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Abstract
Graphics Processing Units (GPU) have evolved into computational devices with Tera-
flop performance capabilities. However, a programmer writing code for GPUs faces
a mode challenging task than when programming for a CPU. First, it is necessary to
correctly identify parallel computation. Second, Optimize the placement and move-
ment of data in the multi-level memory hierarchy of the GPU. In addition, a pro-
gram that have been optimized for one architecture might fail to reach the expected
performance on a different GPU architecture. The described scenario leads to a sit-
uation where large amounts of time and effort are needed to produce a correct and
efficient GPU program. GPU application programming can be aided by performance
models and frameworks, and in this document we describe our performance model-
ing framework for GPU programs. We propose the Linear Performance-Breakdown
Model (LBPM), a tool designed to help the programmer to locate performance bot-
tlenecks, facilitating the optimization process and a framework to apply the LBPM
model. The objective of the framework is to provide a performance tunning tool to
facilitate the optimization of GPU kernel programs. By extracting the breakdown of
the execution time of kernel programs into three main components (global memory
transfers, local memory transfers and floating-point operations time) the model can
serve as a tool to guide optimization efforts We demonstrate the effectiveness of our
model to calculate the breakdown of performance by applying it to several case-tests:
SGMM, FFT, Reduction. We confirmed the modeling methodology works with two
different GPU devices: A8-3870 AMD Accelerated Processing Unit (GPU) and a
GTX 660 Nvidia GPU.

Keywords: GPGPU, Performance Modeling,
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Chapter 1

Introduction

General Purpose computation with Graphics Processing Units (GPGPU), also known

as GPU computing have become an important technology in the High Performance

Computing community. The reason is that GPUs, through its evolution from a fixed-

pipeline, graphics-processing specialized device to a more flexible, General-Purpose

processor, it presents several advantages:

• High arithmetic throughput

• Low price-to-performance ratio

• High availability

Since 2002 with the development of programming models and the evolution of graphics

hardware, programming environments like CUDA and OpenCL were developed[16, 7].

Because of this simplified and more general programming environments compared

to the domain-specific graphics-related tools and languages, more scientists joined

the field and an active research and development community was formed. These

programming environments and communities have constantly evolved to make GPU

programming more accessible and enabling features that allow its application in more

areas. GPUs are highly sophisticate hardware designed to create and manage thou-

sands of parallel processes which is the source of their high computational throughput,

nonetheless this sophistication is carried out at the expense of great architectural

complexity.
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Due to the complexity of the GPU architecture and different operation when

compared to CPU, it is difficult and time consuming to develop GPU programs that

make full use of the potential of the hardware the run on (i.e. high efficiency). We

recognize the need of attacking the problem of the difficult and time-consuming task

of producing optimal GPU kernel programs and attack it by developing a tool that

can be used as a guide to understand the behavior of an application when executing

in a GPU device.

Because of the increasing gap between processor-memory performance, the execu-

tion time of programs in modern computers is largely dominated by the data transfers

times. This fact is true also in the case of the GPU. not different when using GPU,

the only difference is that the memory hierarchy in the GPU is a multi-level structure

that combines different memory technologies: The global memory, available to all the

computing units in the GPU, off-chip memory implemented using GDDR technology.

Global memory is large, with capacity in the order of GB, but is the slowest memory.

The next level is the local memory, on-chip memory that resides inside each comput-

ing unit. Implemented with SDRAM technology, it is faster than global memory by

an order of magnitude but also much more limited capacity, around 32 kB. The last

memory hierarchy level is the private memory, the closest memory to the processing

units, the fastest and smaller memory type. Because of their limited size, for shared

and private memory, not only the access pattern but also the amount used by the

kernel program greatly influence the execution time. There exist several tools for

profiling GPU kernel programs. However, all of them are specific to certain platforms

and devices, which difficult their use.

• AMD APP profiler (deprecated since November 2013) and AMD

CodeXL: Available for AMD devices on Microsoft’s Windows Operating Sys-

tem and some Linux operative systems (only rpm and deb packages are available

from the official web page.) [12]

• Nvidia Visual Profiler: A tool for GPU kernel programs written in CUDA

C/C++. Available for Linux, Mac OS X and Windows. [8]

16



• Parallel Nsigth: Another tool for Nvidia GPUs. There are two versions, the

free version does not include the kernel program analyzer which is distributed

in the pay version. To use all the features of this tool, it is necessary to use

either, two machines connected over the network or a single machine with at

least two GPUs. [8]

To solve the presented problem, we propose the division of the execution time of a

kernel program into three mayor components: The transfer time between global and

local memory (Global-to-Shared Transfer G2ST), the transfer time between the local

and private memory (Shared-to-Private Transfer S2PT), and the time for floating-

point operations (Processing Units Time PUT). In order to extract the breakdown

into the three performance factors of execution time of a GPU kernel program and

provide guidelines to find out the bottlenecks of performance. The core of the model is

the incorporation of three elements, the Global-to-Shared Memory Latency, Shared-

to-Private Latency and Processing Units Latency. These three factors are integrated

into a performance model formula by applying the Normalized Least Squares Method

(NLMS) and the resulting parameters are used reveal the effects of each element in

the total execution time of a kernel routine. The block diagram of the proposed sys-

tem can be observed in figure

The proposed system features the following sub-systems:

Auto-Profiling Module (APM) This module generates a set of runs to collects

profiling data (execution time against work-group size). It makes use of both,

kernel and host code files.

CLParser Module (CLPM) Takes the host and kernel program codes and gener-

ates an Abstract Syntax Tree for each. The trees are transversed in order to

locate the key control loops, variables and function calls; information used to

discover movement of data between the different levels of the memory hierarchy.

Linear Regression Module (LRM) This module uses the profiling information

and the performance formula to calculate the Regression Coefficients by apply-

ing the Least Squares Method with non-negativity constraint.
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Performance Breakdown Module (PBM) The last module calculates the performance-

breakdown using the Regression Coefficients and the performance formula.

In general, the input to the system is the files containing the host and kernel code.

The output after being processed by the different modules will be a graph showing

the performance breakdown. The main contributions of this thesis include:

• The Linear Performance-Breakdown Model

• Semi-automatic performance model generation

• Integration into a script-based framework

The model shows good accuracy. The breakdown of the performance corresponds with

the theoretical knowledge. In each case the LBPM shows a good correspondence with

the theoretical knowledge.

1.1 Example Matrix-Matrix Multiplication

The remaining chapters are organized as follows: In Chapter 2 we discuss the related

works and compare them to our proposal. Chapter 3 includes a review of the OpenCL

programming model, a brief introduction to General Purpose computations on GPU

(GPGPU) and performance modeling. Chapter 4 describes our modeling methodol-

ogy and the LBPM framework. The results are discussed in Chapter 5 and finally,

Chapter 6 includes the conclusions and the discussion of future work.
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Figure 1-1: Our proposed framework. The programer supplies the kernel and host
codes and the output of the system is the breakdown of performance.
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Chapter 2

Literature Review

In this chapter we present the existing work related to this research.

In the landscape of GPU programming, the main purpose why GPU is preferred

over CPU for computation is the high performance it can offer paired with the lowest

energy consumption. It seems natural that most of the effort in the development

of the field has been devoted to application development. Companies like Nvidia

and AMD focus all their efforts into the improvement of the hardware and the GPU

architectural details. Users of the technology are mainly interested in developing

Although there have been a large amount of effort devoted to application devel-

opment and algorithms optimization in the GPU community, the effort devoted to

performance modeling and analysis tools is not as prominent. Whilst there are several

works on the literature regarding performance models for GPU, it is worth mentioning

that a large share of them focus on the CUDA programing model and hence appli-

cable only to Nvidia GPUs [18, 21, 23, 26]. Furthermore, many of them make use of

hardware performance counters and specific characteristics of the GPU architecture.

The drawback of such approach is that the models and tools can only be applied to

Nvidia GPUs and there is no warranty that they might be valid for future generations

hardware. However, this studies provide insight about the inner workings of Nvidia

GPUs that serve as a base for understanding the general architecture of the GPU de-

vice, allowing us to extract this insights and applying it to our own model. Most of

the available works are designed to target a specific type of GPU and a specific task.
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In [30], the authors present a micro-benchmark derived model that works to identify

the bottlenecks of kernel programs in the Nvidia’s GeForce 200 series. The authors

present a model based on the GPU native instruction set that achieves a low error

rate. However, the disadvantage of this approach is that cannot be applied to devices

other than the GeForce 200 series.

In [19] the authors relate to the lack of a GPU performance model and recognize

the difficulties it derives like the possibility of evaluate the suitability of the GPU to

solve a particular problem. Likewise, [27] address the importance of having access to a

modeling framework recognizing the fact that, for GPU programs, developers should

devote large amounts of time to write a program that produce the correct results,

and utilizing the hardware to its best performance its a more time-consuming task.

The result of the aforementioned works is a framework to generate predictive models

that allows the comparison between GPU and CPU performance in a per-application

base. We chose instead to focus the analysis in the GPU architecture, since we believe

that at this point it is clear that if the task exhibits a good amount of parallelism,

the GPU will present better performance than CPU.

Additionally, the authors base their modeling strategies in performance counters

and other metrics that are available in the CUDA programming model. The disad-

vantage of this fact is only GPU produced by Nvidia support CUDA. Other authors

build their models based exclusively on the CUDA programing In 2009, Hong et al.

[26] presented a study on GPU power consumption and performance modeling. In

their study, the authors demonstrate the development of an analytical model based

on an abstraction of Nvidia Fermi architecture and then execute the related experi-

ments to validate the model. In contrast, we first design and execute the set of ex-

periments that provide us with the execution times that will serve as input for our

model. Then we make use of our model to decompose the costs of the three mayor

performance predictors (floating-point computations, Shared-to-Private and Global-

to-Shared memory transfer costs), while maintaining a device-independent approach

by identifying the most important aspects of a kernel program execution as it is pro-

cessed in general by any GPU device.
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In [22], the author proposes a model for execution-less performance modeling

for linear algebra algorithms in CPU machines. The authors develops their model

focusing on L1 cache misses, and analyze the correspondence between their model

and the experimental results obtained in a Barcelona AMD CPU and a Intel Penryn.

Contrary to the CPU where the cache is transparent to the programmer, the memory

hierarchy is explicitly managed by the programmer in the GPU. For that reason, our

model output, a Performance Breakdown Graph shows how much of the execution

time is being spent between the various level of the GPU memory hierarchy.

In [29] the author discuss the effects of factors such as sequential code, barriers

cache coherence and scheduling in general shared memory multiprocessors. The au-

thor parts from the Amdahl’s law and analyze shared memory systems (GPUs belong

to this classification) to derive several models, one for each separate factor. Our ap-

proach is instead combine the most important factors into a single equation using a

special case of Shared memory system and apply then the LSM method to evaluate

the impact of each factor.
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Chapter 3

Background

Currently, there exist a limited number of programming environments to develop

programs for GPU. Each environment consist of a ecosystem of necessary tools to

write program code, compile and produce executable files. The available environments

are Microsoft’s DirectX, NVIDIA’s CUDA and Kronos group’s OpenCL. DirectX

is mainly targeted to develop three dimensional video game applications, and it is

limited to Windows Operating System. CUDA is designed specially for GPGPU

applications and it is limited to NVIDIA GPUs. Finally. OpenCL is designed to be

compatible with a wide range of accelerator, multi-core devises including GPU and

to be cross-platform. For this research we chose to use the OpenCL programming

model for its universality; a kernel program written using the OpenCL standard can

be executed in any compliant GPU, independently of the vendor or the device’s family.

Additionally, to empathize this property, our model do not require use of internal

performance counters or other device-specific metrics, which improves its usability.

The remaining of this chapter provides background on the GPGPU technology, and

system performance modeling that will be discussed in later chapters.
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3.1 GPU architecture and OpenCL programming

model

In this section we briefly describe the OpenCL programming model and its compo-

nents are mapped to the different functional units in a GPU. This is necessary in or-

der to provide understanding on how GPU are constituted and the particular choice

we made of the three main performance factors.

Figure 3-1: General block diagram of a GPU device. It is at its most basic level a
collection of Compute Units, which in turn are constituted by an array of Processing
Cores. The different levels of the memory hierarchy are also shown.

Figure 3-4 shows the GPU architecture at its basic level. GPUs are made up

of hundreds of processing cores that allow a high level of concurrency. In modern

GPUs architectures, the processing elements have a two-level hierarchical architecture

[10, 25]. The top level is made of vector processors, called Compute Units (CU )

that operate in a Single Instruction Multiple Data (SIMD) fashion. In the next level,

each vector unit contains an array of processing elements (PE). All the PEs inside

a CU are able to communicate through an on-chip, user-managed memory known as

shared memory. When a work-group is created within a program, all wok-items in that

work-group are assigned to the same CU. The purpose is to ensure scalability, allowing

a program to run across different generations of GPUs with different number of CUs.

Although the vector processors can process an arbitrary number of work-items within

some constraints, the scheduler cannot squealer an arbitrary number of work-items for

execution. It is always in groups of 64 work-items is known as Wave-front (WF), the

smallest scheduling unit. This means that if some number smaller than 64 work-items
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Figure 3-2: Correspondence between OpenCL concepts and the GPU hardware.

need to be executed, the schedulers in the CU will still create 64 work-items and since

not all the work-items have useful work to do, some of them will be idling.The shared

memory is a portion of memory that can be accessed by all PE in a CU, hence the

name. This memory is slower than the register file, but it is also bigger, and most

importantly, it is accessible to all work-items in the same work-group. All CUs in

the GPU have access to the global memory that is the largest and slowest of all the

memory types in a GPU. Figure 3-2 shows a description of how the different concepts

in the OpenCL standard have a relation ship with a specific GPU concept.

When a kernel is submitted for execution a index space containing a defined

number of software threads (called work-items in the OpenCL terminology) is defined.

Because the GPU operates with the SPMD model, the index space purpose is to

provide a mean for work-items to distinguish from each other and know which data

elements they must operate on. It is responsibility of the programmer to ensure

each work-item is correctly indexed and to divide the task. GPU and CPU support

threads in very different ways. The CPU has a small number of registers per core

that are used to execute any task given to the CPU. Context switching on CPUs is

expensive in terms of time because the state of all registers for the current task must

be saved to RAM and the register states for the next task must be loaded from RAM.

On the other hand, GPUs have multiple banks of registers, and each bank is assigned

to a different task. A context switching involves a bank selector instead of expensive
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RAM loads and stores, making context switching less time-consuming in a GPU. The

impact of this mechanism is that the GPU uses that ability of fast context-switching

and the availability of a large number of work-items to hide data latencies. However,

it is important to know that the number of register banks is limited, and it imposes

a limit to how many Work-items can reside in a Computing Unit. Work-items are

grouped unto a larger logical instance called Work-group. The most important aspect

of work-groups, is that communication is enabled across work-items only if they belong

to the same work-group.

3.2 Discrete and Integrated GPU

In this work we make use of two different GPU devices that have different architec-

tures: The first device is an AMD Accelerated Processing Unit (APU) and the other

one is a NVIDIA GeForce series GTX 660 device. The main distinguishing charac-

teristic of these devices is that the APU is a Integrated GPU whereas the GTX is a

discrete board.

Figure 3-3: Block diagram that highlights the memory connections and placement of
an integrated GPU

The APU is an example of integrated CPU-GPU architecture. The GPU cores are
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built into the same silicon chip as the CPU cores. Integrated designs like the APU

do not need to make use of the PCIe port to transfer data between CPU and GPU

memory spaces. Instead, the main system memory is used for both, CPU and GPU

data. The only operation that needs to be performed is reserving a memory block

for exclusive GPU use when a GPU program is launched. When data between GPU

and CPU must be shared, data is transfered from one RAM location to the other. If

pinned memory is used, it is possible to make a memory mapping, where the GPU

and CPU can read and write to the same memory area, the transfer step is skipped

and the cost of the transfer is now the overhead of the mapping which is usually much

lower than the time of an actual transfer.

The GTX 660 is a GPU chip that is contained into its own electronic board.

This board is attached into the host computer system using the PCI express port.

The advantage of a discrete board is that there is no space nor transistor count

limits for the GPU chip. Discrete boards have their own on-board memory storage,

typically implemented using GDDR technology and ranging from 512 MB up to 2GB

on commercial-level boards[7]. Because the space constraint is not present, discrete

boards have a higher peak performance compared to discrete boards. Nonetheless,

since they are located from a far distance from the CPU and the main system memory,

in addition to having to cross the PCIe port, the time needed to transfer data between

the on-board GDRAM and the main system memory is significant. Such impediment

is one of the major reasons GPU technology cannot be widely adopted to accelerate

any arbitrary computation. If a program requires a memory transfer with a small

quantity of data, the long transfer memory time overcomes the advantage of the high

performance offered by GPU.

3.3 Performance prediction

Regarding the field of computer science, performance prediction refers to the process

of estimating the execution time of a program executed on a determined computing

system. Performance prediction is used to evaluate new computer designs, analyze
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Figure 3-4: Block diagram showing a discrete board GPU and the key memory con-
nections

compiler optimizations, and code tunning. Performance prediction can make use

of several performance metrics, like cache misses/hits, instruction counts, branch

prediction misses/hits, etc. to calculate and estimate execution time.

There are several approaches to predict performance on computers, here we sum-

marize three of them [2]

• Profile-based prediction

• Simulation-based prediction

• Analytical modeling-based prediction

3.3.1 Profile-based prediction

The simplest of all approaches to performance prediction. In this approach, the pro-

gram is seen as a set of basic blocks that follow an execution path. The execution

time of a program is calculated as the sum of the execution time of each block multi-

plied by number of times the block is executed. The information about basic blocks

is generated using a tool called profiler, that generates data pertaining the execution
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time of blocks from instruction set information and also the execution frequency of

each block.

Profile-based prediction is useful for single instruction issue, in-order execution

processors, but for modern processors the approach is not accurate. Modern pro-

cessors feature advance optimization techniques such as multiple instruction issue,

branch prediction and out-of-order execution, These techniques dramatically cause

alterations in the execution time of programs that cannot be accounted for using the

concept of basic blocks, rendering profile-based prediction ineffective.

3.3.2 Simulation-based prediction

Involves the creation of a computer program that can generate performance data by

representing the key characteristics of the computer system being studied like func-

tional units, instruction sets, etc. Each instruction of the target program is actually

dynamically executed given a particular input data set. The model represents the

computer system and the simulation represents the operation of the system over time.

Simulators have the capacity of predicting program’s performance very accurately.

However when the size of the program being evaluated increases, the simulation time

can exceed tractable simulation time.

Trace-based simulation is another approach pertaining simulation-based predic-

tion. It requires the creation of a trace-file which store important program events.

Because only key elements of the program run are stored in the trace file, the simula-

tion does not include every instruction, reducing the simulation time. The problems

with trace-file simulation is that it loses flexibility and accuracy but in some cases the

faster completion time is necessary. One more disadvantage is that the generation of

the trace file often consumes considerable amounts of storage space and can severely

impact the runtime of applications if large amount of data are recorded during exe-

cution.
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3.3.3 Analytical Modeling

Analytical modeling techniques abstract the features of a parallel system as a set of

parameters or parametrized functions. It is worth mentioning that analytical mod-

eling have been widely used for the modeling of parallel systems.A mathematical

model of the system that is being studied will provide an abstract representation

of both, the hardware and the software. The user is responsible for determining the

model parameters, which requires detailed knowledge of the system and the modeling

technique, this will greatly determine the accuracy and robustness of the model. The

disadvantage of this approach is that the models are not as accurate as real program

executions due to simplifications generated when creating the abstract model, details

are abstracted away in the modeling process. In general, analytical modeling have

a low computational cost. The only exemption is when a statistical process require

long simulation times.

The development of analytical modeling involves two decisions that will affect the

accuracy of the model. The first one is the system detail level, known as level of

abstraction. It is determined by the parameters accounted in the model and their

representation. A model with more parameters have a lower level of abstraction,

is a more detailed model. therefore increasing the modeling cost. Regarding the

representation of system parameters, scalar parameters are simpler than functions and

statistical tools, but less flexible. Functions require that the programmer determines

not only their coefficients, but also their shape. Statistical tools require a specialized

knowledge that average parallel programmers do not have. Another important factor

is the difficulty of determining the parameter values. If the parameters are too specific,

they can be hard to capture due to a lack of suitable tools or knowledge about

the application. If the parameters are too high-level, it is necessary to determine

representative behaviors of the system.

When developing analytical models, there are three types of approaches that differ

by how the models are expressed. In the next paragraphs a description of each

analytical modeling strategy is described.

32



3.3.4 Modeling with Scalar Parameters

This approach uses a set of scalar parameters to model the behavior of a parallel

system. These parameters express the average behavior of the parallel system under

specified conditions.

In [9] the authors process communication in modeling parallel systems with the

LogP model. In that model, there are four main parameters that are used to char-

acterize the target system: L Latency of operations, o communication overhead, g

the gap between operations, and P as the memory and processor units. LogP consid-

ers communication costs and the number of processors involved in the computation,

improving the accuracy of the predictions. This framework is useful for evaluating

parallel systems over various paradigms, because its parameters are machine indepen-

dent. However, it imposes heavy restrictions and cannot be used when complicated

events like saturation of networks links have significant impact on the system’s per-

formance.

The use of scalar parameters to characterize parallel systems simplifies signifi-

cantly the modeling of systems, but at the same time, parameters can be difficult to

correctly determine. If the parameters are not correctly set, or if important parame-

ters are left out, the model will be inaccurate. Even if the scalar parameters are not

difficult to obtain, they represent simplified assumptions about the behavior of the

system, which will be a source of inaccuracy. Models produced with this technique

are the result of the modeler’s understanding about the system being characterized, so

these modeling techniques require that the modeler posses an adequate understanding

of the underlaying architecture to successfully define model parameters.

3.3.5 Modeling with Functions

Using functions improves the flexibility and expressiveness of the models, but can

also increase the complexity of the models, due to the need to determine the shape

and coefficients of the functions. Scalar parameter models are a simplified case of

modeling with functions, where the functions are constants.
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An experimental approach for performance optimization is presented in [5] the

authors propose a method where the idea is to have a library containing various

implementations of common procedures and their models. When including several

libraries there will be a certain probability of finding one that performs best in the

tested architecture. The model consist of environment variables, sets of values for the

environment variables, and the possible terms that will compose the formula model.

The models are regression fittings of the terms given by the user to some profiling

data. The results indicate a good prediction of the best implementation for a given

architecture, but the numerical predictions are not accurate.

3.3.6 Statistical Models

One more approach to modeling makes use of statistical modeling tools as variable

distributions and Markov models. It differs from the scalar parameter approach in

the sense that the parameters are statistical tools.

A measurement-based model of the execution of computationally-bound parallel

applications is presented in [13]. Monte Carlo simulation is used to solve the model

and predict the completion time distribution of the given application with the mea-

sured workload. The constructed model is used to evaluate scheduling policies, per-

formance effects of multiprogramming, and scalability of real workloads using Markov

models to express the effects of execution parameters.

We should note that these statistical parameters try to represent the asymptotic

behavior of the modeled systems. They are usually used to analyze parallel systems

whose workload characteristics are well known, being particularly useful for evaluating

architectures across a wide range of applications. Nonetheless, Markov models and

Petri nets are not as simple to use as mathematical functions or variable distributions.

As with other analytical techniques, statistical models do not give any explanation

of system behavior, and also require the user to express his understanding about the

parallel system behavior as parameters to the statistical tool.
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Chapter 4

Linear Performance Breakdown

Model

In this chapter we describe the methodology upon which our model is built, as well

as a description of the modules that make up the LBPM framework used to apply

our model

4.1 Model Design

In this section we first briefly discuss how the total execution time of a kernel program

as executed in a GPU device; then we describe how the model was developed and the

characteristics of the GPU hardware that have a major impact on the behavior of the

performance curve.

4.1.1 Calculating Kernel Execution Time

A simple formula for modeling the execution time of any given algorithm in a com-

puter system can be obtained by dividing the number of clock cycles required by the

algorithm and the duration of one clock cycle. For simplicity, we measure elapsed

time instead of clock cycles. Taking one step ahead in the analysis of computation

time, The time required to complete an algorithm can be divided into the time spend
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into performing numerical computations and time spend copying data from one level

of the memory hierarchy to another as shown in equation 4.1.

RunningTime = ComputationTime + DataTransferTime (4.1)

A more refined model suited for GPU computations considers that the data trans-

fer inside a GPU is divided into two categories. The First category refers to the data

transfers from global memory to shared memory inside the GPU, then from the shared

memory to the registers of the processing cores. In our model we do not consider

transfers between system memory and global memory because we assume zero-copy

data buffers, the main advantage of an APU system [11]. An important observation

is that it is not possible to measure with perfect accuracy the time elapsed for either

the floating point operations or the memory transfers. Taking this into consideration,

we obtain equation 4.2 that its a linear combination of three terms.

RunningTime =α1 · ComputationTime+

α2 · LocalMem.TransferTime+

α3 · GlobalMem.TransferTime (4.2)

The α parameters in the equation define the weight of each individual term of the

equation. They also help to interpret the breakdown of the performance, indicating

which component represents a greater contribution to the total processing time so

that optimization effort can be applied in the correct direction.

4.2 Modeling Methodology

To produce our model, we apply regression modeling to obtain estimates of the most

important performance factors. Making use of the execution time values as input,

our model then computes a collection of three parameters; each of these parameters

corresponds to one of the three steps in the computation of a general purpose pro-
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gram in the GPU, we propose the division of the execution time of a kernel program

into three mayor components: The transfer time between global and local memory

(Global-to-Shared Transfer G2ST), the transfer time between the local and private

memory (Shared-to-Private Transfer S2PT), and the time for floating-point opera-

tions (Processing Units Time PUT). This process is essential to capture the per-

formance characteristics of programs and allow us to define a suitable performance

model. Each of the three performance predictor formulas are defined independently

from each other and they are integrated into a linear combination formula using the

Least Squares Method described above to approximate the model curve to the exper-

imental data.

4.2.1 Performance Factors

The total execution time of a kernel program is dominated by three main factors

derived from the inner workings of the GPU architecture. Each of the αn terms is

estimated separately as described in the following discussion. As a starting point

we consider a sequential processing system. In such sequential system, P1 can be

estimated as the number of floating-point operations necessary to finish the task.

This would yield the total amount of Time Slots to complete the execution of an

algorithm, and by multiplying the number of times slots by the execution time of

a single time slot, we can have an estimate of the computation time. However, in

a multi-core system such as the GPU, operations are executed with some degree of

concurrency. The key is to estimate the degree of concurrency that can be achieved

by taking into account the capabilities of the hardware. To calculate it, an important

parameter is the total number of wave-fronts required to execute all the work-items

in a kernel launch, and in turn, the total number of wave fronts that can be executed

concurrently in the GPU. There is a number of factors that affect the actual level

of parallelism achievable. The resource usage per work-item (registers and shared

memory) and the number of CU in a device are the most notorious. Taking this into

consideration will yield an estimate of the time slots required to complete a kernel

execution. The maximum number of wave-fronts that can be executed concurrently
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in the GPU. To determine total amount of wave-fronts that can be executed at the

same time across the GPU, we must know how many wave-fronts can be executed

in a single CU. The maximum number of concurrent wave-fronts value depends on

per work-group memory needs. With that information it is possible to calculate how

many work-groups can reside in a CU, then the total amount of work-group that can

execute concurrently across the GPU is the obtained value multiplied by the amount

of CUs in the GPU. We will refer to this value as Concurrency Level, it is be one of

the most important values that determine the execution time of a kernel program.

GPUs have multiple banks of registers, and each bank is assigned to a different

task. A context switching involves a bank selector instead of expensive RAM loads

and stores, making context switching less time-consuming in a GPU. However, the

number of banks is limited, and it imposes a limit on how many Work-groups can be

executed concurrently, making this mechanism an important performance factor. In

general terms, our model takes a set of execution time measurements and applies a

formula that is composed of several parameters that encompass the characteristics of

GPU hardware and the execution of tasks in the functional units. That realization

brought important feedback about the most important parameters that define how

well a kernel program will execute in the GPU

Processing Units Latency

During execution not all Work-groups run necessarily concurrently. Each Work-group

is assigned to a Compute Unit (CU) where it is executed until the completion of

all its instructions. Each CU maintains the context for multiple blocks. Different

Work-groups assigned to each CU will be swapped in and out of execution with

the objective of hiding the latency of memory operations. The maximum number

of blocks per CU is a combination of device properties and kernel characteristics.

The most important consideration to evaluate the impact of tuning parameters in

kernel programs is the performance impact of this idling is a reduced computational

throughput.

In a sequential system, P1 can be estimated as the number of floating-point op-
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Figure 4-1: Wavefronts are the smalled scheduling unit. In the figure we can observe
a single work-group composed by two wave-fronts. Because the work-group-size is
not a integer multiple.

erations necessary to finish the task. This would yield the total amount of Time

Slots to complete the execution of an algorithm, and by multiplying the number of

times slots by the execution time of a single time slot, we can have an estimate of

the computation time. However, in a multi-core system such as the GPU, operations

are executed with some degree of concurrency. The key is to estimate the degree of

concurrency that can be achieved by taking into account the capabilities of the hard-

ware. An important parameter is the total number of wave-fronts required to execute

all the work-items in a kernel launch, and in turn, the total number of wave fronts

that can be executed concurrently in the GPU. There is a number of factors that

affect the actual level of parallelism achievable, however the influence of such factors

is not as critical as the hardware resources mentioned. Taking this into consideration

will yield an estimate of the time slots required to complete a kernel execution. The

maximum number of wave-fronts that can be executed concurrently in the GPU is

determined by the resources needed by each work-item and those available in each

CU, These resources are the number of registers and the size of the Local Data Store

(LDS), a especial portion of memory inside each CU[28, 14]. We define this factor in

terms of the number of floating-point operations necessary to perform the task (BigO

complexity) and the level of concurrency (Eq. 4.3).

ProcessingUnitsTime =
BigOcomplexity

ConcurrencyLevel
(4.3)

In turn, the level of concurrency is determined by the number of wave-fronts in the
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ND-Range WavefrontsNDRange and the Maximum number of these wave-fronts that

can be scheduled for execution at the same time across the GPU WavefrontsMaxConcurrent

as shown in Eq.4.4.

ConcurrencyLevel = WavefrontsNDRange

WavefrontsMaxConcurrent

(4.4)

Global-to-Shared Memory Latency

The global memory is the outermost level in the hierarchy and hence the slower mem-

ory. The number of memory transactions and how they occur from global memory to

shared memory is very important. work-group size and memory access pattern have

a strong impact on this factor. Global memory instructions are issued in order and a

work-item will stall if the data to operate with is not ready, the GPU needs enough

work-items to have a large pool of wave-fronts to swap in and out of execution to

hide latency [6, 20]. However, the interaction between work-group size and perfor-

mance is complex because not only there is the need for enough work-items, but also

it is important to have enough memory transactions in flight to saturate the memory

bus and fully utilize its bandwidth. We define this predictor in terms of the work set

size N , the number of wave-fronts in a work-group WFwg, and the work-group size

WGsize (Eq.4.5).

G2ST =
N ·WFwg

WGsize

(4.5)

Shared-to-Private Memory Latency

Once data has been moved to the global memory, it has to be transferred to the

Private memory so it can be readily available for execution by the PE inside the CUs.

Shared memory is faster to access than global memory, but access patterns must be

aligned to be efficient [17]. We define this factor as a function of the total number

of work-groups in the NDRange WGtotal and the maximum concurrent wave-fronts

WavefrontsMaxConcurrent as show in Eq.4.6.
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S2PT =
WGtotal

WavefrontsMaxConcurrent

(4.6)

Once the three predictors have been defined, we integrate them into a linear

combination as described in the following section 4.2.2. Table 4.1 shows a summary

of the performance predictors used to calculate the LBPM model.

Table 4.1: Summary of performance predictors
WFsizeinser Wavefront size
WGsize Work group size
WFwg Wave fronts in a work group
WFndr Wave fronts in the ND range

4.2.2 Integrating performance factors

To integrate the performance factors we follow a general approach where the response

of the system is modeled as a weighted sum of predictor variables plus random noise[4].

We have a subset of n observations for which values of the system response (execution

time) are known. Let us denote the vector of responses as y = y1, . . . , yn. For a point

i in this space, let yi denote its response variable and xi = xi,1, . . . , xi,p denote its p

predictor. In our model p = 1, 2, 3 each representing one of the computation steps

described previously. Let P = 1, 2, 3 denote the set of regression coefficients used in

describing the response as a linear function of predictors as shown in Equation 4.7.

g(xi,k) are the functions defined for each of the predictors. Each predictor function

is defined from GPU architecture parameters and kernel program parameters. They

are discussed in section 4.2.1.

f(yi) =

p∑
j=1

αjgj(xi,k) (4.7)

After this step we fit the regression model to the observations. The method of

Least Squares is commonly used to identify the best fitting model by minimizing

S(α), the sum of squared deviations of predicted responses given by the model from

actual observed responses.
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S(α1, . . . , αp) =
n∑

i=1

wi

(
yi −

p∑
j=1

αjxi,j

)2

(4.8)

Solving the system of equations of partial derivatives of S(α) with respect to αj

reveal the significance of response-predictor correlations. The αi values are used to

calculate the breakdown of the total execution time into the three major components

as illustrated by Eq.4.9.

ExecutionT ime = α1 · PUT + α2 ·G2ST + α3 · S2PT (4.9)

4.3 Performance Analysis of Tiled Matrix-Matrix

Multiplication based on LPBM

In order to obtain the experimental data necessary to apply the LSM and validate the

model, a program that executes the kernel function and profiles the execution time

was used. The kernel code is shown in listing 1. The program was run with all the

possible ranges of values for t for a matrix size of 1000. The t values range is from 1

to 16. It is not possible to create a tile of a width larger than 16 because currently

OpenCL restricts the maximum size of work-groups to 256 elements.

ソースコード 4.1: SGMM kernel with tiling

float output_value = 0;

for(int m = 0; m < Width/TILE_WIDTH; m++) {

local_tile_a[ty][tx] =

input_a[Row * Width + (m*TILE_WIDTH + tx)];

local_tile_b[ty][tx] =

input_b[(m*TILE_WIDTH + ty) * Width + Col];

barrier(CLK_LOCAL_MEM_FENCE);

for(int k = 0; k < TILE_WIDTH; k++)

output_value += local_tile_a[ty][k] * local_tile_b[k][tx];

}
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barrier(CLK_GLOBAL_MEM_FENCE);

output[Row * Width + Col] = output_value;

In our algorithm we work with single precision floating-point numbers grouped in

tiles ranging from one elements to blocks of 16 by 16 elements, to store the values

for our MMM kernel, we need at most 162 · 4 bytes of memory for one tile. Since a

work-group will be composed of three tiles, each tile need 3 kB, hence the maximum

allowed number of Work-groups is equal to the maximum possible amount. With this

information, it is possible to calculate how many work-groups can reside in each CU

and the total amount of work-group that can execute concurrently across the GPU

by multiplying by the number of CUs in the GPU.

4.4 Framework modules

As introduced previously in chapter 1, the proposed system features four main sub-

systems or modules that carry out the extraction of the performance-breakdown from

the program code files. Here we describe each module and its functions.

4.4.1 Auto-Profiling Module (APM)

In order to extract the breakdown of performance as with any modeling strategy,

it is nessesary to have both, program parameter information and machine parame-

ter informantion. For the LBPM the machine information includes a list of known

parameters specified in the available documentation of the hardware, as well as pa-

rameters defined in the program code. Besides that information, the actual execution

time of a program is used as another machine parameter information source. That

is the purpose of this module. It requires the user to substitute some predifined con-

stants that will be specified at compile time using the gcc flag -D. The module then

generates a set of runs to collect profiling data (execution time against work-group

size). It makes use of both, kernel and host code files.
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4.4.2 CLParser Module (CLPM)

To determine the performance formula for each performance factor (PUT, G2ST,

S2PT) it is nessesary to analyse the kernel program. To achieve an automatic code

analysis the source code is transformed into an Abstract Syntax Tree (AST), which is

the first task performed by this module. This is done using the python extension Py-

CParser [3]. After generating the AST of the program code, this module locates the

relevant variables i.e. those qualified as global memory-residing and local memory-

residing variables, and the control loops (such as for loops) to determine the perfor-

mance formulas. It needs the host and kernel program codes as input and generates

an Abstract Syntax Tree for each. The trees are transversed in order to locate the

key control loops, variables and function calls; information used to discover move-

ment of data between the different levels of the memory hierarchy and determine teh

formulas for each performance factor as output.

4.4.3 Linear Regression Module (LRM)

Once the profiling information is available, the regression coeficients are calculated by

this module. This module uses the profiling information and the performance formula

to calculate the Regression Coefficients by applying the Least Squares Method with

non-negativity constraint. The process is carried out using the R language[15] and

its module nnlsm.

4.4.4 Performance Breakdown Module (PBM)

The last module calculates the performance-breakdown using the Regression Coeffi-

cients obtained by the LRM and the performance formula determined by the CLPM.

The final output of the system is the performance-breakdown graph.
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Chapter 5

Experiments and Evaluation

This chapter shows the results obtained in the experiments, we discuss the interpre-

tation of these results.

5.1 Model Evaluation

In this section we describe the setup for the conducted experiments to collect perfor-

mance information. Then we present the results obtained from applying our modeling

methodology to the obtained data.

5.1.1 Experiments Setup

For our experiments we make use of two kernel programs: a Matrix Matrix Multipli-

cation (MMM) routine and a Fast Fourier Transform (FFT) routine. We also employ

two GPU devices whose characteristics are summarized in table 5.1. The results for

both GPU are calculated using the same model and the correspondent measured ex-

ecution times as input. To obtain the execution time information, we make use of

the timers provided by the OpenCL specification to inquire the total kernel execution

time. The timers have a resolution of 1ns. Each was program was run 1000 times

and the execution time used to train the model is an average of all the measured tim-

ings for each tile size.
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5.2 Experiments and Results

After running the experiments and collecting the data, the LSM is applied to estimate

the αn parameters in our model equation. The calculated performance from the

experimental results as well as the values calculated from the model is shown in

figure 2 As shown in figure 5.2, we can observe that the obtained results for the

model closely match those for the experiments. The reason for the discrepancies

are manifold, they can be attributed to non-uniformity in the execution of the kernel,

like bank conflicts and not enough latency hiding in some cases; as well as another

execution details not considered in the model like the influence of caches. Caches are

relatively a new addition in the graphics hardware and were not considered in this

paper for simplicity purposes. However, the accuracy achieved with the proposed

model reflects that the considered parameters are those who have a major impact on

the performance like the maximum number of wave-fronts that can run concurrently

across the GPU and the impact of the tile size in the number of memory request

that must be generated to transfer all the data elements. These factors explain the

observed saw tooth pattern when the tile size is greater than 8, because in the ideal

case the performance should continue scaling like the observed curve while the tile

size is less than eight. The values of the parameters in the model is also useful to

observe the different impact on the performance each separate component have, how

much they contribute to the total time amounted for the execution of a kernel. If

we breakdown the total execution times, so we can observe each term contribution,

we obtain the column chart depicted in figure 3. In this figure we can observe that,

as expected in a GPU device, the term P1 that corresponds to the floating-point

calculation time adds a small portion of the execution time and the major portion of

Table 5.1: GPU Characteristics
GPU Model AMD A8-3820 Nvidia GTX 660
Clock freq. 3.0 GHz 1.0 GHz

Compute Units 5 5
Device Memory 256 MB 2 GB
Local Memory 32 kB 512 kB
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Figure 5-1: Comparizon of the experiments profiling versus the model fitting for the
SGMM as executed in the APU device.

the execution time is contributed by the memory transfers. Specially global memory

that in the case of a tile size of 1 (i.e, no tiling applied) it amends to more than

60% of the total execution time. With the increase of the tile width, the global

memory transfer time is greatly reduced for the reasons explained in section 2. It

is also worth observing that at some point, the reduction in execution time is not

significant anymore with larger tile widths. This hints that enabling the hardware for

a larger number of threads per work group will not be synonymous of an important

improving in tiling algorithms. It is also worth noticing that since the global memory

transfer times is reduced for large values of tile width, an important portion of the

total time is attributed to the local memory transfers. This means that a improvement

on the nature of this kind of memory could bear a good impact on the performance

of the algorithm. As mentioned in the previous sections, another advantage of the
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Figure 5-2: Performance Breakdown graph of the SGMM kernel code. The graph
shows the execution time with performance breakdown versus tile size.

LSM method is that it provide us with the estimation for the model parameters. This

parameters can be used to produce a performance breakdown graph like the one show

in figure 5.2. Each corresponding αn tell to what extent each of the computation

steps adds to the total computation time. This is useful because programmers can

have a better understanding of where the optimization efforts can provide the best

gains or to know in which steps the application is not performing as it is expected.

5.2.1 Results Analysis

Figure 5-3 shows the results obtained from applying our model to a MMM kernel

program. On the right side of the figure it is possible to observe the performance

breakdown of the execution time. In this case, as the tile size increase, the G2SL

is greatly reduced. This can be explained by the global memory reads mechanism.

With a small work-group size, there is a larger number of memory requests and

these requests have a small number of memory words on them. The effect in the

memory system is a large number of request with high latency that will fail to occupy
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Figure 5-3: Results from a Matrix-Matrix Multiplication kernel program executed in
the APU device. The left size shows the accuracy of the model approximation. The
right side show the performance-breakdown bar graph.

the bandwidth of the memory channels. The left-hand sub figure figure shows the

total execution times for different values of work-group sizes configuration for a fixed

problem size, as in the case of matrix multiplication. Each horizontal bar is divided in

three different regions, one for each performance predictor in our model. Observing

and analyzing these results we find out that for a small work-group size, most of the

kernel execution time is spent in global-to-shared memory transactions. The result is

that most of the execution time is spent copying data to and from global memory, as

our performance-breakdown graph shows. With larger tile sizes the global memory

usage improves and the performance increases. The optimal performance is achieved

with the largest possible tile size.

In the case of the FFT kernel program, the effects of the tile size are more com-

plicated. While in MMM the optimal tile size was the maximum possible due to the

memory transfer efficiency, in this case that does not holds true. The memory trans-

fers improve but only until a certain point is reached, after that point, increasing the

tile size degrades the performance. The model reveals a increase in the PUL compu-

tation time.

In figures 5-4 and 5-5 This corresponds with the theoretical knowledge of band-

width being wasted with single-item memory requests to the memory controllers in

that particular case of a work-group size of size 1. As the work group size increases,

the relative time spent in global-to-shared memory is reduced. After a critical point,
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Figure 5-4: Results obtained from a FFT kernel program executed in the APU device.
The left size shows the accuracy of the model approximation. The right side show
the performance-breakdown bar graph.

Figure 5-5: Results obtained from a FFT kernel program executed in the GTX device.
The left size shows the accuracy of the model approximation. The right side show
the performance-breakdown bar graph.

the execution time do not improve further but it degrades instead. This can be ex-

plained by the saturation of resources in the GPU. By increasing the number of work-

items in a work-group, the occupancy of the GPU improves. this is, the PE will have

more Work-items to occupy them and increase the throughput of the computations.

However, each work-item require a number of registers and on-chip memory to keep

operands, its stack, and other types of data required for its execution. So increasing

the work-group size will improve the performance up to some point where register

spilling will occur and the performance will degrade. When a work-group is large,
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it will need more registers than the Compute Units in the GPU can provide, hence

causing register spilling and reducing performance. In the performance-breakdown

graphs for the FFT, we can observe a slight increment in the PUL after the point

where the work-group size causes a performance degradation. That increase in PUL

hints to a high arithmetic latency, where PE do not have enough work to process

with the data they receive in order to hide the arithmetic pipeline latency. This

hints to the need of a increased Instruction Level Parallelism via loop unrolling, mea-

sure that might provide a improvement of the performance at large work-group sizes.

From this reasons it is easy to assume that all kernels will have a similar behavior,

that increasing the work-group size will increment performance until some point, and

using that heuristic it would be possible to find the optimal work-group size. How-

ever, fir example, in the case of matrix-matrix multiplication, the optimal work-group

size is the largest possible size, the saturation of resources do not present a larger

performance sink as reducing the global memory traffic benefit it gives. It is clear

then, that finding the optimal parameters presents a challenge for the programmer,

because the performance trade off of different parameters is not possible to guess or

find a fixed rule that will apply to all cases. Our model can provide a programmer

with some insight about what is happening inside the GPU and could be the best

parameters for it, and the decide about further optimizations like loop unrolling etc.

[5]
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Chapter 6

Conclusions and Future work

In this chapter we summarize our work and disscuss the future directions to extend

the work presented in this dissertation.

6.1 Conclusion and Future Plan

We have developed and tested a Linear Breakdown Performance Model for GPU

devices. We originally developed the model to be used with the AMD’s Accelerated

Processing Unit. Our original motivation was investigate a performance model for

that particular device that has the characteristic of being a Integrated GPU. However,

after applying the same methodology to experimental data obtained from a Nvidia

GPU, we demonstrated the capabilities of the model using two different GPU devices:

an AMD’s APU (integrated GPU device) and a Nvidia Geforce GTX 660 (discrete

board) using two different kernel programs, GSMM and FFT . Both of the used

devices have a different architecture, one being a Nvidia card and the other being

a AMD card, additionally to the fact that the GTX 660 is a discrete card and the

APU is an integrated device. This shows that the model is capable of capture the

hardware characteristics of different types of GPU and offer an accurate breakdown

model.
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6.1.1 Future Directions

There are three posible future direction to follow from our previous results:

• Extensive testing of our model methodology using a wider range of ker-

nel routines that present one or both of compute-bound routines and memory-

bound routines. Then analyze and interpret the results obtained with our model

and prove its effectiveness. Available collection of kernel routines written using

the OpenCL standard include the Scalable HeterOgeneous Computing (SHOC)

Benchmark[1], a collection of benchmarking programs aimed to test the perfor-

mance and stability of heterogeneous systems.

• Further refinement of the model by two different directions: incorporat-

ing more detailed hardware and execution model features and utilize analyti-

cal modeling techniques that improve the model accuracy. One of the possible

sources of inaccuracy in the model is attributed to interaction between the three

predictors, and non-linearity in these interactions. To deal with this problem we

propose the use of Spline functions [4]. Splines can be used to divide the predic-

tor domain into a piece-wise functions divided by knots. We consider taking

the approach of setting knots in fixed points in the predictor domain corre-

sponding to the points where the number of wave-fronts required to cover a

work-group changes. This is because, as was observed in previous results, this

is an important point where a change in the tendency of the performance curve

is often observed. Incorporating detailed execution information like instruction

counters, cache hits and misses counters is not considered because of their un-

availability in some platforms. Although there exist several profiling tools for

GPU computing, they are not easy to use nor are they available for all Op-

erating Systems and GPU models. We are focusing on OpenCL as our base

programming model because of its universality, we consider that universality is

an important characteristic of this project.

• Automatic model generation The previous models where generated by hand.

Starting from the analysis of the kernel routines, its computational complexity
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and memory access patterns we developed the set of three separate formulas

that make up the model. However, to improve the usefulness of the model, an

automatic model generation framework is considered. Although this direction

is the most interesting one, it is also difficult to purse. Nonetheless, studies like

the one presented in [24] introduce an abstract interpretation of GPU kernels,

Work Flow Graph, used in their work to estimate the execution time of the

kernel. A tool based on the flow chart idea can be used to help set the modeling

of our performance model.

On the other hand, the other two aforementioned points, increasing the model

accuracy and test and analyze a wider selection of routines to improve the model, is a

direction that we consider feasible and will produce a tool that will be useful for GPU

programmers to reduce the time cost to produce programs with high performance.
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