collects reflected light in 256 spectral channels. I use the 

ISIS3 software to radiometrically calibrate VIMS data and ISS 

images.  

2.1. Dark terrain and Bright terrain 

The normal reflectance of the dark terrains is roughly 

0.81~0.88 and 0.75~0.84 times brighter than the bright terrains on 

Janus and Epimetheus, respectively. Dark deposits are often 

identified on the surface of saturnian satellites, for example 

Hyperion and Iapetus, which are considered to be formed by the 

exogenic contaminations (e.g. Stephan et al. 2010). However, 

previous spectral study (Buratti et al. 2010) shows that Janus and 

Epimetheus don’t contain the spectra identified on Hyperion or 

Iapetus, such as the absorption bands of CO2.  

The dark terrain distributes on the gravitational lowlands 

and each dark terrain is isolated over all satellite. On the other 

hand, the bright terrain distributes on the gravitational highland 

and these regions are identified to have the continuity among each 

other. The dark terrains on the satellites appear flat smooth surface 

and sharp edge. In detail, the surface of the dark terrain shows 

less-undulation of brightness value (even regions with the large 

illumination angles) while the bright terrain generally appears 

numerous small undulations. In addition, the transit regions 

between bright and dark terrains may be quite narrow, at most 

~100 m. 

2.2. Color ratio and spectral data 

Color ratio shows that the dark terrain is slightly bluer than 
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that of bright terrain (Fig 21). Here I use the ratio of the normal 

reflectance at 500 randomly selected pixels through the IR3 

(953nm) filter, GRN (563nm) filters, and UV3 (340nm) filter 

onboard Cassini ISS camera. The color ratio of IR3/GRN of the dark 

terrain is not much different from the bright terrain while the color 

ratio of UV3/GRN of the dark terrain is larger than that of the 

bright terrain. In addition, the average ratio of IR3/UV3 of the 

bright terrain is 1.73 for Janus and 1.75 for Epimetheus while that 

of the dark terrain is 1.67 for Janus and 1.66 for Epimetheus.  

I also study the VIMS data. I note that the VIMS images of 

both satellites are generally too low resolution to distinguish 

between the dark and bright terrains (generally a few pixels in the 

image). Therefore, I use the images obtained by ISS camera at the 

same time in order to estimate the imaged regions (Fig. 22a, d). 

Furthermore, I calculate the average of total pixels of the VIMS 

images obtained at the same flyby (Fig. 22b, c, e, f), which can show 

the typical spectral features of the imaged regions. Especially, 

Epimetheus is the best example because I can compare the spectra 

of Epimetheus taken from trailing side in Mar. 30 2005, July 14 

2005, and Apr. 7 2010 (where is covered by the bright terrain) and 

south pole in Dec. 3 2007 (where is covered by the dark terrain) in 

high resolutions (Table 9). As a result, I cannot identify the 

differences between bright and dark terrains, for example the 

absence of NH3 or CO2 absorption bands and the depth of H2O 

absorption, even though these contain un-negligible measurement 

deviation. VIMS spectra indicate that the compositional differences 

between the bright and dark terrains may not be large. 

2.3. Distributions of dark terrains  

To investigate the distribution of the dark terrain, I first 

develop the cylindrical projection map of both satellites (Fig. 23a, b) 

(see Appendix). Then, I use 25 images for Janus (Table 6) and 4 

images for Epimetheus (Table 7). Note that the entire surface of 

Janus, except for sub-Saturn side and north polar region, is imaged 

by Cassini. Also, the imaged regions of Epimetheus are limited to 

either the trailing side or the south polar region. The maps show 

that the majority of the dark terrain on Janus appears the 
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equatorial region of anti-Saturn side while the dark terrain on 

Epimetheus mostly appears on the south polar region.  

2.4. Origin of the dark terrain 

The difference between the dark terrains on Janus and 

Epimetheus, for example colors, spectra, and surface features, 

cannot be identified. The similarity indicates the common origin. 

Also, I propose that the dark terrain is made of fine particles. This 

is because (i) fine particles have generally small friction angles, 

which are easy to form the flat surface, (ii) the differences of fiction 

angles between particles in the dark and bright terrains are easy to 

form the shape boundary due to sorting processes, and (iii) bluer 

color implies the Rayleigh scattering effect due to the existence of 

μm-sized particles. On the other hand, the distribution of the dark 

terrain may be explained by the accumulation of Janus-Epimetheus 

ring particles as following reason. 
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Figure 18 Color ratio of the dark and bright terrains. 

Dots represent relative reflectance at randomly selected pixels (see 

text). Red and Green dots represent the dark terrain and the bright 

terrain, respectively. Vertical axis means the ratios of the normal 

reflectance through IR3 (953nm) and GRN (563 nm) filters of 

Cassini ISS camera. Horizontal axis means ones through UV3 

(340nm) and GRN (563 nm) filters. Here I use N1627323131, 

N1627323305, and N1627323227 for Janus and N1575363109, 

N1575363139, and N1575363199 for Epimetheus. 
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Figure 19 Spectral data of Janus and Epimetheus 

Imaged regions of spectral data of (a) Janus and (b) Epimetheus. 

The imaged region in each flyby (its date is shown in the same color) 

is shown in closed-lines. Here I show 7 flyby listed in Table 8 for 

Janus and 4 flyby listed in Table 9 for Epimetheus. Blue regions 

represent the distribution of the dark terrain, which also shows 

Figure 23. Visual and Infrared spectral features are normalized 

these at 0.55 μm and 2.23 μm, respectively. Legends of Infrared 

share with these of Visual. 
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Figure 20 The cylindrical projection map of Janus and Epimetheus. 

Blue regions represent the distribution of the dark terrain on Janus 

and Epimetheus. 
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Table 6 Images of Janus used for developing the cylindrical projection map 

Image number Time (UTC) Sub-Cassini 

Lat.    Lon. 

Sub-Solar 

Lat.    Lon. 

Resolution 

(km/pixel) 

Range 

(km) 

N1524964907 Apr. 29 2006 -0.1 232.8 -11.8 233.9 1.288 216294 

N1524966188 Apr. 29 2006 -0.1 239.2 -11.7 241.9 1.354 227329 

N1537919879 Sep. 25 2006 10.1 162.8 -10.0 188.5 0.822 137976 

N1537921114 Sep. 25 2006 12.9 172.3 -10.1 195.7 0.857 143908 

N1537922721 Sep. 25 2006 15.9 184.7 -10.2 205.6 0.926 155456 

N1537923147 Sep. 25 2006 16.8 188.0 -10.2 208.1 0.948 159214 

N1582238183 Feb. 20 2008 -62.5 88.5 -5.1 10.0 1.011 169684 

N1582240507 Feb. 20 2008 -65.5 96.1 -5.1 23.0 1.096 183920 

N1589742988 Mar. 17 2008 31.1 321.1 -4.5 32.0 2.086 350212 

N1590458717 May 26 2008 -66.4 302.4 -4.5 6.0 1.091 183182 

N1590461157 May 26 2008 -65.2 317.3 -4.4 20.0 1.269 213014 

N1593508083 June 30 2008 14.1 97.1 -4.1 295.3 0.284 47705 

N1593508487 June 30 2008 8.7 99.7 -4.1 297.9 0.245 41053 

N1593509479 June 30 2008 -12.6 106.7 -4.1 303.9 0.181 30323 

N1593509659 June 30 2008 -18.1 108.1 -4.1 305.0 0.177 29782 

N1593509823 June 30 2008 -23.5 109.5 -4.1 306.1 0.177 29761 

N1594708901 July 14 2008 63.4 322.8 -3.9 299.5 1.550 260174 

N1627318239 July 26 2009 -33.5 162.8 0.0 84.5 0.618 103674 

N1627318975 July 26 2009 -31.0 168.3 0.0 88.5 0.598 100310 

N1627319821 July 26 2009 -27.7 174.6 0.0 94.2 0.579 97225 

N1627323065 July 26 2009 -13.4 198.4 0.0 113.0 0.572 95993 

N1627323901 July 26 2009 -9.8 204.0 0.0 118.0 0.589 98915 

N1627324437 July 26 2009 -7.7 207.5 0.0 120.8 0.605 101512 

N1630068448 Aug. 27 2009 -2.9 74.2 0.2 23.2 1.585 266061 

N1649342351 Apr. 7 2010 -1.0 143.8 2.2 79.4 0.446 74844 
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Table 7 Images of Epimetheus used for developing the cylindrical projection 

map 

Image Time (UTC) Sub-Cassini 

Lat.   Lon. 

Sub-Solar 

Lat.    Lon. 

Resolution 

(km/pixel) 

Range 

(km) 

N1490836932 Mar. 30 2005 0.1 206.3 -20.2 278.3 0.448 75198 

N1500072080 July 14 2005 23.3 214.1 -16.3 251.9 0.524 87877 

N1575363079 Dec. 3 2007 -33.8 116.7 -7.0 358.9 0.221 37177 

N1649345705 Apr. 7 2010 -1.0 201.6 3.3 113.1 0.516 86632 

N1649347561 Apr. 7 2010 -0.8 205.6 3.1 129.4 0.599 100480 

N1649348312 Apr. 7 2010 -0.8 207.3 3.0 135.4 0.637 106995 

 

Table 8 Spectral images of Janus obtained by VIMS 

Image Time (UTC) Total pixel number 

Visual      Infrared 

v1537919388-1537923173 Sep. 25-26 2006 129 101 

v1582235504-1582240921 Feb. 20 2008 189 91 

v1590456690-1590461135 May 26 2008 145 79 

v1593506582-1593509815 June 30 2008 34 34 

v1594708738-1594710035 July 14 2008 91 41 

v1627318261-1627324363 July 26 2009 229 538 

v1649342677-1649345695 Apr. 7 2010 225 204 

 

Table 9 Spectral images of Epimetheus obtained by VIMS 

Image Time (UTC) Total pixel number 

Visual       Infrared 

v1490836110-1490836433 Mar. 30 2005 4 12 

v1500071963-1500073059 July 14 2005 24 56 

v1575362963-1575363931 Dec. 3 2007 96 96 

v1649345758-1649350288 Apr. 7 2010 36 72 
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3. Interaction with Janus 

Epimetheus ring 
3.1. Theoretical view of satellites and ring particles 

The accumulation of JE-ring particles may be theoretically 

expected to preferentially deposit on the near and far side of Janus 

and Epimetheus. In this section, I discuss the relative amounts per 

unit area of impactors supplied from JE-ring material on Janus and 

Epimetheus.  

Here I define that the orbit of Janus has Pj and Aj for the 

periapsis and apoapsis distances, respectively, as shown in Fig. 24. 

Based on e.g. Smulsky and Smulsky (2012), the orbit of Janus in a 

polar coordinate system with origin at the center of planet can be 

described as  

𝑟𝑗 =
𝑃𝑗

(α𝑗+1) cos 𝜑−α𝑗
,  

where rj means the radial distance, φ means the polar angle (φ = 0 in 

the perihelion of Janus), and αj is the constant defined as  

α𝑗 = −
𝐴𝑗+𝑃𝑗

2𝐴𝑗
 .  

Furthermore, the radial velocity (𝑣𝑟,𝑗) and transversal velocity (𝑣𝑡,𝑗) 

of Janus (when the distance between Saturn and Janus is rj ) can be 

described as  

𝑣𝑟,𝑗 = ±𝑣𝑝,𝑗√(α𝑗 + 1)
2

− (α𝑗 +
𝑃𝑗

𝑟𝑗
)

2

 (𝑣𝑟,𝑗> 0 in 0< φ <π; 𝑣𝑟,𝑗< 0 in π< φ 

<2π) and (10) 

𝑣𝑡,𝑗 =
𝑃𝑗𝑣𝑝,𝑗

𝑟𝑗
, respectively, (11) 

where 𝑣𝑝,𝑗 means the velocity in the perihelion point of Janus. 𝑣𝑝,𝑗 

can be obtained by 

𝑣𝑝,𝑗 = √−
𝐺𝑀𝑠

𝛼𝑗𝑃𝑗
, 

where G and Ms mean the gravity constant and the mass of Saturn, 

respectively.  



Part 3 

- 82  - 

 

Next, I assume a typical ring particle which has Pp and Ap 

for the periapsis and apoapsis distances, respectively. Then, the 

orbital equation of the particle in the same coordinate system can be 

described as 

𝑟𝑝 =
𝑃𝑝

(α𝑝+1) cos(𝜑−𝜃)−α𝑝
, 

where rp means the radial distance, θ means the phase angle (in 

other ward, φ = θ in the perihelion of the particle), and αp is the 

constant defined as  

α𝑝 = −
𝐴𝑝+𝑃𝑝

2𝐴𝑝
. 

Furthermore, the radial (𝑣𝑟,𝑝) and transversal (𝑣𝑡,𝑝) velocity 

of Janus when the distance between Saturn and Janus is rp can be 

described as 

𝑣𝑟,𝑝 = ±𝑣𝑝,𝑝√(α𝑝 + 1)
2

− (α𝑝 +
𝑃𝑝

𝑟𝑝
)

2

 (𝑣𝑟,𝑝> 0 in 0< φ-θ <π; 𝑣𝑟,𝑝< 0 in 

π< φ-θ <2π) and (12) 

𝑣𝑡,𝑝 =
𝑃𝑝𝑣𝑝,𝑝

𝑟𝑝
, respectively, (13) 

where 𝑣𝑝,𝑝 means the velocity in the perihelion point of Janus. 𝑣𝑝,𝑝 

can be obtained by 

𝑣𝑝,𝑝 = √−
𝐺𝑀𝑠

𝛼𝑝𝑃𝑝
. 

Hence, I can describe the relative velocity when a particle collides 

toward Janus for 

𝑣𝑖𝑚𝑝 = (𝑣𝑟,𝑗 − 𝑣𝑟,𝑝, 𝑣𝑡,𝑗 − 𝑣𝑡,𝑝 ), (14) 

where 𝑣𝑟,𝑗 − 𝑣𝑟,𝑝 means the relative radial velocity and 𝑣𝑡,𝑗 − 𝑣𝑡,𝑝 

means the relative transversal velocity. 

JE-ring particles have the similar orbit to Janus and 

Epimetheus. The particles typically have the same apsis distance 

with those of the satellites. I assume that Pp, and Ap are equal to Pj 

and Aj, respectively. In this case, rp should be equal to rj when the 

particle collides toward Janus. Then, from the Eq, 10, 11, 12, and 13, 

I can obtain 𝑣𝑡,𝑗=𝑣𝑡,𝑝 and |𝑣𝑟,𝑗| = |𝑣𝑟,𝑝| (if 𝑣𝑟,𝑗< 0, then 𝑣𝑟,𝑝> 0; if 

𝑣𝑟,𝑗> 0, then 𝑣𝑟,𝑝< 0). Hence, from the Eq. 14, I can obtain the radial 
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and transversal directions of the relative velocity for 

𝑣𝑖𝑚𝑝 = (±2𝑣𝑝,𝑗√(α𝑗 + 1)
2

− (α𝑗 +
𝑃𝑗

𝑟𝑗
)

2

, 0) . (15) 

The relative velocity of the transversal direction is offset, 

which means that particle collides toward the near side or far side 

of Janus. From the Eq. 15, |𝑣𝑖𝑚𝑝| ranges from 0 to 240 m/s, where I 

use 150,500 km and 152,500 km for Pj, and Aj, respectively. Note 

that, if the phase angle (θ) is less than 5 degree (or 355° < θ), which 

means the orbit of the particle is almost the same as that of Janus. 

In this case, the collisions should occur in quite low velocity (at most 

10 m/s) from any directions. Even if I assume the maximum of 

eccentricity of a ring particle (Pj = 149,000 km and Aj = 154,000 km), 

𝑣𝑡,𝑗 ∙ 𝑣𝑡,𝑝 is not large (at most 130 m/s). In this case, if the phase 

angle is 320° > θ > 40°, the direction of a particle is limited within 

45° from the sub-Saturn or anti-Saturn points. The case of 

Epimetheus is a little bit different from that of Janus because the 

large inclination of Epimetheus (~0.3) is expected to generate the 

collisions toward the south pole or north pole of Epimetheus.  

The distribution may be consistent with the distribution of 

the dark terrain. To reconfirm this view, I perform the numerical 

simulations of interactions between JE-ring and satellites. 

3.2. Numerical simulation of Janus-Epimetheus ring 

Previous study of numerical simulation of JE-ring (Williams 

and Murray 2011) shows that almost all JE-ring particles should 

collide with Janus or Epimetheus for a decade, which indicates that 

Janus and Epimetheus temporary feed JE-ring. On the other hand, 

I calculate the amount of impactors supplied from JE-ring material 

on a given region of the satellites.  

First, I reconstruct the orbital motion of JE-ring particles in 

the Janus and Epimetheus system. To construct the complex 

motions of Janus and Epimetheus, I define them as their actual 

values from Jan. 1 2000 to Dec. 31 2011, which are referred from 

NASA's Navigation and Ancillary Information Facility (NAIF). 

Detail dynamics of the ring particles are quite difficult because of a 

lot of forces, such as the gravity of satellites, the Lorentz force of 
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saturnian magnetosphere, and the solar radiation pressure. 

Especially, the Lorentz force is known to be fairly effective to small 

particles (1μm or smaller). However, I am obliged to ignore the 

Lorentz force and the solar radiation pressure because we 

understand neither the composition nor the typical size of JE-ring 

particles. I note that the results of my simulation may become 

markedly different if we assume quite small particles. In any case, 

both the gravity of ring particles and the collisions between ring 

particles are also negligible because JE-ring is quite tenuous. Then, 

I can describe the equation of a ring particle’s motion as 

𝑑2𝐫

𝑑𝑡2 = −𝐺𝑀𝑠
𝐫

|𝐫|3 −  𝐺𝑀𝑗
𝐫−𝐫𝐣

|𝐫−𝐫𝐣|
3 − 𝐺𝑀𝑒

𝐫−𝐫𝐞

|𝐫−𝐫𝐞|3, (16) 

where r, rj, and re mean the position vector with their origin at the 

center of Saturn of the ring particle, Janus, and Epimetheus, 

respectively, and Mj and Me mean the mass of Janus and 

Epimetheus, respectively. To solve this ordinary differential 

equation, I use the Runge–Kutta method. 

The relative velocity between a JE-ring particle and the 

satellites is generally ~200 m/s (see section 3.4). Therefore, I define 

the time interval as 60 second. The relative position of particles 

move 6 km in a step, whose values are much smaller than the sizes 

of the satellites. Therefore, 60 second is sufficient to my purpose. I 

use 50000 particles as initial values, which have the semi major 

axis ranging from 149,000 to 154,000 km and the keplerian velocity 

of its orbit. I show the locations of ring particles and satellites in 

every 100,000 step (equal to 6,000,000 seconds) to Fig. 25 and 26. I 

define the sphere with the mean radius of satellites as the shape of 

the satellites. Then, I assume that the particle moving into the 

sphere means that particles collide with the satellite. I define the 

particle which collides satellites will be removed in this simulation. 

As a result, about 20 % of all particles have been removed for a 

decade. The directions of particles collided with the satellites are 

shown in Fig. 27. The collisions concentrate to the near and far side 

of Janus and the polar regions of Epimetheus, which is consistent 

with section 3.1. 

3.3. Impactors flux on the satellites 
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Next, I calculate the relative mass of impactors supplied 

from JE-ring material on a given area. This means the depositional 

rate. Because I assumed the sphere as the shapes of the satellites, I 

can regard an collisional event as a particle passing through the 

circle with area πrs
2 perpendicular to the directions of the particle’s 

motion, where rs means the mean radius of the satellite. Then, I can 

describe the probability which a particle collides to a given unit area 

of the circle as 1/πrs
2. Therefore, assuming that a particle (mp for its 

mass; t for its direction unit vector) collides to a given 

sufficiently-small area on the satellites (s for its name; As for its 

area; s for its unit normal vector), I can obtain the statistically 

expected mass (E(s,t) ) of the surface regolith supplied by the 

particle on the small area as 

E(s, t) =
𝑚𝑝

𝜋𝑟𝑠
2 𝐴𝑠(𝐬 ∙ 𝐭)   (𝐬 ∙ 𝐭 > 0) or  

E(s, t) = 0   (𝐬 ∙ 𝐭 < 0),  

where I define s has the direction from outside to inside of the 

satellite. Here s∙t means the incident angle between the direction of 

the particle and the small area. Hence, the statistically expected 

mass of impactors supplied by all JE-ring particles on a given small 

area, s, can be described as  

𝐸(𝑠) = ∑ 𝐸(𝑠, 𝑡)𝑡 . (17) 

Assuming that As is the unit area (1 km2), all particles of 

JE-ring has the same mass, the total amount of impactors supplied 

from JE-ring material over the entire surfaces of both satellites is 1 

kg, and the unit vector s on a given area is based on the shape 

model developed by Stooke and Lumsdon (1993) and Stooke (1993), 

I can show the mass of impactor flux per unit of area (kg∙km-2) to 

Fig. 28.  

3.4. Erosional or depositional flux 

An impactor is expected to cause either deposition or erosion, 

depending on the impact angle and velocity. The distribution of 

impact velocities is shown in Fig. 29. The escape velocity of Janus 

and Epimetheus are 53.2 m/s and 34.8 m/s, respectively. The 

velocities of impactors are typically a few times as rapid as the 

escape velocities. These impactors sensitively contribute to 
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deposition or erosion of the satellites’ regolith, depending on the 

impact angle. According to experimental studies about the collision 

of an impactor with a few hundred m/s toward a flat powdered 

surface, the total kinetic energy of ejecta is less than 1 % for that of 

the impactor (e.g. Hartmann 1985). Then, the maximum velocity of 

ejecta is at most 10% as rapid as that of the impactor in the case of 

normal impact (> ~30°) (Hartmann 1985) while the maximum 

velocity of ejecta is at most 64% as rapid as that of the impactor in 

the case of the oblique impact (< ~30°) (Yamamoto 2002). The 

velocities of ejecta are close to the escape velocity of the satellites. 

Also, in the oblique impacts (< ~30°), the impactor ricochets off 

(Gault and Wedekind 1978). These experimental results imply that 

normal impacts roughly act to generate the deposits while oblique 

impacts act to erode the surface of the satellites. 

I separate and calculate the ratio of the normal and oblique 

impactor flux from E(s) in the Eq. 17. Then, to simplify, I assume 

the critical angle is 30 degree, even though this difference depends 

on a lot of conditions, such as surface roughness and the sizes of 

particles. I show the ratio of the oblique and total impactor flux in 

Fig. 30. The erosional effect is seems to be so strong on the leading 

and trailing hemisphere. 

As shown in Fig. 28, the amount of the impactor flux per 

unit area is good agreement with the locations of the dark terrain. 

Also, as shown in Fig. 30, the region where the erosional effect is 

stronger is consistent with the region where appears the deficiency 

of the dark terrain. According to Fig 28, ring particles are expected 

to somehow deposit on other terrains, even leading or trailing side. 

However, strong erosions also occur on the leading and trailing side 

due to the oblique impacts, which may prohibit the formation of the 

dark terrain. Therefore, this result implies that JE-ring particles 

deposit on the near and far side and erode the surface regolith on 

the leading and trailing side.  
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Figure 21 The conceptual figure of the orbits of a ring particle.  

I define the focus of the orbit of Janus for the center of this 

coordinate system (see text).  
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Figure 22 The fate of JE-ring particles 

The fate of JE-ring particles with the initial semi-major axis 

ranging from 151,000 to 152,000 km. Dots represent the locations of 

Janus (large dots), Epimetheus (mid-sized dots), and ring particles 

(small dots) in the step ranging from 0 to 1,000,000. Vertical values 

mean the distance from the center of Saturn (km) and horizontal 

values mean the longitude based on Saturn-centric equatorial 

coordinate system.  
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Figure 23 The fate of JE-ring particles 

The fate of JE-ring particles with the initial semi-major axis 

ranging from 151,000 to 152,000 km. Dots represent the locations of 

Janus (large dots), Epimetheus (mid-size dots), and ring particles 

(small dots) in the step ranging from 0 to 1,000,000. Vertical and 

horizontal values mean the latitude and the longitude based on 

Saturn-centric equatorial coordinate system, respectively.  
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Figure 24 The direction of ring particles which collide with Janus and 

Epimetheus.  

The longitude (vertical value) and the latitude (horizontal value) of 

these directions are shown in the geocentric coordinate system of 

the satellite.  

 

 

Figure 25 Impact flex on satellites.  

(a) and (b) are the same as the Fig. 2c and 2d, respectively. The 

relative amounts per unit area of impactors supplied from JE-ring 

material on (c) Janus and (d) Epimetheus. This result is not 

considering the erosional rate. As shown in this images, blue 

regions of (a) and (b) are good agreement with the dense part of (c) 

and (d). 
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Figure 29 The distribution of impactors’ velocity based on my simulation.  

Vertical bin is 10 m/s and horizontal value means the number of 

impactors within the bin. Almost all impactors have a few time 

larger velocities than the escape velocities of the satellites. 

 

 

Figure 26 The ratios of the normal and oblique impactor flux. 

I assume the critical angle is 30 degree. This image represents the 

ratio of erosional effect and depositional effect. 
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4. Discussion 
The source of JE-ring is expected to be Janus and 

Epimetheus because the ring appears in the vicinity of the satellites. 

At the same time, the lifetime of ring particles due to the collision to 

the satellites is also quite short, as well as a decade (Williams and 

Murray 2011), which implies that the satellites continuously supply 

the materials to the ring. Seismic accelerations induced by large 

impacts may form a ring, however, this effect is temporary. Dust 

escape due to the electrostatic force cannot be expected because the 

dense plasma from Enceladus prohibits the surface electric charge 

(Hirata and Miyamoto 2012). Therefore, the erosion due to the 

collisions with JE-ring particles sustains the most part of sources of 

JE-ring itself. Then, my numerical result (Fig. 29) shows that 

almost all impactors have a few time larger velocities than the 

escape velocities of the satellites, which indicates that ejecta after 

impacts is expected to be difficult to escapes. Perhaps, the oblique 

impacts, which can erode the satellites, have a role to maintain the 

ring.  

The escapement of large particles should be more difficult 

than that of fine particles, which indicates that the typical size of 

ring particles become fine. This phenomenon can explain that the 

dark terrain contains larger amount of fine particles than the bright 

terrains do. In the case of asteroids, electrostatic forces or grain 

dynamics are pointed to play an important role to the sorting 

processes. Instead, Janus and Epimetheus system may represent 

the bodies where sorting processes due to the orbital dynamics occur. 

On the other hand, fine particles on the surface and in the ring may 

be effectively influenced by the van der Waals force and the Lorenz 

forces, respectively. I note that the effects need to be examined if 

particles in the ring or on the surface are much smaller than 1μm.  
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Appendix 

Because the cylindrical projection map is made by the shape 

models of satellites, I first estimate the shape model of satellites. 

The entire surface of Janus, except for sub-Saturn side and north 

polar region, is imaged by Cassini, which enable us to develop the 

local shape model of the imaged regions through the epipolar 

geometric method. I follow the previously proposed method (Hartley 

and Zisserman 2004), as well as section 2.1 in Part 1. Then, I use 25 

high-resolution images shown in Table 6. As a result, I obtained the 

exact locations of 300 control points. On the other hand, the imaged 

regions of Epimetheus are limited to either the trailing side or the 

south polar region, which is not sufficient to develop the shape 

model. Therefore, I assume the simple ellipsoid for the shape of 

Epimetheus. By matching the shape model and an image, I can 

adapt every pixels of the image to a geographic coordinate of the 

satellite. Then, I project the brightness of these pixels to a local 

cylindrical projection image. Using 13 images of Janus and 4 

images of Epimetheus, I can obtain the cylindrical image of 

satellites (Fig. 23a, b). 
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Conclusions 
I studied geological features to discuss the origin and 

evolution of Saturn’s small satellites. I started with an overview of 

the available Cassini ISS or VIMS images by 2013. In detail, I 

carefully examine 272 images for Janus and Epimetheus, 1,500 

images for Pan and Atlas, and 500 images for Helene, Calypso, 

Telesto, Methone, and Pallene. I scrutinize all of these images to 

understand the surface conditions of the small satellites. Especially, 

I develop shape models of Helene and Janus for a critical evaluation 

of the distribution of craters or other geological features. Moreover, 

I calculate the local gravitational gradients for the entire surface. 

Also, I describe my new geological observations of Atlas, Janus, and 

Helene and propose a new theory to explain my findings. 

I newly identify a crater on the unusually smooth-looking 

surface of a small saturnian satellite, Atlas. The identification 

implies that some sort of crater-erasing process has been active on 

the surface of Atlas. Atlas, which has the enigmatic shape and 

the ring rubble pile structure, appears the unusually smooth 

surface, which remained unexplained. No other small bodies are 

known to have an unusually smooth surface, such as Atlas. The 

surface of Atlas is likely covered by fine particles supplied from the 

A-ring of Saturn. The particles accumulate at the equatorial region 

of Atlas and form its enigmatic saucer-like shape. The upper-most 

layer of the fine particles become electro-statically unstable and 

migrate as a result of dust levitation, which has previously been 

regarded as a minor surface process on the Moon and asteroids. The 

particle migrations and deposits provide an unusual smoothness of 

the surface of Atlas. This, as well as continuity in the smoothness 

between the equatorial ridge and the bumpy polar region suggests 

the existence of similarly-sized cores. Atlas may represent the 

first-recognized body where resurfacing is dominated by dust 

levitation. I conclude Atlas’s surface is formed by the existence of 

the source of a large amount of dusty particles, rings, and satellites 

of A-ring region are located at inner saturnian magnetosphere 

characterized by lower electron density and cooler electron 
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temperature, which cause dust levitation on the surface of satellites 

of A-ring region. As a result, these different environments cause the 

different surface features between satellites of A-ring regions and 

satellites of F-ring regions.  

I identify that Janus and Epimetheus have bright and dark 

terrains, whose appearances are similar in terms of color, albedo, 

and surface feature. These data imply that the dark terrain is made 

of fine particle. The dark terrain on Janus appears on equatorial 

regions of near and far side while those on Epimetheus appear on 

the south polar region. The distribution may be explained by the 

transportation of surface materials between Janus and Epimetheus 

via the ring system. Also, erosion due to impacts of ring particles 

has a role to maintain the ring for a long time. 

Based on high-resolution images, I examine the shape, the 

crater density, and global geological features of Helene. From the 

shape model, I show the north pole is located within the large 

depression, which makes the present rotation axis of Helene 

maintain the most stable state. From the crater density, I identify 

three distinct regions based on the crater densities, such as heavily 

cratered terrain (the sub-Saturn side of the trailing hemisphere), 

moderately cratered terrain (the anti-Saturn side of the trailing 

hemisphere), and less cratered terrain (the leading hemisphere). 

Alternatively, large craters (> 5 km) appear uniformly in any 

terrain. High density of globally distributed large craters and 

numerous small craters of the trailing hemisphere indicate Helene 

is a quite old object, at least 1.0 Gy. I find the nature of the leading 

hemisphere is explained by accumulation of the E-ring material. In 

detail, the accumulation causes the deficiency of small craters and 

the gravity-induced mass-movement process on the leading 

hemisphere of Helene, which forms numerous streaky depressions 

on a slope. The gravity plays an important role despite of the 

extremely tiny gravity of Helene, which may indicate that the 

mass-movement could be a substantial surface process even on 

other Solar System small bodies, such as comets and asteroids. As 

well as Helene, the E-ring material accumulates on other small 

satellites in the E-ring, such as Telesto, Calypso, Methone, and 
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Pallene. Telesto and Calypso appear global smooth surface and 

their shapes are close to sphere, compared to Helene. These 

features can be explained by a difference of both the amount and 

orbital elements of the E-ring particles as well as Tethys. Pallene 

and Methone are also strongly accumulated by the E-ring material. 

Their spherical shapes can be considered as a result of its originally 

irregular shape having been buried by the E-ring material.  

Overall, I conclude that the interaction between satellites 

and ring materials dominates surface processes on the small 

satellites, which makes small satellites have unique features. Thus, 

small satellites may record a ring system. In fact, small satellites in 

E-ring have a clue to understand the cryovolcanism on Enceladus. 

Based on the crater density on Helene, the age of the E-ring deposit 

is between 100 My to 0.1 My. Interestingly, this view is consistent 

with previous proposed ages of the cryovolcanism on Enceladus.  
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