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AUTONOMOUS LIMIT OF 4-DIMENSIONAL PAINLEVE-TYPE EQUATIONS
AND DEGENERATION OF CURVES OF GENUS TWO

AKANE NAKAMURA

ABSTRACT. Higher dimensional analogs of the Painlevé equations have been proposed from various
aspects. In recent studies, 4-dimensional analogs of the Painlevé equations were classified into 40 types.
The aim of the present paper is to geometrically characterize these 40 types of equations. For this
purpose, we study the autonomous limit of these equations and degeneration of their spectral curves.
We obtain two functionally independent conserved quantities H; and H» for each system. We construct
fibrations whose fiber at a general point h; is the spectral curve of the system with H; = h; for i = 1, 2.
The singular fibers at H; = oo are one of the degenerate curves of genus 2 classified by Namikawa
and Ueno. Liu’s algorithm enables us to give degeneration type of spectral curves for our 40 types
of integrable systems. This result is analogous to the following observation; spectral curve fibrations
of the autonomous 2-dimensional Painlevé equations Pi, P, Piv, PI?IS, Pl?f, PILI)IG, Py and Py are
elliptic surfaces with the singular fiber at H = oo of Dynkin type Eé1)7 E;1)7 Eé1)7 Dél), D§1), Dél)7
Dél) and Dfll), respectively.

1. INTRODUCTION

The Painlevé equations are 8 types of nonlinear second-order ordinary differential equations with
the Painlevé property’ which are not solvable by elementary functions. The Painlevé equations have
various interesting features; they can be derived from isomonodromic deformation of certain linear
equations, they are linked by degeneration process, they have affine Weyl group symmetries, they can
be derived from reductions of soliton equations, and they are equivalent to nonautonomous Hamil-
tonian systems. Furthermore, their autonomous limits are integrable systems solvable by elliptic
functions. We call such systems the autonomous Painlevé equations.

Various generalization of the Painlevé equations have been proposed by focusing on one of the
features of the Painlevé equations. The main two directions of generalizations are higher-dimensional
analogs and difference analogs. We focus on higher-dimensional analogs in this paper. The eight
types of the Painlevé equations are called the 2-dimensional Painlevé equations in this context, and
higher-dimensional analogs are 2n-dimensional Painlevé-type equations (n =1,2,...).

Recently, classification theory of linear equations up to some transformations have been devel-
oped. Since these transformations of linear equations leave isomonodromic deformation equations
invariant [23], we can make use of classification theory of linear equations to the classification of
Painlevé-type equations®. As for the 4-dimensional case, classification and derivation of the Painlevé-
type equations from isomonodromic deformation have been completed [62, 32, 30]. According to
their result, there are 40 types of 4-dimensional Painlevé-type equations. Among these 40 types of
equations, some of them coincides with previously-known equations from different derivations. Such
well-known equations along with new equations are all organized in a unified way: isomonodromic

deformation and degeneration.

2010 Mathematics Subject Classification. 34M55, 3317, 14H70.
Key words and phrases. integrable system, Painlevé-type equations, isospectral limit, spectral curve, hyperelliptic
curve, degeneration of curves.
LA differential equation is said to have the Painlevé property if it has no movable singularities other than poles.
2In this paper we use the term Painlevé-type equations synonymously with isomonodromic deformation equations.
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There is a problem to their classification. They say that there are “at most” 40 types of 4-
dimensional Painlevé-type equations. There is no guarantee that these 40 equations are actually
different. Some Hamiltonians of these equations look very similar to each other. Since the appearance
of Hamiltonians or equations may change significantly by changes of variables, we can not classify
equations by their appearances. Intrinsic or geometrical studies of these equations may be necessary
to distinguish these Painlevé-type equations. The aim of this paper is to start such intrinsic studies
of 4-dimensional Painlevé-type equations.

Let us first review how the 2-dimensional Painlevé equations are geometrically classified. Okamoto
initiated the studies of the space of initial conditions of the Painlevé equations [58]. He constructed
rational surfaces, whose points correspond to the germs of meromorphic solutions of the Painlevé
equations, by resolving singularities of the differential equations. Sakai extracted the key features of
Okamoto’s spaces of Painlevé equations and classified what he calls “generalized Halphen surfaces”
with such features [61]. The classification of the 2-dimensional difference Painlevé equations cor-
respond to the classification of generalized Halphen surfaces, and 8 types of such surfaces produce
Painlevé differential equations. Such surfaces are distinguished by their anticanonical divisors. For
the autonomous 2-dimensional Painlevé equations, the spaces of initial conditions are elliptic surfaces
and their anticanonical divisors are one of the Kodaira types [63]. We can say that the 2-dimensional
autonomous Painlevé equations are characterized or distinguished by the corresponding Kodaira types.

It is expected to carry out a similar study for the 4-dimensional Painlevé-type equations. However,
the straightforward generalization of 2-dimensional case seems to contain many difficulties. One of
the reason is that the classification of 4-folds is much more difficult than that of surfaces. In this
paper, we try to propose a way to overcome such difficulties. We consider the autonomous limit of
these Painlevé-type equations. While the geometry is made simple considerably in the autonomous
limit, the autonomous systems still retain the important characteristics of the original non-autonomous
equations.

Integrable systems are Hamiltonian systems on symplectic manifolds (M?",w, H) with n func-
tions fi = H,...,f, in involution {f;, f;} = 0. The regular level sets of the momentum map
F = (fi,.-..,fn): M — C™ are Liouville tori. The image under F of critical points are called the
bifurcation diagram, and it is studied to characterize integrable systems [10]. However, studying
the bifurcation diagrams may become complicated for higher dimensional cases. When an integrable
system is expressed in a Lax form, it is not difficult to determine the discriminant locus of spectral
curves. We can often find correspondence between the bifurcation diagrams and the discriminant locus
of spectral curves [7]. Therefore, we mainly study degeneration of spectral curves in this paper.

Let {H;}i—1,. 4 be a set of functionally independent conserved quantities of an integrable system
(M,w,H). We construct relatively minimal smooth projective surfaces over P!, whose fiber at a
general point h; € P! is the spectral curve with H; = h;. We examine the singular fibers at H; = oo
of such “spectral curve fibrations”. One of the advantage in studying the spectral curve fibrations is
that the following theorem holds for the autonomous 2-dimensional Painlevé equations.

Theorem (cf. Theorem 5). FEach autonomous 2-dimensional Painlevé equation defines an elliptic
surface, whose general fibers are spectral curves of the system. The Kodaira types of the singular fibers

at Hy = oo are listed as follows.
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Hamiltonian | Hyy | Hyv | Hiypg) | Hio,) | Hios) | Hiv | Huo | Hi
Kodaira type | 1§ H I3 I3 I3 Ive | I | II
Dynkin type | DSV [ DW | DM [ D | p{ [ EW [ ED | EM

Table 1: The singular fiber at Hy = oo of spectral curve fibrations of the autonomous 2-dimensional

Painlevé equations.

The Dynkin’s types in the above diagram are well-known to appear as the configurations of vertical
leaves of the Okamoto’s spaces of initial conditions [58].

For the autonomous 4-dimensional Painlevé-type equations, general invariant sets Mj—12H, 1(h,-)
are 2-dimensional Liouville tori. Such Liouville tori are related to the Jacobian varieties of the cor-
responding spectral curves. Instead of studying the degenerations of 2-dimensional Liouville tori, we
study the degenerations of the spectral curves of genus 2. As an analogy of the above theorem for the

2-dimensional Painlevé equations, we find the following;:

Main theorem (cf. Theorem 9). Fach autonomous 4-dimensional Painlevé-type equation defines two
smooth surfaces with relatively minimal fibrations ¢;: X; — P (i = 1,2), whose general fibers are the
spectral curves of genus 2. The Namikawa-Ueno type of their singular fibers at Hy = oo and Hy = o0
are as in Table 7 and Table 8 in Section 4 respectively’.

The table shows, for example, that the spectral curve fibration of the matrix Painlevé equations
HMat - gMat, HII\I/II&(‘})G), HINIH?E?) and HII\I/II“EBS) have the singular fibers of the Namikawa-Ueno type
Io-Ig—1,Ip =11 =1,1p =I5 — 1, I — I — 1 and Iy — I} — 1, respectively. Those of HII\\/I/at, Hll\f[at and
HMat are Iy — IV* — 1, Ip — IIT* — 1 and Iy — II* — 1. Therefore, the singular fibers at H}!' = 0o of the
spectral curve fibrations of the autonomous 4-dimensional matrix Painlevé equations are characterized
by adding one additional component of elliptic curve to those counterpart of the 2-dimensional Painlevé
systems.

There are various ways to have integrable systems in general. To identify the isomorphic equations
from different origins is often not easy; equations may change their appearance by transformations.

It is hoped that such intrinsic geometrical studies will be helpful for such identification problems.

Contents. The organization of this paper is as follows. In Section 2, after summarizing preliminaries,
we review the classification of the 4-dimensional Painlevé-type equations. In Section 3, we consider
the autonomous limit of these 40 equations. In Section 4, we introduce the main tool of our study:
“spectral curve fibration”. We study the fibers at H; = oo (i = 1, 2) of these fibrations to characterize
these integrable systems. In Appendix A.1, we have conserved quantities of autonomous 4-dimensional
Painlevé-type equations. In Appendix A.2, we review the local data of linear equations and explain
the symbols used in this paper to express spectral types. In Appendin A.3, we list the dual graph of
the singular fibers appeared in our table.
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2. CLASSIFICATION OF 4-DIMENSIONAL PAINLEVE-TYPE EQUATIONS

In this section, we review some of the recent progresses in classification of the 4-dimensional
Painlevé-type equations, and introduce notation we use in this paper. The contents of this section is
a summary of the other papers [62, 32, 30] and references therein.

The Painlevé equations were found by Painlevé through his classification of the second order alge-
braic differential equations with the “Painlevé property”: equations possess at most poles as movable
singularities. However, a straightforward application of Painlevé’s classification method to higher-
dimensional cases seems to face difficulties.* Therefore other properties which characterize the Painlevé
equations become important for further generalization. The Painlevé equations Py (J =1,...,VI) can
be expressed as Hamilton systems [51, 58].

dq O0H J dp 0OH J
- op At o

We list the Hamiltonian functions for all the 2-dimensional Painlevé equations for later use.

t(t — 1) Hyr (a’ f; t; q,p> =q(qg—1)(qg—t)p°
+{eqg—1) = Ca+B+v+e)alg—1t) +v(@—1)(g—t)}p

+ ala+ B)(qg 1),
tHy (ajyﬂ; t; q,p> =p(p+1t)q(q — 1)+ Bpq +vp — (a +7)tq,

Hyy (o, B5t5q,p) = pq(p — q — t) + Bp + ag,
tHu(Dg) (o, Bit;q,p) = p*q* — (¢° — Bg — t)p — aq,

¢
tHi (D7) (e t;q,p) = p°¢* +agp +tp+q, tHu(Ds) (t;¢,p) = p*¢* +qp — q — p

Hy (a;t;q,p) =p* — (@ +t)p—aq, Hi(tq,p) =p* — ¢° —tq.

The Painlevé equations have another important aspect initiated by R. Fuchs [19]. Namely, they
can be derived from (generalized) isomonodromic deformation of linear equations [28]. This aspect is
crucial for the classification of the 4-dimensional Painlevé-type equations.

Furthermore, these eight types of Painlevé equations are linked by processes called degenerations.
In fact, Pi,---, Py can be all derived from Py through degenerations. Along with the degenerations
of the Hamiltonian systems, the corresponding linear equations degenerate too. The notations used

in the degeneration scheme are also explained in Appendix A.2.

242 243 843
Hii(Deg) Hin(Dr) Hin(Dsg)
1+14+1+1 2+1+1 24141 4 ?
Hvyn Hy Hiii(De) Hrn Hiy
3+1 2+1
Hyy Hyy

4Works of Chazy [11] and Cosgrove [14, 15] are famous in this direction.
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2.1. Isomonodromic deformation and classification of linear equations. We review the clas-
sification of the 4-dimensional Painlevé-type equations [62, 32, 30] based on the classification of (Fuch-

sian) linear equations.

2.1.1. The classification of Fuchsian equations and isomonodromic deformation. If we fix the number
of accessory parameters and identify the linear equations that transforms into one another by Katz’s
operations (addition and middle convolutions) [29, 16], we have only finite types of linear equations.
The symbols for spectral types are explained in Appendix A.2.

Theorem 1 (Kostov[43]). Irreducible Fuchsian equations with two accessory parameters result in one
of the four types by successive additions and middle convolutions:

o 11,11,11,11

e 111,111,111 22,1111,1111  33,222,111111.

Remark 1. Note that only the equation of the type 11,11,11,11 has four singular points and the
other three types have three singular points. The three of the singular points can be fixed at 0,1, co
by a Mobius transformation. Thus the three equations with only three singularities do not admit
the continuous deformation of position of singularities. Only 11,11,11,11 admit the isomonodromic
deformation. It corresponds to the fact that the only 2-dimensional Painlevé equation that can be
derived from isomonodromic deformation of Fuchsian equation is Pyr.

The Katz’s operations are important for studying Painlevé-type equations, because the following
theorem holds.

Theorem 2 (Haraoka-Filipuk [23]). Isomonodromic deformation equations are invariant under Katz’s

operations.

Remark 2. Katz’s operations that do not change the type of the linear equation induce the corre-
sponding Béacklund transformations on the isomonodromic deformation equation. In fact, all of the
Dfll)—type affine Weyl group symmetry that Py1 possesses can be derived from Katz’s operations and
the Schlesinger transformations on the linear equations [52].

2.2. The classification of 4-dimensional Painlevé-type equations. In this subsection, we re-
view the classification of 4-dimensional Painlevé-type equations. From the classification of Fuchsian
type equations, we have four equations from which 4-dimensional Painlevé-type equations follow. De-
generations of these four equations yield 40 types of 4-dimensional Painlevé-type equations. We also
refer to some different origins of the systems in our list.

2.2.1. The classification of Fuchsian linear equations and isomonodromic deformation. Analogously,

Fuchsian equations with four accessory parameters are also classified.

Theorem 3 (Oshima [59]). Irreducible Fuchsian equations with four accessory parameters result in
one of the following 13 types by successive additions and middle convolutions:
e 11,11,11,11,11
e 21,21,111,111 31,22,22,1111 22,22,22,211
e 211,1111,1111 221,221,11111 32,11111,11111
222,222,2211 33,2211,111111 44,2222,22211
44,332,11111111 55,3331, 22222 66, 444, 2222211.

Remark 3. Note that the equation of type 11,11,11, 11, 11 has five singular points, and the next three
types have four singular points, and the rest nine types have three singular points. The equation of
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type 11,11,11,11,11 has two singularities ¢; and to to deform after fixing three of singularities to
0,1,00. The next three types of equation with four singularities have a singularity ¢ to deform after
fixing three of singularities to 0,1, 00. The nine equations with only three singularities do not admit

isomonodromic deformation.

Sakai derived explicit Hamiltonians of the above mentioned four equations with four accessory

parameters.

Theorem 4 (Sakai [62]). There are four 4-dimensional Painlevé-type equations governed by Fuchsian

equations.

e The Garnier system in two variables (11,11,11,11,11).

o The Fuji-Suzuki system (21,21,111, 111).

e The Sasano system (31,22,22,1111).

e The Sizth Matriz Painlevé equation of size 2 (22,22,22,211).

In this paper, we call these 4 equations derived from Fuchsian equation the “source equations”.

2.2.2. Degeneration scheme of 4-dimensional Painlevé-type equations. In order to obtain all the 4-
dimensional Painlevé-type equations, we now present the degeneration scheme of these source equa-
tions. The degenerations corresponding to unramified linear equations are treated in Kawakami-
Nakamura-Sakai [32]. The degenerations corresponding to ramified linear equations are written in

Kawakami [30].

Fuchsian Non-Fuchsian (unramified) Non-Fuchsian (ramified)
PDE | HEHH I g g et i iy, | Hey U G B HG
Hig Hid Hig HG HE Hg,! Hipd Hipd Hipd

e N, A, R, H

As shown in the following diagrams, there are 4 series of degeneration diagram corresponding to 4

“source equations”.

| 3+141 || 441 |
((1))((1)), 11, 1= (1)) (((1))), 11
1141 | [ 2404141 | HEHH Hen | 5 |
11,11, 11,11, 11 = (1)(1), 11, 11, 11 (WMD)
Hé—;}-i—l-i—l-ﬁ-l Hé—grl-i-l-i-l ’ 249241 ’ 342 ‘ Héar
(D)D), (1)(1), L (D)(1), (1)(D)
HE HELY
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| 3+1 |
ﬁ ((11))((1)), 111
| 2+1+41 | H
L (2)(1),111,111 (D(1)((1)),21
14+1+41+1 | H{S, Hef 4 |
21,21,111, 111 (11)(1),21,111 ((MDN((L))
i my N me [ ai
ND)(1)(1), 21,21 O X (11)(1), (11)(1)
H(Z}JgrlJrlJrl HI?SS
1(2)(1), (D)(1)(1)
Hé;lﬂﬂ
] | 3+1 |
-~ (1) (1)), 31
EETSTER 4(11)(1121,531,22 s
31,22,22,1111 Hxy
) £(2)(2),31,1111 | s ‘
S TM(111)(1), 22,22 P
HYs 1(2)(2), (111)(1)
S HSL;4
| 3+1 |
1((2))((2)), 211
e 2+1+1 | ,((2))((1\141)),22 | 1 |
£(2)(2), 22,211 Hpy™
22,22,51,211<<_*(2)(11),22,22 (((2)))£A(£t11)))
Hyy HMat ’ 242 ‘ Hiy
(2)(2), (2)(11)
Hj (D)

Here the symbol in the each upper box indicates singularity pattern of the linear equation. There are
one or more than one spectral types corresponding to each singularity pattern. In the each lower box,
we write the spectral types and the corresponding Hamiltonian. Explicit forms of the Hamiltonians
and the Lax pairs can be found in other papers [32, 30]. Some pairs of linear equations transform one
into another by the Laplace transformations. Since isomonodromic equations are invariant under the
Laplace transformations, we identify isomonodromic equations corresponding to linear equations that
transform one into another by a Laplace transformation. This is why the some Hamiltonians such as
Hf\?%, Hég““ appear twice in the diagram. This also explains the fact that there are boxes in the
diagram with two types of linear equations and only one Hamiltonian.

Remark 4. The naming of these Hamiltonians is temporary. As Sakai called the 2-dimensional systems
by the types of the spaces of initial conditions, it may be natural to call the 4-dimensional systems

from geometrical characterization.

Remark 5. While Kawakami-Nakamura-Sakai studied the degeneration from Fuchsian types, the the-
ory of unramified non-Fuchsian linear equations has developed. Hiroe and Oshima have classified all
the unramified linear equations with 4 accessory parameters up to some transformations [24, Thm3.29].
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Yamakawa proved that analogous theorem of Haraoka-Filpuk (Theorem 2) holds for unramified non-
Fuchsian equations [76]. From their studies, we can assure that the all unramified equations come
from 4 Fuchsian source equations by degenerations, and our list of the unramified case is complete.®

Remark 6. Some of these 40 equations look similar to each other. For instance, H. Chiba pointed out
that Hé;l and ﬁ%\fm look almost the same after a symplectic transformations of the variables.%

HEH =pi = (af + 1) p1+ s1q1 + pap2 + p2ga (@1 — g2 + t2) + Boga,

2
o q K2
Mat —p2 — <41 + t> pL— (90 + 3> q1 + p1p2 + p2g2 (1 — q2) + Goge.

One of the key motivations of the present paper is to geometrically distinguish such cases. We will
show in a later chapter that the types of singular fibers in their spectral curve fibrations are different.”

Let us review some of the historical origins of these equations.

The classification of the Garnier systems are studied beforehand by Kimura [36]. The cases corre-
sponding to ramified linear equations are completed by Kawamuko [35]. Koike clearfied some of the
relations between the Painlevé hierarchies and the degenerate Garnier systems. He showed that P,
P34, Ppp and Pry-hierarchies can also be obtained by the restrictions of certain Garnier systems [41, 42].
These relations are listed in Table 2

Hgar | (Py)y other derivations references
Hgfr (Pr), self-similarity reduction Kudryashov [44],
of the KdV Kimura [36]
(first Painlevé hierarchy)
H(l}:r? /2 (Ps34)s | self-similarity reduction Airault [6], Flaschka-Newell [18],
of the mKdV Ablowitz-Segur [1]
(second Painlevé hierarchy) | Clarkson-Joshi-Pickering [12], Kawamuko [35]
He. | (Pu)y Kimura [36], Gordoa-Joshi-Pickering [22],
A, -system Liu-Okamoto [47]
Hé;f (Prv)s Kimura [36], Gordoa-Joshi-Pickering [22],
Kawamuko’s system Kawamuko [34]

Table 2: Other derivations of some of the degenerate Garnier systems

What we call A5 and As-type Noumi-Yamada equations also appear in the degenerations of the
As-type Fuji-Suzuki system. A4-type Noumi-Yamada system is well known in the following expression:

(2.1) NYA % = fi(fi+1 — fire + firs — fira) + i, (i € Z/5Z),

as systems of equations for the unknown functions fo, ..., fi({ = 4) [55]. This systems coincide with
the Hamiltonian system Hf\?g*{ by putting p1 = f2, 1 = —f1, p2 = f4, and qo = —f1 — f3. Here the
parameters are & = —aq, f = —ag, 7y = —a3, § = —ay, € = —a3 [65]. Adler [5] and Veselov-Shabat
[74] also studied these equations independently prior to Noumi-Yamada [55]. In their terminology,
equations (2.1) is the Darboux chain with period 5. Note that the A; and A4-type Noumi-Yamada

systems also appear in the degeneration diagram of Dg-Sasano equation. Kawakami [30| further
Y PP g g q
3 4 5 3,5
. 342 242 542 342 .

obtained Hyq., Hyg,, Hyg,, Hgg' through degenerations.

5To the author’s knowledge, the classification of ramified equations is still an open problem.

6The following transformation to the H® in [32] yields HN®: p1 = 2p1, g1 — L. pa = —q2,q2 = pa2, k1 = —bo — K.

It is hoped to prove a theorem stating “If the types of singular fibers in the spectral curve fibrations are different,

the equations are not equivalent.”
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Hﬁé” Drinfeld-Sokolov hierarchy Fuji-Suzuki [21]
UC hierarchy Tsuda [71, 72]
Hf\?{} dressing chain Adler [5], Veselov-Shabat [74]
representation theory Noumi-Yamada [55]
UC hierarchy Tsuda [71, 72]
HEr holomorphy conditions Sasano [64]
Drinfeld-Sokolov hierarchy Fuji-Suzuki [20]
HMat gMat | prilat quiver variety Boalch [8, 9]

Table 3: Other derivations of some of the Painevé-type systems.

The last series is the degeneration of the sixth matrix Painlevé equation. They are called the
“matrix Painlevé equations”, since their Hamiltonians have beautiful expressions using matrix analogs

of canonical valuables. For instance, the H\l\,/llat can be expressed as follows:

t(t = DH (“(’fj; t Zf)) =] QQ - (@~ P’ + {3~ (a ~w)K)Q(Q ~ 1)

FQ-1)(Q 1)~ 20+ B+7+0)QQ - D}IP +ala+HQ)|.
Here the matrices P and @ satisfy the relation [P, Q] = (o« —w)K (K = diag(1,—1)), and canonical

variables can be written as

Pro

1
pr=trP, ¢ = =trQ, p2=—=, ¢ =—Q12Q01.
2 Q12

We have denoted the (1,2)-component of matrix P as P2, and so on. This explicit Hamiltonian HY®
is derived by Sakai [62] as the isomonodromic deformation equation of 22,22,22 211-type Fuchsian
equation. Kawakami [31] further generalized the matrix Painlevé systems to the higher dimensions
through isomonodromic deformation of mm,mm,m;m — 1;1-type equation and its degenerations.
Kawakami [30] also considered the degenerations to ramified cases and obtained Hy* (D7), HY(Ds)
and HIM“. The matrix Painlevé equations are also found by Boalch from a different approach [8, 9].

3. AUTONOMOUS LIMIT OF PAINLEVE TYPE EQUATIONS

In the previous section, we saw that there are 40 types of 4-dimensional Painlevé-type equations.
In this section, we consider the autonomous limit of these 40 types equations. We consider isospec-
tral limit of isomonodromic deformation equations. Using the Lax pair, we obtain two functionally
independent conserved quantities for each system. Therefore, the autonomous limit of 4-dimensional
Painlevé-type equations are integrable in Liouville’s sense.

3.1. Intgrable system and Lax pair representation. Let us recall the definition of integrability
in Liouville’s sense. A Hamiltonian system is a triple (M, w, H), where (M, w) is a symplectic manifold
and H is a Hamiltonian function on M; tx,w = dH. It is easily verified that {f, H} = 0 if and only
if f is constant along integrable curve of the Hamiltonian vector field Xg. Such a function f is called
a conserved quantity or first integral of motion. A Hamiltonian system is (completely) integrable in
Liouville’s sense if it possesses n := % dim M independent integrals of motion, fi = H, fs,..., fn, which
are pairwise in involution with respect to the Poisson bracket; {f;, f;} = 0 for all 4, j. This definition
of integrability is motivated by Liouville’s theorem. Let (M,w, H) be a real integrable system of
dimension 2n with integral of motion fi, ..., f,, and let ¢ € R™ be a regular value of f = (f1,..., fn)-
Liouville’s theorem states that any compact component of the level set f~!(c) is a torus. The complex
Liouville theorem is also known [4].
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Many integrable systems are known to have Lax pair expressions:
dA(x)
dt
where A(z) and B(x) are m by m matrices and z is a spectral parameter. From this differential

(3.1)

+ [A(2), B(x)] = 0,

equation, tr (A(x)k) are conserved quantities of the system:

d

pn tr <A(m)k> =tr (k [A(x), B(z)] A(x)k*1> =0.
Therefore, the eigenvalues of A(x) are all conserved quantities since the coefficients of the characteristic
polynomial are expressible in terms of these traces. In fact, the Lax pair is equivalent to the following

isospectral problem:
A(z) = Y Ag(z)Y 1,
dy
— = B(2)Y,
= B,

where Ap(x) is a matrix satisfying d‘%f(w) = 0. The curve defined by the characteristic polynomial is

called the spectral curve: det (yI,, — A(z)) = 0. Spectral curves are the main tools in this paper.

3.2. Isomonodromic deformation to isospectral deformation. Recall from the previous section
that the isomonodromic problems have the following forms:

Y
8.’17 - A(.%',t)Y,
Y
8t - B(x7t)Y7

and the deformation equation is expressed as

0A(z,t) 0B(z,t)
o Oz

We find the similarities in isospectral and isomonodromic problems; the only difference is the existence

of the term %—f in isomonodromic deformation equation. In fact, we can consider isospectral problems

(3.2) + [A(z, ), B(z,t)] = 0.

as the special limit of isomonodromic problem with a parameter §. We restate the isomonodromic
problem as follows®:

)4 -
0— = A(x, )Y,
dx (2,17,
)4 -
— = B(z,t)Y,
gr ~ Bl DY,
where t is a variable which satisfies % = ¢. The integrability condition % = % is equivalent to
the following:
0A(x,t 0B(x,t - -
(3.3) @.8) _ 59B@.Y 14w, 1), B, B)] = 0.

ot ox
The case when § = 1 is the usual one.” When 6 = 0, the term 6%—? drops off from the deformation
equation and we have a Lax pair in a narrow sense.'® The deformation equation 3.2 with ¢ is solved
by a Hamiltonian H(4). When ¢ = 1, the Hamiltonian H (1) coincides with the original Hamiltonian

8In some literature such as Levin-Olshanetsky [46], it is customary to use k instead of §.

9The Montreal group studied finite dimensional integrable systems by embedding them into rational coadjoint orbits
of loop algebras [3, 2]. Harnad further generalized their theory as applicable to the isomonodromic systems. Such nonau-
tonomous isomonodromic systems are obtained by identifying the time flows of the integrable system with parameters
determining the moment map.

101y another word, we mean a Lax pair in the sense of integrable systems. The isomonodromic problems are often

called as Lax pairs, but they do not give conserved quantities.
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of the isomonodromic problem. Therefore, H(9) is a slight modification of the Hamiltonian. When
0 =0, H(0) is a conserved quantity of the system.

Taking the isospectral limit of 8 types of 2-dimensional Painlevé equations, we can state the following
classically-known result.

Proposition 1. As the autonomous limits of 2-dimensional Painlevé equations, we obtain 8 types of
integrable systems with a conserved quantity for each system!!.

Proof. We take the second Painlevé equation as an example to demonstrate a proof. Proofs of the
other equations are similar.

5?; = Az, 0)Y, A(z,i) = (Agg3> (D22 + AP (e + A 1’(f)) :
X — By Bh= (AL D+ BD).,

where

- 00 o) 0 1
A3 (f) = ’ A2 () = ~ 7
() (0 1) (1) -p+¢*+t 0

(1) 7 —p+qg*+1 q e q 1

ACY(d) = pra . Bi() = _ ),
©) (p—¢—t)g—r2 p—¢ () p—¢*—t 0

AC) = UTACIU fori=1,2,3, By =U"'BU, U_<“ O).

The deformation equation (3.3) is equivalent to the following differential equations.

- d du
2p — ¢* — ¢, d%):?quré—m, — =0.

dg _
dt

The first two equations are equivalent to the Hamiltonian system

dg  OHu(s) dp  OHu(d)

a  Op ' dt dq

with the Hamiltonian Hyi(d) := p? — (¢*> + t)p + (k1 — d)g. When & = 1, it is the usual Hamiltonian
of Hy. Taking the limit 6 — 0, we obtain an autonomous system with a Hamiltonian Hy(0) =
p? — (g% + t)p + K1q. Since it is an autonomous system, the Hamiltonian is a conserved quantity. The
dimension of the phase space is two, and we have the half the number of conserved quantity. Therefore,
the autonomous second Painlevé equation is integrable in Liouville’s sense. The Lax pair'? and the
spectral curve of the autonomous second Painlevé equation are

dA(x)
dt

(3.4) + [A(z), B(z)] =0, det(yl — A(z)) =y? — (2® + t)y — K1z — Hir(0) = 0.

O

Remark 7. For the 2-dimensional cases, parameters of the Painlevé equations can be thought as roots
of affine root systems, and & corresponds to the nulroot [61, 63].

HThese conserved quantities are the autonomous Hamiltonians. They are rational in the phase variables g, p.

12\We rewrite A(z) = A(z,%) and B(z) = B(z, 1)
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3.3. The autonomous limit of the 4-dimensional Painlevé-type equations. We can also con-
sider such autonomous limit for higher dimensional Painlevé-type equations. From the coefficients of

the spectral curves, we obtain conserved quantities.

Theorem 5. As the autonomous limits of 4-dimensional Painlevé-type equations, we obtain 40 types

of integrable systems with two conserved quantities for each system'.

Proof. One of the simplest 4-dimensional Painlevé-type equation is the first matrix Painlevé equa-

tion [30]. The linear equation is given by

dA(z)
dt

A:OZIQ A:O2Q A:—PQZ-FHz B:OQQQ
0 02 02 ’ 1 _[2 02 ) 2 —Q P ) 1 12 02 )

_ qQ u _ p1/2 —pau (k2 O
0= <—qz/u Q1> e ((pqu — Ka)/u p1/2> 0= (0 n3> '

The spectral curve is defined by the characteristic polynomial of the matrix A(z);

+ [A(ib), B(LL‘)] =0, A(l‘) = (A(){L‘2 + Az + AQ) , B(:L') = Aopx + Bj.

det (yIy — A(z)) =y* — (2 2® + 2tz + h) y* + 20 + 2t + ha® + £2? + (th — K3) T+ g.

The explicit forms of h and g are

2
h=HM* =tr (P? — Q% — Q) = —2ps (p2g2 — K2) + % —2q1t —2q1 (¢f — q2) + 4q142,
g:=G"™ =g (p1p2 + 3¢ — g2 + 1) * — kap1 (p1p2 + 3¢} — @2 + ) — 26341

Since h and g are coeflicient of the spectral curve, they are conserved quantities of the autonomous

system. We can also check that h and g are conserved quantities by direct computation:
h:Xhh:{hvh}:07 g:th:{gvh}:07

where X, is the Hamiltonian vector field associated to the Hamiltonian h. The Poisson bracket in the

above equations is defined by

2
OF 0G O0G OF
rey=2% <8Qi8pi B 3(1@'51%) ’

i=1
Since
Oh  Oh  Oh  Oh
0q op dq2  Op2 | _—
rank | 59 9y g g | =2
0q1  Op1  Ogq2  Op2

for the general value of (q1, p1, g2, p2), we have two functionally independent conserved quantities of the
system. Hence the number of independent conserved quantities is the half the dimension of the phase
space. Thus the autonomous Hamiltonian system of Hamiltonian HIMat is integrable in Liouville’s
sense.

From similar direct computations, we obtain the desired results for all the rest of 4-dimensional
Painlevé-type equations. We have listed Hamiltonians and the other conserved quantities for the
ramified types in Appendix A.1. These spectral curves and conserved quantities can be calculated
from the data in the papers [62, 32, 30]. The only troublesome part is to find appropriate modifications
of the Hamiltonians in the presence of §. Otherwise, the computation is straightforward. O

13These conserved quantities are rational in the phase variables q1, p1, g2, p2.
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Remark 8. Tt is an interesting problem to study the invariant surfaces defined by H~!(c1)NG~1(cg) C
C* for ¢1,co € C, where H and G are functionally independent conserved quantities of the system.
As in other integrable systems [4], these Liouville tori would be completed into Abelian surfaces by
adjoining suitable divisors. However, the actual computation seems tough in our cases. Therefore, the
spectral curves are the main tool in this paper.

4. SPECTRAL CURVE FIBRATIONS OF INTEGRABLE SYSTEMS AND THEIR SINGULAR FIBERS

This section is the main part of this paper. We construct “spectral curve fibrations” associated with
integrable Lax equations and study their singular fibers. Applying this construction to our 40 types
of autonomous 4-dimensional Painlevé-type equations, we obtain the list of Namikawa-Ueno types of
fibers at H; = oo for i =1, 2.

4.1. Genus 1 fibration and Tate’s algorithm. Before discussing the genus 2 cases, corresponding
to autonomous limit of 4-dimensional Painlevé type equations, we discuss the genus 1 cases, corre-
sponding to autonomous 2-dimensional Painlevé equations.

Let us recall some of the basics we need: the Kodaira-Néron model and Tate’s algorithm. We can
construct the Kodaira-Néron model of elliptic curve E over the function field C(C) of a curve C' by
compactification and minimal desingularization of the affine surface defined by the defining equation
of F in the Weierstrass form. The possible types of singular fibers of elliptic surfaces were classified
by Kodaira [40]. Tate’s algorithm provides a way to determine the Kodaira type of singular fibers
without actually resolving the singularities [70].

In our case, we take P'(C) as the curve C. Let E be an elliptic curve over C(C) in the Weierstrass

form:
(4.1) y*> =23+ a(h)x +b(h), (a(h),b(h) € C[h]).

We may assume that for a(h) and b(h), the polynomials I(h) such that I(h)*a(h), [(h)%|b(h) are
only constants. Otherwise, we may divide both sides of the equations by I(h)® and replace z,y by
x/l(h)2,y/l(h)? if necessary. Let X1 be the affine surface defined by the equation (4.1):

X1 = {(@,9,h) € A2, ) x AL | 42 = 2"+ a(h) + b(R)}

In general, a fiber of a morphism defined by the projection ¢;: X1 — A,ll is an affine part of an elliptic
curve in general. Let n be the minimal positive integer satisfying dega(h) < 4n and degb(h) < 6n.
Dividing equation (4.1) by k%" and replacing & = z/h*", § = y/h3", h = 1/h, we obtain the “oco-
model”:

(4.2) 7> =2 +a(h)z +b(h),

where a(h) = a(h)/h*", b(h) = b(h)/h®" are polynomials in h. Let X5 be the affine surface defined by
equation (4.2). Let X7 and X5 be the projectivized surfaces in P? x Al; X5 C P? x A}L, P2 Xo — A}l.
We glue X; and X» by identifying (z,y,h) and (Z,y,h) by the equations above. Let us denote the
surface obtained this way by W. We call W the Weierstrass model. The surface W has a morphism
to¢: W — P = Al U A%L. After the minimal resolution of the singular points of W, we obtain a
nonsingular surface X. This nonsingular projective surface X together with the fibration ¢: X — P!
is called the Kodaira-Néron model of the elliptic curve E over C(h).

The types of the singular fibers of the elliptic surface X can be computed from the equation (4.1)
using Tate’s algorithm. From the Weierstrass form equation (4.1), we can associate two quantities:
A = 4a® + 27b%, j = 4a®/A. Here, A is the discriminant of the cubic 22 + a(h)x + b(h) and j is the
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j-invariant. The Kodaira types of the singular fibers are determined as in Table 4 by the order of A
and j which we denote ord,(A), ord,(j).

fiber type | Dynkin type | ord,(A) | ord,(j) || fiber type | Dynkin type | ord,(A) | ord,(j)
i - 0 >0 I; piV 6 >0
L, AW m —m I, bV 6+m | —m
11 - 2 >0 v Bl 8 >0
11 g 3 >0 IIr* o) 9 >0
v AL 4 >0 I Bl 10 >0

Table 4: Tate’s algorithm and Kodaira types

4.1.1. Spectral curve fibration. We introduce the main subject of this article, spectral curve fibrations
associated with integrable Lax equations. Let us consider a 2n-dimensional integrable system with n
functionally independent conserved quantities Hq, ..., H, and a Lax pair. Spectral curve fibrations of
this integrable system are surfaces ¢;: X; — P! whose general fiber at h; € P! is a spectral curve of
the system with H; = h; (i =1,...,n).

Theorem 6. Each autonomous 2-dimensional Painlevé equation defines elliptic surface as the spectral

curve fibration. The types of singular fiber at H = oo are listed as follows.

Hamiltonian | Hyi | Hy | Hiyoy) | Hmw,) | Himmy) | Hiv | Hu | Hi
Kodaira type | 1{ I I3 I3 I3 Ive | I | II
Dynkin type | DSV | DD | pY | p® | p | gD | M| gD

Table 5: The singular fiber at H = oo of spectral curve fibrations of autonomous 2-dimensional
Painlevé equations.

Proof. First, let us consider the first Painlevé equation

dzq 2
— = t.
e 6q° +

The first Painlevé equation has a Lax form

0A 0B —p ?Hqrt+g+t 0 =z+2¢q
_— _— = A = = .
5 J o +[A,B] =0, (x) <x iy ) ,  B(z) . 0

The spectral curve associated with its autonomous equation is defined by det (yIs — A(x)) = 0. This
is equivalent to

v =23 +ix+H, H=p—q¢+1iq

Let us write Hy as h for short. We view it as the defining equation of an elliptic curve over A}L. We
compactify this affine surface to obtain the Weierstrass model. After the minimal desingularization,
we obtain the desired elliptic surface.

The actual computation we need to carry out are as follows. Upon replacing h = h™!, z =
h=2z, i = h™3y we obtain the “co-model”:

(4.3) 7? = 7% + th*z + h°.

Thus we get fibration ¢: W — P! = A}L U A}l. The Kodaira-Néron model ¢: X — Py = A} U A%Z is
obtained from W by the minimal desingularization. The Kodaira-type of singular fiber at h = co can
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be computed using the equation (4.3). The discriminant of the cubic 34 th*z +h® and the j-invariant
are

453B12~ e 41'53~ i

27 + 213h?) 27 + 4t3h2
Thus order of zero of A and j at h = 0 is orde(A) = 10,0rds(j) = 2. Using Tate’s algorithm, we
find that the surface X — P! has the singular fiber of type II*. In Dynkin’s notation, this fiber is of
type Egl). Let us express the other two zeros of the discriminant A by hy and hA_. Since hy and h_

A =4 (ihY)° + 21 (B%)* = B (27 + 4P°h2), j= % (th")* = A

are both simple zeros of A, the Kodaira type of the fibers at hy and h_ are Iy, from Tate’s algorithm.

...... *
general ﬂ o I I ——‘— Il

fiber:

llipti ]
eliptic Q l ©
[0]

1

P h+ h- = _)-h :

The dual graph of the singular fiber of the Ko-
FiGURE 1. The elliptic surface daira type II* (Dynkin type Eél)). The numbers
constructed as the spectral curve in circles denote the multiplicities of components
fibration of the autonomous F. in the reducible fibers.

In the same manner, we construct the spectral curve fibrations from integrable Lax equations. As in
the case of the first Painlevé equation, spectral curves of the other autonomous 2-dimensional Painlevé
equations define elliptic surfaces. Other spectral curves too are curves of genus one for the general
values of the Hamiltonians. It is well known that curves with genus one can always be transformed
into the Weierstrass normal form. With the aid of computer programs, we can transform the spectral
curves of autonomous 2-dimensional Painlevé equations into the Weierstrass normal form'*. Once the
spectral curves are in the Weierstrass form, we are able to construct the Weierstrass model. After
the minimal desingularizations, we obtain the elliptic surfaces. We apply Tate’s algorithm to find the

Kodaira types of the singular fibers of these elliptic surfaces. [l

4.1.2. Liouwille torus fibration. We introduce another type of fibrations, the Liouville torus fibrations.
It is to view the defining equations of the autonomous Hamiltonians as elliptic fibrations. We think

of the time variable  as a constant.

Theorem 7. Fach Hamiltonian of autonomous 2-dimensional Painlevé equation defines elliptic sur-
face. Each function field k of P! and singular fiber at h = oo is as same as in the case of spectral

curve fibration.

Proof. Let us first consider the easiest case: the first Painlevé equation. We write h = Hj for short.
The Hamiltonian of the first Painlevé equation is h = p? — (¢ + tq). We view it as an elliptic curve
over C(h):
2 1,2 3., 7 1
{(q,p, h) € Ay X A | p"=¢" +tg+ h} — Aj.

As in the case of the spectral curve fibration, we can construct the Kodaira-Néron model of the elliptic
surface from the equation. Replacing ¢ = q/h?, p =p/h®, h = 1/h, we obtain the oco-model:

14Magma, Sage and Maple serve this purpose. Magma even calculates Kodaira types from the equations.
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After a compactification and the minimal desingularization, we obtain a regular elliptic surface whose

general fiber at h is the elliptic curve defined by p? = ¢® +tq+ h. The discriminant and the j-invariant

are:

I (0 T
4h10(27 + 413h2) 27 + 4t3h2°

Thus the order of zero of A and j at h = 0 are orde(A) = 10,0rds(j) = 2. It follows from Tate’s

algorithm that the singular fiber at h = 0o of the autonomous Pi-Hamiltonian fibration is of type IT*,

A =4 (0’ + 27 (h%)? = BO(27 + 48h?),

or Eél) in the Dynkin’s notation.
We use computer programs to transform the other Hamiltonians into the Weierstrass normal form.
The rest of the proof is similar to the proof of Hj. O

The agreement of singular fibers at h = oo of spectral curve fibrations and Hamiltonian fibrations
is not a coincidence. Autonomous Liouville fibrations are genus 1 cases of the Liouville tori fibra-
tions. Liouville tori are related to the Jacobian varieties of spectral curves, and taking Jacobians are
isomorphism in genus 1 cases by Abel’s theorem. It might be natural to study the Liouville tori fibra-
tion, but we have to deal with families of 2-dimensional Abelian varieties to study the autonomous
4-dimensional Painlevé-type equations. So the actual computation might be harder compared to cases
of 2-dimensional Painlevé equations. On the other hand, we only need to deal with genus 2 curves to
study spectral curve fibrations of 4-dimensional autonomous Painlevé type equations. Thus, spectral
curve fibration is the main object of the rest of this paper.

Using blowing-up process, Okamoto resolved the singularities of 2-dimensional Painlevé differential
equations and constructed the “spaces of initial conditions” [58]. While he deals with singularities
of the systems of differential equations, we deal with spectral curves or Hamiltonians themselves for
autonomous cases.

A space of initial conditions can be characterized by a pair (X, D) of a rational surface X and the
anti-canonical divisor D of X. Each irreducible component of D is a rational curve and, in the case
of the Painlevé equations, is called as a vertical leaf [61]. The intersection diagram of D is given by
that of the certain root lattice listed above.

Remark 9. The spaces of initial conditions are also considered for several cases of 4-dimensional
Garnier systems and Noumi-Yamada systems [37, 38, 68, 69].

Restricting our attention to autonomous cases as in this paper, the geometrical studies are much
simpler. The autonomous 2-dimensional Painlevé equations constructed from the spaces of initial
conditions were studied by Sakai [63].

4.2. Genus 2 fibration and Liu’s algorithm. We apply a similar method as in the previous
subsection to our 40 kinds of autonomous 4-dimensional Painlevé-type equations. While the genus
of spectral curves of autonomous 2-dimensional Painlevé equations are one, those of 4-dimensional
Painlevé-type equations are two. We construct spectral curve fibrations from explicit forms of spectral
curves in the Weierstrass form. Gluing two affine models by z = z/h, § = y/h3, h = 1/h, we obtain
the Weierstrass models. As we have used Tate’s algorithm to determine the fibers at A = oo of minimal
models for genus 1 cases, we use Liu’s algorithm for the genus 2 cases.

Let E be an hyperelliptic curve of genus 2 over the functional field C(h) with one variable h in the
Weierstrass form:

(4.4)  y* = ag(h)z® + ar(h)z® + az(h)z? + az(h)z® + ag(h)z? + as(h)x + ag(h),  (a;(h) € C[h)).

We may assume that for a;(h), the polynomials | € k[h] such that [*|a;(h) are only constants. (We can
divide both sides of equations by I8 and replace =,y by z/l,y/l® if necessary.) Let X; be the affine
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surface defined by equation (4.4):
()

X = {(x, y,h) € A2 X A,ll y? = apz® + a12® + asx® + asa® + asx® + asx + CLG}

A general fiber of the morphism defined by the projection ¢q: X7 — A}L is an affine part of genus 2

hyperelliptic curve. From projectivized equation
y2z4 = a0x6 + a1x5z + a2x4z2 + a3x323 + a4x224 + a5xz5 + a6z6
of (4.4), we also obtain

X1 CPPx A, P1: X1 — A}

Let n be the minimal positive integer satisfying dega;(h) < i. Dividing the both sides of equation
(4.4) by h" and replacing

oz __y ;_1
(45) x_h”’y_h3"’h_h’
we obtain the “co-model”:
(4.6) 7% = ag(h)z® + a1 (h)@° + azx(h)zt + as(h)z® + ag(h)z* + as(h)z + ag(h),

where a(h) = a(h)/h*", b(h) = b(h)/h®" are polynomials in the variable h. Let X5 be the affine
surface defined by the equation (4.6):

Xy CAZ ) x A} = A?

. 1
(#,9) @ghy P21 X2 A

Similarly, we have the closure Xo C P2 x A}l, P3: Xo — A%L. We glue X7 and X3 by identifying (x,y, h)
and (7,7, h) by equations (4.5). Let us denote the surface obtained this way by W. The surface W
has morphism to A,ll U A}Z (h-h=1), ¢: W — P! After the minimal resolution of singular points of

W, we obtain a nonsingular surface X.

4.2.1. Liu’s algorithm. We briefly review related works. The numerical classification of the fibers
in pencils of genus 2 curves are given by Ogg [56] and Ilitaka [27]. Namikawa and Ueno [53] have
completed the geometrical classification of such fibers (and a few missing types in [56] and [27] are
also added). There are 120 types in Namikawa-Ueno’s classification, while there are only 10 types in
Kodaira’s classification of the fibers in pencils of genus 1 curves.'® Liu gave an algorithm similar to
Tate’s algorithm for genus 2 case [48, 49]. Using his result, we can determine the Namikawa-Ueno type
of singular fibers from explicit equations of pencils of genus 2 hyperelliptic curves in the Weierstrass

form*©.

genus of types of singular | algorithm to determine
spectral curve | fibers in pencils types of fibers
2-dim. Painlevé 1 Kodaira Tate’s algorithm
4-dim. Painlevé 2 Namikawa-Ueno Liu’s algorithm

5K odaira type I, (n > 1) and I, (n > 1) are counted as 1 type, respectively.
16This algorithm is implemented by Liu and Cohen using PARI/GP library for the arithmetic situation: underlying

curve is SpecZ and consider the reduction at a prime p. This command can also be used from Sage. Although our
situation is different from the above arithmetic situation and such useful implementation is not applicable, Liu’s paper

is written in very general setting, so we can apply the algorithm written in his paper.
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We actually use the case when R = C[h], K = C((h)), m = hC[h], k = C in this paper. Let C be
a smooth projective curve, geometrically connected and of genus 2 over K. The curve C' is defined by
the equation

2= apz® + a1z’ + - 4 ag € K|z

with ag # 0 or a; # 0. The curve C admits a minimal model 2" over R. That is proper flat and
regular R-scheme, where generic fiber %2, is isomorphic to C, such that for all R-scheme 2" satisfying
these properties, the isomorphism 2 — 2; extends to a morphism 2" — 27, where 27 and 27
are the generic fibers.

Since the notion of stable model is effectively used in Liu’s paper [49] for the identification of the

minimal model, we review basic notions.

Definition 1. Let C be an algebraic curve over an algebraically closed field k. We say that C is
semi-stable if it is reduced, and if its singular points are ordinary double points. We say that C is

stable if, moreover, the following conditions are verified:

(1) C is connected and projective, of arithmetic genus p,(C) > 2.
(2) Let I' be an irreducible component of C that is isomorphic to P*(k). Then it intersects the other
irreducible components at at least three points.

It is easily shown that there exist seven possible stable curves of genus 2 over k [50].

Definition 2. Let C be a curve over K, R’ a dominant discrete valuation ring for R. A stable model
of C over R’ is a stable curve 4 over R’ with generic fiber isomorphic to C' x g Fr R/, where Fr R’ is
the field of fractions of R’.

Let F' be a finite extension of K and Rp the integral closure of R in . We call C has stable
reduction over F if it admit a stable model € over the localization R’ of Rr at the maximal ideal. We
denote %5 the special geometric fiber of ¢ over R'.

According to Viehweg [75], the special fiber 25 is completely determined by the three data:

(1) %5 (Liu [48, Thm 1]),
(2) “degree” (which is the thickness of singular points of ¥) (Liu [48, Prop 2|),
(3) Gal(L/K) over €5 where L is the minimal extension of K defined above (Liu [49, Thm 1,2,3]).

The point is that all three information can be computed from an explicit equation in the Weierstrass
form thanks to Liu’s theorems indicated in parentheses. 7 Let us cite one of them. In the following
theorem, Jy; (i = 1,...,5) are Igusa invariants [26] and Io; (i = 1,...,6) are degree 2i homogeneous
elements of Z[J2, Jy, Js, Jg, J1o] as in Liu [48].

Theorem 8 (Liu [48]). Let C be a smooth projective curve over K, geometrically connected and of
genus 2, and let Jo;, 1 <14 <5, be the invariants of C associated to the equation y*> = f(z). Then we
have
(I) (Igusa) €5 is smooth if and only if: Jg’iJfOi € R for all1 <5,
(IT) %5 is an irreducible elliptic curve with an unique double point if and only if: J%Ifzi € R for all
i and JS, 150 € m,
(II1) %5 is an irreducible projective line with two double points if and only if: J%Il_; € R for alli <5,
JIQOI[E’ €m, 112[;3 €m, and J4I;1 or JGZI;?’ 1s invertible in R,
(IV) €5 constitutes of two projective crossing transversally at three points if and only if: JQZiI;i eEm
for all 2 <1i <5,

ITWe here note a typo in Liu [49, Prop 4.3.1(d)](page 144). The term ag2°A§J5® should be ag?°ASJ;® as in the

code“genus2reduction” written by Liu and Cohen.
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’ Type ‘ Order of monodromy | stable type (Liu’s notation) ‘

elliptic[1] finite I

elliptic[2] finite \%
parabolic[3] infinite II, VI
parabolic[4] infinite IIL,VII
parabolic[5] infinite v

Table 6: Namikawa-Ueno’s elliptic and parabolic types and Liu’s stable model types

(Vi) €5 is the union of two irreducible components intersecting transversally at one point if and only
if:
(4.7) IIy2, Jioly°, 2l % € m.

In addition,
(V) €5 is the union of two elliptic curves intersecting transversally at one point if and only if: in
addition to (4.7), I3J;3 I;* € R, IaJi' I, ! € R.
(VI) €5 is the union of an elliptic curve and a projective line which has an ordinary double point if
and only if: in addition to (4.7), Iff[le €R, Jlolgfle em,
(VII) €5 is the union of two singular curves if and only if: in addition to (4.7), 112[4_3 € m, and
J10]214_3 cm.

4.3. List of singular fibers of the spectral curve fibrations. Let us state the main theorem of

this paper. We write H, = h, Hy = g for simplicity.'®

Theorem 9. FEach autonomous 4-dimensional Painlevé-type equation defines two smooth surfaces
with relatively minimal fibrations ¢;: X; — P! (i = 1,2), whose general fibers are the spectral curves
of genus 2. The Namikawa-Ueno type of their singular fibers at Hi = oo and Hs = oo are as in

Table 7 and Table 8 respectively.

Remark 10. Let us explain the notations used in Table 7. The Hamiltonians are the Hamiltonians
of 4-dimensional Painlevé-type equations. The explicit forms of non-autonomous counterparts can be
found in [62, 33, 30, 36, 35]. The spectral types indicate the type of the corresponding linear equations.
Such notations are explained in Subsection 2.1. “N-U type” means the Namikawa-Ueno type in the
paper [53]. When the fiber contains components expressible by the Kodaira-type, we also write its
Dynkin’s name in the column noted “Dynkin”. The column named “stable” tells us the type of the
stable model. This stable model is determined by the Liu’s theorem cited above (Theorem 8). The
“®” indicates the group of connected components of the Néron model of the Jacobian J(C). The
symbol (n) means the cyclic group with n elements.'® H,, is isomorphic to (2) x (2) if n is even and to
(4) otherwise. We also write Ogg’s type written in “On pencils of curves of genus two” [56]. Ogg uses
the notation “Kod” to express Kodaira-type and do not distinguish them, while Namikawa and Ueno
does. Ogg’s type might be helpful to see the rough classification. For example, all 8 types of matrix
Painlevé equations have the same Ogg’s type 14. The column “NU” means 5 types in Namikawa-Ueno.
Elliptic types are those with finite degrees of monodromy, while parabolic types have infinite degrees.
Elliptic[1] are those with stable model “I” in Liu’s notation (Theorem 8). We abbreviate as “ell[1]”.
We summarize such correspondences in the following table. The column named “page” indicate the
page number of Namikawa-Ueno’s paper where some data of the corresponding type can be found.

B =h= Hgar ey H2 = g = Hga, 5, for Garnier equations and Hy = h = H, Hy = g = G for the other ordinary
differential systems.

OWhen n = 0, (n) is the trivial group.
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Hamiltonian the Hamiltonian of the Painlevé-type equation
spectral type a spectral type of corresponding linear equation
N-U type | the type of fiber in the minimal model following the notation in Namikawa-Ueno
Dynkin indicate Dynkin type when the fiber contains Kodaira-type component
stable the type of stable model of the fiber
o the group of connected components of the Néron model of the Jacobian J(C).
Ogg the type of fiber in the minimal model following the notation in Ogg
NU 5 types of monodromy (elliptic[1],[2],Parabolic[3],[4],[5]) as in Namikawa-Ueno
page the page number of the fiber in Namikawa-Ueno’s paper

Proof of Theorem 8. Let us take Gar%, the most degenerated Garnier system, to demonstrate our

proof. The characteristic polynomial of a Lax equation of Gar% is expressed as
y? = 92° 4+ 9123 + 3tox® — ha + g,

where h = Hg/a 2r 9= Hg/a 2r ' Note that it is already in the Weierstrass form. Upon a replacement

T =uax/h, j=y/h3 h=1/h, we have an equation of the “co”-model:
7% = 9h0z5 + 96, h8a3 + 3hStea?® — K2z + ghb.

We obtain the Weierstrass model by gluing these affine surfaces. After the minimal desingularization,
we obtain the desired surface. In order to see the type of the singular fiber at h = oo of the surface,
we apply Liu’s algorithm. The Igusa invariants of the quintic can be calculated as follows.

32 e 3% -2 - - - -4\ 7
Jp = S5h't (-20 n 27t12h> L Ji= Sk (80 + 24870 + (—4oogt2 48667 + 81t14) h2)
3% 33 7 3% - 7 31955 s 7
Jo = ﬁh (320+O(h)), Js= —ﬁh (83200 + O(h)), Jio = 2ﬁh (=2°+0(h)) .
Since 5 - ords Jo; — 7 - orde J19 = 0 for ¢ < 5, the stable model has smooth fiber (type(I)) at h = 0o

from Theorem 8. With further computation, we find that the Namikawa-Ueno type of the singular
fiber at h = oo is VII* from Liu’s algorithm. This type is type 22 in Ogg’s notation [56].

9
VII*: H?

Gar,t;

Similarly, we can associate another surface to this system: the spectral curve fibration with respect
to another conserved quantity “g”. After replacing = = x/g, 7 = y/g¢>, § = 1/g in the above equation,
we obtain an affine equation around g = oc;

7% = 9525 + 9t15°2% + 3G o2 — GPha + gb.
From Liu’s algorithm, the fiber at ¢ = oo is type VIII — 4 in Namikawa-Ueno’s notation.

9
VIII - 4: Héar -

,t2

The numbers in circles denote the multiplicities of components in the reducible fibers. All curves are
(-2)-curves except the one expressed as “B”, which is a (-3)-curve.
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With the help of computer, we can transform the spectral curves of the other autonomous 4-
dimensional Painlevé equations into the Weierstrass normal form.?°

O

Remark 11. The dual graph of the singular fiber at H?;/a i G of the spectral curve fibration contains,

as a subgraph, the extended Dynkin diagram of the unimodular integral lattice?! DE- The Dynkin

diagram of DE is as follows.??

€2

€12 €1 €3

O—0C—=0

€5
)
U

er €8 €9 €10 €11

O—0O—"~0C—0C—70

O
O&

It follows that the Mordell-Weil group of f: X — P! is trivial ([39, Thm 3.1]). It can be thought as
a generalization of the fact (Thm 5) that the spectral curve fibration defined by the autonomous Pp
(the most degenerated 2-dimensional Painlevé equation) has the singular fiber of type Eg = Dy .

As Eg lattice is important as the “frame lattice” for the Mordell-Weil lattice?® of rational elliptic
surfaces [57], D4+g 44 lattice is important for fibrations of genus g on rational surfaces [60]. The
classification of rational elliptic surface by Oguiso-Shioda [57] owes to the classification of root lattices
contained in FEg, which is equivalent to the classification of regular semisimple subalgebras of the
exceptional Lie algebra of type Eg by Dynkin [17]. Sakai [63] studied autonomous 2-dimensional
Painlevé equations corresponding to rational elliptic surfaces in Oguiso-Shioda’s list. We can speculate
that there are (autonomous) 4-dimensional Painlevé-type equations corresponding to sublattices of

Df’z lattice. Thus the classification of sublattices of Df’z might be meaningful for the classification of

(autonomous) 4-dimensional Painlevé-type equations.?*

20We used Maple’s command “Weierstrassform” implemented by van Hoeij.

21he notation is as in Conway-Sloane [13]. In some literatures, this lattice is expressed as I'i2. Recall that the
lattice Dy is defined by D, = {(z1,...,zn) € (Z+ é)n :21 4+ -+ xn = 0mod2}. Then, D; is defined to be
Dy =DnU((3,...,3) + Dn), which is lattice when n is even.

226? =2 for i # 12 and e}, = 3.

23The Mordell-Weil group is the group of C(t)-rational points of the Jacobian of the generic fiber of ¢: X — P'. Under
suitable conditions, the Mordell-Weil group is a finitely generated abelian group. Shioda [66, 67] viewed Mordell-Weil
groups as FKuclidean lattices and studied them using their connection between intersection theory.

24Gait5-Sakakibara [60] gave the bound of Mordell-Weil rank for fibration on curves of genus g as 4g + 4, and studied
the case when the Mordell-Weil rank is maximal. Nguen [54] studied Mordell-Weil lattices of hyperelliptic type with
higher ranks rank J(K) > 4g + 1.



Hamiltonian ‘ spectral type ‘ N-U type Dynkin ‘ stable ‘ P ‘ Ogg ‘ NU ‘ page ‘

Hé:rljf““ 11,11,11,11,11 I oo - I | (2)2x H; | 33 | par[3] | p.171
HIE [ ()11, [ : T | Hy x B | 33 | par[4] | p.180
HE T @), () () I 5 i T | Hy x Hy | 33 | par[d] | p.180
HZE ] (1), (D(1), 11 T 5 o : I | Hy x Hy | 33 | par[4] | p.180

é;t”f o (D)2, (1)2, 11 15 59 - III | Hy x Hy | 33 | par[4] | p.180
Hg:jttll (), A1,11 | IV* =I5 — (=1) | B¢ —Ds —(=1) | VI | (3) x H; | 29a | par[3] | p.175
Hé;i:il (D(L),(H)(1),11 | IV* =13 = (=1) | B¢ —Ds —(=1) | VI (3) x Hy | 29a | par[3] | p.175
HZE T (()(()) | =15 = (=1) [ Br—Ds— (1) | VI | (2)x Hy | 29a | par[3] | p.177

é:j_ﬂ (((W)N(((1))),11 1+ — 115 B —1I} II (8) 23 | par[3] | p.178
ng;fﬂ (1)((1)),(1)(1) s — I E; — 11} I (8) 23 | par[3] | p.178

éff (((1)))2, (1)(1) I — I} Es — 11} II H, 25 | par[3] | p.176
mylws ((((1)))))2, 11 1 — 1T By — 11 i Hy | 25 |par3] | p.176

ot (1)2, (1)) [ IV =T = (=1) | Bs — By = (-1) [ V ©6) | 29 | ell2] | p.168

i (1))2,(1)2 [T =TI — (=1) | By = B — (1) | V 2 | 20 | enf2l | p.169
HY v (ML) IX-3 - I (5) 21 | ell[1] | p.157
He ((CCCCanN)))z VII* - I (2) 22 | ellll] | p.156
Hs 21,21,111,111 L, - 11 (16) 41 | par[3] | p.171
HFAS4 (11)(1),21,111 Iy - v (17) 41 | par[5] | p.183
H?% (1)2,21,111 42 - v (18) 41 | par[5] | p.183
HS%th (11)(1), (1)21 Iy 3 - Y (19) 41 | par[5] | p.183
Hpind (15, 1)) 1, i v | 20 | 41 | pars] | p1s3
Hyipd (1)3, (1)21 ;5 - 1A% (21) 41 | par[5] | p.183
Hé;g% (1)3, (1) 5 ¢ - v (18) 41 | par[5] | p.183
H{ (2)(1),111,111 Iy - I | (2) x (2) | 41a | par[4] | p.182
H{ ((11))((1)),111 v — 11, Eg — 11 11 (13) | 41b | par[3] | p.175
Hy' 31,22,22,1111 I3 —I5 =0 Ay—Dyi—0 | VI | 3)xHy | 2 |parf3]|pi7l
HE? (111)(1),22,22 L1} 0 A, —Ds—0 | VI | B)x H, | 2 |par/d] | p.180
HE (2)(2),(111)(1) I3 — 15— 0 Ay—Dg—0 | VII | 3)x Hy | 2 | par[4] | p.180
HEL (1)211,(2)(2) I3 —T;— 0 Ay—Ds—0 | VII | 3)xHs | 2 |par[d] | p.180
L (1)51, (2)(2) I — T — 0 Ay—Ds—0 | VII | 3)xHy | 2 |par[4]|p.180
a2 (1)4, (2)(2) I, —I:—0 Ay—Dy—0 | VII | 3)xHs | 2 |par[4] |p.180
Hyg! (14, (2)2 I, —I5—0 Ay —Dyg—0 | VII | (2)xHs | 2 |par[4] |p.180
Hyp 22,22,22,211 I —I;—1 Ip—Dy—1 v (2)2 14 | ell[2] | p.159
HM)at (2)(11),22,22 Ip—1; —1 Ip— D5 —1 VI H, 14 | par[3] | p.170
HiYithe) (2)(2),(2)(11) Ip—T5—1 Ip— Dg —1 VI Hy 14 | par[3] | p.170
H%?%” (2)(2), (11)2 Ih—I5—1 Ip—D;-1 VI Hs 14 | par[3] | p.170
Hifth, (2)2, (11)3 Ih—I;—1 Ip— Ds— 1 VI H, 14 | par[3] | p.170
H™ ((2))((11)),22 Ip—IV* — 1 I — Eg— 1 v (3) 14 | ell[2] | p.160
Hi™ (((2)(((11))) I — III* — 1 Io— Br—1 % 2) 14 | el[2] | p.162
e ((((an))))a I —1I" — 1 Io — Es — 1 \ 0 14 | ell[2] | p.160

Table 7: The singular fibers at H; = oo of spectral curve fibrations of autonomous 4-dimensional

Painlevé-type equations
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Hamiltonian ‘ spectral type ‘ N-U type Dynkin ‘ stable ‘ ® ‘ Ogg ‘ NU ‘ page ‘
Hé:rlj;““ 11,11,11,11,11 I oo - I | (2)2xH, | 33 | par[3] | p.171
g (1)), T 1o - [ (1) x(1) | 33 | parf3] | p.180
HLE T @0),00)0) sy - UL | (1) % (2) | 33 | par[4] | p.180
Heont, ()(1),(1)(1),11 Gy - IV | Hsx H, | 33 |par[s] | p.183
HZZT T (02, (D(1), 10 | IV 15— (=1) | Es—Dg—(=1)| VI | (3)x Hy | 29a | par[3] | p.175
Hé”;jz””“ (1)2, (1)2,11 II* —I5 — (1) | By —Dg—(=1)| VI | (2)x Hy | 29a | par[3] | p.177
Hyl et ((1)((1)),11,11 "= —(-1) | Be—Ds—(-1)| VI | (3)xHy | 29 | par[3] | p.175
HYZTT T (@O)W() | UF G — (<1) | Br—Ds— (<1)| VI | (2)x Hy | 29a | par(8] | p.177
HY2 - (W)((W)),()(A) | IV =IV* = (=1) | Bg — Es — (1) | V (3)° 29 | elll2] | p.166

o ()2, (D) [V~ = (=1) | Bs—Er = (=) | V 6) | 29 | enf2] | p.168

b (1)2, (1))((1)) I — 113 By — 113 11 (8) 23 | par(3] | p.178

e (((1)))2 (1)2 I — I3 By — 113 11 Hy 25 | par[3] | p.176

e (((1)))(((1))),11 IX -3 - I (5) 21 | ell[l] | p.157
H ((((1)))))2, 11 VII* - I (2) 22 | ell[1] | p.156

Coar (L)) v* - I (3) 19 | ell[1] | p.156

o ()2 VIII - 4 - I (0) 20 | ell[1] | p.157
G 21,21,111,111 111 - I (3)2 42 | ell[1] | p.155
Gid (11)(1),21,111 111, (par[5]) - v (9) 43 | par[5] | p.184
G (1)21,21,111 111, (par[5]) - v 9) 43 | parls] | p.184
G’ (11)(1), (1)21 113 (par(5]) - 1A% (3)2 43 | par[5] | p.184
Gt (1)s, (11)(1) 1L, (par[5]) - v 9) 43 | par[5] | p.184
Gl (1)3, (1)21 I (par[5]) - v (9) 43 | par[5] | p.184
Gips (s, ()3 Il (par(5)) : Vo @ | 43| pafs] | p1se
G, (2)(1),111,111 | IV—III* — (1) | Ay —E;—(=1)| V (6) 42 | enf2] | p.167
GRYy ((11))((1)),111 IX —4 - I (5) 44 | enf1] | p.158
GLe 31,22,22,1111 VI - I (2)2 4 | en1 |p.156
GE» (111)(1),22,22 101, (par[4]) - 111 H, 5 | par[4] | p.182
GE (2)(2),(111)(1) 111, (par[4]) - 111 H, 5 | par[4] | p.182
G2i? (1)211,(2)(2) 1115 (par[4]) - I H; 5 | par[4] | p.182
G (1)51,(2)(2) 114 (par[4]) - 11 H, 5 | par[d] | p.182
Gil? (1)a, (2)(2) 1115 (par[4)) - 111 H; 5 | par[4] | p.182
Gl (14, (2)2 Il (par[4]) - 111 Hg 5 | par[4] | p.182
GMat 22,2222 211 215 — 0 2D; — 0 v (2)2 24a | ell2] | p.159
GMat (2)(11),22,22 2IF — 0 2D5 — 0 VII H, 24 | par[4] | p.181
Gt (2)(2),(2)(11) 2L — 0 2Dg — 0 VII H, 24 | par[4] | p.181
GNi(by) (2)(2), (11) 215 — 0 2D7; — 0 VII Hj 24 | par[4] | p.181
Gliiibs) (2)2, (11)2 215 — 0 2Dg — 0 VII Hy 24 | par[4] | p.181
GNat ((2))((11)),22 2IV* — 0 2E — 0 % (3) 26 | ell2] | p.165
GMat (2N ) 211" — 0 2E; — 0 v (2) 27 | ell]2] | p.168
GMat (((11)))))2 2IT* — 0 25 — 0 v 0 28 | ell2] | p.163

Table 8: The singular fibers at Ho = oo of spectral curve fibrations of autonomous 4-dimensional

Painlevé-type equations
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APPENDIX

A.1. Conserved quantities. The autonomous 4-dimensional Painlevé-type equations have two func-
tionally independent conserved quantities. In this subsection, we list these conserved quantities for
the ramified equations.?> One of the reason is that the other conserved quantities than the Hamilto-
nians have long expressions. Writing them for “less-degenerated” systems take huge spaces. But they
are easily computable from data in the previous paper [32]. We only give conserved quantities for
autonomous version of equations in Kawakami [30]. The Lax pairs for these ramified equations will
be written in his forthcoming paper [30]. We list Hamiltonians H’s with §,2% and the other conserved
quantities G’s.

There are 5 ramified cases from the degeneration of As Fuji-Suzuki system.2”

- - 1 -
Hﬁ‘s‘?’ = Hi(Dg)(—05°,8 + 69 + 0138 q1,p1) + Hir(De) (05 — 67,05 — 07 — 0%, go, p2) — ;le((h(h +1),

Gpg = 09t (Huu(De)(—65°, 61 + 69; £ 01, 1) — p1pa)

+ (q12 — 1) (05°p2 — (69 — 09) p1 + pip2 (01 + 69 — 05+ (p1 — ) g1 — (p2 — 1) q2)) ,
3+2 1 oo
HZps = Hu(D7)(—0Y: g1, p1) + Hin (D7) (05 — 6985 g2, p2) + 7 (P2q1(p1(q1 + q2) +05°) — 1)

3+2
2 = (@2 —q1) ((09 — 69) pipoqn — 05° P31 + P1P3Q1G2 + PIP2ai + P1ay + pipat)
+ 603 (tHi (D7) (=003 8 q1,p1) — q1 + p1paqi) — 05T Hur(D7)(—6; 85 g1, p2) + papagi (65 — 65°),

4

443 1
H 82 HIII(D7)(91 at7(I1 Pl) +HHI(D7)(5 6’1 775 Q2,p2) 75101(]12926]2 - <Zi +p1 +p2) )

.3 1 .
Gips = o (p2 (03° + pray — p2g2) (1 —plfﬁt]z) + (p1 — P2) @5 — t),

343 1
H2pZ = Hui(D7)(07° — 05°: 8 q1,p1) + Hun (D7) (8 — 609°5 85 g2, p2) — TPI01P2G2 — (p1p2 + p1 + p2),
3
34
Gipd = (pp2qr — p3g2 + 0°p2 — 1) (—p1 (a2 — £) + 05°q2) — p2 (qra2 — ﬂ ;
t48 1 t - 1
Hyps = 3 PiGi +dqpr — q1 — o + Hui(Ds) (15 g2, p2) + = 7 ( praipags + B2 4 qr + qz)
4 1 3 3
Cirs = 7, (a1 — p2g2) (Mp2BEE + P12 T + Ba3) + 2 (M@ — p2gs — Q2)) :

There are also 4 systems that are ramified derived from Dg-Sasano system.

349 ~ ~ 1
Hzy. = Hmui(D7)(0o + 205°;t; g1, p1) + Hin(D7) (=003 t; g2, p2) + ;(2292%(1?1(11 — 6o — 07°) — qu),

342 .
Gls. = DPIP3di — Pia; — 201P302a; — 291030043 + Pip200di — 2p1p305°4F + tpp3al + piv3asds

+p305ai — pipafai + p3(05°)2aF + Piaedi + prbodi + p1paabodi — pip2q2fodi + p107°qT

+ 2p195q207°07 + 2p30007°qF — p1pabolicat — pr05°ai — 2p1p5qa05Tal + pipatods qt

+ paqab3a — pip2gefoqr — tpray — 2ip1psgaqy — tp300q1 + P1p3a3foqr + tprp2fo

+ p1g200q1 — tp305°q1 + P3q20007°q1 + 2p1p5a305° 1 — 203057 a1 + 2p1g205°

+ 2p3¢20005°q1 — 2p192020005°q1 + 0005°q1 + 205¢207°05°q1 — p20007°05° g1 + 05°05°
25We do not write conserved quantities of the Garnier equations here, since the conserved quantities are just au-

tonomous limit of two Hamiltonians. Such Hamiltonians are listed by Kimura [36] and Kawamuko [35].

26Hamiltonians for the case § = 0 is the conserved quantity.

27Although we obtain Garnier equations of ramified types from degenerations of As-type Fuji-Suzuki system, we are

excluding Garnier systems.
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+ tp1p3as + P35 (05°)% + tp2(05°)% + q2(05°)% — pag8o(05°)* + tp1go + tp3q200 — tp1pag2bo
+ 1p3G205° — P2q28305° + P3q30005° + 2tpa0o63° + q20005° + tp207°65°,

342 - . 1 :
Hio. = Hii(Dr) (0o + 205°; 5 q1, p1) + Hini (D7) (—6o; t; g2, p2) — 7 (2p2q1 + q1 + tp2)
T2 ap2g000 00— 00(65°)2pags + 30005262 + 000 pagy + 2000 — 203
KSs oY1 DP2q2 o\U1") P2g2 oY1 P292 oY1 P2q1 oY1 P1P24192 0P2G2
+ 202p3¢5 + 205p2q1 + 305p1p2q1g2 — Bop1p2ai — 300p1130145 — Oopipadice
— 300p3q192 — 30op1q1qz + (05°)°p3a3 — 207°p1p3q1a5 — 205°p5q1g2 — 207°p1g1g2
— Oop1pagot + p1p3g3t + Pigel + praof + P3G + 1@ + PIN3GE + Pidiee
+ 2p1P3qige — 200pat — 07°pal + 30005°qa + 20592 — 200q1 + (65°)%q2 — 07°qu,
5.9 - . p2 (Bo+1—-0)pq | 1
Hyg, = Hui(Ds)(t; q1, p1) + Hir(D7)(—06o,t; g2, p2) + 25 ! = ) + o P2,
f+2 1/ 2 (o7 2 9 4 ;23,72 3 2
KSs = 2 ps (P142Gi (2t — 6oq192) + Pidsar — boqeant — a3q7 + 1) + qiga(piqr — 1)
1
— pogi (Qopiaadi + Oop1 (f — Ooqiqe) — o + 1) + i1 (T — 90(11(12)) :
3+5 1 - - G192 | @1+ q
Hig ! = 7 (Pt + dqip1 — a1 — t/q1) + Hiu(Ds)(%; g2, pa) — 2 2 + .
sve qigd pigit t 1 ; - 9.3 3
Gies = = ——— +ta+@+— — ——=2p2q2 + 1) (t (2p2q2 + 1) (t — p1qy) + 419207 -
Kss 7 g2 % @a  Aqt ( ) (H ) (= piar) 1)

We have three ramified systems of matrix Painlevé equations. G%{[Ia(tD and GMat_ | are too long and
7) HI(Ds)
HIMat is already written in the main part of this paper. So we skip writing conserved quantities of

autonomous matrix Painlevé equations.

A.2. Local data of linear equations. In this subsection, we explain the notion of spectral type used
in this paper. We follow the notion used in Oshima [59] for Fuchsian linear equations, Kawakami-
Nakamura-Sakai [32] for unramified linear equations and Kawakami [30] for ramified equations.

For the classification of linear equations, we need to discern the types of linear equations. We review
the local normal forms of linear equations, and introduce symbols to express such data. We study
linear systems of first-order equations

dY
A8 — = A(2)Y.
(A.8) I (z)
We first consider the Fuchsian case where
A = L.
0=3

We assume that each matrix A; is diagonalizable. The equation can be transformed into

= Y(z), TW: diangonal

by the transformation Y = P(m)f/ We express the multiplicity of the eigenvalues by a non-increasing

sequence of numbers.

Example 1. When T = diag(a, a, a, b, b, ¢), we write the multiplicity as 321.
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Collecting such multiplicity data for all the singular points, the spectral type of the linear equation
is defined as the n + 1-tuples of partitions of m,
l;
1 1,2 n

m%mQ...mll,ml...mi,...,ml...m&,m‘fo...mlo:o, E m; =m for 1 <Vi<mnori=oo]|,

where m is the size of matrices.

Example 2. When TW(z) = diag(a,a,a,b), T®(z) = diag(c, ¢, d,d), T® (z) = diag(f, f,9,9),
TW(x) = diag(h, i, j, k) we write 31,22,22,1111.

Now we explain the way to obtain the formal canonical form around each non-Fuchsian singular
point. We also explain that these canonical forms can be expressed by the refining sequences of
partition. Let us assume that the coefficient matrix A(z) of the equation has a singularity at the
origin, and that A(x) is expanded in Laurent series as follows:

dy A0 Al
(A.9) da;:<x7“+1+x7“+”'>y'
Here, A7 (j = 0,1,...) are m x m matrices. We assume that A° is diagonalizable. With an appropriate
choice of the gauge matrix, we can assume that A° is diagonal and that its eigenvalues are ¢7, ... t0 .
When r = 0, then the origin is a regular singular point. Let us assume that » > 0. If t? # t? (1<
i <l, l+1<j <m), then a gauge transformation by a formal power series Y = P(z)Z (P(x) =
I+ Pix+ Pyx?+--- ) leads to the following form:

dz (B B! p
& \egan )

Here, we can transform B into the following form:
A i 0 : ,
B' = .|, By € Mi(C), Byy € My, (C).
0 B, 11 € Mi(C), Bjy € Mypi(C)

With successive application of this process, the equation (A.9) is formally decomposed to direct sum
of equations whose leading terms have only one eigenvalues respectively. When the leading term of
the block is diagonalizable, that is when it is scalar matrix, then this part can be canceled by a gauge
transformation by a scalar function, so that the equation is reduced to a equation with smaller r.

Remark 12. When AY is not diagonalizable, in order to decompose the system into equations of smaller
sizes, we need to take an appropriate covering x = £*. In that case, the transformation matrix P(x)
is a Puiseux series in . The equations with this property are called ramified. When we do not need
to take coverings, that is when k£ = 1, we say that the equations are unramified. Il

Unramified non-Fuchsian case. When the equation (A.9) is unramified, it can be transformed into the

dYy T T T,
—( 0 +i+...+r+...>y
T x

following form:

E T\ gl
We can assume that T)s are diagonal matrices and that Tp = Ag. Furthermore, we can eliminate the
regular terms by an appropriate diagonal matrix with formal power series components. Thus, the
equation (A.9) can be transformed into the following form by gauge transformation of a formal power
series:

dy To Ty T,
Al — = 4.4+ ")y
(4.10) dx <x7"+1 ettty )
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If we write the diagonal components of T; as t; (j = 1,...,m), then a canonical form around the
origin can be described by the following data:

z=0
0 1
)t t
N U

We write down such formal canonical forms for each singular point, and put them together. This kind
of table is called the Riemann scheme of the linear equation. As we can see from the procedure to
obtain the canonical form, the leftmost column splits into several groups as equivalence class of values.
In the second column from the left, these groups splits further, and so on, we get a nested columns.

We describe such nesting structure by refining sequences of partitions of m and call it the spectral
type of the singular point. We line up such spectral types of each singular point, and separate them
by commas. We call it the spectral type of the equation. In such a case,

T T
exp (_rl?r + — Tl) :ETT

X

is the fundamental solution matrix for the formal canonical form (A.10). The degree r of the polyno-
mial is called the Poincaré rank of the singular point. When the singular point is of regular type, the
Poincaré rank is 0. When the equation is ramified, this part is a polynomial in z=1/% and the Poincaré
rank is non-integer rational number. If we want to express only Poincaré ranks at each singularity,
we attach Poincaré rank plus 1 to each singularity, and line them up, and separate them by + signs.
When the equation is unramified, Poincaré rank plus 1 is as same as numbers of columns appeared in
refining sequences of partitions at each singularities.

Example 3. For instance, let us consider the following normal form:

a 0 00 c 0 00 f 000
dy (z) 110 a 00 10 ¢ 00 0 g 0 0],
={= +— + = Y.
dx {x300b0 220 0 d 0 xOOhO}
0 00 b 0 0 0 e 0 0 0 4
a a b b
We align the diagonal entries as ¢ ¢ ¢ d e. We express the degeneracy of the eigenvalues by
fg h i
22
211 . Each row expresses a partition of the matrix size m. The partitions in the lower rows are a
1111

refinement of a partition in the upper rows.

In order to express the degeneracy of the eigenvalues shortly, we use parentheses. Firstly, write
the finest partition of m in the lowest row, which expresses the degeneracy of the eigenvalue of 7).
Secondly, put the numbers that are grouped together in the second lowest partition in parentheses.
We continue this process until the highest row.
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Example 4. The local data of the example above can be expressed concisely using the parentheses.

=0

a c f a a b b 22 level 2 | ((11))((1)(1))
0 ¢ g =3¢ ¢ de—q21 p— ((I))((1)(1), |level 1| (11)(1)(1)
b d h f g h i 1111 level 0 1111

b e 1

The way to restore the degeneracy of eigenvalues from the symbol ((11))((1)(1)) is as follows.

e Add the numbers in the outermost parenthesis — 22
e Add the numbers in the inner parenthesis —211
e Write the numbers in the innermost parentheses —1111

We express the types of linear equations by aligning such data for each singular point.
Ramified non-Fuchsian case. We have the following formal normal form at each singularities (Hukuhara [25],
Levelt [45] and Turrittin [73]). Let us assume that = 0 is an irregular singular point. Then, there
exist a positive integer ¢, rational numbers with the common denominator ¢ such that rg < r; <--- <
Tno1 < Tn = —1, diagonal matrices Ty, ..., T}, a transformation z = F(z'/9) in the class of formal

series in z1/9, such that the transformed system have the following form;

d
(A.11) £ = (Toz"™ + -+ Tp_yz™ + T )z
Let us assume that the diagonal matrix T} has tf fori=1,...,m as diagonal components. We express

the local data by the following table:

ot t
tm tm tn

Let us introduce a way to express such local data compactly with examples.?®

Example 5. Let us assume the following normal form;

dz

I {con_% + 019230_% + colzz 2 + c;;Qx_% + C4Q2$_% + C5Ig$_1} z,
T

where Q = diag(1,w,w?). This normal form can be expressed as

=0 ()

Co C1 C2 C3 Cy4 Cs

Cow Clw €2 (3w caw® ¢

C()(/.)2 ClwW €9 03w2 C4W Chy

. _s _8 .
Two systems in the lower rows % = (cow:z 34 .. ) z9 and % = (cowx 34 .. ) z3 can be obtained

8 1 1 1 . .
by the first row % = (coqrfﬁ + .. ) 7, upon replacement x3 — wx3 — w?x3. Since we have 3 copies

of the first equation, we express the local data as (((((1)))))s.

28K awakami [30] devised such notation.
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Example 6. We show some other examples.

z=0 (3) z=0 (3) =0 (}) =0 (1)
— — — —
« /8 (0% 5 « B o ﬂ
—a B — (1)211, aw B — (1)31, a B — (2)2, a ol — (11)2
0 ~ aw? I5} —a B —a 8
0 e 0 ~ —a —a v

A.3. The dual graphs of the singular fibers. We list the dual graphs of singular fibers appeared in
the table. The numbers in circles indicate multiplicities of the components. We adopt, as in Ogg [56],
the following symbol for component I' of singular fibers (Table 9). Kx is the canonical divisor of
surface X. The matrices next to or below the dual graphs are the monodromy [53].

Symbol | Genus | I'? |- Kx
A 1 -1 1
B 0 -3 1
C 1 -2 2
D 0 -4 2
none 0 -2 0

Table 9: Components of singular fibers



30 AKANE NAKAMURA

* . 141414141 141414141 * Lorr24+14141 2414141
11*0*0‘ HGar,t} ) HGar,fQ 11*1*0' HGar,t} ) HGar,fg

®\ /@
(2) -1 0 -p—gq q @ © @
0 -1 q —n—q
® O, N Y
O F JaaCORCs
@ @ for T* @ 0 @

n—p—q
3 3 3.3

I* . pra it g H1+1+1 I* . pgetatt g Hé+2;f1
1-2-0- Gar,ty ’ Gar,to ’ 2-2-0" “Gar,t; ar,t2

3

34941
H?2 .

Gar,ty

- oo
o p-ardro-al ®\/@
\ / N / @ \
© O 0 O @ o
H

o ¥
@)@

ORNG
)

.Hg—&-l:&-l §+1T1
' Gar,t; ’ 7 Gar,to

0O 0 -1 0
®\ 9 0O -1 0 -—m
@O D-®--O1 0 0 o
@ 0

0O 0 -1
for III — I, —m

I* — I — (—1

3+3+1
I — 15 — (—1): Héarf{z

o OO
AN
ee@eeeec

@

Tk (1. FP3FIEL pp3+l4l pp24241 31941
Ve =17 = (=1): HGar,ﬂ ’ HGar,t} 7HGar,£1 V=15 —(-1): HZ 5

®\ /® -1 0 -1 0
@ @ 0 -1 0 -n @ @
&)

1 0 0 O N/

0O o0 o0 -1 /@
c g a 9 0 for IV¥ — I —m @ @

9. 441 5
IX—3: HGar,t} ’ HGar,tE

@
0 -1 -1 0
(2p) S0 o0

1 -1 -1 0

- D-0-0-0-0-0| ), 7 "



AUTONOMOUS LIMIT OF 4-DIMENSIONAL PAINLEVE-TYPE EQUATIONS

R
olc
®

00 -1 0
0 -1 -1 —n-1
1 0 0 1
o0 o0 -1

IV* =TI = (=1): HE e HE

5 7
542 Tyl
* _ T - PR 27T
Il III : HGar,tl’ Gar,ty

3

5
* * 513
" —I03: HY -

3
I — 105 72

Gar,ta

®\
@@
@

-1 0 -1 0
0 0 0 -1
1 0 0 O
1 0 0

0 0 -1 0

0O -1 1 -—n

1 0 1 -1

0O 0 o0 -1

for IT* — 1T},

@, :

@08 D-©- DO

@

IV¥ —IV* — (=1): H>"?_

© 7T Gar,ta

1 0 0 O
OO0\, | 4, o



32

AKANE NAKAMURA

Vi gt g
Gar,ta’ "~ Gar,t1

(3) 0 -1 -1 0
-1 1 0 -1
DB OO B-DBDD |1 -1 -1 0
0 1 0 0
I — ¥ — (—1): Hé%
@) @) 00 -1 0
00 0 -1
OO ©-Br-&0-@@® |10 0 o
01 0 0
V*:Héar,té
0 0 -1 0
@ 0 0 -1 -1
1 -1 0 0
ceeeeaaeeac -
\/111—4115“1t
1 0 -1 0
® 0 0 0 -1
1 0 0 1
@@@@@e@eeeec .
Iy_o: Hag I G
Q @ %
<:) 0 -1 0 0
& @i seoeall”
0 0 -1 -1 00 -1 -1
@ \o 0 0 1 (B) 0 0 1 0
L1 Hpd 511 : Gpd
@ @
10—p0 B (B) 0 1 -mn
1 p n -1 -1 0
( » o 1] 0000000 o o
0 0 1 0 0 -1
for IL_p(p>1) for II1,

o = O 3



AUTONOMOUS LIMIT OF 4-DIMENSIONAL PAINLEVE-TYPE EQUATIONS 33

y_o: HES 5—1IIly: Gfe
R 5 0 ® @
S -0
(B) (B)
\ /

O—O

3 3
I 5: HElS 5—Ills: G2

ONORONO

:: 5 ®

Myy: Hepd 5101 Gai
\
: O 26606060
I 5 H;;; 5 TIl;: Gt

2o ) ®)

OO0
O

144

4,4
113 6 - HKFS o — 11163 GI3{F83

®) ®)

@%8@ OO0

5 y: HES IV — I — (-1): G}

oNo ® Do
2 Do oo’

Y 01 0 0
& 4
@



34 AKANE NAKAMURA

IV* — 1L Hi IX —4: Gt
(1) © . 0 0 -1 -1
Omo 1 -1 -1 0
© -0 7!
999 -1 0 -1 -1 0o 0 1 0
@ 5 11 0 4
10 0 0
@ \ooo oo
13—13—0:HSD; VI: GE6
10 —p 0
0 1 op n @ 0 -1 1 0
10 0 -1
o0y eeeeo|
for T, — I —m ) 0 0 1 0
I — T —0: HE 4 10T : GE?
@ 0 -1 1 0
@ 1 0 n -1
@ 9 D2 |0 0 0 -1
(D @ 0 0 1 0
D@ for TII,
o
I — 15— 0: H* 4-1llp: G{*
1 v @\
(D222 OROROnOnOne
/
@ @
Ty~ I — 0: HEL 4 Ts: GEL2
I v @\
@gggg -0 OO0
® @
T, — T~ 0: HiL L G
1 2 @\
@ggggg D000 0000
O @
Iy —If — 0: Hf;Ss 4 — ;- Gésb

Poboo-00a



AUTONOMOUS LIMIT OF 4-DIMENSIONAL PAINLEVE-TYPE EQUATIONS

345
Iy —I5 —0: H23.!

@, :

JORORORORORORORORONO

345
4—TMTg: GE !

@

Ip— I — 1: H)at

0 1 0 0 O

0 -1 0 —n

D@D [0 01 o0
0 0 0 -1

c for Ip — I} —m

Ip—If — 1: Hya

: :
D-E-2--0
I — I3 — 1 Hyph

* . M
Ip— 13— 1: HY#

* . M
Ip—1j — 1: HYEY

215 — 0: Gyt

21;—0:(;%%6)
@D O, ©)
(2B)(D—D—(D—@)
@
21§—0:G§14§377)

@ @ ©)
(2B) (DD

©

213;—0:(;1“14%8

)
o @ @
(2B)(D—D—D— DD
@



36 AKANE NAKAMURA

Ip — IV* — 1: HNat 2IV* — 0: G

-1 0 -1 0 0 -1 0 -1

0 1 0 0 1 0 0 0

1 0 0 0 0 1 0 0

0 0 0 1 0 0 1 0
Ip — IIT* — 1: H)®t 210T* — 0: GMat

- @
28)- DO
D000 @

000 —1
00 -1 0 100 0
01 0 0 010 0
10 0 O 001 0
00 0 1

Ip — IT* — 1: gMat 201* — 0: GMat

o ©
®
28 D—~O—E—-(10-(12-E—D
-0 006000

000 —1
00 —10 100 0
01 0 0 010 1
10 1 0 00 1 0
00 0 1

REFERENCES

[1] M. J. Ablowitz and H. Segur. Exact linearization of a Painlevé transcendent. Phys. Rev. Lett., 38(20):1103-1106,
1977.

[2] M. R. Adams, J. Harnad, and J. Hurtubise. Dual moment maps into loop algebras. Lett. Math. Phys., 20(4):299-308,
1990.

[3] M. R. Adams, J. Harnad, and E. Previato. Isospectral Hamiltonian flows in finite and infinite dimensions. I. Gen-

eralized Moser systems and moment maps into loop algebras. Comm. Math. Phys., 117(3):451-500, 1988.



[4]

AUTONOMOUS LIMIT OF 4-DIMENSIONAL PAINLEVE-TYPE EQUATIONS 37

M. Adler, P. van Moerbeke, and P. Vanhaecke. Algebraic integrability, Painlevé geometry and Lie algebras, volume 47
of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results
in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin,
2004.

V. BE. Adler. Nonlinear chains and Painlevé equations. Phys. D, 73(4):335-351, 1994.

H. Airault. Rational solutions of Painlevé equations. Stud. Appl. Math., 61(1):31-53, 1979.

M. Audin. Spinning tops, volume 51 of Cambridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 1996. A course on integrable systems.

P. Boalch. Irregular connections and kac-moody root systems. arXiv preprint arXiv:0806.1050, 2008.

P. Boalch. Simply-laced isomonodromy systems. Publ. Math. Inst. Hautes Etudes Sci., 116:1-68, 2012.

A. V. Bolsinov and A. T. Fomenko. Integrable Hamiltonian systems. Chapman & Hall/CRC, Boca Raton, FL, 2004.
Geometry, topology, classification, Translated from the 1999 Russian original.

J. Chazy. Sur les équations différentielles du troisieme ordre et d’ordre supérieur dont ’intégrale générale a ses points
critiques fixes. Acta Math., 34(1):317-385, 1911.

P. A. Clarkson, N. Joshi, and A. Pickering. Bécklund transformations for the second Painlevé hierarchy: a modified
truncation approach. Inverse Problems, 15(1):175-187, 1999.

J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, volume 290 of Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1988. With
contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov.

C. M. Cosgrove. Higher-order Painlevé equations in the polynomial class. I. Bureau symbol P2. Stud. Appl. Math.,
104(1):1-65, 2000.

C. M. Cosgrove. Higher-order Painlevé equations in the polynomial class. II. Bureau symbol P1. Stud. Appl. Math.,
116(4):321-413, 2006.

M. Dettweiler and S. Reiter. Middle convolution of Fuchsian systems and the construction of rigid differential
systems. J. Algebra, 318(1):1-24, 2007.

E. Dynkin. Semisimple subalgebras of semisimple Lie algebras. Transl., Ser. 2, Am. Math. Soc., 6:111-243, 1957.
H. Flaschka and A. C. Newell. Monodromy- and spectrum-preserving deformations. I. Comm. Math. Phys., 76(1):65—
116, 1980.

R. Fuchs. Sur quelques équations différentielles linéaires du second ordre. C. R. Acad. Sci., Paris, 141:555-558,
1906.

K. Fuji and T. Suzuki. Higher order Painlevé system of type Dé&_z arising from integrable hierarchy. Int. Math.
Res. Not. IMRN, 2008(1):Art. ID rnm 129, 21, 2008.

K. Fuji and T. Suzuki. Drinfeld-Sokolov hierarchies of type A and fourth order Painlevé systems. Funkcial. Fkvac.,
53(1):143-167, 2010.

P. R. Gordoa, N. Joshi, and A. Pickering. On a generalized 2 + 1 dispersive water wave hierarchy. Publ. Res. Inst.
Math. Sci., 37(3):327-347, 2001.

Y. Haraoka and G. Filipuk. Middle convolution and deformation for Fuchsian systems. J. Lond. Math. Soc. (2),
76(2):438-450, 2007.

K. Hiroe and T. Oshima. A classification of roots of symmetric Kac-Moody root systems and its application.
In Symmetries, integrable systems and representations, volume 40 of Springer Proc. Math. Stat., pages 195-241.
Springer, Heidelberg, 2013.

M. Hukuhara. Sur les points singuliers des équations différentielles linéaires. II. J. Fac. Sci., Hokkaido Univ., Ser.
I, 5:123-166, 1937.

J.-1. Tgusa. Arithmetic variety of moduli for genus two. Ann. of Math. (2), 72:612-649, 1960.

S. Titaka. On the degenerates of a normally polarized abelian varieties of dimension 2 and algebraic curves of genus
2 (in japanese). Master’s thesis, University of Tokyo, 1967.

M. Jimbo, T. Miwa, and K. Ueno. Monodromy preserving deformation of linear ordinary differential equations with
rational coefficients. I. General theory and 7-function. Phys. D, 2(2):306-352, 1981.

N. M. Katz. Rigid local systems, volume 139 of Annals of Mathematics Studies. Princeton University Press, Princeton,
NJ, 1996.

H. Kawakami. Four-dimensional Painlevé-type equations associated with ramified linear equations (in preparation).
H. Kawakami. Matrix Painlevé euqations (in japanese). In Abstracts, Autumn Meeting of the Mathematical Society
of Japan, Nagoya, Section Infinite Analysis. Mathematical Society of Japan, 2010.



38
[32]

[33]

AKANE NAKAMURA

H. Kawakami, A. Nakamura, and H. Sakai. Degeneration scheme of 4-dimensional Painlevé-type equations. arXiv
preprint arXiv:1209.3836, 2012.

H. Kawakami, A. Nakamura, and H. Sakai. Toward a classification of four-dimensional Painlevé-type equations. In
Algebraic and geometric aspects of integrable systems and random matrices, volume 593 of Contemp. Math., pages
143-161. Amer. Math. Soc., Providence, RI, 2013.

H. Kawamuko. On the holonomic deformation of linear differential equations. Proc. Japan Acad. Ser. A Math. Sci.,
73(8):152—-154, 1997.

H. Kawamuko. On the Garnier system of half-integer type in two variables. Funkcial. Ekvac., 52(2):181-201, 2009.
H. Kimura. The degeneration of the two-dimensional Garnier system and the polynomial Hamiltonian structure.
Ann. Mat. Pura Appl. (4), 155:25-74, 1989.

H. Kimura. Uniform foliation associated with the Hamiltonian system h,. Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(4), 20(1):1-60, 1993.

H. Kimura. Initial value spaces of degenerate Garnier systems. Surikaisekikenkyusho Kokyuroku, 1133:18-27, 2000.
Painlevé systems, hypergeometric systems and asymptotic analysis (Japanese) (Kyoto, 1999).

S. Kitagawa. Extremal hyperelliptic fibrations on rational surfaces. Saitama Math. J., 30:1-14 (2013), 2013.

K. Kodaira. On compact analytic surfaces. II, III. Ann. of Math. (2) 77 (1963), 563—-626; ibid., 78:1-40, 1963.

T. Koike. On the Hamiltonian structures of the second and the fourth Painlevé hierarchies, and the degenerate Gar-
nier systems. In Algebraic, analytic and geometric aspects of complex differential equations and their deformations.
Painlevé hierarchies, RIMS Kokytiroku Bessatsu, B2, pages 99-127. Res. Inst. Math. Sci. (RIMS), Kyoto, 2007.

T. Koike. On new expressions of the Painlevé hierarchies. In Algebraic analysis and the exact WKB analysis for
systems of differential equations, RIMS Kékytroku Bessatsu, B5, pages 153-198. Res. Inst. Math. Sci. (RIMS),
Kyoto, 2008.

V. P. Kostov. The Deligne-Simpson problem for zero index of rigidity. In Perspectives of complex analysis, differential
geometry and mathematical physics (St. Konstantin, 2000), pages 1-35. World Sci. Publ., River Edge, NJ, 2001.
N. A. Kudryashov. The first and second Painlevé equations of higher order and some relations between them. Phys.
Lett. A, 224(6):353-360, 1997.

A. Levelt. Jordan decomposition for a class of singular differential operators. Ark. Mat., 13:1-27, 1975.

A. M. Levin, M. A. Olshanetsky, and A. V. Zotov. Painlevé VI, rigid tops and reflection equation. Comm. Math.
Phys., 268(1):67-103, 2006.

D. Liu and K. Okamoto. Polynomial Hamiltonian structure for the A system. Kumamoto J. Math., 10:31-43, 1997.
Q. Liu. Courbes stables de genre 2 et leur schéma de modules. Math. Ann., 295(2):201-222, 1993.

Q. Liu. Modeéles minimaux des courbes de genre deux. J. Reine Angew. Math., 453:137-164, 1994.

Q. Liu. Algebraic geometry and arithmetic curves, volume 6 of Oxford Graduate Texts in Mathematics. Oxford
University Press, Oxford, 2002. Translated from the French by Reinie Erné, Oxford Science Publications.

J. Malmquist. Sur les équations différentielles du second ordre dont l'intégrale générales a ses points critiques fixes.
Arkiv. Mat. Astr. Fys., 17:1-89, 1922-23.

A. Nakamura. On the Bécklund transformations of the matrix Painlevé equations (in japanese). Master’s thesis,
University of Tokyo, 2011.

Y. Namikawa and K. Ueno. The complete classification of fibres in pencils of curves of genus two. Manuscripta
Math., 9:143-186, 1973.

K.-V. Nguen. On certain Mordell-Weil lattices of hyperelliptic type on rational surfaces. J. Math. Sci. (New York),
102(2):3938-3977, 2000. Algebraic geometry, 10.

M. Noumi and Y. Yamada. Affine Weyl groups, discrete dynamical systems and Painlevé equations. Comm. Math.
Phys., 199(2):281-295, 1998.

A. P. Ogg. On pencils of curves of genus two. Topology, 5:355-362, 1966.

K. Oguiso and T. Shioda. The Mordell-Weil lattice of a rational elliptic surface. Comment. Math. Univ. St. Paul.,
40(1):83-99, 1991.

K. Okamoto. Sur les feuilletages associés aux équations du second ordre a points critiques fixes de P. Painlevé.
Japan. J. Math. (N.S.), 5(1):1-79, 1979.

T. Oshima. Fractional calculus of Weyl algebra and Fuchsian differential equations. Number v. 28 in MSJ memoirs.
Mathematical Society of Japan, 2012.

M.-H. Saito and K.-I. Sakakibara. On Mordell-Weil lattices of higher genus fibrations on rational surfaces. J. Math.
Kyoto Univ., 34(4):859-871, 1994.



AUTONOMOUS LIMIT OF 4-DIMENSIONAL PAINLEVE-TYPE EQUATIONS 39

[61] H. Sakai. Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Comm.

Math. Phys., 220(1):165-229, 2001.

[62] H. Sakai. Isomonodromic deformation and 4-dimensional Painlevé type. preprint, University of Tokyo, Graduate

School of Mathematical Sciences, 2010.

[63] H. Sakai. Ordinary differential equations on rational elliptic surfaces. In Symmetries, integrable systems and repre-

sentations, volume 40 of Springer Proc. Math. Stat., pages 515-541. Springer, Heidelberg, 2013.

[64] Y. Sasano. Coupled Painlevé VI systems in dimension four with affine Weyl group symmetry of type Dél). II. In

Algebraic analysis and the exact WKB analysis for systems of differential equations, RIMS Koékyiuroku Bessatsu,
B5, pages 137-152. Res. Inst. Math. Sci. (RIMS), Kyoto, 2008.

[65] Y. Sasano and Y. Yamada. Symmetry and holomorphy of Painlevé type systems. In Algebraic, analytic and geometric

aspects of complex differential equations and their deformations. Painlevé hierarchies, RIMS Koékytroku Bessatsu,
B2, pages 215-225. Res. Inst. Math. Sci. (RIMS), Kyoto, 2007.

[66] T. Shioda. On the Mordell-Weil lattices. Comment. Math. Univ. St. Paul., 39(2):211-240, 1990.
[67] T. Shioda. Mordell-Weil lattices for higher genus fibration. Proc. Japan Acad. Ser. A Math. Sci., 68(9):247-250,

1992.

[68] M. Suzuki. Spaces of initial conditions of Garnier system and its degenerate systems in two variables. J. Math. Soc.

Japan, 58(4):1079-1117, 2006.

[69] N. Tahara. An augmentation of the phase space of the system of type Ail). Kyushu J. Math., 58(2):393-425, 2004.

| J. Tate. Algorithm for determining the type of a singular fiber in an elliptic pencil. In Modular functions of one

variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pages 33-52. Lecture Notes in Math.,
Vol. 476. Springer, Berlin, 1975.

] T. Tsuda. From KP/UC hierarchies to Painlevé equations. Internat. J. Math., 23(5):1250010, 59, 2012.
] T. Tsuda. UC hierarchy and monodromy preserving deformation. J. Reine Angew. Math., 690:1-34, 2014.

[73] H. Turrittin. Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an

irregular singular point. Acta Math., 93:27-66, 1955.

[74] A. P. Veselov and A. B. Shabat. A dressing chain and the spectral theory of the Schrédinger operator. Funktsional.

Anal. i Prilozhen., 27(2):1-21, 96, 1993.

[75] E. Viehweg. Invarianten der degenerierten Fasern in lokalen Familien von Kurven. J. Reine Angew. Math.,

293/294:284-308, 1977.

[76] D. Yamakawa. Fourier-Laplace transform and isomonodromic deformations. ArXiv e-prints, June 2013.

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOKYO, KOMABA, TOKYO 153-8914, JAPAN

E-mail address: akanna®@ms.u-tokyo.ac.jp



