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Preface

Over the last few decades, numerous topics from industrious applications and issues on en-

vironmental protections have witnessed the increasing significance of underlying mathematical

models. A considerable number among them can be expressed by partial differential equations,

and the related fields such as system control and black box inference are mostly reduced to the

corresponding inverse problems. The present dissertation concentrates on two kinds of evolution

equations originating from respective backgrounds, that is,

• the multiple hyperbolic equations for phase transformation kinetics, and

• the multi-term time-fractional diffusion equations for anomalous diffusion phenomena.

Since both governing equations are recent generalizations of their hyperbolic and parabolic

prototypes, we carry out systematic analysis from various viewpoints and develop the related

numerical methods. The present researches are not only motivated by the theoretical interests,

but also root in their direct applications in practices. The study of phase transformation is

essential for understanding the material properties and controlling the manufacturing processes,

and that of anomalous diffusion contributes to the modeling of the pollution mechanism as well

as source identification and purification. Especially, by treating both topics simultaneously we

will be able to investigate a series of complex phenomena of contaminants in heterogeneous

medias, including dissolution, diffusion and accumulation.

Part I

Phase transformation phenomena occur extensively in many spontaneous and artificial pro-

cesses, in which nucleation and crystallization greatly dominate the final mechanical properties.

Part I is devoted to the reformulation and thorough analysis of the hyperbolic-type equations

derived from Cahn’s time cone model (see [17])

u(x, t) =

∫

Ωρ(x,t)

Ψ(y, s) dyds (x ∈ R
d, t ≥ 0), where (0.1)

Ωρ(x, t) := {(y, s); 0 < s < t, |y − x| < R(t)−R(s)}, R(t) :=

∫ t

0

ρ(s) ds. (0.2)

Here u, ρ and Ψ denote the expectation of transformation events, the growth speed and the

nucleation rate, respectively. In Chapters 1–4, we shall investigate the forward problem and

the reconstructions of ρ and Ψ from both theoretical and numerical aspects.

Chapter 1

The time cone model (0.1) involves multiple integrals, preventing us from smooth arguments

on both forward and inverse problems. Hinted by d’Alembert’s formula in the one-dimensional
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case and the combination of Poisson’s integral formula and Duhamel’s principle in the three-

dimensional case, in Chapter 1 we derive a class of equivalent formulations of (0.1) in all odd

spatial dimensions.

Theorem 0.1 Let the spatial dimensions d = 2m + 1 (m = 0, 1, . . .) and u(x, t) satisfy

(0.1)–(0.2). Assume that u(x, t), Ψ(x, t) and ρ(t) (x ∈ Rd, t ≥ 0) are sufficiently smooth

functions, and ρ(t) is strictly positive for t ≥ 0. Then u(x, t) solves the following initial value

problem for the multiple hyperbolic equation
{
Hm+1

ρ u(x, t) = cm Ψ(x, t)/ρ(t) (x ∈ Rd, t > 0),

∂`tu(x, 0) = 0 (x ∈ Rd, ` = 0, 1, . . . , d),
where (0.3)

Hρw(x, t) :=
1

ρ(t)
∂t

(
∂tw(x, t)

ρ(t)

)
−4w(x, t), cm := (2m)!! 2m+1πm.

The above result is an immediate corollary to the governing equations of the auxiliary

function U(x, τ) := u(x,R−1(τ)) after the change of variable τ := R(t)(=
∫ t

0 ρ(s) ds), which

reads




(∂2τ −4)m+1U(x, τ) = cm Ψ(x,R−1(τ))/ρ(R−1(τ))︸ ︷︷ ︸
=:F (x,τ)

(x ∈ R
2m+1, τ > 0),

∂`τU(x, 0) = 0, ` = 0, 1, . . . , 2m+ 1 (x ∈ R
2m+1).

(0.4)

The derivations of (0.3) and (0.4) provide remarkable convenience in the quantitative analysis

of the time cone model, and we outline the general strategy.

u =
∫
Ωρ

Ψ

��

U( · ,τ):=u( · ,R−1(τ))
// U =

∫
Ω1
F

��

Hm+1
ρ u = cm Ψ/ρ

ρ: unknown

��

(∂2τ −4)m+1U = cm F
u( · ,t)=U( · ,R(t))

oo

ρ: given

��

Coefficient inverse problem Forward solver, Inverse source problem

As the first application, we implement numerical simulations of forward problem for d = 1, 3

with satisfactory accuracy and efficiency by means of the alternating direction implicit method.

Chapter 2

In Chapter 2, we investigate an inverse problem of determining the growth speed ρ(t) in the

one-dimensional time cone model by the final observation data. By imposing the homogeneous

Dirichlet boundary condition, the problem turns out to be the following coefficient inverse

problem in view of the hyperbolic governing equation (0.3) with m = 0.

Problem 0.1 Let L > 0, T > 0 be given, and u satisfy





1

ρ(t)
∂t

(
∂tu(x, t)

ρ(t)

)
= 4u(x, t) + 2Ψ(x, t)

ρ(t)
(0 < x < L, 0 < t ≤ T ),

u(x, 0) = ∂tu(x, 0) = 0 (0 < x < L),

u(0, t) = u(L, t) = 0 (0 < t ≤ T ).

Provided that the nucleation rate Ψ is known, determine the growth speed ρ by the final mea-

surements yδ ∈ L2(0, L) satisfying ‖yδ − u( · , T )‖L2(0,L) ≤ δ, where δ > 0 is the noise level.
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Using the eigensystem of −4, we can write u( · , T ) in form of R(t) defined in (0.2). Since

ρ(t) = R′(t), this suggests a two-step reconstruction. First, we reconstructR(t) by the truncated

Tikhonov-type regularization

RM,N
α := argmin

R∈PM

2

L

N∑

n=1

(∫ L

0

(
yδ(x)− u(x, T )

)
sin
(πnx
L

)
dx

)2

+ α‖R‖2L2(0,T ),

where α > 0 is the regularization parameter and PM collects all polynomials with orders

no higher than M . To seek for a minimizer, we solve the Euler equation by the pseudo-

spectral method. Second, since the numerical differentiation is also ill-posed, we employ another

regularization method to reconstruct the growth speed ρ(t). Numerical prototype examples are

presented to illustrate the validity and effectiveness of the proposed scheme.

Chapter 3

In view of the multiple hyperbolic equation (0.3) for phase transformation, the reconstruction

of the nucleation rate Ψ(x, t) turns out to be an inverse source problem. However, existing

works on the related numerical methods are absent even for the single hyperbolic case. As a

preparation, in Chapter 3 we develop an iterative method for the following problem.

Problem 0.2 Let Ω ⊂ Rd (d = 1, 2, 3) be open bounded with a smooth boundary, ω ⊂ Ω

and T > 0 be suitably given, and u(f) satisfy

u(f)





∂2t u(x, t)−4u(x, t) = f(x)h(x, t) (x ∈ Ω, 0 < t ≤ T ),
u(x, 0) = ∂tu(x, 0) = 0 (x ∈ Ω),

∂νu(x, t) = 0 (x ∈ ∂Ω, 0 < t ≤ T ).

Provided that h is known, determine f by the measurements of u(f) in ω × (0, T ).

Under certain conditions on ω and T due to the finite wave speed and regularity assumptions

on f and h, a global Lipschitz stability for the above problem is guaranteed (see [31]).

Numerically, we formulate the reconstruction as the following minimization problem

min
f∈L2(Ω)

J(f), J(f) := ‖u(f)− uδ‖2L2(ω×(0,T )) + α‖f‖2L2(Ω), (0.5)

where α > 0 is the regularization parameter and uδ denotes the noisy data. By investigating

the Euler equation for the minimizer, we propose the iteration

fm+1 =
K

K + α
fm −

1

K + α

∫ T

0

h z(fm) dt (K > 0, m = 0, 1, . . .), (0.6)

where z(fm) is the solution to the corresponding backward system. Abundant amounts of nu-

merical experiments are presented to demonstrate the accuracy and efficiency of the algorithm.

Chapter 4

Chapter 4 establishes both theoretical stability and numerical method for the reconstruction

of the nucleation rate Ψ in the three-dimensional time cone model, which is an inverse source

problem for (0.3) with m = 1. Assuming Ψ(x, t) = f(x) g(x, t) and imposing the homogeneous

Neumann boundary conditions, we formulate the problem as follows.
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Problem 0.3 Let Ω ⊂ R3 be open bounded with a smooth boundary, ω ⊂ Ω and T > 0 be

suitably given, and u(f) satisfy

u(f)





H2
ρu(x, t) = f(x)h(x, t) (x ∈ Ω, 0 < t ≤ T ),

∂`tu(x, 0) = 0 (x ∈ Ω, ` = 0, 1, 2, 3),

∂νu(x, t) = ∂ν4u(x, t) = 0 (x ∈ ∂Ω, 0 < t ≤ T ),
where h(x, t) :=

8π g(x, t)

ρ(t)
. (0.7)

Provided that g and ρ are known, determine f by the measurements of u(f) in ω × (0, T ).

By a Carleman estimate in [31], we prove the following global Lipschitz stability.

Theorem 0.2 Let ∂Ω be of C3 class and u be the solution to (0.7), where f ∈ L2(Ω),

g ∈ H1(0, T ;L∞(Ω)) and ∃ g0 > 0 such that |g( · , 0)| ≥ g0 a.e. in Ω,

ρ ∈ C3[0, T ] and ∃ ρ0 > 0 such that ρ ≥ ρ0 in [0, T ].

Suppose that ω is a subdomain of Ω such that

{x ∈ ∂Ω; (x− x0) · ν(x) ≥ 0} ⊂ ∂ω for some x0 /∈ Ω \ ω , and

R(T ) =

∫ T

0

ρ(t) dt > sup
x∈Ω
|x− x0|.

Then there exists a constant C = C(Ω, ω, T, g, ρ) > 0 such that

‖f‖L2(Ω) ≤ C
(
‖∂4t u− ρ2∂2t4u‖L2(ω×(0,T )) + ‖∂tu‖L2(0,T ;H2(ω)) +

3∑

k=2

‖∂kt u‖L2(ω×(0,T ))

)
.

Based on the preparation in the previous chapter, without lose of generality we suppose

ρ(t) ≡ 1 and propose the same minimization problem (0.5) for numerical treatments, which

leads to a parallel iteration as (0.6). Extensive numerical experiments up to three spatial

dimensions show the feasibility of the iteration, and detailed analysis of the computational

performance are also provided.

Part II

Regarding the diffusion phenomena in highly heterogeneous medias, field experiments in-

dicate a remarkable deviation from that described by the classical diffusion equation. As one

candidate for modeling, the time-fractional diffusion equation with a Caputo derivative, for

example,

∂αt u = 4u(+F ) with ∂αt f(t) :=
1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α ds (0 < α < 1),

has been studied intensively from various aspects (see, e.g., [121]). To improve the modeling

accuracy, we generalize the above formulation to consider the following initial-boundary value

problem for the multi-term time-fractional diffusion equation





m∑

j=1

qj∂
αj

t u(x, t) +Au(x, t) = F (x, t) (x ∈ Ω, 0 < t ≤ T ),

u(x, 0) = a(x) (x ∈ Ω),

u(x, t) = 0 (x ∈ ∂Ω, 0 < t ≤ T ),

(0.8)
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where Ω ⊂ Rd is open bounded with a smooth boundary, αj , qj (j = 1, . . . ,m) are positive

constants such that 1 > α1 > · · · > αm > 0 and q1 = 1, and A is a symmetric uniformly elliptic

operator. Chapter 5 is devoted to the strong maximum principle and a related inverse source

problem for m = 1, and Chapters 6–7 are concerned with the theoretical well-posedness and

the numerical treatment for m ≥ 2, respectively.

Chapter 5

The strong maximum principle is one of the remarkable characterizations of parabolic equa-

tions, which is expected to be partly inherited by fractional diffusion equations. Based on the

corresponding weak maximum principle, in Chapter 5 we establish the following strong maxi-

mum principle for single-term time-fractional diffusion equations (i.e., (0.8) with m = 1), which

is slightly weaker than that for the parabolic case.

Theorem 0.3 Let a ∈ L2(Ω) satisfy a ≥ 0 and a 6≡ 0, F = 0, and u be the solution to

(5.1)–(5.3) with m = 1. Then for any x ∈ Ω, the set {t > 0; u(x, t) ≤ 0} is at most a countable

set which admits only ∞ as its possible accumulation point.

Next, we consider an inverse source problem for (0.8) under the assumption that the inho-

mogeneous term F is in form of separation of variables.

Problem 0.4 Let x0 ∈ Ω and T > 0 be arbitrarily given, and u be the solution to (0.8)

with m = 1, a = 0 and F (x, t) = ρ(t) g(x), where ρ ∈ C1[0, T ] and g ∈ C∞
0 (Ω). Provided that g

is known, determine ρ(t) (0 ≤ t ≤ T ) by the single point observation data u(x0, t) (0 ≤ t ≤ T ).

As a direct application of the obtained strong maximum principle, we give a uniqueness

result for the above problem by assuming the positivity of the spatial component in the source

term.

Theorem 0.4 Under the same settings in the above problem, we further assume that g ≥ 0

and g 6≡ 0. Then u(x0, t) = 0 (0 ≤ t ≤ T ) implies ρ(t) = 0 (0 ≤ t ≤ T ).

Chapter 6

In Chapter 6, we investigate the well-posedness and the long-time asymptotic behavior of

the solution to (0.8) for m ≥ 2. First, by exploiting several important properties of multinomial

Mittag-Leffler functions, various estimates follow from the explicit solution in form of these

special functions.

Theorem 0.5 Define the fractional power Aγ and spaces D(Aγ) with γ ≥ 0.

(1) Let F = 0 and a ∈ D(Aγ) with γ ∈ [0, 1]. Then there exist a unique solution to (0.8)

and a constant C > 0 such that

‖u( · , t)‖H2(Ω) ≤ C‖a‖D(Aγ)t
α1(γ−1),

‖∂tu( · , t)‖L2(Ω) ≤ C‖a‖D(Aγ)t
α1γ−1,

0 < t ≤ T.

Moreover, if γ > 0, there holds for 0 < β < 1 that

‖∂βt u( · , t)‖L2(Ω) ≤ C‖a‖D(Aγ)t
α1γ−β, 0 < t ≤ T.

(2) Let a = 0 and F ∈ Lp(0, T ;D(Aγ)) with p ∈ [1,∞] and γ ∈ [0, 1]. Then there exists a

unique solution to (0.8) and a constant C > 0 such that

‖u‖L2(0,T ;D(Aγ+1)) ≤ C‖F‖L2(0,T ;D(Aγ)) if p = 2,
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‖u‖Lp(0,T ;D(Aγ+1−ε)) ≤
C

ε
‖F‖Lp(0,T ;D(Aγ)) for each ε ∈ (0, 1] if p 6= 2.

Based on the above theorem, we further verify the Lipschitz continuous dependency of the

solution to (0.8) with respect to (α1, . . . , αm), (q1, . . . , qm) and the diffusion coefficient in A,
which is fundamental for the optimization approach to the related coefficient inverse problem.

Second, by a Laplace transform argument, we show that the decay rate of the solution as

t→∞ is given by the minimum order αm.

Theorem 0.6 Let u be the unique solution to (0.8) with F = 0 and a ∈ L2(Ω). Then there

exists a constant C > 0 such that
∥∥∥∥u( · , t)−

qm
Γ(1− αm)

A−1a

tαm

∥∥∥∥
H2(Ω)

≤ C‖a‖L2(Ω)

tmin{αm−1,2αm}
as t→∞.

Chapter 7

Based on the results obtained in the previous chapter, in Chapter 7 we develop both semidis-

crete and fully discrete Galerkin finite element methods (FEM) for problem (0.8) with A = −4.

Let Xh be a finite element space over a triangulation of Ω with a maximum diameter h.

The semidiscrete Galerkin FEM for problem (0.8) is to find {uh(t)}0≤t≤T ⊂ Xh such that




m∑

j=1

qj
(
∂
αj

t uh(t), vh
)
+ (∇uh(t),∇vh) = (Fh(t), vh), ∀ vh ∈ Xh, 0 < t ≤ T,

uh(0) = ah,

(0.9)

where ah and Fh stand for appropriate approximations of a and F according to their smoothness.

By the discrete counterparts of refined estimates for the solution to (0.8), we deduce nearly

optimal error estimates for the scheme (0.9).

Theorem 0.7 Let u and uh be the solutions to (0.8) and (0.9), respectively.

(1) Let F = 0 and a ∈ D(Aγ) with −1/2 < γ ≤ 1. Then there exists a constant C > 0 such

that for 0 < t ≤ T ,

‖uh(t)− u(t)‖L2(Ω) + h‖∇(uh(t)− u(t))‖L2(Ω)

≤
{
C h2‖a‖D(A), γ = 1,

C h2(1+min(γ,0))| lnh|‖a‖D(Aγ)t
α1(max(γ,0)−1), −1/2 < γ ≤ 1/2.

(2) Let a = 0 and F ∈ L∞(0, T ;D(Aγ)) with −1/2 < γ ≤ 0. Then there exists a constant

C > 0 such that for 0 < t ≤ T ,

‖uh(t)− u(t)‖L2(Ω) + h‖∇(uh(t)− u(t))‖L2(Ω) ≤ C h2(1+γ)| lnh|2‖F‖L∞(0,t;D(Aγ)).

By discretizing the Caputo derivatives in (0.9) with a step size τ > 0, the fully discrete

Galerkin FEM is to approximate the solution to (0.8) at knots {t`}Nt

`=0 in time.

Theorem 0.8 Let a ∈ D(A), F ∈ L∞(0, T ;D(A1/2)) and {u`h}Nt

`=0 ⊂ Xh be the solution

to the fully discrete scheme. Suppose that the solution u to (0.8) is sufficiently smooth. Then

there exists a constant C > 0 such that

‖u`h − u(t`)‖L2(Ω) ≤ C
{
h2
(
‖a‖D(A) + ‖F‖L∞(0,t`;D(A1/2)) + max

0≤t≤t`
‖∂tu(t)‖D(A)

)

+τ2−α1 max
0≤t≤t`

‖∂2t u(t)‖L2(Ω)

}
, ` = 1, . . . , Nt.
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Finally, abundant numerical experiments for one- and two-dimensional problems confirm

the above convergence rates.

January 9, 2015

The University of Tokyo

Yikan Liu
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Chapter 1

Derivation and Numerical

Simulations of the Multiple

Hyperbolic Equations

We discuss Cahn’s time cone method modeling phase transformation kinetics. The model

equation by the time cone method is an integral equation in the space-time region. First we

reduce it to a class of hyperbolic equations, and in the case of odd spatial dimensions, the reduc-

tions turn out to be initial value problems for multiple hyperbolic equations. Next we propose

a numerical method for these hyperbolic-type equations. By means of the alternating direction

implicit method, numerical simulations for practical forward problems are implemented with

satisfactory accuracy and efficiency. In particular, in the three-dimensional case, our numerical

method is extremely fast on the basis of the reduced double hyperbolic equation.

1.1 Introduction

Phase transformations such as the crystallization of liquids and materials are important

kinetics arising in both spontaneous phenomena and artificial processes. In such transforma-

tions, nucleation and structure growth consist of the most determinant kinetics which greatly

characterize the final mechanical properties. In retrospect, the earliest stochastic modeling of

the phase transformation can trace back to Johnson-Mehl-Avrami-Kolmogorov theory (usually

abbreviated as JMAK theory, see Kolmogorov [43], Johnson and Mehl [39] and Avrami [2–4]).

These pioneering works were concerned with an infinite specimen without transformation ini-

tially, in which the random events of generation were expected to follow the Poisson distribution.

Hence the fraction of phase transformations reads

P = 1− e−u, (1.1)

where u denotes the expectation of the generation events. More importantly, newborn nuclei

were assumed to appear randomly in the remaining untransformed space with a constant ex-

pected nucleation rate, and each nucleus was supposed to grow radially at a constant speed

until impingement.

Efforts on extending the original JMAK theory have then been devoted extensively in the last

several decades (see, e.g., [16,36,37]), and one of the most remarkable works should be attributed

to Cahn [17], which inherits the Poisson distribution assumption on generation events but

12
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greatly polishes the model of nuclei growth. More precisely, instead of constants the nucleation

rate is allowed to be time- and space-dependent while the growth speed can be time-dependent,

written as Ψ(x, t) and ρ(t) respectively. With these settings, in general spatial dimensions the

expectation of generation events is modeled as

u(x, t) =

∫

Ωρ(x,t)

Ψ(y, s) dyds (x ∈ R
d, t ≥ 0), (1.2)

where Ωρ(x, t) denotes the so-called “time cone” defined as

Ωρ(x, t) := {(y, s); 0 < s < t, |y − x| < R(t)−R(s)}, R(t) :=

∫ t

0

ρ(s) ds. (1.3)

Obviously, R(t) − R(s) =
∫ t

s
ρ(τ) dτ stands for the radius of a transformed domain at time

t generated by a nucleus which was born at time s without impingement. Therefore, a time

cone Ωρ(x, t) can be physically interpreted as the ensemble of all pairs (y, s) which would have

caused transformation at (x, t). Especially, when Ψ, ρ are positive constants and d = 3, the

phase transformation fraction can be easily calculated from (1.2) and (1.1), yielding the well-

known JMAK equation

P (x, t) = 1− exp
(
−πΨρ3 t4/3

)
. (1.4)

For an intuitive understanding of time cones, see Figure 1.1. As subsequent researches after

Cahn’s time cone method, we refer to [5, 54].
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Figure 1.1: Examples of the two-dimensional time cones Ωρ(x, t) with x = (0, 0) and t = 6π,
generated by different growth speeds. (a) ρ(t) = 1 + 0.9 cos t. (b) ρ(t) ≡ 1.

Although models on phase transformation kinetics have been well established and have

been widely utilized in industry, mathematical considerations on related forward and inverse

problems are limited. To the best of our knowledge, only a similar but parallel concept named

“causal cone” approach was proposed to study the morphology of crystalline polymeric systems,

upon which several forward problems were investigated (see [12, 13, 15, 21, 24, 26, 50]). For a

comprehensive collection of mathematical topics on the polymer processing, we refer to Capasso

[19].

As will be explained later, the time cone model (1.2)–(1.3) in its original expression is difficult

to handle because it involves multiple integrations. Therefore, the purpose of this chapter is to

develop an alternative formulation describing Cahn’s model which provides convenient methods
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for the discussion of both forward and inverse problems. Here by forward problems we mainly

refer to finding u by (1.2) with given Ψ and ρ as well as suitable initial and boundary values,

while inverse problems stand for the determination of Ψ or ρ by partial observations of u. The

derived equivalent representations turn out to be a class of multiple hyperbolic systems, in the

most concise forms only in odd spatial dimensions. Consequently, such treatment allows direct

applications of abundant existing results concerning hyperbolic equations. We shall demonstrate

the dramatically efficient forward solver in this chapter and deal with several inverse problems

in the forthcoming chapters.

The rest of this chapter is organized as follows. In Section 1.2, we briefly mention the

motivation to find hyperbolic alternatives of Cahn’s model (1.2)–(1.3) and state the main result,

which proof is given in Section 1.3. Section 1.4 shows numerical simulations of the forward

problem in practical dimensions, and Section 1.5 gives concluding remarks and prospections of

future works. Finally, proofs of technical lemmata are postponed to Appendix 1.A.

1.2 Motivation and the main result

From now on we concentrate on Cahn’s time cone model (1.2)–(1.3), which takes the form of

an integral equation. More precisely, the nucleation rate Ψ(x, t) acts as the integrand function,

and the growth speed ρ(t) is embedded in the domain of integration. Therefore, although the

solution u is explicitly expressed in (1.2), in view of numerical treatments of forward problems it

involves a (d+1)-dimensional numerical integration to approximate u only for a single pair (x, t),

not to mention the tremendous computational complexity in practice. On the other hand, note

that the profile of a time cone Ωρ(x, t) becomes irregular when the growth speed is no longer a

constant (compare Figure 1.1(a) and Figure 1.1(b)). Thus it is also inconvenient to investigate

corresponding inverse problems based on such an integral equation with a complicated domain

of integration. These difficulties indicate the necessity to replace the original formulation by an

equivalent time-evolutionary governing system, where Ψ and ρ are directly attainable.

In fact, such consideration is motivated by a first observation when d = 1 and ρ is a constant,

in which case equation (1.2) takes the exact form of d’Alembert’s formula

u(x, t) =

∫ t

0

∫ x+ρ(t−s)

x−ρ(t−s)

Ψ(y, s) dyds.

In other words, providing certain regularity Ψ ∈ C0,1(R × R+), the function u(x, t) should

satisfy an inhomogeneous wave equation with homogeneous initial condition

{
(∂2t − ρ2 ∂2x)u(x, t) = 2ρΨ(x, t) (x ∈ R, t > 0),

u(x, 0) = ∂tu(x, 0) = 0 (x ∈ R).

Furthermore, obviously the growth speed and the nucleation rate play the roles of the propa-

gation speed of wave and the source term (up to a multiplier) respectively. As a result, there

is sufficient evidence to expect hyperbolic-type governing equations with respect to u with

time-dependent ρ in higher spatial dimensions.

Now we state the main conclusion of the derived systems.

Theorem 1.1 (Multiple hyperbolic equations) Let the spatial dimensions d = 2m+1 (m =

0, 1, . . .) and u(x, t) satisfy (1.2)–(1.3). Assume that u(x, t), Ψ(x, t) and ρ(t) (x ∈ Rd, t ≥ 0)

are sufficiently smooth functions, and ρ(t) is strictly positive for t ≥ 0. Introduce the hyperbolic
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operator

Hρw(x, t) :=
1

ρ(t)
∂t

(
∂tw(x, t)

ρ(t)

)
−4w(x, t).

Then u(x, t) solves the following initial value problem for the multiple hyperbolic equation

{
Hm+1

ρ u(x, t) = (2m)!! 2m+1πm Ψ(x, t)/ρ(t) (x ∈ Rd, t > 0),

∂`tu(x, 0) = 0, ` = 0, 1, . . . , d (x ∈ Rd).
(1.5)

Remark 1.1 (a) From the physical interpretation of the nucleation rate, we have Ψ(x, t) ≥ 0

and thus u(x, t) should be non-negative by (1.2). However such non-negativity is not used in

this chapter.

(b) On the other hand, for simplicity we assume that Ψ, ρ and u are sufficiently smooth.

In fact, if ρ ∈ Cd[0, T ] and Ψ ∈ L2(Rd × (0, T )) for some T > 0, then by a priori estimates

(e.g., Lions and Magenes [47]) and the multiple hyperbolic system (1.5), we can establish the

corresponding regularity of u in Sobolev spaces, but here we do not discuss the details.

It is readily seen that Hρ is a hyperbolic operator with a damping term and the propagation

speed of wave is indeed ρ(t). Actually, in the next section we can find a change of variable in

time by which Hρ corresponds to the d’Alembertian with respect to the new time axis. For

any odd d, the above theorem indicates that the integral in the d-dimensional time cone model

(1.2) can be completely eliminated by acting (d+ 1)/2 times of the operator Hρ to both sides.

For instance, taking m = 0, 1 in Theorem 1.1, we obtain a single hyperbolic governing equation

Hρu(x, t) =
∂2t u(x, t)

ρ2(t)
− ρ′(t) ∂tu(x, t)

ρ3(t)
− ∂2xu(x, t) =

2Ψ(x, t)

ρ(t)
(x ∈ R, t > 0)

for d = 1, and an interesting double hyperbolic governing equation

H2
ρu(x, t) =

∂4t u(x, t)

ρ4(t)
− 6 ρ′(t) ∂3t u(x, t)

ρ5(t)
− {4 ρ(t)ρ

′′(t)− 15 (ρ′(t))2} ∂2t u(x, t)
ρ6(t)

− {ρ
2(t)ρ′′′(t)− 10 ρ(t)ρ′(t)ρ′′(t) + 15 (ρ′(t))3} ∂tu(x, t)

ρ7(t)

− 2 ∂2t4u(x, t)
ρ2(t)

+
2 ρ′(t) ∂t4u(x, t)

ρ3(t)
+42u(x, t)

=
8πΨ(x, t)

ρ(t)
(x ∈ R

3, t > 0)

for d = 3. Moreover, in these multiple hyperbolic systems, Ψ/ρ appears explicitly as the source

term (up to a multiplier), and the initial conditions are always homogeneous. Unfortunately,

such concise expressions as (1.5) are unavailable for any even d. In these cases, it can be inferred

from Proposition 1.1 that at best Hd/2
ρ u equals d/2 terms of integrals concerning Ψ and ρ which

cannot be further canceled. As will be witnessed in Section 1.4, this drawback remains certain

inconvenience even in the numerical simulation of the two-dimensional forward problem. The

apparent difference between odd and even dimensions can be explained by Huygens’ principle

(see Remark 1.2 in Section 1.3).

1.3 Proof of the main result

In order to deal with the physical model (1.2)–(1.3) in general spatial dimensions, we start

from some overall settings. Throughout this section we adopt the smoothness and positivity
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assumptions on Ψ and ρ in Theorem 1.1. Denote x = (x1, . . . , xd) ∈ Rd and let

Bd(x, r) := {y ∈ R
d; |y − x| < r}, Sd(x, r) := ∂Bd(x, r)

be the open ball and the corresponding sphere centered at x with radius r > 0. Then equation

(1.2) becomes

u(x, t) =

∫ t

0

∫

Bd(x,R(t)−R(s))

Ψ(y, s) dyds (x ∈ R
d, t ≥ 0). (1.6)

Recall that ρ(t) is not a constant in general which generates the irregularity of the domain

Ωρ(x, t) of integration. However, this difficulty can be overcome by introducing the change of

variable in time

τ = R(t) =

∫ t

0

ρ(s) ds (t ≥ 0), (1.7)

which is also adopted in Cannon [18] to treat parabolic equations. Thanks to the strict positivity

of ρ, the function R(t) is nonnegative and strictly increasing for t ≥ 0, allowing a well-defined

inverse function t = R−1(τ) for τ ≥ 0. Moreover, it turns out from taking derivative in the

identity R(R−1(τ)) = τ that (R−1(τ))′ = 1/ρ(R−1(τ)). Therefore, performing the same change

of variable in the integral on its right-hand side, we further simplify (1.6) as

U0(x, τ) := u(x,R−1(τ)) =

∫ τ

0

∫

Bd(x,τ−ζ)

Ψ(y,R−1(ζ))

ρ(R−1(ζ))
dydζ (x ∈ R

d, τ ≥ 0). (1.8)

Consequently, it is convenient to consider U0(x, τ) instead of u(x, t) hereinafter since now the

integration is taken in a regular cone Ω1(x, τ) with vertex (x, τ) and unit slope (see Figure

1.1(b)). In fact, for any smooth function w in R
d × [0,∞), we discover by simple calculations

that the same change of variable (1.7) and the definition W (x, τ) := w(x,R−1(τ)) give

∂2τW (x, τ) =
1

ρ(t)
∂t

(
∂tw(x, t)

ρ(t)

)∣∣∣∣
t=R−1(τ)

, ∂τW (x, 0) =
∂tw(x, 0)

ρ(0)
,

or equivalently, by taking τ = R(t) and recalling the operator Hρ in Theorem 1.1,

{
Hρw(x, t) = �W (x,R(t)) (x ∈ R

d, t > 0),

w(x, 0) =W (x, 0), ∂tw(x, 0) = ρ(0) ∂τW (x, 0) (x ∈ R
d),

(1.9)

where � := ∂2τ −4 denotes the d’Alembertian with τ as the time variable.

For later convenience, we denote by σd the surface area of the d-dimensional unit ball,

and write F (x, τ) := Ψ(x,R−1(τ))/ρ(R−1(τ)) for simplicity. Then we introduce the following

integral brackets for `, j = 0, 1, . . ., x ∈ Rd and τ > 0 that

[`, Sd,4j](x, τ) :=

∫ τ

0

∫

Sd(x,τ−ζ)

4jF (y, ζ)

(τ − ζ)` dσdζ (` ≤ d− 1), (1.10)

[`, Bd,4j](x, τ) :=

∫ τ

0

∫

Bd(x,τ−ζ)

4jF (y, ζ)

(τ − ζ)` dydζ (` ≤ d). (1.11)

The restriction on ` guarantees the well-posedness of the above definitions, that is, there is

no singularity near τ = 0. Furthermore, by the smoothness assumption and an averaging

argument, we find

lim
τ↓0

[`, Sd,4j](x, τ) = 0 (` ≤ d− 1), lim
τ↓0

[`, Bd,4j ](x, τ) = 0 (` ≤ d),
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which allows the redefinition

[`, Sd,4j](x, 0) = 0 (` ≤ d− 1), [`, Bd,4j ](x, 0) = 0 (` ≤ d). (1.12)

Now we relate the two brackets by differential operations.

Lemma 1.1 Let the spatial dimensions d ≥ 2, ` = 0, 1, . . . , d − 1 and j = 0, 1, . . .. Let

[`, Sd,4j ](x, τ) and [`, Bd,4j ](x, τ) (x ∈ Rd, τ > 0) be defined as in (1.10) and (1.11) respec-

tively. Then

4[`, Sd,4j ] = [`, Sd,4j+1], 4[`, Bd,4j ] = [`, Bd,4j+1], (1.13)

∂τ [`, Sd,4j ] =

{
(d− `− 1) [`+ 1, Sd,4j ] + [`, Bd,4j+1] (` < d− 1),

σd4jF + [d− 1, Bd,4j+1] (` = d− 1),
(1.14)

∂τ [`, Bd,4j ] = −` [`+ 1, Bd,4j] + [`, Sd,4j ]. (1.15)

The proof involves only elementary calculations and it will be given in Appendix 1.A. Now

we are able to state the first conclusion.

Lemma 1.2 (Single hyperbolic systems) Let d = 1, 2, . . .. Then

(a) U0(x, τ) defined in (1.8) satisfies




�U0(x, τ) =

{
2F (x, τ) (d = 1),

(d− 1)U1(x, τ) (d ≥ 2)
(x ∈ R

d, t > 0),

U0(x, 0) = ∂τU0(x, 0) = 0 (x ∈ R
d),

(1.16)

where

U1(x, τ) := [1, Sd,40](x, τ) (d ≥ 2). (1.17)

(b) u(x, t) in (1.6) satisfies




Hρu(x, t) =

{
2Ψ(x, t)/ρ(t) (d = 1),

(d− 1)U1(x,R(t)) (d ≥ 2)
(x ∈ R

d, t > 0),

u(x, 0) = ∂tu(x, 0) = 0 (x ∈ R
d).

(1.18)

Proof. (a) For d = 1, we return to the original definition (1.8) and write

U0(x, τ) =

∫ τ

0

∫ x+(τ−ζ)

x−(τ−ζ)

F (y, ζ) dydζ,

following the fundamental differentiations

∂xU0(x, τ) =

∫ τ

0

(F (x+ (τ − ζ), ζ) − F (x− (τ − ζ), ζ)) dζ,

∂2xU0(x, τ) =

∫ τ

0

(∂xF (x+ (τ − ζ), ζ) − ∂xF (x− (τ − ζ), ζ)) dζ,

∂τU0(x, τ) =

∫ τ

0

(F (x+ (τ − ζ), ζ) + F (x− (τ − ζ), ζ)) dζ,

∂2τU0(x, τ) = 2F (x, τ) +

∫ τ

0

(∂xF (x+ (τ − ζ), ζ) − ∂xF (x− (τ − ζ), ζ)) dζ

= ∂2xU0(x, τ) + 2F (x, τ).

On the other hand, the homogeneous initial condition is easily checked for d = 1.
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Considering dimensions d ≥ 2, we recognize U0(x, τ) = [0, Bd,40](x, τ) and apply Lemma

1.1 with ` = j = 0 to obtain

∂τU0(x, τ) = ∂τ [0, Bd,40](x, τ) = [0, Sd,40](x, τ),

∂2τU0(x, τ) = ∂t[0, Sd,40](x, τ) = (d− 1) [1, Sd,40](x, τ) + [0, Bd,41](x, τ)

= 4U0(x, τ) + (d− 1)U1(x, τ).

Simultaneously, it follows from (1.12) that the initial condition is still homogeneous for d ≥ 2.

This completes the verification of (1.16).

(b) The substitution of w = u and W = U0 in relation (1.9) yields (1.18) immediately from

the above result.

Remark 1.2 The above lemma demonstrates Theorem 1.1 for d = 1 and suggests an in-

ductive approach to higher dimensions. Although one may apply a d’Alembertian once more

to U1(x, τ) for d ≥ 3 to obtain similar wave equations, another observation provides a straight-

forward reasoning. Write

U1(x, τ) =

∫ τ

0

V1(x, τ ; ζ) dζ with (1.19)

V1(x, τ ; ζ) :=
1

τ − ζ

∫

Sd(x,τ−ζ)

F (y, ζ) dσ (d ≥ 2). (1.20)

In view of Duhamel’s principle (see, e.g., Evans [27]), U1 and V1 satisfy the same type of

equation with corresponding inhomogeneous right-hand term and initial condition.

(a) Especially, we claim for d = 3 that V1(x, τ ; ζ) is of the form (1.20) if and only if

{
�V1(x, τ ; ζ) = 0 (x ∈ Rd, τ > ζ),

V1(x, τ ; ζ)|τ=ζ = 0, ∂τV1(x, τ ; ζ)|τ=ζ = 4π F (x, ζ) (x ∈ Rd).
(1.21)

Actually, under the translation ξ = τ − ζ, (1.21) with d = 3 is equivalent to

{
(∂2ξ −4)V1(x, ξ + ζ; ζ) = 0 (x ∈ R

3, ξ > 0),

V1(x, ξ + ζ; ζ)|ξ=0 = 0, ∂ξV1(x, ξ + ζ; ζ)|ξ=0 = 4π F (x, ζ) (x ∈ R3).

Noting that the above system is now independent of ζ, we may apply Poisson’s formula for the

Cauchy problem of the three-dimensional wave equation to obtain

V1(x, ξ + ζ; ζ) =
1

ξ

∫

S3(x,ξ)

F (y, ζ) dσ,

which is exactly (1.20) by replacing ξ with τ − ζ. On the other hand, Duhamel’s principle

implies that under the relation (1.19), system (1.21) holds for V1(x, τ ; ζ) if and only if U1(x, τ)

satisfies a wave equation for d = 3. Consequently, together with Lemma 1.2(a), it turns out that

U0(x, t) satisfies a double wave equation and thus Theorem 1.1 for d = 3 follows, stimulating

the further discussion in higher spatial dimensions.

(b) However, it follows from [27, §2.4.1] that (1.20) cannot be the solution to (1.21) in even

dimensions. Actually, for even d the solution V1( · , · ; ζ) to (1.21) is affected by F ( · , ζ) inside
the cone {(y, τ); τ > ζ, |y − x| < τ − ζ}, while V1 in (1.20) only on the lateral. This indeed

coincides with Huygens’ principle, namely, functions depending only on a sharp wavefront in

even dimensions do not satisfy wave equations.
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Proposition 1.1 Let d ≥ 2m + 1 with m = 0, 1, . . . and U0(x, τ) be defined as in (1.8).

Then there holds




�Um =

{
2m+1πm F (d = 2m+ 1),

(d− (2m+ 1))Um+1 (d > 2m+ 1)
in R

d × R+,

Um( · , 0) = ∂τUm( · , 0) = 0 in R
d,

(1.22)

where we have for m ≥ 1 that

Um =

m∑

`=1

c`m P `
m(d) [2m− `, ∂(1−(−1)`)/2Bd,4b`/2c], in particular (1.23)

Pm
m (d) = 1, P `

m(d) = (d− 2(m− b(`+ 1)/2c))P `
m−1(d) (1 ≤ ` ≤ m− 1), (1.24)

c1m = cmm = 1, c`m =

{
c`−1
m−1 (` even),

c`−1
m−1 + c`m−1 (` odd)

(2 ≤ ` ≤ m− 1). (1.25)

Here we understand ∂1Bd = Sd, ∂
0Bd = Bd, b · c denotes the integer part of a positive number,

and those terms without definitions automatically vanish.

We comment here that the recursion formulas (1.22)–(1.25) result from the conjecture by

executing brute-force calculations for the first several m’s, which will be presented in Appendix

1.A.

As a direct application of the above conclusion, we immediately obtain the governing equa-

tions for U0 in odd spatial dimensions.

Corollary 1.1 (Multiple wave equations) Let the spatial dimensions d = 2m + 1 (m =

0, 1, . . .), u(x, t) satisfy (1.2)–(1.3) and U0(x, τ) := u(x,R−1(τ)), where R(t) is defined in (1.6).

Assume that u(x, t), Ψ(x, t) and ρ(t) (x ∈ Rd, t ≥ 0) are sufficiently smooth functions, and

ρ(t) is strictly positive for t ≥ 0. Then U0(x, τ) solves the following initial value problem for

the multiple wave equation

{
(∂2τ −4)m+1U0(x, τ) = (2m)!! 2m+1πm Ψ(x,R−1(τ))/ρ(R−1(τ)) (x ∈ Rd, τ > 0),

∂`τU0(x, 0) = 0, ` = 0, 1, . . . , d (x ∈ R
d).

(1.26)

The multiple wave equations for U0 is equivalent to the multiple hyperbolic equations for

u in view of the change of variable (1.6). Nevertheless, Corollary 1.1 will demonstrate its

advantage especially in the numerical simulations for the forward problem (see Section 1.4) and

the investigation of the inverse source problem (see Chapter 4).

The verification of Proposition 1.1 requires a technical lemma, and the proof is postponed

to Appendix 1.A.

Lemma 1.3 Let the integers c`m (m = 1, 2, . . . , 1 ≤ ` ≤ m) be defined as in (1.24) and

(1.25). Then

(a) For m ≥ 2 and 2 ≤ ` ≤ m, we have

P `−1
m (d) = ((d−m) + (−1)`(m− 2b`/2c))P `

m(d). (1.27)

(b) For m ≥ 3 and 2 ≤ ` ≤ m− 1, we have

2(m− `) c`m =

{
` c`+1

m (` even),

(2m− `− 1) c`+1
m (` odd).

(1.28)
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Proof of Proposition 1.1. It is natural to adopt an inductive argument since the result form = 0

has been proved in Lemma 1.2(a). Thus it suffices to show for some m ≥ 1 that

(a) Um in (1.23)–(1.25) satisfies the wave system (1.22), and

(b) for d > 2m+ 1, �Um/(d− (2m+ 1)) preserves expression (1.23)–(1.25) for m+ 1.

To this end, first we unify (1.14)–(1.15) in Lemma 1.1 succinctly and substitute ` with 2m− `
to derive

∂τ [2m− `, ∂(1−(−1)`)/2Bd,4b`/2c]

=

(
(d− 1)

1− (−1)`
2

− 2m+ `

)
[2m− `+ 1, ∂(1−(−1)`)/2Bd,4b`/2c]

+ [2m− `, ∂(1−(−1)`+1)/2Bd,4b(`+1)/2c],

yielding

∂τUm =

m∑

`=1

c`m P `
m(d) ∂τ [2m− `, ∂(1−(−1)`)/2Bd,4b`/2c]

=

m∑

`=1

c`m P `
m(d)

{(
(d− 1)

1− (−1)`
2

− 2m+ `

)
[2m− `+ 1, ∂(1−(−1)`)/2Bd,4b`/2c]

+ [2m− `, ∂(1−(−1)`+1)/2Bd,4b(`+1)/2c]

}

= (d− 2m)P 1
m(d) [2m,Sd,40]

+

m∑

`=2

c`m P `
m(d)

(
(d− 1)

1− (−1)`
2

− 2m+ `

)
[2m− `+ 1, ∂(1−(−1)`)/2Bd,4b`/2c]

+
m∑

`=2

c`−1
m P `−1

m (d) [2m− `+ 1, ∂(1−(−1)`)/2Bd,4b`/2c]

+ [m, ∂(1−(−1)m+1)/2Bd,4b(m+1)/2c]

= P 1
m+1(d) [2m,Sd,40] + Ûm,

where

Ûm :=

m∑

`=2

Q`
m(d) [2m− `+ 1, ∂(1−(−1)`)/2Bd,4b`/2c] + [m, ∂(1−(−1)m+1)/2Bd,4b(m+1)/2c],

in particular

Q`
m(d) := c`m P `

m(d)

(
(d− 1)

1− (−1)`
2

− 2m+ `

)
+ c`−1

m P `−1
m (d) (` = 2, . . . ,m).

Here we have applied (1.24) with m replaced by m + 1 to get (d − 2m)P 1
m(d) = P 1

m+1(d).

Meanwhile, using the fact that d ≥ 2m + 1, we may apply (1.12) to argue that each integral

bracket in Um and ∂τUm vanish at τ = 0 and hence (1.22)2 holds.

Furthermore, we employ a similar argument for Ûm to obtain

∂τ Ûm =

m∑

`=2

Q`
m(d)

{(
(d− 1)

1− (−1)`
2

− 2m+ `− 1

)
[2m− `+ 2, ∂(1−(−1)`)/2Bd,4b`/2c]

+ [2m− `+ 1, ∂(1−(−1)`+1)/2Bd,4b(`+1)/2c]

}

+

(
(d− 1)

1− (−1)m+1

2
−m

)
[m+ 1, ∂(1−(−1)m+1)/2Bd,4b(m+1)/2c]
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+ [m, ∂(1−(−1)m)/2Bd,4bm/2c+1]

= −(2m− 1)P 2
m+1(d) [2m,Bd,41]

+

m−2∑

`=1

{
Q`+2

m (d)

(
(d− 1)

1− (−1)`
2

− 2m+ `+ 1

)
+Q`+1

m (d)

}

× [2m− `, ∂(1−(−1)`)/2Bd,4b`/2c+1]

+

{
Qm

m(d) +

(
(d− 1)

1− (−1)m−1

2
−m

)}
[m+ 1, ∂(1−(−1)m−1)/2Bd,4b(m−1)/2c+1]

+ [m, ∂(1−(−1)m)/2Bd,4bm/2c+1],

where we have used (1.25), (1.24) and Lemma 1.3(a) to find

Q2
m(d) = c2m P 2

m(d) (−2m+ 2) + c1m P 1
m(d) = (d− 2m)P 2

m(d) = P 2
m+1(d).

On the other hand, we differentiate [2m,Sd,40] with respect to d to proceed

∂2τUm = P 1
m+1(d) ∂τ [2m,Sd,40] + ∂τ Ûm

=




P 1
m+1(d)

(
σd F + [2m,Bd,41]

)
+ ∂τ Ûm (d = 2m+ 1),

P 1
m+1(d)

(
(d− 2m− 1) [2m+ 1, Sd,40] + [2m,Bd,41]

)

+ ∂τ Ûm (d > 2m+ 1),

while

4Um =

m∑

`=1

c`m P `
m(d) [2m− `, ∂(1−(−1)`)/2Bd,4b`/2c+1].

Representing (1.22)1 by the above expressions and comparing the both sides, we claim that it

suffices to prove for d ≥ 2m+ 1 that

σ2m+1 P
1
m+1(2m+ 1) = 2m+1πm,

P 1
m+1(d) − (2m− 1)P 2

m+1(d) = (d− 2m− 1) c2m+1 P
2
m+1(d)

(m ≥ 1), (1.29)

and

Qm
m(d) +

(
(d− 1)

1− (−1)m−1

2
−m

)
− cm−1

m Pm−1
m (d)

= (d− 2m− 1) cm+1
m+1 P

m+1
m+1 (d) (m ≥ 2), (1.30)

Q`+2
m (d)

(
(d− 1)

1− (−1)`
2

− 2m+ `+ 1

)
+Q`+1

m (d)− c`m P `
m(d)

= (d− 2m− 1) c`+2
m+1 P

`+2
m+1(d) (m ≥ 3, ` = 1, . . . ,m− 2). (1.31)

In fact, as long as (1.29)–(1.31) are valid, requirements (a) and (b) are satisfied simultaneously

and the proof is complete.

First, the repeated applications of Lemma 1.3(a) with m replaced by m+ 1 yields

P 1
m+1(d) = (d− 2)P 2

m+1(d) = (d− 2)(d− 2m)P 3
m+1(d) = · · · =

m∏

j=1

(d− 2j),

which, together with the fact σ2m+1 = 2m+1πm/(2m− 1)!!, leads to

σ2m+1 P
1
m+1(2m+ 1) =

2m+1πm

(2m− 1)!!

m∏

j=1

(2m+ 1− 2j) = 2m+1πm
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and meanwhile

P 1
m+1(d)− (2m− 1)P 2

m+1(d) = (d− 2)P 2
m+1(d)− (2m− 1)P 2

m+1(d)

= (d− 2m− 1) c2m+1 P
2
m+1(d),

that is, (1.29). Next, it follows from the expansion of Qm
m(d) that

Qm
m(d) +

(
(d− 1)

1− (−1)m−1

2
−m

)
− cm−1

m Pm−1
m (d)

=

(
(d− 1)

1− (−1)m
2

−m
)
+ cm−1

m Pm−1
m (d) +

(
(d− 1)

1− (−1)m−1

2
−m

)

− cm−1
m Pm−1

m (d)

= d− 2m− 1 = (d− 2m− 1) cm+1
m+1 P

m+1
m+1 (d)

or (1.30). Similarly, we expand Q`+1
m (d) and Q`+2

m (d) for ` = 1, . . . ,m − 2 and utilize Lemma

1.3(a) to calculate

Q`+2
m (d)

(
(d− 1)

1− (−1)`
2

− 2m+ `+ 1

)
+Q`+1

m (d)− c`m P `
m(d)

=

{
c`+2
m P `+2

m (d)

(
(d− 1)

1− (−1)`
2

− 2m+ `+ 2

)
+ c`+1

m P `+1
m (d)

}

×
(
(d− 1)

1− (−1)`
2

− 2m+ `+ 1

)

+

{
c`+1
m P `+1

m (d)

(
(d− 1)

1− (−1)`+1

2
− 2m+ `+ 1

)
+ c`m P `

m(d)

}
− c`m P `

m(d)

=

{
c`+2
m

(
(d− 1)

1− (−1)`
2

− 2m+ `+ 2

)(
(d− 1)

1− (−1)`
2

− 2m+ `+ 1

)

+ c`+1
m (d− 4m+ 2`+ 1)(d−m+ (−1)`(m− 2b`/2c − 2))

}
P `+2
m (d)

=

{{
c`+2
m (2m− `− 2)(2m− `− 1) + c`+1

m (d− 4m+ 2`+ 1)(d− `− 2)
}
P `+2
m (d) (` even),{

(d− 2m+ `+ 1)
(
c`+2
m (d− 2m+ `) + c`+1

m (d− 4m+ 2`+ 1)
)}
P `+2
m (d) (` odd).

On the other hand, it immediately follows from (1.24) that

P `+2
m+1(d) = (d− 2(m− b(` + 1)/2c))P `+2

m (d) =

{
(d− 2m+ `)P `+2

m (d) (` even),

(d− 2m+ `+ 1)P `+2
m (d) (` odd).

Therefore, by Lemma 1.3(b) and (1.25), we obtain for even ` that

c`+2
m (2m− `− 2)(2m− `− 1) + c`+1

m (d− 4m+ 2`+ 1)(d− `− 2)

= c`+1
m {2(m− `− 1)(2m− `− 1) + (d− 4m+ 2`+ 1)(d− `− 2)}

= c`+1
m (d− 2m− 1)(d− 2m+ `) = c`+2

m+1 (d− 2m− 1)(d− 2m+ `),

and parallelly for odd ` that

(d− 2m+ `+ 1)
(
c`+2
m (d− 2m+ `) + c`+1

m (d− 4m+ 2`+ 1)
)

= (d− 2m+ `+ 1)
{(

(`+ 1)c`+2
m − 2(m− `− 1)c`+1

m

)
+ (c`+1

m + c`+2
m )(d − 2m− 1)

}

= c`+2
m+1 (d− 2m− 1)(d− 2m+ `+ 1).

In other words, we balance the both sides of (1.31), which finishes the proof.
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At this stage, the main conclusion of multiple hyperbolic systems degenerates to a straight-

forward corollary of the above result.

Proof of Theorem 1.1. In view of Proposition 1.1, it suffices to show by induction on m that

for m = 0, 1, . . . and d ≥ 2m+ 1, there holds





Hm+1
ρ u =





(2m)!! 2m+1πm Ψ/ρ (d = 2m+ 1),
m∏

`=0

(d− 2`− 1)Um+1( · , R( · )) (d > 2m+ 1)
in R

d × R+,

∂`tu( · , 0) = 0, ` = 0, 1, . . . , 2m+ 1 in R
d.

(1.32)

The result for m = 0 was obtained in Lemma 1.2(b). In order to verify (1.32) for each m ≥ 1,

we suppose the validity for some m− 1, especially there holds for d ≥ 2m+ 1 that





Hm
ρ u(x, t) =

m−1∏

`=0

(d− 2`− 1)Um(x,R(t)) (x ∈ R
d, t > 0),

∂`tu(x, 0) = 0, ` = 0, 1, . . . , 2m− 1 (x ∈ R
d).

Taking w := Hm
ρ u, then in view of (1.9) we find

W (x, τ) = w(x,R−1(τ)) = Hm
ρ u(x, t)

∣∣
t=R−1(τ)

=

m−1∏

`=0

(d− 2`− 1)Um(x, τ),

where Um satisfies (1.22) by Proposition 1.1. This, together with (1.9), yields immediately

Hm+1
ρ u(x, t) = Hρw(x, t) = �W (x,R(t)) =

m−1∏

`=0

(d− 2`− 1)�Um(x,R(t))

=





m−1∏

`=0

(d− 2`− 1) 2m+1πm F (x,R(t)) (d = 2m+ 1)

m−1∏

`=0

(d− 2`− 1) (d− 2m− 1)Um+1(x,R(t)) (d > 2m+ 1)

=





(2m)!! 2m+1πm Ψ(x, t)/ρ(t) (d = 2m+ 1)
m∏

`=0

(d− 2`− 1)Um+1(x,R(t)) (d > 2m+ 1)
(x ∈ R

d, t > 0),

while the initial condition for d ≥ 2m+ 1 reads

Hm
ρ u(x, 0) =

m−1∏

`=0

(d− 2`− 1)Um(x, 0) = 0,

∂tHm
ρ u(x, 0) = ρ(0)

m−1∏

`=0

(d− 2`− 1) ∂τUm(x, 0) = 0.

Since ρ(0) 6= 0 and Hm
ρ u(x, 0) is now a linear combination of ∂jt u(x, 0) (j = 0, . . . , 2m− 1, 2m),

it follows from the inductive assumption on the homogeneous initial condition for lower order

time derivatives than 2m that ∂2mt u(x, 0) = 0 and thus ∂2m+1
t u(x, 0) = 0 (x ∈ Rd). This

completes the demonstration of (1.32) for m ≥ 1 and hence Theorem 1.1.
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1.4 Numerical simulations for forward problems

In this section, we implement numerical computations for forward problems in practical

dimensions, namely, solving for the expectation number u(x, t) of transformation events by

given (discrete) data of Ψ(x, t) and ρ(t) with d = 1, 2, 3. It will be demonstrated that even

finite difference schemes for the derived hyperbolic-type systems can dramatically improve the

efficiency of simulations compared with direct approaches based on (1.2)–(1.3).

Throughout this section, we consider the systems in the time interval [0, T ] and assume the

periodicity of u(x, t) in space. More precisely, it is supposed, e.g. for d = 3, that there exist

L` > 0 (` = 1, 2, 3) such that

u(x1 + i L1, x2 + j L2, x3 + k L3, t) = u(x1, x2, x3, t) (∀ i, j, k ∈ Z),

so that it suffices to restrict the systems in Ω× [0, T ], Ω :=
∏d

`=1(0, L`) (d = 1, 2, 3) and impose

the periodic boundary conditions. Thus the data of Ψ and ρ are assigned only on the knots

0 = t0 < t1 < · · · < tNt = T, 0 = x1` < x2` < · · · < xN`

` = L` (1 ≤ ` ≤ d).

Without lose of generality we assume an equidistant lattice in space, that is, xi` = (i−1)∆x (i =

1, . . . , N`) with the step size ∆x > 0.

Although one may solve for the unknown u by, e.g., hyperbolic-type systems (1.5) with the

periodic boundary condition when d = 1, 3, it is advantageous to consider the wave-type systems

(1.26) for U0 and utilize the relation u( · , t) = U0( · , R(t)) instead. In this manner we can not

only circumvent the numerical differentiation problem for ρ, but also simplify the choice of the

step length in time. For simplicity, we write U := U0 and introduce V := �U for d = 2, 3. To

clarify, we formulate the initial-boundary value problem, e.g., for the three-dimensional case,

as 



�U = V, �V = 8π F in Ω× (0, T ],

U = ∂τU = V = ∂τV = 0 in Ω× {0},
U, V : periodic on ∂Ω× (0, T ],

(1.33)

where we recall Ω =
∏d

`=1(0, L`) and F (x, τ) = Ψ(x,R−1(τ))/ρ(R−1(τ)).

Such a consideration of the equivalent systems relies obviously on the knowledge of the

change of variable τ = R(t) =
∫ t

0
ρ(s) ds, whose accurate value is absent due to the discrete

data {ρ(tn)}Nt
n=0. Hence we shall first apply, for instance, a composite trapezoid quadrature to

provide a piecewise linear approximation of R(t), say R̂(t). Now that U satisfies a wave equation

with the unit propagation speed, we may partition the alternative time interval [0, R̂(T )] of τ

by a uniform step length ∆τ > 0, yielding the knots τn = n∆τ (n = 0, 1, . . . , Nτ ) with

Nτ ∆τ = R̂(T ). Note that ∆τ is required to satisfy the Courant-Friedrichs-Lewy condition√
d∆τ ≤ ∆x when using an explicit scheme of the finite difference method, which can be loosen

or removed if some weighted multilevel schemes are employed. For later use we introduce the

ratio κ := (∆τ/∆x)2.

Thanks to the strict positivity of ρ, it is easy to find out an increasing sequence {t̂n}Nτ
n=0

such that R̂(t̂n) = τn. Thus, the estimation of U( · , τn) stands for a reasonable approximation

of u( · , t̂n) due to the relation (1.8). Moreover, we recognize that the equidistant partition in τ

corresponds with a self-adaptive partition in t, i.e., the knots {t̂n} accumulate where ρ is large

while are sparsely distributed for small ρ (see Figure 1.2).

Interpreting Ψ and ρ as piecewise linear, we may obtain the term

F ( · , τn) =
Ψ( · , R−1(τn))

ρ(R−1(τn))
≈ Ψ( · , t̂n)

ρ(t̂n)
(0 ≤ n ≤ Nτ )
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(a) (b)

0 T = 1
 

 

ρ(t)

0 T = 1

R̂(T)

 

 

R̂(t)

Figure 1.2: An example of the self-adaptiveness. (a) Plot of ρ(t) = (t+ 0.01)−1/2. (b) Plot of

R̂(t) ≈ 2(
√
t+ 0.01− 0.1), circle = τn and diamond = t̂n.

by interpolating the discrete data {Ψ( · , tn), ρ(tn)}Nt
n=0. For d = 3, we denote

F i,j,k
n :=

Ψ(xi1, x
j
2, x

k
3 , t̂n)

ρ(t̂n)
,

let U i,j,k
n be the approximation of U(xi1, x

j
2, x

k
3 , τn), and define the difference operators





δ2x1
U i,j,k
n := U i+1,j,k

n − 2U i,j,k
n + U i−1,j,k

n (i = 1, . . . , N1),

δ2x2
U i,j,k
n := U i,j+1,k

n − 2U i,j,k
n + U i,j−1,k

n (j = 1, . . . , N2),

δ2x3
U i,j,k
n := U i,j,k+1

n − 2U i,j,k
n + U i,j,k−1

n (k = 1, . . . , N3),

where we understand U0,j,k
n = UN1,j,k

n , UN1+1,j,k
n = U1,j,k

n , etc. due to the periodicity. Similar

notations are parallelly shared by the counterparts of U and Ψ for d = 1, 2 as well as V for

d = 2, 3.

Now we are well-prepared to explain the implementation of numerical approaches. Due to

the difference between odd and even spatial dimensions, we treat the cases of d = 1, 3 and d = 2

separately.

1.4.1 One- and three-dimensional cases

We start from the one-dimensional case. Applying a three-leveled finite difference scheme

to (1.16) with the periodic boundary condition, we obtain





U i
n+1 − 2U i

n + U i
n−1 = κ δ2x1

(
η U i

n+1 − (1 − 2η)U i
n + η U i

n−1

)

+ 2∆τ2 F i
n (1 ≤ i ≤ N1, 1 ≤ n ≤ Nτ − 1),

U i
0 = U i

1 = 0 (1 ≤ i ≤ N1),

U0
n = UN1

n , UN1+1
n = U1

n (1 ≤ n ≤ Nτ − 1),

(1.34)

where η ∈ [0, 1/2] is a parameter. (1.34) becomes the von Neumann scheme when η = 1/4,

and it is unconditionally stable as long as η ≥ 1/4. The numerical result with η = 1/4, T = 1,

L1 = π and the given

ρ(t) =
1

2
√
t+ 1

, Ψ(x, t) = exp

(
− (x− π/2)2

2

)
(1− cos(10 x)) exp

(
1− t

10

)
(1.35)

is illustrated in Figure 1.3.
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Figure 1.3: Numerical result of the one-dimensional forward problem with Ψ and ρ given by
(1.35).

Next, for d = 3 it suffices to solve for V by the given data 4π F first, and then solver for U by

the source term V according to (1.33). To avoid massive matrix manipulations while preserve

the unconditional stability as the von Neumann scheme for d = 1, we apply the alternating

direction implicit (ADI) method (see Fairweather and Metchell [28]) to both V and U as follows





V i,j,k
n+1/3 − 2V i,j,k

n + V i,j,k
n−1 = κ δ2x1

(
η V i,j,k

n+1/3 + (1− 2η)V i,j,k
n + η V i,j,k

n−1

)

+ κ (δ2x2
+ δ2x3

)V i,j,k
n + 8π∆τ2 F i,j,k

n ,

V i,j,k
n+2/3 − V

i,j,k
n+1/3 = κη δ2x2

(
V i,j,k
n+2/3 − 2V i,j,k

n + V i,j,k
n−1

)
,

V i,j,k
n+1 − V i,j,k

n+2/3 = κη δ2x3

(
V i,j,k
n+1 − 2V i,j,k

n + V i,j,k
n−1

)
,





U i,j,k
n+1/3 − 2U i,j,k

n + U i,j,k
n−1 = κ δ2x1

(
η U i,j,k

n+1/3 + (1 − 2η)U i,j,k
n + η U i,j,k

n−1

)

+ κ (δ2x2
+ δ2x3

)U i,j,k
n +∆τ2 V i,j,k

n ,

U i,j,k
n+2/3 − U

i,j,k
n+1/3 = κη δ2x2

(
U i,j,k
n+2/3 − 2U i,j,k

n + U i,j,k
n−1

)
,

U i,j,k
n+1 − U i,j,k

n+2/3 = κη δ2x3

(
U i,j,k
n+1 − 2U i,j,k

n + U i,j,k
n−1

)
,

where η ∈ [0, 1/2]. Such a scheme inherits the unconditional stability property when η ≥ 1/4

as that for d = 1. Here the initial and boundary treatments are parallel to that of (1.34), and

such notations as U i,j,k
n+1/3 stand for some intermediate values in pursue of U i,j,k

n+1 . We implement

the above scheme with η = 1/4, T = 100, L1 = L2 = L3 = 1 and

ρ(t) =
1

5
√
100 t+ 1

, Ψ(x, t) = f(x)

(
1− exp

(
− t

10

))
. (1.36)

Here the spatial component f of Ψ describes a soccer-shaped structure satisfying the periodicity

with the addition of a random noise subjected to the Cauchy distribution, producing few out-

standing pixels with a low-amplitude background (see Kaipio and Somersalo [41, §3.3.2]). The
numerical simulation results at four moments are illustrated in Figure 1.4. At each moments

we show several representative sections cut at x3 = 0.25, x3 = 0.5, x3 = 0.75 and x3 = 1.

1.4.2 The two-dimensional case

Now we consider the two-dimensional case. In Remark 1.2 we mentioned the different

situations between even and odd spatial dimensions, and such difference results in practical

difficulties in the treatment for d = 2. After a polar coordinate transform, the source term in
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Figure 1.4: Numerical simulation for the three-dimensional forward problem at four moments. Ψ
and ρ given by (1.36). At each moment we show several representative sections with x3 = 0.25,
x3 = 0.5, x3 = 0.75 and x3 = 1.
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the governing equation (1.16) reads

V (x, τ) = [1, S2,40](x1, x2, τ) =

∫ τ

0

W (x1, x2, τ, ζ) dζ, where (1.37)

W (x1, x2, τ, ζ) :=

∫ 2π

0

F (x1 + (τ − ζ) cosψ, x2 + (τ − ζ) sinψ, ζ) dψ. (1.38)

In other words, we shall numerically treat the integral on the lateral of the cone Ω1(x, τ). At

the moment it is necessary to discretize the above integral at all grid points.

Suppose that we are now in a position to approximate V (xi1, x
j
2, τn) for some 1 ≤ i ≤ N1

and 1 ≤ j ≤ N2. First we discrete (1.37) by a composite trapezoid quadrature as

V (xi1, x
j
2, τn) ≈ ∆τ

(
W (xi1, x

j
2, τn, τ0)

2
+

n−1∑

k=1

W (xi1, x
j
2, τn, τk) +

W (xi1, x
j
2, τn, τn)

2

)

= ∆τ

(
π F (xi1, x

j
2, τn) +

n−1∑

k=1

W (xi1, x
j
2, τn, τn−k) +

W (xi1, x
j
2, τn, τ0)

2

)
, (1.39)

where W (xi1, x
j
2, τn, τn−k) (k = 1, . . . , n), by definition, denotes the integral of F (xi1, x

j
2, τn−k)

on a ring centered at (xi1, x
j
2) with radius k∆τ . Therefore, it suffices to develop a sampling

strategy to collect sufficient knots on the ring so as to employ another numerical integral.

Meanwhile, we observe that regardless of the strategy we utilize, the relative positions between

the obtained sampling points and the corresponding center is independent of i, j in the same

level time. On the other hand, for fixed i and j, the sampling points at τ = τn can be recycled

repeatedly afterwards. In this sense, the information from any reasonable strategy is global,

implying the sufficiency of considering the ensemble of concentric rings with radiuses k∆τ ,

k = 1, . . . , Nτ prior to the computation.

Actually, a naive but pragmatic strategy works, namely, collecting all the intersection points

with the spatial lattice on each ring and then approximating (1.38) by a non-equidistant com-

posite trapezoid quadrature with respect to the arguments of these points (see Figure 1.5).

Evidently, such strategy is by nature self-adaptive in sense of the observation that it collects

O(k) knots on the ring with radius k∆τ , which supplies sufficient amount of samplings to re-

sult in good approximations of the integral W (xi1, x
j
2, τn, τn−k). On the other hand, since most

probably the desired knots do not locate at the lattice, such interpolation as weighted average

of the two adjacent grid points are required for the approximation.

To this end, we shall first identify one of the adjacent grids and then record the relative

direction (up/down/left/right) of another. Without lose of generality, we specify the first grid

point be the one closer to the origin. Thus it is easy to obtain the corresponding weight and

argument. Consequently, six pieces of information

(̃i, j̃, î, ĵ, b, ψ) (1.40)

are necessary for the identification of a desired point: (̃i, j̃) ∈ Z2 for the relative position of the

first reference point from the origin, (̂i, ĵ) ∈ {(±1, 0), (0,±1)} for the relative direction of the

second point from the first, b ∈ [0, 1] for the relative distance from the first grid, and ψ ∈ [0, 2π]

for its argument.

Thanks to the equidistant assumption of the spatial lattice, it suffices to lock on the inter-

section points in the x1-direction in the first quadrant (see Figure 1.5(a)). In other words, we

search for the desired points on the horizonal lines

Σm := {(x1, x2) ∈ R
2 | 0 < x1 ≤ Nmax ∆x, x2 = m∆x}, m = 0, 1, . . . ,M0,
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where M0 := dR̃(T )/∆xe assigns an optimal search range according to the largest radius.

Suppose now we are executing the searching process on Σm. Since the distance between the

original point and Σm is greater than m∆x, we may eliminate the shorter radiuses by finding

the smallest k such that k∆τ > m∆x. On the other hand, it also turns out to be unnecessary

to search on the whole line Σm especially for large m; only such interval that 0 < x21 ≤
R̃(T )2 − (m∆x)2 should be under consideration. In conclusion, these tricks greatly trim the

unnecessary searchings, and it is not difficult to identify the nearest grid point left to the

intersection point and the second one is always on the right. Equipped with the weight b and

argument ψ which are easily computed, by this means we are able to collect all the desired

information in the horizonal direction in the first quadrant.
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Figure 1.5: Demonstration of the detailed implementation of the searching strategy for inter-

section points between the equidistant lattice and the concentric rings with ∆x =
√
2∆t.

Owing to the uniform mesh size ∆x, we may duplicate the above information to the perpen-

dicular direction in the first quadrant. Noting that later we will make a rotation of π/2 so that

the intersection points on the x1-axis will transfer to the x2-axis, we do not exert the duplication

for Σ0. More precisely, for a given point identified by (1.40), its reflection with respect to the

diagonal reads (j̃, ĩ, ĵ, î, b, π/2 − ψ). To fit into the framework of numerical integral (1.41), we

shall rearrange the obtained points on each ring so that their arguments are in increasing order.

We make rearrangement in this stage because the rotation afterwards will definitely keep such

order. Here it is noticeable that occasionally several intersections just locate on the lattice so

that the horizonal and perpendicular searching overlap (see Figure 1.5(b)). However, since they

share the same argument, the substitution into (1.41) will cancel the extra term automatically

so that such special cases are ignorable.

At this step, we may first apply a rotation of π/2 to double the information from the first

quadrant to the second, and then rotate another π to double from the upper half plane to the

lower half. These are equivalent to the transformation of the already obtained information (1.40)
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to (−j̃, ĩ,−ĵ, î, b, ψ + π/2) and (−ĩ,−j̃,−î,−ĵ, b, ψ + π) subsequently (see Figure 1.5(c)–(d)).

Until now we have finished the collection of all information

(̃ikm, j̃
k
m, î

k
m, ĵ

k
m, b

k
m, ψ

k
m) with 0 = ψk

0 ≤ · · · ≤ ψk
Nk

= 2π, k = 1, . . . , Nτ , m = 0, . . . , Nk,

which can be immediately applied into the following composite trapezoid quadrature for 1 ≤
i ≤ N1, 1 ≤ j ≤ N2 that

W (xi1, x
j
2, τn, τn−k) ≈

Nk∑

m=1

ψk
m − ψk

m−1

2

{
F (xi1 +m∆x cosψk

m−1, x
j
2 +m∆x sinψk

m−1, τn−k)

+F (xi1 +m∆x cosψk
m, x

j
2 +m∆x sinψk

m, τn−k)
}

≈
Nk−1∑

m=1

ψk
m+1 − ψk

m−1

2

{
(1− bkm)Fn−k

i+ĩkm ,j+j̃km
+ bkm Fn−k

i+ĩkm+îkm,j+j̃km+ĵkm

}

+

(
π − ψk

Nk−1 − ψk
1

2

){
(1− bk0)Fn−k

i+ĩk0 ,j
+ bk0 F

n−k

i+ĩk0+1,j

}
(1.41)

for k = 1, . . . , n. Of course, here we extend F ( · , τ) periodically so that all the indexes above

make sense, which can be equivalently implemented by taking module operations with respect

to N1 or N2 in either direction. Finally, the combination of (1.39) with (1.41) is expected to

return a good approximation V i,j
n to V (xi1, x

j
2, τn).

Now we are ready to proceed to the discretization of the system (1.16) with d = 2. Similarly

to that for d = 3, we take advantage of the two-dimensional version of the ADI method (see

Lees [45])





U i,j
n+1/2 − 2U i,j

n + U i,j
n−1 = κ δ2x1

(
η U i,j

n+1/2 + (1− 2η)U i,j
n + η U i,j

n−1

)

+ κ δ2x2
U i,j
n +∆τ2 V i,j

n ,

U i,j
n+1 − U i,j

n+1/2 = κη δ2x2

(
U i,j
n+1 − 2U i,j

n + U i,j
n−1

)

with η ∈ [0, 1/2] (1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ n ≤ Nτ − 1). Still the stability properties are

identical to that of odd spatial dimensions. We implement the above scheme with η = 1/4,

T = 50, L1 = L2 = 1 and

ρ(t) =
1

50
√
t+ 1

, Ψ(x, t) = f(x)

(
1− exp

(
− t

10

))
. (1.42)

In Figure 1.6, we capture several cuts at different stages of the phase transformation.

1.5 Conclusion and future works

In summary, it reveals that Cahn’s time cone model (1.2)–(1.3) concerning phase transfor-

mation kinetics can be equivalently described by a class of multiple hyperbolic equations with

the homogeneous initial condition, in which the growth speed ρ(t) mainly plays the role of the

propagation speed of wave. Especially, such systems take the simplest forms in odd spatial

dimensions, where the nucleation rate Ψ(x, t) accounts for the source term (see Theorem 1.1).

Moreover, by the change of variable (1.7) which only involves ρ(t), the governing equation (1.5)

is further reduced to a class of multiple wave equations with a unit propagation speed (see

Corollary 1.1). To a certain extent, the derivation of hyperbolic-type governing equations pro-

vides an appropriate formulation which enables systematic investigations of problems related



1.5. Conclusion and future works 31

Time = 0.2707

 

 

20 40 60 80 100

20

40

60

80

100

0.5

1

1.5

2

2.5

3

x 10
−7 Time = 16.5661

 

 

20 40 60 80 100

20

40

60

80

100

2

4

6

8

10

12

14

16

x 10
−3

Time = 33.2307

 

 

20 40 60 80 100

20

40

60

80

100

0.01

0.02

0.03

0.04

0.05

0.06

Time = 50

 

 

20 40 60 80 100

20

40

60

80

100
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 1.6: Numerical simulation of the two-dimensional forward problem with Ψ and ρ given
by (1.42).

to structure transformations in both theoretical and numerical senses. As a tentative appli-

cation, it was demonstrated in the previous section that efficient forward solvers are readily

implemented on the basis of this alternative framework instead of the original model.

More significantly, as can be witnessed in the remaining chapters of Part I, the transform

from an integral equation to partial differential equations also initiates smooth discussions on

the corresponding inverse problems by using classical results of inverse hyperbolic problems. In

Chapter 2, we shall study the numerical identification of the growth speed ρ(t) on the basis of

Theorem 1.1 in a framework of the coefficient inverse problem. In Chapter 4, we will investigate

the determination of the nucleation rate Ψ(x, t) on the basis of Corollary 1.1, and it turns out

that the reasoning can be easily carried out from a viewpoint of inverse source problems of the

hyperbolic type. More challenging topics may involve the simultaneous identification of both

Ψ and ρ by more informative observations. At the same time, the computational methods for

the above mentioned inverse problems are also of great interests.

For a better understanding of the overall scenario, we outline the framework of the above

contents as follows.

u =
∫
Ωρ

Ψ

��

U( · ,τ):=u( · ,R−1(τ))
// U =

∫
Ω1
F

��

Hm+1
ρ u = cm Ψ/ρ

ρ: unknown

��

(∂2τ −4)m+1U = cm F
u( · ,t)=U( · ,R(t))

oo

ρ: given

��

Coefficient inverse problem Forward solver, Inverse source problem
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1.A Technical details

Here we provide detailed proofs of the technical lemmata in Section 1.3.

Proof of Lemma 1.1. For the boundary integral [`, Sd,4j ], we introduce the polar transform

y = x+ (τ − ζ) p(ψ) (ψ = (ψ1, . . . , ψd−2, ψd−1) ∈ Dd := [0, π]d−2 × [0, 2π]),

p(ψ) := (cosψ1, sinψ1 cosψ2, . . . , sinψ1 · · · sinψd−2 cosψd−1, sinψ1 · · · sinψd−2 sinψd−1).

Then the Jacobian reads (τ − ζ)d−1 q(ψ), where q(ψ) := sind−2 ψ1 · · · sinψd−2. Therefore, we

can write expression (1.10) equivalently as

[`, Sd,4j ](x, τ) =

∫ τ

0

∫

Dd

(τ − ζ)d−`−1 q(ψ)4jF (x+ (τ − ζ) p(ψ), ζ) dψdζ.

Parallelly, for the interior integral [`, Bd,4j], we apply a similar polar transform

y = x+ r p(ψ) (0 < r < τ − ζ, ψ = (ψ1, . . . , ψd−2, ψd−1) ∈ Dd)

with the Jacobian rd−1 q(ψ), where p(ψ), Dd and q(ψ) are defined as before. Then (1.11) can

be rewritten as

[`, Bd,4j ](x, τ) =

∫ τ

0

∫ τ−ζ

0

∫

Dd

rd−1 q(ψ)4jF (x + r p(ψ), ζ)

(τ − ζ)` dψdrdζ.

With these alternative representations, it is straightforward to verify (1.13) that

4[`, Sd,4j ](x, τ) =

∫ τ

0

∫

Dd

(τ − ζ)d−`−1 q(ψ)4j+1F (x + (τ − ζ) p(ψ), ζ) dψdζ

= [`, Sd,4j+1](x, τ),

4[`, Bd,4j ](x, τ) =

∫ τ

0

∫ τ−ζ

0

∫

Dd

rd−1 q(ψ)4j+1F (x+ r p(ψ), ζ)

(τ − ζ)` dψdrdζ

= [`, Bd,4j+1](x, τ).

For [`, Sd,4j ] with ` < d− 1, we apply Green’s formula and notice the fact that p(ψ) coincides

with the unit outward normal vector ν(y) at y = x+ (τ − ζ) p(ψ) to proceed

∂τ [`, Sd,4j ](x, τ) =

∫ τ

0

∂τ

(∫

Dd

(τ − ζ)d−`−1 q(ψ)4jF (x+ (τ − ζ) p(ψ), ζ) dψ
)
dζ

= (d− `− 1)

∫ τ

0

∫

Dd

(τ − ζ)d−`−2 q(ψ)4jF (x+ (τ − ζ) p(ψ), ζ) dψdζ

+

∫ τ

0

∫

Dd

(τ − ζ)d−`−1 q(ψ)∇4jF (x+ (τ − ζ) p(ψ), ζ) · p(ψ) dψdζ

= (d− `− 1) [`+ 1, Sd,4j](x, τ) +

∫ τ

0

∫

Sd(x,τ−ζ)

∇4jF (y, ζ) · ν(y)
(τ − ζ)` dσdζ

= (d− `− 1) [`+ 1, Sd,4j](x, τ) +

∫ τ

0

∫

Bd(x,τ−ζ)

4j+1F (y, ζ)

(τ − ζ)` dydζ

= (d− `− 1) [`+ 1, Sd,4j](x, τ) + [`, Bd,4j+1](x, τ).

For ` = d− 1, a similar argument yields immediately

∂τ [d− 1, Sd,4j](x, τ) =

∫

Dd

q(ψ)4jF (x, τ) dψ
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+

∫ τ

0

∫

Dd

q(ψ)∇4jF (x+ (τ − ζ) p(ψ), ζ) · p(ψ) dψdζ

= σd4jF (x, τ) +

∫ τ

0

∫

Sd(x,τ−ζ)

∇4jF (y, ζ) · ν(y)
(τ − ζ)d−1

dσdζ

= σd4jF (x, τ) +

∫ τ

0

∫

Bd(x,τ−ζ)

4j+1F (y, ζ)

(τ − ζ)d−1
dydζ

= σd4jF (x, τ) + [d− 1, Bd,4j+1](x, τ),

which is indeed (1.14). For [`, Bd,4j] with ` ≤ d− 1, we employ a parallel calculation to derive

(1.15) as

∂τ [`, Bd,4j](x, τ) =

∫ τ

0

∂τ

(∫ τ−ζ

0

∫

Dd

rd−1q(ψ)4jF (x+ r p(ψ), ζ)

(τ − ζ)` dψdr

)
dζ

= −`
∫ τ

0

∫ τ−ζ

0

∫

Dd

4jF (x+ r p(ψ), ζ)

(τ − ζ)`+1
dψdrdζ

+

∫ τ

0

∫

Dd

(τ − ζ)d−`−1 q(ψ)4jF (x+ (τ − ζ) p(ψ), ζ) dψdζ

= −` [`+ 1, Bd,4j](x, τ) + [`, Sd,4j](x, τ).

The proof is completed.

Proof of Lemma 1.3. We proceed for both assertions by induction on m.

(a) For m = 2, (1.24) reads P 1
2 (d) = d− 2 and P 2

2 (d) = 1, indicating (1.27) immediately by

taking m = ` = 2. Supposing (1.27) holds for some m ≥ 2, we shall show that it still holds for

m+ 1, namely

P `−1
m+1(d) = ((d−m− 1) + (−1)`(m+ 1− 2b`/2c))P `

m+1(d) (2 ≤ ` ≤ m+ 1, m ≥ 2).

The case ` = m+1 is trivial, otherwise we replace m by m+1 in (1.24) and apply the inductive

assumption (1.27) for m to find

P `−1
m+1(d) = (d− 2(m+ 1− b`/2c))P `−1

m (d)

= (d− 2(m+ 1− b`/2c)) (d−m+ (−1)`(m− 2b`/2c))P `
m(d),

P `
m+1(d) = (d− 2(m+ 1− b(`+ 1)/2c))P `

m(d).

As a result, it suffices to show

(d− 2(m+ 1− b`/2c)) (d−m+ (−1)`(m− 2b`/2c))
= (d−m− 1 + (−1)`(m+ 1− 2b`/2c)) (d− 2(m+ 1− b(`+ 1)/2c)),

which can be easily verified by discussing the parity of `.

(b) For m = 3, (1.25) implies c23 = 1 and (1.28) follows immediately by taking m = 3 and

` = 2. Supposing (1.28) is valid for some m ≥ 3, we shall show that it still holds for m + 1,

namely

2(m− `+ 1) c`m+1 =

{
` c`+1

m+1 (` even),

(2m− `+ 1) c`+1
m+1 (` odd)

(2 ≤ ` ≤ m, m ≥ 4).

For odd `, (1.25) yields c`m+1 = c`−1
m + c`m and c`+1

m+1 = c`m, while the inductive assumption

(1.28) implies 2(m− `+ 1) c`−1
m = (` − 1) c`m since `− 1 is even. Therefore

2(m− `+ 1) c`m+1 = 2(m− `+ 1) (c`−1
m + c`m) = (2m− `+ 1) c`m = (2m− `+ 1) c`+1

m+1.
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Parallelly, we obtain for even ` that

2(m− `+ 1) c`m+1 = 2(m− `+ 1) c`−1
m = (2m− `) c`m = ` (c`m + c`+1

m ) = ` c`+1
m+1

since now `− 1 is odd. This ends the proof.

Finally, we explain the discovery of the recursion relations (1.22)–(1.25) in Proposition 1.1.

In Lemma 1.2, we have shown the validity of Proposition 1.1 for m = 0. In the sequel, we

start from U1(x, τ) defined in (1.17) and proceed to the case of m = 6. In this way, it is not

only possible to confirm that each Um(x, τ) satisfies the wave equation (1.22), but also essential

to make a conjecture on the recursive expression of Um(x, t).

To this end, we apply repeatedly Lemma 1.1 and condition (1.12) to obtain (1.22) for

m = 1, 2, . . . , 5, where

U2 = (d− 2) [3, Sd,40] + [2, Bd,41],

U3 = (d− 2)(d− 4) [5, Sd,40] + (d− 4) [4, Bd,41] + [3, Sd,41],

U4 = (d− 2)(d− 4)(d− 6) [7, Sd,40] + (d− 4)(d− 6) [6, Bd,41]

+ 2(d− 4) [5, Sd,41] + [4, Bd,42],

U5 = (d− 2)(d− 4)(d− 6)(d− 8) [9, Sd,40] + (d− 4)(d− 6)(d− 8) [8, Bd,41]

+ 3(d− 4)(d− 6) [7, Sd,41] + 2(d− 6) [6, Bd,42] + [5, Sd,42],

U6 = (d− 2)(d− 4)(d− 6)(d− 8)(d− 10) [11, Sd,40]

+ (d− 4)(d− 6)(d− 8)(d− 10) [10, Bd,41] + 4(d− 4)(d− 6)(d− 8) [9, Sd,41]

+ 3(d− 6)(d− 8) [8, Bd,42] + 3(d− 6) [7, Sd,42] + [6, Bd,43].

According to the above expressions, it is straightforward to conjecture that Um (m ≥ 1) is a

summation of m terms. Moreover, each term consists of three components, namely an integral

bracket, a polynomial with respect to d, and a positive integer parameter. First of all, it

is not difficult to infer that the integral bracket in the `-th term of Um takes the form of

[2m − `, ∂(1−(−1)`)/2Bd,4b`/2c], which is indeed that in (1.23). On the other hand, since the

relations of the polynomials and parameters are not too obvious, we collect all the information

of P `
m(d) and c`m for m = 1, 2, . . . , 6 and ` = 1, 2, . . . ,m in Table 1.1.

Parameters in P `
m(d) c`m

` 1 2 3 4 5 6 1 2 3 4 5 6
m = 1 () 1

↓ ↘
m = 2 (2) () 1 1

↓ ↘ ↘
m = 3 (2, 4) (4) () 1 1 1

↓ ↘ ↘ ↓ ↘
m = 4 (2, 4, 6) (4, 6) (4) () 1 1 2 1

↓ ↘ ↘ ↓ ↘ ↘
m = 5 (2, . . . , 8) (4, 6, 8) (4, 6) (6) () 1 1 3 2 1

↓ ↘ ↘ ↓ ↘ ↘ ↓ ↘
m = 6 (2, . . . , 10) (4, . . . , 10) (4, 6, 8) (6, 8) (6) () 1 1 4 3 3 1

Table 1.1: Recursive relations of the P `
m(d) and c`m for the first several m’s.

Then it is obvious that Pm
m (d) = 1 and c1m = cmm = 1. For ` ≤ m − 1, it is observed that

P `
m(d) can be obtained by multiplying (d − 2(m − b(` + 1)/2c)) to P `

m−1(d), that is, (1.24).
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Regarding c`m for 2 ≤ ` ≤ m− 1, we find out that the dependency of c`m on the previous level

differs from each other according to the parity of `, and we indicate the dependency in Table

1.1 by arrows. Finally, we conclude (1.25) as the possible iterative relation for c`m.



Chapter 2

Growth Speed Identification

in the One-Dimensional

Time Cone Model

In Chapter 1, a class of hyperbolic-type equations was derived for the time cone model which

describes the phase transformation kinetics. Such a derivation provides remarkable convenience

for the mathematical treatments and the corresponding numerical analysis especially in odd

spatial dimensions.

As one of the applications, in this chapter we investigate an inverse problem of determining

the growth speed in the one-dimensional time cone model by the final observation data. On the

basis of the hyperbolic equation, the problem turns out to be a coefficient inverse problem which

is highly nonlinear with respect to the observation data. A two-step truncated Tikhonov-type

regularization method is proposed to reconstruct the growth speed from the noise contaminated

data. Numerical prototype examples are presented to illustrate the validity and effectiveness

of the proposed scheme.

2.1 Introduction

As was explained in Chapter 1, nucleation and growth mechanisms are important kinetics

of phase transformations which arise in various subjects in material sciences. We recall that the

nucleation event appears randomly in the untransformed or uncrystallized part of the specimen,

and the growth event describes the expansion of each nucleus which is usually radial and

ceases at the contact surface when two nucleating regions tie each other (impingement). The

mathematical models for these important physical phenomena rest on statistical principles,

which are formulated by Kolmogorov [43], Johnson and Mehl [39] and Avrami [2–4] at the

earliest stage. Under certain simplifications that the nucleation rate Ψ and the growth speed

ρ are constants, those pioneering works results in the well-known JMAK equation (1.4) in the

three-dimensional case.

Activities on investigating an alternative variable instead of the expected crystalline volume

fraction was started by Jackson [36] in a one-dimensional infinite specimen. Cahn [17] gener-

alized the approach in high-dimensional finite specimens and proposed the time cone model,

which avoids the concepts of extended volume fraction appearing in the classical theory. The

time cone model was further investigated from different engineering disciplines, for instance,

36
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in [5, Chapter 21]. Exact solutions of the expected nuclei number as well as the degree of crys-

tallization can be obtained for finite specimen geometries with a nucleation rate Ψ(x, t) and a

time-dependent growth speed ρ(t).

At the same time, independently of the time cone model, a similar concept of the so-called

causal cone (see [13, Figures 1–2] and [24]) is investigated for the polymer crystallization, where

results for both heterogeneous nucleation rate Ψ(x, t) and growth speed ρ(x, t) are derived. The

non-isothermal polymer crystallization process based on the causal cone approach is investigated

by [13] and a series of papers [12,50] later on. From an averaged viewpoint, the non-isothermal

nucleation model yields a nonlinear hyperbolic-parabolic coupled system (see [13]), where the

hyperbolic equation describes the degree of crystallinity and the parabolic equation describes the

heat conduction process of the specimen. In the coupled system in [13], the latent heat released

by the growing nucleation region or crystals plays the role of the heat source. For further details

concerning the time cone model and the causal cone approach, we refer to Section 1.1 and the

references therein.

Though mathematical modeling of the phase transformation process has been well extended

from different viewpoints, the literatures on inverse problems of the nucleation process are

limited. To the best of the author’s knowledge, only [11,14,20] and the dissertation [10] are de-

voted to the inverse problems appearing in polymer crystallization processes based on the casual

cone approach in the one-dimensional case. In [14], the authors investigate the non-isothermal

hyperbolic-parabolic coupled system and provide a Landweber iterative regularization scheme

for a stable reconstruction of the nucleation rate Ψ which depends on the temperature. Abun-

dant theoretical justification and other iterative regularization schemes in [11] support the

accurate and efficient identification of the nucleation rate. In particular, we note that the

dissertation [10] well analyzes both the forward and the inverse problems of the polymer crys-

tallization process. The recent work in [20] extends the nucleation rate identification from the

deterministic setup to a stochastic one.

The aim of this chapter is to investigate the identification of the time-dependent growth

speed ρ(t) in the one-dimensional time cone model by the final observation data. In the original

formulation (1.2)–(1.3) of the time cone model, ρ(t) is coupled in the integral and thus is not easy

to de-convolute and identify. Nevertheless, on the basis of the hyperbolic governing equation

(see Lemma 2.1) derived in the previous chapter, the determination of ρ(t) turns out to be a

coefficient inverse problem, and the spectral method along with a two-step truncated Tikhonov-

type regularization can be applied for the reconstruction.

The rest of the chapter is organized as follows. In Section 2.2, we first revisit the govern-

ing equation in the one-dimensional case and then represent the solution by an eigensystem

expansion to formulate the parameter identification problem for the time dependent growth

speed ρ(t). A reconstruction algorithm based on the eigenfunction expansion method and the

nonlinear Tikhonov regularization is proposed in Section 2.3 to solve the inverse problem. A nu-

merical example in Section 2.4 verifies the accuracy of our proposed method. The final section

gives remarks and conclusions.

2.2 Hyperbolic governing equation and spectral method

As the starting point, first we recall the one-dimensional time cone model and the equivalent

initial value problem for a hyperbolic equation. Although this is the simplest case of Theorem

1.1, we collect the result here for self-containedness.
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Lemma 2.1 Let u(x, t) satisfy

u(x, t) =

∫

Ωρ(x,t)

Ψ(y, s) dyds (x ∈ R, t ≥ 0), where

Ωρ(x, t) :=

{
(y, s); 0 < s < t, |y − x| <

∫ t

s

ρ(τ) dτ

}
.

Assume that u(x, t), Ψ(x, t) and ρ(t) (x ∈ R, t ≥ 0) are sufficiently smooth functions, and

ρ(t) is strictly positive for t ≥ 0. Then u(x, t) solves the following initial value problem for the

hyperbolic equation





1

ρ(t)
∂t

(
∂tu(x, t)

ρ(t)

)
= ∂2xu(x, t) +

2Ψ(x, t)

ρ(t)
(x ∈ R, t > 0),

u(x, 0) = ∂tu(x, 0) = 0 (x ∈ R).

(2.1)

Following the path in [13], the time cone model can be coupled with the heat conduction

process to obtain a similar hyperbolic-parabolic coupled system in the non-isothermal phase

transformation process. Namely, in one dimension we have





∂tθ(x, t) = κ ∂2xθ(x, t) + η e−u(x,t)∂tu(x, t),

1

ρ(t)
∂t

(
∂tu(x, t)

ρ(t)

)
= ∂2xu(x, t) +

2Ψ(θ(x, t))

ρ(t)
,

where θ is the temperature, the constant κ denotes the heat conductivity, and the constant η

denotes the latent heat.

In the rest of the chapter, we will mostly investigate a one-dimensional model problem

slightly different from the original one. More precisely, with fixed L > 0 and T > 0, we restrict

the problem in a bounded space-time region (0, L)×(0, T ) and impose the homogeneous Dirichlet

boundary condition to consider the following initial-boundary value problem





1

ρ(t)
∂t

(
∂tu(x, t)

ρ(t)

)
= ∂x(D(x)∂xu(x, t)) +

2Ψ(x, t)

ρ(t)
(0 < x < L, 0 < t ≤ T ),

u(x, 0) = ∂tu(x, 0) = 0 (0 < x < L),

u(0, t) = u(L, t) = 0 (0 < t ≤ T )

(2.2)

where D ∈ C1[0, L] and D > 0 on [0, L]. The basic solvability and the stability of the forward

model can be found in the classic literatures, e.g., Lions and Magenes [47]. We note that

the boundary condition we consider here is slightly different from the BCE model in [13], but

it can be released to the periodic Dirichlet boundary condition. Here we only consider the

homogeneous Dirichlet boundary condition for illustration.

We clarify our coefficient inverse problem as follows.

Problem 2.1 Let L > 0, T > 0 be given, and u satisfy (2.2). Provided that the nucleation

rate Ψ(x, t) is known, determine ρ(t) (0 < t < T ) by the final observation data yδ ∈ L2(0, L)

satisfying ‖yδ − u( · , T )‖L2(0,L) ≤ δ, where δ > 0 is the noise level.

To represent the explicit solution to (2.2), we introduce the eigensystem {(λn, ϕn)}∞n=1 to

the elliptic operator therein, that is, the pairs (λn, ϕn) satisfying

{
−∂x(D(x)∂xϕn(x)) = λnϕn(x) (0 < x < L),

ϕn(0) = ϕn(L) = 0.
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After normalizing, the eigenfunctions {ϕn} form a complete orthonormal system of L2(0, L).

We then seek an explicit solution of the governing equation (2.2) in the form of separated

variables

u(x, t) =

∞∑

n=1

un(t)ϕn(x). (2.3)

Simultaneously, the nucleation rate Ψ(x, t) which plays the role of the source term in (2.2) can

also be represented as

Ψ(x, t) =

∞∑

n=1

Ψn(t)ϕn(x) with Ψn(t) =

∫ L

0

Ψ(x, t)ϕn(x) dx.

Substituting the eigenfunction expansion (2.3) into problem (2.2), we obtain the following initial

value problems for ordinary differential equations with respect to un:





1

ρ(t)

d

dt

(
u′n(t)

ρ(t)

)
+ λnun(t) =

2Ψn(t)

ρ(t)
,

un(0) = u′n(0) = 0.

A series of calculation gives

un(t) =
2√
λn

{
sin
(√

λnR(t)
) ∫ t

0

Ψn(s) cos
(√

λnR(s)
)
ds

− cos
(√

λnR(t)
) ∫ t

0

Ψn(s) sin
(√

λnR(s)
)
ds

}
, (2.4)

where (see also (1.7))

R(t) =

∫ t

0

ρ(s)ds. (2.5)

Together with the expansion (2.3), the solution u(x, t) to problem (2.2) is

u(x, t) =

∞∑

n=1

2√
λn

{
sin
(√

λn R(t)
)∫ t

0

Ψn(s) cos
(√

λn R(s)
)
ds

− cos
(√

λnR(t)
) ∫ t

0

Ψn(s) sin
(√

λn R(s)
)
ds

}
ϕn(x). (2.6)

In the simplest case, i.e. D(x) ≡ 1, the particular eigenvalues λn and eigenfunctions ϕn of

the elliptic differential operator are

λn =
(πn
L

)2
, ϕn(x) =

√
2

L
sin
(√

λn x
)
. (2.7)

To show the accuracy of the eigenfunction expansion method, the numerical comparison between

the eigenfunction expansion (2.6) and the standard finite difference method for the forward

model (2.2) will be provided in the Section 2.4.

2.3 Identification of the growth speed

Coefficient inverse problems are of interest to many theoretical studies and practical applica-

tions such as [33,51,52]. Generally speaking, these results are investigated under the assumption

that lateral boundary data was given. In this chapter, such kind of additional data is of absence,

instead we have a finite time observation. Recall the governing hyperbolic equation (2.2), the
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kinetics of the phase transformation process are determined by the nucleation rate Ψ(x, t) as

well as the growth speed ρ(t) (see also (2.1)). These two functions become interesting when

one want to identify the unknown properties of a specimen. As mentioned in the introduction,

existing literatures on the identification problems arising in the phase transformation process

are mostly lying in the reconstruction of the nucleation rate [10, 11, 14] where these results are

obtained for the parabolic-hyperbolic coupled system in the one dimensional sample. In the

remaining of this chapter, we will investigate, at a first stage, the identification of the spatially

homogeneous growth speed ρ(t) in the isothermal case.

In view of the formulation in Problem 2.1, the observation data is polluted by the measuring

error or the numerical discretization error of the forward model. Due to its nature of the ill-

posedness, we employ the Tikhonov regularization method to solve it. In order to reach the

final goal ρ(t), we shall first reconstruct an intermediate variable R(t) defined in (2.5) because

only R(t) appears explicitly in the representation (2.6) of the solution.

Suppose that we have the noisy final observation data yδ(x) satisfying ‖yδ−u( · , T )‖L2(0,L) ≤
δ. Denote by yδn the Fourier coefficient of yδ(x) with respect to ϕn(x), i.e.

yδ(x) =
∞∑

n=1

yδnϕn(x), yδn =

∫ L

0

yδ(x)ϕn(x) dx.

Taking t = T in the expansion (2.3) and applying Parseval’s identity, we have

∞∑

n=1

(
yδn − un(T )

)2
= ‖yδ − u( · , T )‖2L2(0,L) ≤ δ2. (2.8)

According to (2.4), we see

un(T ) =
2√
λn

{
sin
(√

λnR(T )
)∫ T

0

Ψn(s) cos
(√

λnR(s)
)
ds

− cos
(√

λnR(T )
)∫ T

0

Ψn(s) sin
(√

λnR(s)
)
ds

}
, (2.9)

where the unknown variable R(t) needs to be reconstructed.

To seek a regularized solution of (2.8), we restrict R ∈ PM , where PM collects all polynomi-

als with orders no higher than M . To treat the infinite summation in (2.8), we simply make a

truncation until n = N . In such a manner, we propose the following truncated Tikhonov-type

regularization

RM,N
α := argmin

R∈PM

N∑

n=1

(
yδn − un(T )

)2
+ α‖R‖2L2(0,T ), (2.10)

where α > 0 is the regularization parameter. Substituting (2.9) into (2.10) and taking Fréchet

derivative with respect to R, we obtain the following Euler-Lagrange equation for the minimizer:

2αR(t) = 4

N∑

n=1

[
yδn −

2√
λn

{
sin
(√

λn R(T )
)∫ T

0

Ψn(s) cos
(√

λn R(s)
)
ds

− cos
(√

λnR(T )
)∫ T

0

Ψn(s) sin
(√

λnR(s)
)
ds

}]

×
{
− cos

(√
λnR(T )

)∫ T

0

Ψn(s) cos
(√

λnR(s)
)
ds
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+ sin
(√

λnR(T )
)
Ψn(t) sin

(√
λnR(t)

)

− cos
(√

λn R(T )
)
Ψn(t) cos

(√
λn R(t)

)

+sin
(√

λn R(T )
)∫ T

0

Ψn(s) sin
(√

λnR(s)
)
ds

}
. (2.11)

Generally speaking, Euler-Lagrange equations are nonlinear Fredholm type integral equations

of the second kind with respect to the unknown functions. Notice that we are seeking for

a solution in the polynomial function space and the Euler-Lagrange equation involves heavy

computational costs on the numerical integration. Therefore, it is reasonable to utilize the

pseudo-spectral method to solve it.

Denote by {ϑj, σj}Mj=0 the (M + 1)th-order Gauss-Legendre-Labbato points and their cor-

responding weights respectively. Define R(t) =
∑M

j=0 Rj pj(t), where pj(t) denotes the j-th

Lagrange interpolation polynomial for tj = T (1 + ϑj)/2 (j = 0, 1, . . . ,M). We substitute such

an R(t) into the Euler-Lagrange equation (2.11) and evaluate it at each tk (k = 0, 1, . . . ,M) to

deduce

2αRk = 4

N∑

n=1


yδn −

T√
λn



sin

(√
λnRM

) M∑

j=0

Ψn(tj) cos
(√

λnRj

)
σj

− cos
(√

λnRM

) M∑

j=0

Ψn(tj) sin
(√

λnRj

)
σj








×



−

T

2
cos
(√

λnRM

) M∑

j=0

Ψn(tj) cos
(√

λnRj

)
σj

+ sin
(√

λnRM

)
Ψn(tk) sin

(√
λnRk

)

− cos
(√

λn RM

)
Ψn(tk) cos

(√
λn Rk

)

+
T

2
sin
(√

λn RM

) M∑

j=0

Ψn(tj) sin
(√

λnRj

)
σj



 . (2.12)

To solve this nonlinear algebraic system, we turn to MatLab routine which employs several stan-

dard iterative solvers, for instance, Levenberg-Marquardt method or Gauss-Newton method.

Provided that by (2.12) we have obtained RM,N
α with the appropriately chosen regularization

parameter α by the discrepancy principle, we can now proceed to the final destination to

reconstruct ρ(t). At a first glance, it seems that one can immediately find a good approximation

of ρ(t) as ρM,N
α (t) = (RM,N

α (t))′ = DMR
M,N
α (t), where DM is the discrete difference matrix

related to the Gauss-Legendre-Labbato points. However, the numerical differentiation is known

to be another ill-posed problem which may cause tremendous error. We refer to [55] where a

natural spline based Tikhonov regularization method is proposed to solve this problem. The

regularization parameter here can be chosen in some heuristic or noisy-dependent rules, but we

omit the details here.

2.4 Numerical example

In this section, we implement a numerical example to illustrate the validity and efficiency

of the proposed schemes in the previous two sections. Notice that in the reconstruction al-
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gorithm of the growth speed, namely, (2.12), an analytical form of the exact solution u(x, T )

is considered. For creating the final observation data, we employ two methods to solve the

forward problem. One is a stochastic simulation based upon the definition of time-cone and the

other is a finite difference scheme on the deterministic equations (2.2). Both methods produce

reasonable results (see Figure 2.1), which confirms that the deterministic equations (2.2) well

describe the average status of the crystallization of polymers. For the stochastic case, there are

several algorithms for simulation of a Poisson process and we utilize the standard approach, i.e.,

thinning method which is a random sampling method (see [10, §2.6.2]). For the finite difference
scheme, the standard three-points stencil method is adopted to solve the deterministic differen-

tial equation (2.2), which verifies the validity and effectiveness of modeling and eigenfunction

expansion method.

For testing our numerical schemes, set

D(x) ≡ 1, ρ(t) =
1

2
√
1 + t

, Ψ(x, t) = 10 e−t x2(L− x)2.

Then the eigensystem {(λn, ϕn)} is given by (2.7), and a simple calculation yields

Ψn(t) =

∫ L

0

Ψ(x, t)ϕn(x) dx =

√
2

L
10 e−t

∫ L

0

x2(L − x)2 sin
(πnx

L

)
dx

=

√
2

L

40 e−tL4

π5n5
(1 − (−1)n)(12− π2n2).

For the sake of completeness, we discuss the procedure of stochastic simulation in a rea-

sonable detail. Generating equally separated sub-cells Ωi` in the domain [0, T ] × [0, R], we

calculate the value Ψi` =
∫
Ωi`

Ψ(x, t) dxdt. Here the nucleation rate Ψ(x, t) is assumed to be

separable, i.e., Ψ(x, t) = f(x)g(t), where f(x) represents the spatial probability density func-

tion. Utilizing such a value Ψij as a parameter, we can generate a positive integer by a Poisson

distribution generator, e.g. MatLab function poissrnd. We then label each sub-cell with this

positive integer which represents the random number of nucleation events in this sub-cell. Fi-

nally we calculate u at discrete points (xi, T ) and collect the positive integers in the time cone

which overlaps the sub-cells Ωi`. The overlapping portion of the time-cone with respect to each

sub-cell Ωi` determines the ratio to the positive integers labeled in specific sub-cells. For the

standard three-points stencil finite difference scheme, we omit the details here.

The computational results are shown in Figure 2.1, where (a) represents one stochastic

simulation, (b) and (c) are average values of nucleation events of two thousand and twenty

thousand stochastic simulations, respectively. In this particular example, we choose T = 1 and

the discretization levels for time and space are (50, 160) respectively such that 8000 sub-cells

are generated in the whole domain. From Figure 2.1, we can observe that the expectation of

stochastic simulations is close to the performance of the deterministic governing equations (2.2).

In real situations, this expectation can be obtained by measuring one-dimensional observation

data, for instance, at different places of a high-dimensional specimen.

Finally, we are ready to proceed to the reconstruction of the growth speed ρ(t). As mentioned

above, to treat the instability of the inversion, we consider the finite difference solution as the

exact solution. The noisy observation data yδ then are generated by two ways: one is from the

expectation of stochastic simulations, e.g., Figure 2.1(b)–(c), and the other is from the following

form

yδ = u( · , T )× (1 + δ rand(−1, 1)),
where rand(−1, 1) denotes the uniformly distributed random number in [−1, 1] and δ is the rel-
ative noisy level. Note that the computation of the Fourier coefficients yδn in the Euler-Lagrange
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Figure 2.1: (a) Plot of u( · , T ) by one stochastic simulation. (b) Average of 2000 simulations and
finite difference/eigenfunction expansion solutions of (2.2). (c) Average of 20000 simulations.

equation (2.12) involves numerical integration as well, we adopt the Gauss quadrature again

which is associated to the Gauss-Legendre-Labbato points and weights {ϑj, σj}Mj=0 mentioned

in the previous section. More precisely, we obtain the approximated yδn by a linear interpolation

with respect to the pointwise values yδ(R(1+ϑj)/2). Substituting y
δ
n into (2.12) and employing

the standard solver for the nonlinear system, we obtain the regularized reconstruction of RM,N
α

where the regularization parameter α is chosen in an a posteriori manner by the discrepancy

principle. The value of the regularization parameter α for different examples can be found in

the captions of Figures 2.2–2.3 respectively.

To reconstruct the growth speed ρ(t), we need to extract further information from the

intermediate result RM,N
α which involves another ill-posed problem, i.e., the numerical differ-

entiation. It is known that a direct inverse of the discrete matrix for the Gauss-Legendre

polynomials is ill-posed in the sense that its conditional number is 1017 when M is chosen to be

8. To obtain a stable and appropriate reconstruction of ρ(t), a natural spline based Tikhonov

regularization method in [55] is utilized. The intermediate reconstructed RM,N
α as well as the

reconstructed growth speed ρ(t) are shown in Figures 2.2–2.3 respectively under different noise

levels.

The performance of our proposed method essentially depends on the choices of the regular-

ization parameters M and α. The parameter M plays the role of the discretization level for

Gauss-Lobatto rules where the numerical integration can be calculated in an accurate manner.

The larger the M , the more accurate approximation of the integral equation, but it yields a

large ill-posed linear system. In our numerical test, we fix M = 8 which provides reasonable

reconstruction of the growth speed. One can adjusts the choice ofM under the a priori smooth

assumption, i.e. on the known Ψn(t) which might provide better results. At the same time, the

regularization parameter α is more important compared with the discretization level M and
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we refer to the monograph [25, Chapter 4] where detailed discussion on parameter choice rules

are presented. In our proposed method, a classic discrepancy principle is implemented to the

first-step Tikhonov regularization such that the choice of α satisfies

N∑

n=1

(
yδn − un(T )

)2 ≈ (c1δ)
2,

where c1 ≈ 3, M = 8 and N = 20. As for the second-step Tikhonov regularization on numerical

differentiation, we simply choose α ≈ (8δ)2 where we expect that the noise level in the second-

step is enhanced from the previous step. Discussion on the error estimation for such a parameter

choice can be found in [55].
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Figure 2.2: The numerical performance for the growth speed identification with the noisy

observation data yδ from averaged stochastic simulations. (a) The intermediate reconstructed
RM,N

α (t) with M = 8 and α = 2 × 10−4. (b) The reconstructed ρM,N
α (t) from RM,N

α (t) by
implementing the regularization method in [55] with a regularization parameter α = 1.6×10−2.
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φµ(t) with µ = 3.5× 10−3

Exact φ(t) = (1+t)1/2− 1
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Figure 2.3: The numerical performance for the growth speed identification with the noisy

level δ = 1% of finite difference solution. (a) The intermediate reconstructed RM,N
α (t) with

M = 8 and α = 3.5× 10−3. (b) The reconstructed ρM,N
α (t) from RM,N

α (t) by implementing the
regularization method in [55] with a regularization parameter α = 7.6× 10−3.

2.5 Conclusion

In the phase transformation kinetics, both the nucleation and the growth mechanics are

crucial in describing the properties of the specimens. Mathematically, the crystallization process

obeys a governing equation of the hyperbolic type with the homogeneous initial condition

and an appropriate boundary condition, where the nucleation rate Ψ(x, t) and the growth

speed ρ(t) determine the specified kinetics. As for the inverse problems, the identification of
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the nucleation rate can be formulated to an inverse source problem where a series of papers

[11, 14, 20] are devoted to the non-isothermal hyperbolic-parabolic coupled system. In this

chapter, we restrict to the one-dimensional case and follow the derivation in Chapter 1, where

the consistence between the BCE model in [13] is also provided. In particular, an analytic

solution of the hyperbolic governing equation is considered by a spectral method. A two-

step truncated Tikhonov-type regularization scheme is proposed to identify the growth speed

ρ(t) in the form of a coefficient inverse problem for the hyperbolic equation. We note that a

similar idea is recently considered to reconstruct a random source in the Helmholtz equation

[6, 46]. Numerical examples show that the proposed scheme reconstructs the growth speed in

an accurate manner.

We close the chapter by some general remarks for the future work mainly on inverse prob-

lems. Notice that in existing literatures, only one-dimensional inverse problems are considered

for identifying the nucleation rate or the growth speed. How to extend the current work to

higher dimensional cases would be important for both academical and industrial researchers.

Simultaneously, concerning the identification of the nucleation rate Ψ(x, t), a degenerate form,

for instance, Ψ(x, t) = f(x) g(x, t) where g(x, t) is known, might be interesting since in a prac-

tical sense a priori spatial information would be available. This will be the main concentration

of the next two chapters.



Chapter 3

Iterative Thresholding Algorithm

for Inverse Source Problems for

Hyperbolic Equations

In the previous chapter, the derivation of the hyperbolic-type equations from Cahn’s time

cone model demonstrated its significance in treating a corresponding coefficient inverse problem.

In view of the hyperbolic equation, the identification of the nucleation rate turns out to be an

inverse source problem, which is also important in practices especially in the three spatial di-

mensions. However, existing works on the related numerical reconstruction methods are absent.

As a preparation, in this chapter we derive an efficient iterative thresholding algorithm for iden-

tifying the source term in a hyperbolic equation from partial interior measurements. We adopt

the classical Tikhonov regularization to transform the ill-posed inverse source problem into an

output least squares nonlinear minimization, which will be solved by the proposed iterative

algorithm. It reveals that the iteration is computationally very easy and efficient: the mini-

mizer at each step possess an explicit solution. Abundant amounts of numerical experiments

are presented to demonstrate the accuracy and efficiency of the algorithm.

3.1 Introduction

Let T > 0 and Ω be an open bounded domain in Rd (d = 1, 2, 3) whose boundary is

of C2 class. Consider the initial-boundary value problem for a hyperbolic equation with the

homogeneous Neumann boundary condition

u(f)





∂2t u(x, t)−4u(x, t) = f(x)h(x, t) (x ∈ Ω, 0 < t ≤ T ),
u(x, 0) = ∂tu(x, 0) = 0 (x ∈ Ω),

∂νu(x, t) = 0 (x ∈ ∂Ω, 0 < t ≤ T ),
(3.1)

where ν = ν(x) is the unit outward normal vector at x ∈ ∂Ω and ∂νu := ∇u · ν denotes

the normal derivative. Here we write the solution as u(f) to emphasize its dependency upon

the time-independent function f . Various conditions in (3.1) will be specified later, and the

corresponding well-posedness result will be provided in Lemma 3.1.

The main focus of this chapter is the numerical treatment for the following inverse source

problem.

46
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Problem 3.1 Let ω ⊂ Ω and T > 0 be suitably given, and u(f) solve (3.1). Determine

f(x) (x ∈ Ω) by the partial interior observation data u(f) in ω × (0, T ).

The investigation of the above problem from numerical aspects not only originates from

the interest on mathematics, but also roots in its significance in practice. In our formula-

tion (3.1), the source term f(x)h(x, t) is incompletely separated into its spatial and temporal

components, and the purposed inverse problem means the determination of the spatial com-

ponent. Especially, if the source term is in form of complete separation of variables, i.e. h is

space-independent, (3.1) becomes an approximation to a model for elastic waves, and the term

f(x)h(t) acts as the external force modeling vibrations (see Yamamoto [56]). Recently, it reveals

in Liu and Yamamoto [49] that the one-dimensional time cone model for phase transformation

kinetics (see Cahn [17]) is equivalent to (3.1), where f(x) stands for the spatial distribution of

the nucleation rate.

Although inverse hyperbolic problems have attracted considerable attentions during the last

two decades, there are not many specific works on Problem 3.1 in our setting, that is, inverse

source hyperbolic problems with the Neumann boundary condition. In [31,32,35,57], Problem

3.1 was discussed as a linearization of the related inverse coefficient problem. Meanwhile, in spite

of the physically more natural realization of the Neumann boundary condition, the majority of

existing works dealt with the Dirichlet counterpart which is technically easier (see, e.g., [53,56,

57] and the references therein). With the establishment of Carleman estimates for Neumann

problems (e.g., [30,44]), the global Lipschitz stability for the reconstruction was proved for the

boundary measurement case in Imanuvilov and Yamamoto [32] and the interior measurement

case in [31] under the probably optimal geometrical condition on observable regions. The present

chapter is mainly motivated by [31, Corollary 3.1] which dominates the unknown function f

by the data u(f)|ω×(0,T ) in system (3.1). For comprehensive discussions on inverse hyperbolic

problems by Carleman estimates, see Bellassoued and Yamamoto [8].

Correspondingly, works on numerical reconstructions of source terms in hyperbolic equations

are quite limited compared with those of coefficients. Regarding the numerical approaches to

coefficient inverse hyperbolic problems and related topics, we refer to the two monographs

[40,42]. In [48], the authors developed a spectral method for the inverse coefficient problem for

the hyperbolic equation derived in [49]. On the other hand, a class of iterative thresholding

algorithms was purposed for linear inverse problems in early 2000s, whose convergence was first

rigorously analyzed in Daubechies et al. [22]. As an extension of classical gradient algorithms

with regularization, the iterative thresholding algorithm and its updated versions have proved

to be feasible mainly in the abundant applications to image processing due to their simplicity

(see [7,9,23,29]). However, the flavor of this method is not familiar among the school of inverse

problems for partial differential equations. Very recently, the iterative thresholding algorithm

was utilized in Jiang et al. [38] to treat inverse problems for elliptic and parabolic equations.

In this chapter, we interpret the numerical solution to the ill-posed Problem 3.1 as the

minimizer of an object functional with the Tikhonov regularization. By calculating the Frechét

derivative and introducing the adjoint system of (3.1), we find the Euler equation that the

minimizer should satisfy. This leads to the desired iteration method, which only requires to

solve one forward and one backward problems at each step. It turns out that the derived

iteration coincides with the iteration thresholding algorithm, and the convergence automatically

follows. On the basis of dramatically fast forward solvers, a lot of numerical experiments up to

three spatial dimensions are implemented to test the performance of our method from various

aspects. To the best of the author’s knowledge, the present chapter is the first attempt to apply
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the iterative thresholding algorithm to inverse hyperbolic problems.

The remainder of this chapter is organized as follows. In Section 3.2, we briefly introduce the

well-posedness of the forward problem (3.1) and the stability result for Problem 3.1. In Section

3.3, we reformulate our inverse source problem for numerical treatments, and purpose the

iteration thresholding algorithm. Abundant amounts of numerical tests along with discussions

on the performance are carried out in Section 3.4. Finally, concluding remarks and future works

will be mentioned in Section 3.5.

3.2 Preliminary

We start from introducing some notations and relevant works on forward and inverse prob-

lems for hyperbolic equations. Let H1(Ω), H1(Ω × (0, T )), etc. denote usual Sobolev spaces.

For later use, first we give a definition of the generalized solution to the initial-boundary value

problem (3.1).

Definition 3.1 (see Isakov [34]) Let f ∈ L2(Ω) and h ∈ L2(0, T ;L∞(Ω)). We say that

u(f) ∈ H1(Ω× (0, T )) is a generalized solution to problem (3.1) if it satisfies

∫ T

0

∫

Ω

(∇u(f) · ∇z − (∂tu(f)) ∂tz) dxdt =

∫ T

0

∫

Ω

f h z dxdt

for any test function z ∈ H1(Ω× (0, T )) with z|t=T = 0, and the initial condition u(f)|t=0 = 0.

The above definition of the generalized solution is easily understood by applying integration

by parts to sufficiently smooth solutions. Concerning the solvability and stability issues for

(3.1), we refer to the following well-known result.

Lemma 3.1 (see Lions and Magenes [47]) Let f ∈ L2(Ω), h ∈ L2(0, T ;L∞(Ω)) and ∂Ω be

of C2 class. Then there exists a unique generalized solution u(f) ∈ D to the initial-boundary

value problem (3.1), where

D :=
{
w ∈ C([0, T ];H1(Ω)); ∂tw ∈ C([0, T ];L2(Ω))

}
. (3.2)

Moreover, there exists a constant C = C(Ω, T, h) > 0 such that

‖u(f)( · , t)‖H1(Ω) + ‖∂tu(f)( · , t)‖L2(Ω) ≤ C‖f‖L2(Ω).

Regarding the uniqueness and stability of Problem 3.1, we state without proof the following

result which is a special case of [31, Corollary 3.1].

Lemma 3.2 Let ω be a subdomain of Ω such that

{x ∈ ∂Ω; (x− x0) · ν(x) ≥ 0} ⊂ ∂ω for some x0 /∈ Ω \ ω , and T > sup
x∈Ω
|x− x0|. (3.3)

Further assume that for any x ∈ ∂Ω \ ∂ω, there exists an open ball Ux centered at x such that

Ux ∩ Ω is convex. Let u(f) be the solution to the initial-boundary vale problem (3.1), where

f ∈ L2(Ω), h ∈ H1(0, T ;L∞(Ω)) and |h( · , 0)| ≥ h0 a.e. in Ω for some constant h0 > 0. Then

there exists a constant C = C(ω,Ω, T, h) > 0 such that

‖f‖L2(Ω) ≤ C
(
‖∂tu(f)‖L2(ω×(0,T )) + ‖∂2t u(f)‖L2(ω×(0,T ))

)
.
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Lemma 3.2 is the starting point for developing a feasible numerical reconstruction of the

source term, because the theoretical stability is guaranteed under condition (3.3) on the ob-

servable subdomain ω and duration T . Although such a condition mainly originates from its

necessity in the proof of Lemma 3.2 by Carleman estimates, it also follows naturally from the

essence of wave propagation. On the one hand, ω cannot be too localized to capture waves in

all directions. On the other hand, due to the finite propagation speed, adequate observation

time should be given for the distant wave to reach ω. We illustrate a typical choice of x0, ω

and T in Figure 3.1 for readers’ better understanding.

x0

Ω

ω

{x ∈ ∂Ω | (x − x0) · ν(x) ≥ 0}

sup |x − x0| < T

Figure 3.1: A typical example for the spatial and temporal assumption guaranteeing the stability
of Problem 3.1.

3.3 Iterative thresholding algorithm

In this section, we specify ftrue ∈ L2(Ω) as the true solution to Problem 3.1 and investigate

its numerical reconstruction by the noise contaminated observation data uδ in ω× (0, T ), which

satisfies ‖uδ − u(ftrue)‖L2(ω×(0,T )) ≤ δ and δ stands for the noise level. For avoiding ambiguity,

we interpret uδ ≡ 0 out of ω × (0, T ) so that it is well-defined in Ω× (0, T ).

With the a priori knowledge on the boundedness of ftrue and appropriate observation data,

the reconstruction can be carried out through a classical Tikhonov regularization technique. We

formulate the reconstruction as the following output least square formulation with the Tikhonov

regularization

min
f∈L2(Ω)

J(f), J(f) := ‖u(f)− uδ‖2L2(ω×(0,T )) + α‖f‖2L2(Ω), (3.4)

where α > 0 is the regularization parameter.

Nearly all effective iterative methods for solving nonlinear optimizations need the informa-

tion of the derivatives of the concerned objective functional. It follows from a direct computation

that the Fréchet derivative J ′(f)f̃ of J(f) for any direction f̃ ∈ L2(Ω) reads

J ′(f)f̃ = 2

∫ T

0

∫

ω

(
u(f)− uδ

)
(u′(f)f̃ ) dxdt+ 2α

∫

Ω

f f̃ dx

= 2

∫ T

0

∫

ω

(
u(f)− uδ

)
u(f̃ ) dxdt+ 2α

∫

Ω

f f̃ dx. (3.5)

Here u′(f)f̃ denotes the Fréchet derivative of u(f) in the direction f̃ , and the linearity of (3.1)

immediately yields

u′(f)f̃ = lim
ε→0

u(f + ε f̃ )− u(f)
ε

= u(f̃ ).
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Obviously, it is extremely expensive to use this formula to evaluate J ′(f)f̃ for all f̃ ∈ L2(Ω),

since one should solve system (3.1) for u(f̃ ) with f̃ varying in L2(Ω) in the computation for a

fixed f .

In order to reduce the computational costs for computing the Fréchet derivatives, we in-

troduce the adjoint system of (3.1), that is, the following system for a backward hyperbolic

equation

z(f)





∂2t z −4z = χω

(
u(f)− uδ

)
in Ω× [0, T ),

z = ∂tz = 0 in Ω× {T },
∂νz = 0 on ∂Ω× [0, T ),

(3.6)

where χω denotes the characterization function of ω. The generalized solution to (3.6) can be

defined in the same way as that in Definition 3.1. On the other hand, since Lemma 3.1 and

f ∈ L2(Ω) indicate u(f) ∈ D (see (3.2) for the definition of D), we have χω

(
u(f)− uδ

)
∈

L2(Ω × (0, T )) and thus z(f) ∈ D again by Lemma 3.1. Therefore, by the definition of the

generalized solutions, the first term in (3.5) is further treated as

∫ T

0

∫

ω

(
u(f)− uδ

)
u(f̃ ) dxdt =

∫ T

0

∫

Ω

χω

(
u(f)− uδ

)
u(f̃ ) dxdt

=

∫ T

0

∫

Ω

(
∇u(f̃ ) · ∇z(f)− (∂tu(f̃ )) ∂tz(f)

)
dxdt

=

∫ T

0

∫

Ω

f̃ h z(f) dxdt, (3.7)

implying

J ′(f)f̃ = 2

∫

Ω

(∫ T

0

h z(f) dt+ α f

)
f̃ dx, f̃ ∈ L2(Ω).

This suggests a characterization of the solution to the minimization problem (3.4).

Proposition 3.1 f∗ ∈ L2(Ω) is the minimizer of the functional J(f) in (3.4) only if it

satisfies the Euler equation ∫ T

0

h z(f∗) dt+ αf∗ = 0, (3.8)

where z(f∗) solves the backward system (3.6) with the coefficient f∗.

To solve the nonlinear equation (3.8) for f∗, one may employ the iteration

fm+1 =
K

K + α
fm −

1

K + α

∫ T

0

h z(fm) dt, (3.9)

where K > 0 is a tuning parameter acting as a weight between the previous step and the

iterative update.

To discuss the choice of K to guarantee the convergence, we take advantage of the fact that

the iteration (3.9) in principle coincides with the iterative thresholding algorithm, which can

be derived from the minimization problem of a surrogate functional (see, e.g., [22]). Actually,

fixing f̃ ∈ L2(Ω), we introduce a surrogate functional Js(f, f̃ ) of J(f) as

Js(f, f̃ ) := J(f) +K‖f − f̃ ‖2L2(Ω) − ‖u(f)− u(f̃ )‖2L2(ω×(0,T )).

For the positivity of Js, there should hold K‖f‖2L2(Ω) ≥ ‖u(f)‖2L2(ω×(0,T )) for all f ∈ L2(Ω).

This is achieved by choosing

K ≥ ‖A‖2, (3.10)
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where A is a linear operator defined as

A : L2(Ω)→ L2(ω × (0, T )),

f 7→ u(f)|ω×(0,T ),

and the boundedness of A is readily seen from Lemma 3.1. Therefore, there holds

J(f) = Js(f, f) ≤ Js(f, f̃ ),

and thus Js(f, f̃ ) can be regarded as a small perturbation of J(f) when f̃ is close to f . On

the other hand, it follows from (3.7) that

Js(f, f̃ ) = 2

∫ T

0

∫

ω

u(f)
(
u(f̃ )− uδ

)
dxdt + ‖uδ‖2L2(ω×(0,T )) − ‖u(f̃ )‖2L2(ω×(0,T ))

+ α‖f‖2L2(Ω) +K‖f − f̃ ‖2L2(Ω)

= K‖f − f̃ ‖2L2(Ω) + α‖f‖2L2(Ω) + 2

∫ T

0

∫

Ω

f h z(f̃ ) dxdt

− ‖u(f̃ )‖2L2(ω×(0,T )) + ‖uδ‖2L2(ω×(0,T ))

= (K + α)‖f‖2L2(Ω) − 2

∫

Ω

f

(
K f̃ −

∫ T

0

h z(f̃ ) dt

)
dx

+K‖f̃ ‖2L2(Ω) − ‖u(f̃ )‖2L2(ω×(0,T )) + ‖uδ‖2L2(ω×(0,T )).

Since this is a quadratic form with respect to f when uδ and f̃ are fixed, we see

argmin
f∈L2(Ω)

Js(f, f̃ ) =
K

K + α
f̃ − 1

K + α

∫ T

0

h z(f̃ ) dt.

Consequently, the iterative update (3.9) is equivalent to solving the minimization problem

minf∈L2(Ω) J
s(f, f̃ ) with f̃ = fm. Moreover, the convergence of this iteration was proved in [22]

for any bounded linear operator A, provided that the constant K > 0 is chosen according to

condition (3.10).

Now we are well prepared to state the main algorithm for the numerical reconstruction.

Algorithm 3.1 Choose a tolerance ε > 0, a regularization parameter α > 0 and a tuning

constant K > 0 according to (3.10). Give an initial guess f0, and set m = 0.

1. Compute fm+1 by the iterative update (3.9).

2. If ‖fm+1−fm‖L2(Ω)/‖fm‖L2(Ω) ≤ ε, then stop the iteration. Otherwise, update m← m+1

and return to Step 1.

It turns out that at each iteration step, we only need to solve the forward system (3.1) once

for u(fm) and the backward system (3.6) once for z(fm) subsequently. Therefore, it is very easy

and cheap to implement Algorithm 3.1. As will be shown from many numerical experiments

in the next section, we see that our proposed Algorithm 3.1 is also considerably efficient and

accurate even for three spatial dimensions.

We conclude this section by stating the convergence result of Algorithm 3.1, which is a

direct application of [22, Theorem 3.1].

Lemma 3.3 Let K > 0 be a constant satisfying condition (3.10). Then for any f0 ∈ L2(Ω),

the sequence {fm}∞m=1 produced by the iteration (3.9) converges strongly to the solution to the

minimization problem (3.4).



3.4. Numerical experiments 52

3.4 Numerical experiments

In this section, we will apply the established Algorithm 3.1 to the numerical identification of

the spatial component f of the source term in system (3.1). The general settings of the numerical

reconstruction are assigned as follows. For simplicity, we take Ω = (0, 1)d (d = 1, 2, 3). The

duration T may change with respect to the choices of ω according to condition (3.3) which

guarantees a reasonable reconstruction. Actually, since an observable subdomain ω has certain

thickness in practice, the condition on T can be relaxed to T > diam(Ω \ω) in numerical tests.

Although in Section 3.3 the difference between the noiseless data u(ftrue) and the actually

observed data uδ was evaluated in the L2(ω × (0, T ))-norm, here for simplicity we produce uδ

by adding uniform random noises to the noiseless data, i.e.

uδ(x, t) = u(ftrue)(x, t) + δ rand(−1, 1), ∀x ∈ ω, ∀ t ∈ (0, T ),

where rand(−1, 1) denotes the uniformly distributed random number in [−1, 1] and δ ≥ 0 is the

noise level. Here we choose δ as a certain portion of the amplitude of the exact solution, i.e.

δ := δ0 max
Ω×[0,T ]

|u(ftrue)|, 0 < δ0 < 1.

As for the various parameters involved in Algorithm 3.1, we take ε = 1% δ0 as the tolerance,

and choose the regularization parameter as α = 0.1% δ. The initial guess f0 is always taken as a

constant, which is usually rather inaccurate in the test problems. Finally, the tuning parameter

K > 0 will be chosen according to the size of the subdomain ω, the duration T , and the known

component h(x, t) of the source term.

At each step of the iteration (3.9) in all of the numerical experiments, the forward sys-

tem (3.1) and the backward system (3.6) are solved by some absolutely stable schemes of

the finite difference method. In our implementations, we apply the von Neumann scheme for

one-dimensional case and the alternating direction implicit (ADI) method for two- and three-

dimensional cases (see [28, 45]). For instance, in case of d = 3, we work on the equidistant

grids

xi1 = xi2 = xi3 = i∆x (i = 0, 1, . . . , Nx), tn = n∆t (n = 0, 1, . . . , Nt)

with Nx∆x = 1 and Nt ∆t = T , where h and τ are the step lengths in space and time

respectively. By introducing the ratio κ := (∆t/∆x)2 and the difference operators

δ2x1
ui,j,kn := ui+1,j,k

n − 2 ui,j,kn + ui−1,j,k
n ,

δ2x2
ui,j,kn := ui,j+1,k

n − 2 ui,j,kn + ui,j−1,k
n ,

δ2x3
ui,j,kn := ui,j,k+1

n − 2 ui,j,kn + ui,j,k−1
n ,

we discretize the time evolution of the governing equation in (3.1) as

ui,j,kn+1/3 − 2 ui,j,kn + ui,j,kn−1 =
κ

4
δ2x1

(
ui,j,kn+1/3 + 2 ui,j,kn + ui,j,kn−1

)
+ κ

(
δ2x2

+ δ2x3

)
ui,j,kn

+∆t2f(xi1, x
j
2, x

k
3)h(x

i
1, x

j
2, x

k
3 , tn),

ui,j,kn+2/3 − u
i,j,k
n+1/3 =

κ

4
δ2x2

(
ui,j,kn+2/3 − 2 ui,j,kn + ui,j,kn−1

)
,

ui,j,kn+1 − ui,j,kn+2/3 =
κ

4
δ2x3

(
ui,j,kn+1 − 2 ui,j,kn + ui,j,kn−1

)
,

where ui,j,kn stands for an approximation of u(xi1, x
j
2, x

k
3 , tn), and u

i,j,k
n+1/3, u

i,j,k
n+2/3 denote some

intermediate values. The backward system (3.6) is discretized in the same manner. It turns out
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that the ADI method performs efficiently even in three-dimensional case. In fact, it only takes

about 5 seconds for a problem of 503 × 100 scale. On the other hand, the involved integrals in

time are simply approximated by the composite trapezoidal rule.

In what follows, we shall demonstrate the reconstruction method by abundant test examples

in one, two and three spatial dimensions. Other than the illustrative figures, we mainly evaluate

the numerical performance by the number M of iterations, the relative L2 error

err :=
‖fM − ftrue‖L2(Ω)

‖ftrue‖L2(Ω)

and the elapsed time, where fM is recognized as the result of the numerical reconstruction.

3.4.1 One-dimensional examples

In case of d = 1, we always take T = 1 and divide the space-time region Ω × [0, T ] =

[0, 1]× [0, 1] as a 101 × 101 equidistant mesh and test the performance of Algorithm 3.1 from

various aspects. The choice T = 1 is sufficient because there always holds diam(Ω \ ω) < 1

whatever ω we set.

Example 3.1 In this example, we carry out numerical tests with different combinations of

the noise level δ and the observable subdomain ω to see their influences upon the reconstructions.

Take the known component of the source term as h(x, t) = x+ t+ 1, let ftrue(x) = cos(πx) + 1

and set the initial guess as f0 ≡ 1. First we fix ω = Ω \ [1/10, 9/10] and change the noise levels

as 1%, 2%, 4% and 8% of the amplitude of u(ftrue). Then we fix an 1% noise and reduce the

size of ω from ω = Ω\ [1/5, 4/5] to ω = Ω\ [1/20, 19/20]. The choices of parameters in the tests

and corresponding numerical performances are listed in Table 3.1. For a better understanding

of reconstructions, we visualize several representative examples in Table 3.1 to compare the

exact and recovered solutions in Figure 3.2.

Table 3.1: Parameters and corresponding numerical performances in Example 3.1 under various
combinations of noise levels and the observable subdomains.

δ0 ω K M err elapsed time (s) illustration
1% Ω \ [1/10, 9/10] 0.02 113 1.86% 2.71 Figure 3.2(a)
2% Ω \ [1/10, 9/10] 0.02 84 2.91% 2.04
4% Ω \ [1/10, 9/10] 0.02 73 3.32% 1.65
8% Ω \ [1/10, 9/10] 0.02 65 3.79% 1.63 Figure 3.2(b)
1% Ω \ [1/5, 4/5] 0.04 118 1.15% 2.78 Figure 3.2(c)
1% Ω \ [1/20, 19/20] 0.015 122 2.77% 2.81 Figure 3.2(d)

Example 3.2 Now we compare the numerical performances by selecting various exact

solutions ftrue with different monotonicity and smoothness. More precisely, we fix h(x, t) =

2+π2t2 and choose (a) f a
true(x) = x, (b) f b

true(x) = sin(πx)+x, (c) f c
true(x) =

1
2 cos(2πx)+1 or

(d) f d
true(x) = 1−|2x−1|. In all cases, we set the noise level as 5% of the amplitude of u(ftrue),

and take ω = Ω \ [1/10, 9/10]. Correspondingly, the tuning parameter is chosen as K = 0.1.

The comparisons of exact and reconstructed solutions are shown in Figure 3.3. The numbers

M of iterations and relative errors are listed in Table 3.2.

In the above examples, it is readily seen that even with quite coarse initial guesses f0, the

numerical reconstructions appear to be satisfactory in view of the ill-posedness of the inverse
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Figure 3.2: Illustrations of the exact and reconstructed solutions in Example 3.1 with several
combinations of the noise level and subdomain. (a) δ0 = 1%, ω = Ω\ [1/10, 9/10]. (b) δ0 = 8%,
ω = Ω \ [1/10, 9/10]. (c) δ0 = 1%, ω = Ω \ [1/5, 4/5]. (d) δ0 = 1%, ω = Ω \ [1/20, 19/20].
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Figure 3.3: Illustrations of the exact and reconstructed solutions for Example 3.2. (a) f a
true(x) =

x. (b) f b
true(x) = sin(πx) + x. (c) f c

true(x) =
1
2 cos(2πx) + 1. (d) f d

true(x) = 1− |2x− 1|.
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Table 3.2: Numerical performances of the reconstructions in Example 3.2 for various choices of
exact solutions with different smoothness.

ftrue(x) initial guess M err illustration
x 0.5 6 1.41% Figure 3.3(a)

sin(πx) + x 2.5 43 2.03% Figure 3.3(b)
1
2 cos(2πx) + 1 1 179 7.55% Figure 3.3(c)
1− |2x− 1| 0.5 223 11.41% Figure 3.3(d)

source problem. We evaluate the performance of our algorithm by analyzing the numerical

results from the following aspects.

First, it is readily seen from Figures 3.2 and 3.3 that both of the above examples yield

quite smooth reconstructions. In fact, according to the regularity result in Lemma 3.1, one can

expect an H1(Ω)-regularity throughout the iteration (3.9), as long as the initial guess f0 and

the known component h(x, t) of the source term are sufficiently smooth. Such a smoothness,

however, prevents us from proper identifications of non-smooth true solutions (see case (d) of

Example 3.2).

Second, the reconstructed solutions appear more sensitive to the size of the observable

domain ω than to the data noise, but the non-monotonicity outside ω is difficult to reconstruct.

The influence of the smallness of ω is witnessed from the second part of Table 3.1, which

obviously comes from the limited information captured in ω. On the other hand, cases (a)–(c)

in Example 3.2 imply a tendency that the better the monotonicity of ftrue is, the more accurate

the identification will be, and the convergence will also be faster. In conclusion, although the

conditional stability of the reconstruction is guaranteed by Lemma 3.2, in practice the signal

strength from Ω\ω is overwhelmed by that inside ω, so that the behavior of f outside ω cannot

remarkably influence the observation data in ω × (0, T ).

Third, Example 3.1 suggests a considerably strong robustness of our algorithm against the

measurement error. Actually, one can see from the first part of Table 3.1 that the relative

errors of the reconstructions only increase temperately as the observation noises are doubled.

This phenomenon can be explained as follows. Suppose that the m-th iteration fm is of certain

regularity, say fm ∈ L2(Ω). According to Lemma 3.1, the solution u(fm) to (3.1) should be

sufficiently smooth, namely u(fm) ∈ D (see (3.2) for the definition of D). Since the iteration

(3.9) in principle aims at minimizing the surrogate functional Js( · , fm), it turns out that

u(fm)|ω×(0,T ) tends to take an averaged state of uδ in a sense that the error can be minimized.

Therefore, provided that the observation data keep oscillating around the accurate ones, the

reconstruction performs stably and insensitively in spite of the noise amplitude to a certain

extent.

3.4.2 Two-dimensional examples

Now we turn to the case of d = 2. Without lose of generality, we always generate the

subdomain ω by removing a closed rectangle in Ω = (0, 1)2 whose edges are parallel to the

coordinate axes. Due to the geometry condition for the reconstruction, ω should include at

least two adjacent edges of Ω . Simultaneously, the condition T > diam(Ω \ω) implies that the

time duration T should be longer than the diagonal of the removed rectangle. In the sequel, the

largest size of such rectangles will be taken as 0.92, and hence we will set T = 1.3 > 0.9×
√
2 in

all tests for consistency. As before, we set the step size as 0.01 and divide the space-time region
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as a 1012 × 131 mesh in computation. Since the one-dimensional examples suggest that the

reconstruction is insensitive to the noise, the noise level is always set as 5% of the amplitude of

u(ftrue).

Example 3.3 In the first two-dimensional example, we fix h(x, t) = 5 + π2t2 and

ftrue(x) = ftrue(x1, x2) =
1

2
cos(πx1) cos(πx2) + 1. (3.11)

We test the algorithm by changing the subdomain ω as follows. First, we keep the coverage

∂Ω ⊂ ω and reduce its thickness from 1/5, 1/10 to 1/20, that is, we take ω = Ω\[1/5, 4/5]2, ω =

Ω\ [1/10, 9/10]2 and ω = Ω\ [1/20, 19/20]2 subsequently. Next, we fix the thickness as 1/10 and

reduce the coverage of ∂Ω from 3 edges to 2, for instance, we choose ω = Ω\[1/10, 1]×[1/10, 9/10]
and ω = Ω \ [1/10, 1]2. The choices of ω and various parameters as well as the corresponding

numerical performances are listed in Table 3.3. The surface plots of the exact solution ftrue

and several representative reconstructions fM are illustrated in Figure 3.4.

Table 3.3: Parameters and corresponding numerical performances in Example 3.3 under various
choices of observable subdomains.

ω K f0 M err elapsed time (s) illustration
Ω \ [1/5, 4/5]2 3 1 31 0.98% 30.28

Ω \ [1/10, 9/10]2 1.7 1 27 2.27% 26.79 Figure 3.4(b)
Ω \ [1/20, 19/20]2 1 1 27 2.96% 26.35

Ω \ [1/10, 1]× [1/10, 9/10] 1.3 1 27 3.46% 26.40 Figure 3.4(c)
Ω \ [1/10, 1]2 1 1.5 73 7.51% 71.72 Figure 3.4(d)

Example 3.4 Parallelly to Example 3.2 for the one-dimensional case, we investigate the

influence of the monotonicity of ftrue upon the numerical performance. To this end, we fix

h(x, t) = h(x1, x2, t) = x1 − x2 + 3t+ 2 and select three true solutions

f a
true(x) = f a

true(x1, x2) =
1

2
cos(πx1) + 1, (3.12)

f b
true(x) = f b

true(x1, x2) = 3− exp

(
1− x1 + x2

2

)
, (3.13)

f c
true(x) = f c

true(x1, x2) =
1

2
cos(πx1) cos(2πx2) + 1. (3.14)

Here we take ω = Ω \ [1/10, 9/10] × [0, 9/10] as an intermediate choice, and set K = 0.27,

f0 ≡ 1. We compare the exact and reconstructed solutions in Figure 3.5. The numbers M of

iterations and relative errors are shown in Table 3.4.

Table 3.4: Numerical performances of the reconstructions in Example 3.4 for various choices of
exact solutions.

ftrue M err illustration
f a
true (see (3.12)) 33 2.70% Figure 3.5(a1)–(a2)
f b
true (see (3.13)) 41 2.97% Figure 3.5(b1)–(b2)
f c
true (see (3.14)) 119 7.22% Figure 3.5(c1)–(c2)

As expected, the above two-dimensional examples inherit mostly those phenomena observed

in their one-dimensional counterparts and here we will not repeat the discussion again. Nev-

ertheless we shall mention that, other than the thickness of ω, the iteration steps and relative
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Figure 3.4: Comparison of the true solution to some reconstructed solutions in Example 3.3
with different subdomains of observation. (a) The true solution ftrue defined in (3.11). (b) Re-
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Figure 3.5: Illustrations of the exact and reconstructed solutions in Example 3.4 with the same
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errors of the numerical reconstructions also depend heavily on how much ω can cover ∂Ω. Al-

though in all tests the algorithm performs quite well when ∂Ω is included in ω, it performs worse

when ω only covers 3 or 2 edges of ∂Ω in the sense of larger relative errors and more iteration

steps. We can see clearly from Figures 3.4(c) and 3.5(c2) that the numerical solutions fM fail to

match with ftrue especially on the uncovered edge, though ftrue are well-reconstructed inside ω.

In particular, Figure 3.4(d) indicates a dramatic difference at the uncovered corner x = (1, 1)

when ω = Ω \ [1/10, 1]2. These demonstrate again the numerical ill-posedness regardless of the

fact that the theoretical stability (Lemma 3.2) is valid under condition (3.3).

3.4.3 Three-dimensional examples

Finally, we proceed to the three-dimensional reconstruction of the source term ftrue. Sim-

ilarly to the previous subsection, the subdomain ω is generated by removing a closed cube in

Ω = (0, 1)3 whose edges are parallel to the coordinate axes. According to the geometry condi-

tion for the reconstruction, ω should include at least three mutually adjacent faces of Ω . Since

the largest size of the removed cubes will be 0.963, we set T = 1.7 > 0.96×
√
3 in all numerical

tests in order to guarantee the condition T > diam(Ω \ ω). Considering the computational

complexity for d = 3, we enlarge the mesh size in space and time as 0.02 to produce a 513× 86

mesh for Ω× [0, T ]. As before, we still set the noise level as 5% of the amplitude of u(ftrue).

Example 3.5 Fix h(x, t) = 2 + 3π2t2 and

ftrue(x) = ftrue(x1, x2, x3) =
1

2
cos(πx1) cos(πx2) cos(πx3) + 1. (3.15)

Similarly to the previous subsections, we study the influence of the choice of ω upon the numer-

ical performance. First we keep the coverage ∂Ω ⊂ ω and use the thicknesses 2/25 and 1/25 to

generate ω = Ω \ [2/25, 23/25]3 and ω = Ω \ [1/25, 24/25]3. Next we fix a thickness of 1/25 and

reduce the faces of ∂Ω that ω covers from 5 till 3 which is the minimum possible, that is, e.g.

ω = Ω \ [1/25, 24/25]2× [1/25, 1], ω = Ω \ [1/25, 24/25]× [1/25, 1]2 and ω = Ω \ [1/25, 1]3. The
choices of ω and various parameters as well as the corresponding numerical performances are

listed in Table 3.5. To visualize three-variate functions ftrue and several of its representative

reconstructions fM , we show 4 sections for each of these functions at x3 = 0.2, 0.4, 0.6, 0.8 in

Figure 3.6.

Table 3.5: Parameters and corresponding numerical performances in Example 3.5 under various
choices of observable subdomains.

ω K f0 M err elapsed time (s) illustration
Ω \ [2/25, 23/25]3 22 1 40 1.83% 608.68
Ω \ [1/25, 24/25]3 12 1 38 2.49% 496.60 Figure 3.6(b)

Ω \ [1/25, 24/25]2× [1/25, 1] 10 1 38 3.07% 546.37 Figure 3.6(c)
Ω \ [1/25, 24/25]× [1/25, 1]2 7.5 1 40 3.87% 520.20 Figure 3.6(d)

Ω \ [1/25, 1]3 6 0.5 39 8.84% 515.18

Example 3.6 Finally, as before we test our algorithm by selecting true solutions with

different degrees of monotonicity. We fix h(x, t) = 5 + π2t2, and choose

f a
true(x) = f a

true(x1, x2, x3) =

(
x1 −

1

5

)(
x2 −

1

2

)2

− 1

2
cos(πx1)x3 +

1

2
x2 e

−x3 , (3.16)
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Figure 3.6: Comparison of the true solution to some reconstructed solutions in Example 3.5
with different subdomains of observation. (a) The true solution ftrue defined in (3.15). (b)
Reconstruction with ω = Ω \ [1/25, 24/25]3. (c) Reconstruction with ω = Ω \ [1/25, 24/25]2 ×
[1/25, 1]. (d) Solution with ω = Ω \ [1/25, 24/25]× [1/25, 1]2.
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f b
true(x) = f b

true(x1, x2, x3) =
1

2
cos(πx1) cos(2πx2) cos(πx3) + 1, (3.17)

f c
true(x) = f c

true(x1, x2, x3) =
1

2
cos(πx1) cos(2πx2) cos(2πx3) + 1. (3.18)

Here we set ω = Ω \ [1/25, 24/25] × [1/25, 1]2, K = 3.5 and f0 ≡ 1. Comparisons of the

corresponding sections of exact and reconstructed solutions are shown in Figure 3.7, and the

numerical performances are listed Table 3.6.

Table 3.6: Numerical performances of the reconstructions in Example 3.6 for various choices of
exact solutions.

ftrue M err illustration
f a
true (see (3.16)) 64 3.45% Figure 3.7(a1)–(a2)
f b
true (see (3.17)) 120 7.85% Figure 3.7(b1)–(b2)
f c
true (see (3.18)) 101 11.98% Figure 3.7(c1)–(c2)

Again, the three-dimensional examples show almost identical behaviors to that in lower di-

mensional cases. In summary, thinner observable subdomains ω result in worse reconstructions,

and their coverage of ∂Ω also dominates the numerical performance to a great extent. On the

other hand, the oscillation of ftrue in Ω \ ω is extremely difficult to recover.

3.5 Concluding remarks

We have proposed in this work an efficient iterative thresholding algorithm for the inverse

source problem in a hyperbolic system from partial interior measurements. By introducing

the adjoint system (3.6) and the surrogate functional Js, the stable nonlinear minimization

formulated by the Tikhonov regularization can be solved by the iterative thresholding algorithm,

which leads to get the explicit minimizer at each iteration. We have observed from many

numerical tests that the proposed algorithm is very accurate and efficient. In particular, our

algorithm is considerably robust against the measurement error, but is sensitive to the size of

the observable domain.

In the next chapter, we will investigate the reconstruction of the nucleation rate Ψ(x, t) in

the three-dimensional time cone model (1.2)–(1.3). Since the derivation in Chapter 1 provides

a convenience to consider an inverse source problem for the equivalent double wave equation

(∂2t −4)2u(x, t) = F (x, t),

we can discuss the theoretical and numerical topics on the determination of the spatial compo-

nent of F (x, t) similarly to that in this chapter. We will establish the global Lipschitz stability

and develop the corresponding iteration thresholding algorithm for this inverse problem in the

next chapter.
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Figure 3.7: Illustrations of the exact and reconstructed solutions in Example 3.6 with the same
settings and choices of parameters. (a1) f a

true defined in (3.16). (a2) Reconstruction of f a
true.

(b1) f b
true defined in (3.17). (b2) Reconstruction of f b

true. (c1) f c
true defined in (3.18). (c2)

Reconstruction of f c
true.



Chapter 4

Nucleation Rate Reconstruction

in the Three-Dimensional Time

Cone Model

In this chapter, we consider the reconstruction of the nucleation rate in the three-dimensional

time cone model, which turns out to be an inverse source problem for a double hyperbolic

equation. More precisely, we attempt to recover a spatial component of the nucleation rate by

the partial interior observation data. After a direct derivation of the hyperbolic-type governing

equation from the original model, we establish the well-posedness result for the forward problem

by the classical hyperbolic theory. To guarantee the validity of the reconstruction, we prove the

global Lipschitz stability for the inverse problem based on a Carleman estimate. Motivated by

the iterative thresholding algorithm for the same problem for the hyperbolic equation proposed

in the previous chapter, we develop a similar iterative approach to the identification in a parallel

framework. Extensive numerical experiments up to three spatial dimensions demonstrate the

efficiency and accuracy of the algorithm, and detailed analysis of the computational performance

are also provided.

4.1 Introduction and main results

As was introduced in Chapter 1, the time cone model (see Cahn [17]) describes the phase

transformation kinetics which is essential in many natural phenomena and industrial processes.

Other than the simulation of the phase transformation on the basis of the forward model,

it is also important to identify the involved physical quantities (that is, the nucleation rate

Ψ(x, t) and the growth speed ρ(t)) from some observation data of the expectation u(x, t) of

transformation events. The investigations of these related inverse problem are significant in the

system control and monitoring in many practical applications, for instance, to achieve certain

mechanical properties of the materials as well as to improve the manufacturing efficiency.

Since the time cone model in its original formulation is inconvenient for mathematical anal-

ysis, in Chapter 1 we derived a class of multiple hyperbolic equations that are equivalent to

the original model in any odd spatial dimensions. From the viewpoint of the partial differential

equations, the problem on reconstructing the growth speed ρ(t) reduces to a coefficient inverse

problem and that on reconstructing the nucleation rate Ψ(x, t) reduces to an inverse source

problem. As a first attempt, in Chapter 2 we discussed the determination of ρ(t) in one spatial

63
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dimension.

The main concentration of this chapter is the inverse source problem for Cahn’s time cone

model with the partial interior observation data in three spatial dimensions, which is especially

of practical importance. We recall that the original three-dimensional model takes the form

u(x, t) =

∫ t

0

∫

B3(x,R(t)−R(s))

Ψ(y, s) dyds (x ∈ R
3, t ≥ 0), (4.1)

where B3(x, r) denotes the three-dimensional ball centered at x ∈ R3 with radius r > 0.

Although the equivalence of (4.1) and a double hyperbolic equation was a special case of

Theorem 1.1 with m = 1, for the sake of self-containedness we still state the conclusion here.

Proposition 4.1 Let u(x, t) satisfy (4.1), where u(x, t), Ψ(x, t) and ρ(t) (x ∈ R3, t ≥ 0)

are sufficiently smooth and ρ(t) is strictly positive for t ≥ 0. Introduce the hyperbolic operator

Hρw(x, t) :=
1

ρ(t)
∂t

(
∂tw(x, t)

ρ(t)

)
−4w(x, t).

Then u(x, t) satisfies the following double hyperbolic system
{
H2

ρu(x, t) = 8πΨ(x, t)/ρ(t) (x ∈ R3, t > 0),

∂`tu(x, 0) = 0 (x ∈ R3, ` = 0, 1, 2, 3).
(4.2)

The above proposition reveals that, in the terminology of differential equations, the term

Ψ(x, t)/ρ(t) acts as the source term in a hyperbolic equation. On the other hand, the nucleation

rate usually takes the following form of incomplete separation of variables Ψ(x, t) = f(x) g(x, t),

and we are interested in the determination of the spatial component f . To this end, we restrict

the system (4.2) in a finite space-time region Ω × (0, T ), where Ω ⊂ R3 is an open bounded

domain and T > 0. Consider the corresponding initial-boundary value problem




H2
ρu(x, t) = f(x)h(x, t) (x ∈ Ω, 0 < t ≤ T ),

∂`tu(x, 0) = 0 (x ∈ Ω, ` = 0, 1, 2, 3),

∂νu(x, t) = ∂ν4u(x, t) = 0 (x ∈ ∂Ω, 0 < t ≤ T ),
where h(x, t) :=

8π g(x, t)

ρ(t)
. (4.3)

Here ν = ν(x) is the unit outward normal vector at x ∈ ∂Ω, and ∂νu := ∇u · ν denotes the

normal derivative. Although we impose the boundary conditions ∂νu = ∂ν4u = 0 on ∂Ω×(0, T )
which seems artificial, it is necessary for the formulation of such a fourth order equation, and

the Neumann-type boundary conditions are natural in reality.

Now we are well prepared to purpose the following inverse source problem.

Problem 4.1 Let ω ⊂ Ω and T > 0 be suitably given, and u satisfy (4.3). Provided that g

and ρ are known, determine f(x) (x ∈ Ω) by the partial interior observation data u in ω×(0, T ).

To state the main results concerning the above problem, we briefly introduce the basic

notations. For k = 1, 2, . . ., let Hk(Ω), Hk(Ω × (0, T )), etc. denote usual Sobolev spaces (see,

e.g., Adams [1]). For m = 0, 1, . . . and a Banach space X , define

Cm([0, T ];X) := {w ∈ C([0, T ];X); ∂jtw ∈ C([0, T ];X), j = 1, . . . ,m},
Hm(0, T ;X) := {w ∈ L2(0, T ;X); ∂jtw ∈ L2(0, T ;X), j = 1, . . . ,m}

and introduce the norms

‖w‖Cm([0,T ];X) :=

m∑

j=0

‖∂jtw‖C([0,T ];X), ‖w‖Hm(0,T ;X) :=

m∑

j=0

‖∂jtw‖L2(0,T ;X).
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Regarding the known functions g and ρ, we assume that

g ∈ H1(0, T ;L∞(Ω)) and ∃ g0 > 0 such that |g( · , 0)| ≥ g0 a.e. in Ω,

ρ ∈ C3[0, T ] and ∃ ρ0 > 0 such that ρ ≥ ρ0 in [0, T ].
(4.4)

On the well-posedness of the forward problem for (4.3), we summarize as follows.

Proposition 4.2 Let ∂Ω be of C3 class, f ∈ L2(Ω), and g, ρ satisfy (4.4). Then there is a

unique solution u to the system (4.3) such that u ∈ ⋂3
k=1 C

k([0, T ];H3−k(Ω)). Moreover, there

exists a constant C = C(Ω, T, ρ) > 0 such that

3∑

k=1

‖u‖Ck(0,T ;H3−k(Ω)) ≤ C‖f‖L2(Ω)‖g‖H1(0,T ;L∞(Ω)). (4.5)

Now we state the stability result for Problem 4.1 under certain spatial and temporal condi-

tions on the observable subdomain ω and the duration T .

Theorem 4.1 Let ∂Ω be of C3 class and u be the solution to (4.3), where f ∈ L2(Ω) and

g, ρ satisfy (4.4). Suppose that ω is a subdomain of Ω such that

{x ∈ ∂Ω; (x− x0) · ν(x) ≥ 0} ⊂ ∂ω for some x0 /∈ Ω \ ω ,

R(T ) =

∫ T

0

ρ(t) dt > sup
x∈Ω
|x− x0|, and

∀x ∈ ∂Ω \ ∂ω, ∃Ux : open ball centered at x such that Ux ∩Ω is convex.

(4.6)

Then there exists a constant C = C(Ω, ω, T, g, ρ) > 0 such that

C−1D ≤ ‖f‖L2(Ω) ≤ C D, where (4.7)

D := ‖∂4t u− ρ2∂2t4u‖L2(ω×(0,T )) + ‖∂tu‖L2(0,T ;H2(ω)) +
3∑

k=2

‖∂kt u‖L2(ω×(0,T )). (4.8)

In the above theorem, although the conditions on ω and T mainly come from the proof by

Carleman estimates, in principle they originate from the nature of the finite propagation speed

of wave. We emphasize that the estimate (4.7) gives an equivalent relation between ‖f‖L2(Ω) and

D, where the first inequality almost follows directly from Proposition 4.2, and the second one

guarantees a global Lipschitz stability for the inverse source problem. On the other hand, the

term ‖∂4t u− ρ2∂2t4u‖L2(ω×(0,T )) in (4.8) seems incompletely decomposed. However, it can be

seen from the proof of Proposition 4.2 that neither ∂4t u nor ∂2t4u makes sense in L2(Ω×(0, T )),

whereas one can show ∂4t u − ρ2∂2t4u ∈ C([0, T ];L2(Ω)). In other words, inequality (4.5) in

Proposition 4.2 is a sharp estimate in our setting.

Theorem 4.1 is the main theoretical result of this chapter, which also motivates the develop-

ment of corresponding numerical reconstructions by a similar iterative thresholding algorithm

introduced in the previous chapter. By use of the adjoint system of (4.3) in correspondence

with Problem 4.1, it turns out that a parallel deduction of the iterative update is also valid

for the double hyperbolic equation, followed by a similar guarantee for the convergence on the

choice of the involved parameter.

As was mentioned before, the literatures on inverse problems for the phase transformation

kinetics are quite limited, and most of those works are concerned with the one-dimensional

prototype problem (see [10,11,14,20]). The present chapter is the first work on identifying the

nucleation rate in the three-dimensional model from both theoretical and numerical aspects.
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The remainder of this chapter is organized as follows. In Section 4.2, we give proofs for

Propositions 4.1 and 4.2 concerning the forward problem. Theorem 4.1, which asserts the

global Lipschitz stability for Problem 4.1, is proved in Section 4.3 by the Carleman estimate.

In Section 4.4, we reformulate our inverse source problem for numerical treatments, and purpose

the iteration thresholding algorithm. Numerical tests up to three spatial dimensions along with

discussions on the performance are carried out in Section 4.5. Finally, as an appendix, in Section

4.A we consider the inverse source problem with the same unknown function f but by the final

observation in a slightly different setting. In this case, tt turns out that the reconstruction is

only available in small domains.

4.2 Proofs of Propositions 4.1 and 4.2

We start from the derivation of the double hyperbolic equation (4.2) from the original model

(4.1), and then validate the well-posedness of the corresponding initial-boundary value problem

(4.3). Although a generalization of Proposition 4.1 was already proved for all odd spatial

dimensions in Chapter 1, here we still provide a proof only in the three-dimensional case, which

is a concrete realization of Remark 1.2.

Proof of Proposition 4.1. Introduce the change of variable in time

τ = R(t) =

∫ t

0

ρ(s) ds (t ≥ 0). (4.9)

Thanks to the strict positivity of ρ, the function R(t) is nonnegative and strictly increasing for

t ≥ 0, allowing a well-defined inverse function t = R−1(τ) for τ ≥ 0. Moreover, it turns out from

taking derivative in the identity R(R−1(τ)) = τ that (R−1(τ))′ = 1/ρ(R−1(τ)). Therefore, we

perform the same change of variable ζ = R(s) for 0 < s < t in the integral on the right-hand

side of (4.1), and introduce an auxiliary function

U(x, τ) := u(x,R−1(τ)) (4.10)

to deduce

U(x, τ) =

∫ τ

0

∫

B3(x,τ−ζ)

F (y, ζ) dydζ (x ∈ R
3, τ ≥ 0), F (x, τ) :=

Ψ(x,R−1(τ))

ρ(R−1(τ))
. (4.11)

Now that the integral in (4.11) is taken in a regular cone Ω1(x, τ) with peak (x, τ) and unit

slope, it is convenient to study U(x, τ) instead of u(x, t) hereinafter. In fact, for any smooth

function w defined in R3 × [0,∞), it turns out that the same change of variable (4.9) and the

definition W (x, τ) := w(x,R−1(τ)) yield

∂2τW (x, τ) =
1

ρ(t)
∂t

(
∂tw(x, t)

ρ(t)

)∣∣∣∣
t=R−1(τ)

, ∂τW (x, 0) =
∂tw(x, 0)

ρ(0)
,

or, by taking τ = R(t) and recalling the operator Hρ,

{
Hρw(x, t) = �W (x, τ)|τ=R(t) (x ∈ R

3, t > 0),

w(x, 0) =W (x, 0), ∂tw(x, 0) = ρ(0) ∂τW (x, 0) (x ∈ R
3),

(4.12)

where � := ∂2τ −4 denotes the d’Alembertian with τ as the time variable.
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Now we proceed to the derivation. First, it is readily seen that U(x, 0) = 0 by (4.11). To

proceed, we adopt the polar coordinate transformation

y = x+ r p(ψ1, ψ2) (0 < r < τ − ζ, 0 < ψ1 < π, 0 < ψ2 < 2π), where

p(ψ1, ψ2) := (cosψ1, sinψ1 cosψ2, sinψ1 sinψ2).

Since the corresponding Jacobian is r2 sinψ1, (4.11) is then equivalently represented as

U(x, τ) =

∫ τ

0

∫ τ−ζ

0

r2
∫ π

0

sinψ1

∫ 2π

0

F (x + r p(ψ1, ψ2), ζ) dψ2dψ1drdζ.

Now we can directly verify

4U(x, τ) =

∫ τ

0

∫ τ−ζ

0

r2
∫ π

0

sinψ1

∫ 2π

0

4F (x+ r p(ψ1, ψ2), ζ) dψ2dψ1drdζ

=

∫ τ

0

∫

B3(x,τ−ζ)

4F (y, ζ) dydζ

and, as a byproduct, we have 4U(x, 0) = 0. On the other hand, we calculate

∂τU(x, τ) =

∫ τ

0

∂τ

{∫ τ−ζ

0

r2
∫ π

0

sinψ1

∫ 2π

0

F (x+ r p(ψ1, ψ2), ζ) dψ2dψ1dr

}
dζ

=

∫ τ

0

(τ − ζ)2
∫ π

0

sinψ1

∫ 2π

0

F (x + (τ − ζ) p(ψ1, ψ2), ζ) dψ2dψ1dζ

and hence ∂τU(x, 0) = 0. To deal with ∂2τU , we notice the fact that p(ψ1, ψ2) coincides with

the unit outward normal vector ν(y) at y = x+ (τ − ζ) p(ψ1, ψ2) to obtain

∂2τU(x, τ) =

∫ τ

0

∂τ

{
(τ − ζ)2

∫ π

0

sinψ1

∫ 2π

0

F (x+ (τ − ζ) p(ψ1, ψ2), ζ) dψ2dψ1

}
dζ

= 2

∫ τ

0

(τ − ζ)
∫ π

0

sinψ1

∫ 2π

0

F (x + (τ − ζ) p(ψ1, ψ2), ζ) dψ2dψ1dζ

+

∫ τ

0

(τ − ζ)2
∫ π

0

sinψ1

∫ 2π

0

∇F (x+ (τ − ζ) p(ψ1, ψ2), ζ) · p(ψ1, ψ2) dψ2dψ1dζ

= 2

∫ τ

0

1

τ − ζ

∫

∂B3(x,τ−ζ)

F (y, ζ) dσdζ +

∫ τ

0

∫

∂B3(x,τ−ζ)

∇F (y, ζ) · ν(y) dσdζ

= V (x, τ) +

∫ τ

0

∫

B3(x,τ−ζ)

4F (y, ζ) dydζ = V (x, τ) +4U(x, τ)

or equivalently

�U(x, τ) = V (x, τ), (4.13)

where we utilize the polar coordinate transformation y = x+(τ−ζ) p(ψ1, ψ2) for y ∈ ∂B3(x, τ−
ζ) in the third equality and apply Green’s formula in the fourth equality. Here dσ stands for

the surface infinitesimal, and we write

V (x, τ) := 2

∫ τ

0

V̂ (x, τ ; ζ) dζ, V̂ (x, τ ; ζ) :=
1

τ − ζ

∫

∂B3(x,τ−ζ)

F (x, ζ) dy. (4.14)

Regarding ζ > 0 as a fixed parameter, we observe that V̂ ( · , · ; ζ) takes the form of Poisson’s

formula for the Cauchy problem of the three-dimensional wave equation (see [27]), that is,

V̂ ( · , · ; ζ) satisfies
{
�V̂ (x, τ ; ζ) = 0 (x ∈ R3, τ > ζ),

V̂ (x, τ ; ζ)|τ=ζ = 0, ∂τ V̂ (x, τ ; ζ)|τ=ζ = 4π F (x, ζ) (x ∈ R3).
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Consequently, it follows from Duhamel’s principle that V still satisfies a wave equation
{
�V (x, τ) = 8π F (x, τ) (x ∈ R3, τ > 0),

V (x, 0) = ∂τV (x, 0) = 0 (x ∈ R3).
(4.15)

Together with (4.13), we obtain

∂2τU(x, 0) = 4U(x, 0) + V (x, 0) = 0.

Similar calculations indicate ∂τ4U(x, 0) = 0 and thus

∂3τU(x, 0) = ∂τ4U(x, 0) + ∂τV (x, 0) = 0.

Therefore, the combination of (4.13), (4.15) and the above initial conditions implies
{
�

2U(x, τ) = 8π F (x, τ) (x ∈ R3, τ > 0),

∂`τU(x, 0) = 0, (x ∈ R3, ` = 0, 1, 2, 3),
where F (x, τ) =

Ψ(x,R−1(τ))

ρ(R−1(τ))
. (4.16)

Finally, the double hyperbolic system (4.2) for u immediately follows from (4.16) and repeated

uses of the relation (4.12).

In the above proof, it is readily seen that arguments based on the auxiliary functions U

defined in (4.11) and V introduced in (4.14) are more convenient than that based on the

original u in (4.1). Correspondingly, instead of the system (4.3) for u, it suffices to investigate

the following two initial-boundary value problems




�U(x, τ) = V (x, τ) (x ∈ Ω, 0 < τ ≤ R(T )),
U(x, 0) = ∂τU(x, 0) = 0 (x ∈ Ω),

∂νU(x, τ) = 0 (x ∈ ∂Ω, 0 < τ ≤ R(T ))
(4.17)

and 



�V (x, τ) = f(x)H(x, τ) (x ∈ Ω, 0 < τ ≤ R(T )),
V (x, 0) = ∂τV (x, 0) = 0 (x ∈ Ω),

∂νV (x, τ) = 0 (x ∈ ∂Ω, 0 < τ ≤ R(T )),
(4.18)

where

H(x, τ) :=
8π g(x,R−1(τ))

ρ(R−1(τ))
.

Actually, provided that the growth speed ρ is sufficiently smooth (e.g., ρ satisfies (4.4)), all the

properties of u and U can be mutually converted according to the relation (4.10). It will soon

be witnessed that the arguments can be greatly simplified by using (4.17)–(4.18).

To investigate the solvability and stability of (4.3), we first recall the classical well-posedness

result for the following initial-boundary value problem




∂2tw −4w = G in Ω× (0, T ],

w = a, ∂tw = b in Ω× {0},
∂νw = 0 on ∂Ω× (0, T ].

(4.19)

Lemma 4.1 (see Lions and Magenes [47]) Let k = 1, 2, . . .. Assume that ∂Ω is of Ck+1

class, G ∈ Hk−1(Ω × (0, T )), a ∈ Hk(Ω), b ∈ Hk−1(Ω), and the k-th order compatibility

condition is satisfied on ∂Ω × {0}. Then there is a unique solution w to the system (4.19)

such that w ∈ C([0, T ];Hk(Ω)) ∩ C1([0, T ];Hk−1(Ω)). Moreover, there exists a constant C =

C(Ω, T ) > 0 such that

‖w‖C([0,T ];Hk(Ω)) + ‖∂tw‖C([0,T ];Hk−1(Ω)) ≤ C
(
‖G‖Hk−1(Ω×(0,T )) + ‖a‖Hk(Ω) + ‖b‖Hk−1(Ω)

)
.
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Based on the above lemma, it is straightforward to establish the well-posedness result for

the initial-boundary value problem (4.3).

Proof of Proposition 4.2. In this proof, C > 0 denotes a generic constant dependent at most

on Ω, T and ρ, which may change line by line. As was mentioned before, instead of the system

(4.3) for u, it suffices to study systems (4.17)–(4.18) to deduce

3∑

k=1

‖U‖Ck([0,R(T )];H3−k(Ω)) ≤ C‖f‖L2(Ω)‖H‖H1(0,R(T );L∞(Ω)). (4.20)

In fact, by the relation (4.10), we formally calculate

∂γx∂
k
t u(x, t) = ρk(t) ∂γx∂

k
τU(x,R(t)), k = 0, 1, |γ| ≤ 2,

∂γx∂
2
t u(x, t) = ρ2(t) ∂γx∂

2
τU(x,R(t)) + ρ′(t) ∂γx∂τU(x,R(t)), |γ| ≤ 1,

∂3t u(x, t) = ρ3(t) ∂3τU(x,R(t)) + 3ρ(t)ρ′(t) ∂2τU(x,R(t)) + ρ′′(t) ∂τU(x,R(t)).

(4.21)

As long as the estimate (4.20) is verified, it follows from the above relations that for 0 ≤ t ≤ T ,

‖∂kt u( · , t)‖H2(Ω) ≤ C‖∂kτU( · , R(t))‖H2(Ω), k = 0, 1,

‖∂kt u( · , t)‖H3−k(Ω) ≤ C
k∑

j=1

‖∂jτU( · , R(t))‖H3−k(Ω), k = 2, 3.
(4.22)

On the other hand, since ρ is sufficiently smooth and strictly positive, by definition we have

H ∈ H1(0, R(T );L∞(Ω)) and

‖H‖H1(0,R(T );L∞(Ω)) ≤ C‖g‖H1(0,T ;L∞(Ω)). (4.23)

Therefore, the combination of (4.20)–(4.23) yields (4.5) immediately.

Now we turn to systems (4.18) and (4.17) subsequently. Since f H ∈ L2(Ω × (0, R(T ))),

by taking k = 1 in Lemma 4.1 we see V ∈ C([0, R(T )];H1(Ω)) ∩ C1([0, R(T )];L2(Ω)) ⊂
H1(Ω× (0, R(T ))), and

‖V ‖H1(Ω×(0,R(T ))) ≤ C
(
‖V ‖C([0,R(T )];H1(Ω)) + ‖V ‖C1([0,R(T )];L2(Ω))

)

≤ C‖f H‖L2(Ω×(0,R(T ))) ≤ C‖f‖L2(Ω)‖H‖L2(0,R(T );L∞(Ω)). (4.24)

Next we consider Ṽ := ∂τV , whose governing system is easily derived from (4.18) that





�Ṽ = f ∂τH in Ω× (0, R(T )],

Ṽ = 0, ∂τ Ṽ = f H( · , 0) in Ω× {0},
∂ν Ṽ = 0 on ∂Ω× (0, R(T )].

As f ∂τH ∈ L2(Ω × (0, R(T ))) and f H( · , 0) ∈ L2(Ω), we apply Lemma 4.1 again with k = 1

to conclude Ṽ ∈ C([0, R(T )];H1(Ω)) ∩ C1([0, R(T )];L2(Ω)) ⊂ H1(Ω× (0, R(T ))) and

‖∂τV ‖H1(Ω×(0,R(T ))) = ‖Ṽ ‖H1(Ω×(0,R(T ))) ≤ C
(
‖f ∂τH‖L2(Ω×(0,R(T ))) + ‖f H( · , 0)‖L2(Ω)

)

≤ C‖f‖L2(Ω)‖H‖H1(0,R(T );L∞(Ω)). (4.25)

Especially, we obtain

‖∂2τV ‖C([0,R(T )];L2(Ω)) ≤ C‖f‖L2(Ω)‖H‖H1(0,R(T );L∞(Ω)). (4.26)
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In view of the system (4.17), V ∈ H1(Ω × (0, R(T ))) acts as the source term. Therefore,

now the application of Lemma 4.1 with k = 2 indicates U ∈ C([0, R(T )];H2(Ω)) and, along

with (4.24),

‖U‖C([0,R(T )];H2(Ω)) ≤ C‖V ‖H1(Ω×(0,R(T ))) ≤ C‖f‖L2(Ω)‖H‖L2(0,R(T );L∞(Ω)). (4.27)

Further, we introduce Ũ := ∂τU and consider its governing system




�Ũ = ∂τV = Ṽ in Ω× (0, R(T )],

Ũ = ∂τ Ũ = 0 in Ω× {0},
∂ν Ũ = 0 on ∂Ω× (0, R(T )].

Similarly, by applying Lemma 4.1 again with k = 2 and using (4.25), we obtain ∂τU = Ũ ∈
C([0, R(T )];H2(Ω)) and

‖∂τU‖C([0,R(T )];H2(Ω)) ≤ C‖Ṽ ‖H1(Ω×(0,R(T ))) ≤ C‖f‖L2(Ω)‖H‖H1(0,R(T );L∞(Ω)). (4.28)

Finally, we take higher time derivative Û := ∂τ Ũ and consider




�Û = ∂τ Ṽ in ∂Ω× (0, R(T )],

Û = ∂τ Û = 0 in Ω× {0},
∂νÛ = 0 on ∂Ω× (0, R(T )],

where ∂τ Ṽ ∈ L2(Ω × (0, R(T ))) by (4.25). Consequently, Lemma 4.1 with k = 1 implies

∂2τU = Û ∈ C([0, R(T )];H1(Ω)) ∩ C1([0, R(T )];L2(Ω)) and

‖∂2τU‖C([0,R(T )];H1(Ω)) + ‖∂2τU‖C1([0,R(T )];L2(Ω)) ≤ C‖∂τ Ṽ ‖L2(Ω×(0,R(T )))

≤ C‖f‖L2(Ω)‖H‖H1(0,R(T );L∞(Ω)). (4.29)

Collecting the estimates (4.27)–(4.29), we obtain (4.20) and the proof is finished.

4.3 Proof of Theorem 4.1

This section is devoted to the proof of Theorem 4.1 which is the key focus of this chapter.

The main ingredient for the global Lipschitz stability (i.e. the second inequality in (4.7)) is the

following Carleman estimate, which is a simplified version of [31, Proposition 2.1] (see also [30]).

Lemma 4.2 Let ∂Ω be of C2 class and assumption (4.6) be satisfied with fixed x0, ω and

T . Define the weight function ϕ(x, t) with a parameter λ > 0 as

ϕ(x, t) := exp
{
λ
(
|x− x0|2 − β t2

)}
, where 0 < β < 1. (4.30)

Then there exists λ0 > 0 such that for all λ > λ0, there exist ξ0 = ξ0(λ) and a constant

C = C(ξ0, λ0,Ω, x0, ω, T, g, ρ) > 0 such that

∫ T

−T

∫

Ω

ξ
(
|∂tw|2 + |∇w|2 + ξ2w2

)
e2ξϕ dxdt ≤ C

∫ T

−T

∫

Ω

|∂2tw −4w|2 e2ξϕ dxdt

+ C

∫ T

−T

∫

ω

ξ
(
|∂tw|2 + ξ2w2

)
e2ξϕ dxdt (4.31)

for all ξ > ξ0, where w satisfies




∂2tw −4w ∈ L2(Ω× (−T, T )), w ∈ H1(Ω× (−T, T )),
w = ∂tw = 0 in Ω× {±T },
∂νw = 0 on ∂Ω× (−T, T ).

(4.32)
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Applying the above lemma with another a priori estimate to some suitably chosen auxiliary

functions, we are able to prove Theorem 4.1 in a similar methodology to the proof of [31,

Theorem 3.1].

Proof of Theorem 4.1. We divide the proof into five steps.

Step 1. We first show the first inequality of (4.7), that is,

D = ‖∂4t u− ρ2∂2t4u‖L2(ω×(0,T )) + ‖∂tu‖L2(0,T ;H2(ω)) +

3∑

k=2

‖∂kt u‖L2(ω×(0,T )) ≤ C‖f‖L2(Ω).

In this step, C > 0 denotes a generic constant dependent at most on Ω, T, g and ρ. Except of

the term ∂4t u− ρ2∂2t4u, a direct application of Proposition 4.2 indicates

‖∂tu‖L2(0,T ;H2(ω)) +

3∑

k=2

‖∂kt u‖L2(ω×(0,T )) ≤ C
3∑

k=1

‖u‖Ck([0,T ];H3−k(Ω)) ≤ C‖f‖L2(Ω).

To treat ∂4t u− ρ2∂2t4u, we perform a further formal calculation on the basis of (4.21) to find

∂4t u(x, t) = ρ4(t) ∂4τU(x,R(t)) + 6ρ2(t)ρ′(t) ∂3τU(x,R(t))

+
{
3(ρ′(t))2 + 4ρ(t)ρ′′(t)

}
∂2τU(x,R(t)) + ρ′′′(t) ∂τU(x,R(t)),

Together with the expression of ∂2t4u, we estimate

‖∂4t u− ρ2∂2t4u‖L2(ω×(0,T )) ≤ C‖∂4t u− ρ2∂2t4u‖C([0,T ];L2(Ω))

≤ C
(
‖∂2τV ‖C([0,R(T )];L2(Ω)) +

3∑

k=1

‖U‖Ck([0,R(T )];H3−k(Ω))

)

≤ C‖f‖L2(Ω),

where the last inequality follows from (4.26) and (4.20).

Step 2. For the second inequality in (4.7), from the viewpoint of the equivalent systems

(4.17)–(4.18) for U and V , it suffices to show

‖f‖L2(Ω) ≤ C D̃, where D̃2 := ‖∂2τV ‖2L2(ω×(0,R(T ))) + ‖∂τV ‖2L2(ω×(0,R(T ))). (4.33)

In fact, similarly to (4.21), we can represent ∂2τV and ∂τV in terms of ρ, u and their higher

order derivatives, enabling the dominance of D̃ by D.

In order to utilize the Carleman estimate (4.31) to verify (4.33), several preparations are

required to fit into the framework of Lemma 4.2. Since the negative time is involved in Lemma

4.2 and the initial value of V vanishes up to its first derivative in τ , we perform even extensions to

V and H so that the governing system (4.18) still holds in Ω×(−R(T ), R(T )). For convenience,
we still denote the extended functions as V and H respectively. Simultaneously, the observation

data in ω × (0, R(T )) are also duplicated into ω × (−R(T ), R(T )).
On the other hand, noting that the initial/terminate condition in (4.32) is not satisfied in

general, it is necessary to introduce a cutoff function in τ , and we proceed as follows. According

to assumption (4.6), R(T ) is strictly larger than supx∈Ω |x− x0|, which allows a delicate choice

of β ∈ (0, 1) such that
√
β R(T ) > supx∈Ω |x− x0|. By definition (4.30) of the weight function,

this indicates

ϕ(x,±R(T )) = exp
{
λ
(
|x− x0|2 − β R2(T )

)}
< 1, ∀x ∈ Ω .
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Due to the continuity of ϕ, the above fact implies that for any ε > 0 satisfying ε < 1 −
supx∈Ω ϕ(x,±R(T )), there exists δ = δ(ε) > 0 such that

ϕ(x, τ) < 1− ε, ∀ (x, |τ |) ∈ Ω× [R(T )− 2δ, R(T )]. (4.34)

Fixing the above ε and δ, we define a cutoff function η ∈ C∞
0 ([−R(T ), R(T )]) such that

0 ≤ η ≤ 1, η(τ) =

{
1, |τ | ≤ R(T )− 2δ,

0, R(T )− δ ≤ |τ | ≤ R(T ). (4.35)

Since the choice of δ depends only on Ω, x0, ω, T, g and ρ, we can suitably specify η such that

η′ and η′′ are bounded by a constant depending only on the above factors. Figure 4.1 provides

an intuitional graph of the relation of ϕ( · , τ) and η(τ).

τ
0 R(T )− 2δ R(T )−R(T ) −R(T ) + 2δ

1− ε

1

φ(x, τ)

η(τ)

Figure 4.1: The profile of ϕ(x, τ) for some x ∈ Ω and the choice of a cutoff function η(τ) with
a suitable β.

Step 3. Henceforth, C > 0 denotes a generic constant dependent at most on λ0,Ω, x0, ω, T, g

and ρ but independent of ξ, which may change line by line. For simplicity, we abbreviate

Q := Ω× (−R(T ), R(T )).
Now we have collected all the necessities to apply Lemma 4.2 to W̃ := η ∂τV , which satisfies





�W̃ = F̃ := η f ∂τH + 2 η′ ∂2τV + η′′ ∂τV in Q,

W̃ = ∂τW̃ = 0 in Ω× {±R(T )},
W̃ = 0, ∂τW̃ = f H( · , 0) in Ω× {0},
∂νW̃ = 0 on ∂Ω× (−R(T ), R(T )).

(4.36)

Since ∂τV ∈ H1(Q) by the a priori estimate (4.25), we see F̃ ∈ L2(Q) and thus W̃ ∈ H1(Q)

again by applying Lemma 4.1. Now that all the conditions in (4.32) are fulfilled, the application

of Lemma 4.2 asserts that there exists λ0 > 0 such that for all λ > λ0, there exists ξ0 = ξ0(λ)

and C > 0 such that

I1 :=

∫

Q

ξ
(
|∂τW̃ |2 + |∇W̃ |2 + ξ2 W̃ 2

)
e2ξϕ dxdτ ≤ C (I2 + I3) for all ξ > ξ0, where (4.37)

I2 :=

∫

Q

|�W̃ |2 e2ξϕ dxdτ =

∫

Q

|F̃ |2 e2ξϕ dxdτ,

I3 :=

∫ R(T )

−R(T )

∫

ω

ξ
(
|∂τW̃ |2 + ξ2 W̃ 2

)
e2ξϕ dxdτ.

To deal with I2, we take advantage of the definition (4.35) of η and the property (4.34) of ϕ to

estimate

I2 ≤ C
∫

Q

|η f ∂τH |2 e2ξϕ dxdτ + C

∫ R(T )−δ

R(T )−2δ

∫

Ω

(
|η′ ∂2τV |2 + |η′′ ∂τV |2

)
e2ξϕ dxdτ
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≤ C
∫

Q

|f ∂τH |2 e2ξϕ dxdτ + C

∫ R(T )−δ

R(T )−2δ

∫

Ω

(
|∂2τV |2 + |∂τV |2

)
e2ξϕ dxdτ

≤ C‖f ∂τH eξϕ‖2L2(Q) + C e2ξ(1−ε)

∫ R(T )−δ

R(T )−2δ

∫

Ω

(
|∂2τV |+ |∂τV |2

)
dxdτ

≤ C‖f ∂τH eξϕ‖2L2(Q) + C e2ξ(1−ε)‖∂τV ‖2H1(Q)

≤ C‖f ∂τH eξϕ‖2L2(Ω×(−R(T ),R(R))) + C e2ξ(1−ε)‖f‖2L2(Ω) for all ξ > ξ0, (4.38)

where the last inequality follows from the a priori estimate (4.25) for ∂τV . Similarly, we bound

I3 by using the definitions of ϕ and η that

I3 ≤ ξ3 exp
{
2ξ sup

x∈Ω
ϕ(x, 0)

}∫ R(T )

−R(T )

∫

ω

(
|∂τW̃ |2 + W̃ 2

)
dxdτ

≤ C eCξ

∫ R(T )

0

∫

ω

(
|∂2τV |2 + |∂τV |2

)
dxdτ = C eCξD̃2 for all ξ > ξ0. (4.39)

Therefore, we collect the estimates (4.37)–(4.39) to conclude

I1 ≤ C
(
‖f ∂τH eξϕ‖2L2(Q) + e2ξ(1−ε)‖f‖2L2(Ω) + eCξD̃2

)
for all ξ > ξ0. (4.40)

Step 4. Next, we further introduce an auxiliary function Ŵ := W̃ eξϕ = η ∂τV eξϕ, and

formally calculate

∂τŴ =
{
∂τW̃ + ξ (∂τϕ) W̃

}
eξϕ, ∇Ŵ =

{
∇W̃ + ξ W̃ ∇ϕ

}
eξϕ,

∂2τŴ =
{
∂2τW̃ + 2ξ (∂τϕ) ∂τW̃ + ξ

(
∂2τϕ+ ξ |∂τϕ|2

)
W̃
}
eξϕ, in Q,

4Ŵ =
{
4W̃ + 2ξ∇ϕ · ∇W̃ + ξ

(
4ϕ+ ξ |∇ϕ|2

)
W̃
}
eξϕ

∂νŴ = (∂νW̃ ) eξϕ + ξ (∂νϕ) W̃ eξϕ on ∂Ω× (−R(T ), R(T )).

Along with the system (4.36) that W̃ satisfies, we derive





�Ŵ = F̂ eξϕ in Q,

Ŵ = ∂τŴ = 0 in Ω× {±R(T )},
Ŵ = 0, ∂τŴ = f H( · , 0) eξϕ( · ,0) in Ω× {0},
∂νŴ = ξ (∂νϕ)Ŵ on ∂Ω× (−R(T ), R(T )),

where

F̂ := F̃ + 2ξ
{
(∂τϕ) ∂τW̃ −∇ϕ · ∇W̃

}
+ ξ

{
�ϕ+ ξ (|∂τϕ|2 − |∇ϕ|2)

}
W̃ .

Note that for a fixed λ, such functions as ϕ, ∂τϕ,∇ϕ and �ϕ are all bounded by a constant

independent of ξ. With this observation and inequalities (4.38) and (4.40), we multiply ∂τŴ

to �Ŵ and integrate in Ω× (−R(T ), 0) to deduce

I4 := 2

∫ 0

−R(T )

∫

Ω

(�Ŵ ) ∂τŴ dxdτ ≤
∫

Q

|F̂ ||∂τŴ | e2ξϕ dxdτ

≤
∫

Q

{
|F̃ |+ Cξ

(
|∂τW̃ |+ |∇W̃ |+ ξ |W̃ |

)}(
|∂τW̃ |+ Cξ |W̃ |

)
e2ξϕ dxdτ

≤
∫

Q

|F̃ |2 e2ξϕ dxdτ + C

∫

Q

ξ
(
|∂τW̃ |2 + |∇W̃ |2 + ξ2 W̃ 2

)
e2ξϕ dxdτ = I2 + C I1, (4.41)

where the third inequality is obtained by, for example,

2 |∂τW̃ ||∇W̃ | ≤ |∂τW̃ |2 + |∇W̃ |2, 2ξ |∂τW̃ ||W̃ | ≤ |∂τW̃ |2 + ξ2 W̃ 2.
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On the other hand, by an integration by parts and the condition (4.4), we can also estimate

I4 from below as

I4 = 2

∫ 0

−R(T )

∫

Ω

(
∂2τŴ −4Ŵ

)
∂τŴ dxdτ

=

∫ 0

−R(T )

∂τ

(∫

Ω

|∂τŴ |2 dx
)
dτ + 2

∫ 0

−R(T )

∫

Ω

∇Ŵ · ∇(∂τŴ ) dxdτ − I5

= ‖∂τŴ ( · , τ)‖2L2(Ω)

∣∣∣
τ=0

τ=−R(T )
+

∫ 0

−R(T )

∂τ

(∫

Ω

|∇Ŵ |2 dx
)
dτ − I5

= ‖f H( · , 0) eξϕ( · ,0)‖2L2(Ω) + ‖∇Ŵ ( · , τ)‖2L2(Ω)

∣∣∣
τ=0

τ=−R(T )
− I5

≥ 8π g0
ρ(0)

‖f eξϕ( · ,0)‖2L2(Ω) − I5, where I5 := 2

∫ 0

−R(T )

∫

∂Ω

(∂νŴ ) ∂τŴ dσdτ. (4.42)

To deal with I5, we recall ∂νŴ = ξ (∂νϕ) Ŵ on ∂Ω × (−R(T ), 0) and apply again integral by

parts and the trace theorem to obtain

I5 = 2ξ

∫ 0

−R(T )

∫

∂Ω

(∂νϕ) Ŵ (∂τŴ ) dσdτ = ξ

∫

∂Ω

∫ 0

−R(T )

(∂νϕ) ∂τ (Ŵ
2) dτdσ

= ξ

(∫

∂Ω

(∂νϕ) Ŵ
2 dσ

)∣∣∣∣
τ=0

τ=−R(T )

− ξ
∫ 0

−R(T )

∫

∂Ω

(∂τ∂νϕ) Ŵ
2 dσdτ

≤ Cξ
∫ 0

−R(T )

‖Ŵ ( · , τ)‖2L2(∂Ω) dτ ≤ Cξ
∫ 0

−R(T )

∫

Ω

(
|∇Ŵ |2 + Ŵ 2

)
dxdτ

≤ Cξ
∫ 0

−R(T )

∫

Ω

{
2
(
|∇W̃ |2 + ξ2 |∇ϕ|2 W̃ 2

)
+ W̃ 2

}
e2ξϕ dxdτ

≤ Cξ
∫ 0

−R(T )

∫

Ω

(
|∇W̃ |2 + ξ2 W̃ 2

)
e2ξϕ dxdτ ≤ C I1. (4.43)

Hence, collecting the estimates (4.41)–(4.43) and applying (4.38) and (4.40), we immediately

get

‖f eξϕ( · ,0)‖2L2(Ω) ≤ C
(
‖f ∂τH eξϕ‖2L2(Q) + e2ξ(1−ε)‖f‖2L2(Ω) + eCξD̃2

)
(4.44)

for all ξ > ξ0.

Step 5. The final step aims at absorbing both terms including f on the right-hand side of

(4.44) into the left-hand side by choosing sufficiently large ξ > ξ0. By definition (4.30), we see

ϕ(x, 0) = exp
(
λ|x − x0|2

)
≥ 1 for all x ∈ Ω , indicating that e2ξ(1−ε)‖f‖2L2(Ω) is absorbable in

the sense that

lim
ξ→∞

e2ξ(1−ε)‖f‖2L2(Ω)

‖f eξϕ( · ,0)‖2L2(Ω)

≤ lim
ξ→∞

e2ξ(1−ε)‖f‖2L2(Ω)

e2ξ‖f‖2L2(Ω)

= 0. (4.45)

Similarly, we treat ‖f ∂τH eξϕ‖2L2(Q) as

‖f ∂τH eξϕ‖2L2(Q) =

∫

Ω

|f(x)|2 e2ξϕ(x,0)

(∫ R(T )

−R(T )

|∂τH(x, τ)|2 e2ξ(ϕ(x,τ)−ϕ(x,0)) dτ

)
dx

≤
∫

Ω

|f(x)|2 e2ξϕ(x,0)

×
[∫ R(T )

−R(T )

‖∂τH( · , τ)‖2L∞(Ω) exp
{
2ξ eλ|x−x0|

2
(
e−λβ τ2 − 1

)}
dτ

]
dx
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≤ ‖f eξϕ( · ,0)‖2L2(Ω)

∫ R(T )

−R(T )

µξ(τ) dτ, where

µξ(τ) := ‖∂τH( · , τ)‖2L∞(Ω) exp
{
Cξ
(
e−λβ τ2 − 1

)}
, ξ > ξ0.

It follows from ∂τH ∈ L2(−R(T ), R(T );L∞(Ω)) that the sequence {µξ}ξ>ξ0 is dominated by

an integrable function ‖∂τH( · , τ)‖2L∞(Ω). Meanwhile, it is readily seen that {µξ} vanishes

pointwisely except for τ = 0 as ξ → ∞. These allow the usage of Lebesgue’s dominated

convergence theorem to absorb

lim
ξ→∞

‖f ∂τH eξϕ‖2L2(Q)

‖f eξϕ( · ,0)‖2L2(Ω)

≤ lim
ξ→∞

∫ R(T )

−R(T )

µξ(τ) dτ = 0. (4.46)

Since C > 0 in the estimate (4.44) is independent of ξ, (4.45)–(4.46) guarantee a constant

ξ1 > ξ0 such that

C
(
‖f ∂τH eξϕ‖2L2(Q) + e2ξ(1−ε)‖f‖2L2(Ω)

)
≤ 1

2
‖f eξϕ( · ,0)‖2L2(Ω)

for all ξ > ξ1, and consequently

‖f‖2L2(Ω) ≤ ‖f eξϕ( · ,0)‖2L2(Ω) ≤ C eCξD̃2 for all ξ > ξ1.

The verification of inequality (4.33) is completed by fixing any ξ > ξ1 in the above estimate,

which ends the proof.

4.4 Iteration thresholding algorithm

In this section, we concentrate on the development of an efficient iterative thresholding

algorithm for the numerical treatment of Problem 4.1 by using an appropriate backward system

of (4.3). The derivation of the main algorithm essentially proceeds parallelly as that in Section

3.3. For simplicity, we only handle the case of a unit growth speed ρ(t) ≡ 1 because the

discussion on ρ is not the main concentration of this chapter, and such a simplification will not

affect the generality. For clarification, we formulate

u(f)





(∂2t −4)2u(x, t) = f(x)h(x, t) (x ∈ Ω, 0 < t ≤ T ),
∂`tu(x, 0) = 0 (x ∈ Ω, ` = 0, 1, 2, 3),

∂νu(x, t) = ∂ν4u(x, t) = 0 (x ∈ ∂Ω, 0 < t ≤ T ),
(4.47)

where f ∈ L2(Ω) and h ∈ H1(0, T ;L∞(Ω)) by assumption (4.4). Here we write the solution

as u(f) to emphasize its dependency upon f . For later use, first we give a definition of the

generalized solution to (4.47).

Definition 4.1 Let f ∈ L2(Ω) and h ∈ L2(0, T ;L∞(Ω)). We say that u(f) ∈ H2(Ω×(0, T ))
is a generalized solution to problem (4.47) it u(f) = ∂tu(f) = 0 in Ω × {0}, ∂νu(f) = 0 on

∂Ω× (0, T ), and it satisfies

∫ T

0

∫

Ω

(
∂2t u(f)−4u(f)

) (
∂2t z −4z

)
dxdt =

∫ T

0

∫

Ω

f h z dxdt

for any test function z ∈ H2(Ω×(0, T )) with z = ∂tz = 0 in Ω×{T } and ∂νz = 0 on ∂Ω×(0, T ).
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The above definition of the generalized solution is easily understood by applying integration

by parts to sufficiently smooth solutions, and it is also in accordance with the classical well-

posedness result (see Lemma 4.1). Actually, by a similar reasoning as that for Proposition 4.2,

one can show that u(f) ∈ H2(Ω × (0, T )) automatically holds, and the unspecified initial and

boundary conditions are also satisfied in the sense of distributions. On the other hand, since

we require h ∈ H1(0, T ;L∞(Ω)) for the theoretical stability, Definition 4.1 is definitely valid in

our setting.

Henceforth, we specify ftrue ∈ L2(Ω) as the true solution to Problem 4.1. By uδ we denote

the noise contaminated observation data in ω× (0, T ) satisfying ‖uδ − u(ftrue)‖L2(ω×(0,T )) ≤ δ,
where δ stands for the noise level. To avoid ambiguity, we interpret uδ ≡ 0 out of ω × (0, T ) so

that uδ is well-defined throughout Ω× (0, T ).

As many of the numerical treatments for ill-posed problems with measurement errors, now

we reformulate Problem 4.1 as the following minimization problem with a Tikhonov regulariza-

tion

min
f∈L2(Ω)

J(f), J(f) := ‖u(f)− uδ‖2L2(ω×(0,T )) + α‖f‖2L2(Ω), (4.48)

where α > 0 is the regularization parameter. As usual, first we investigate the Fréchet derivative

J ′(f) of J(f) at the direction f̃ ∈ L2(Ω) to find

J ′(f)f̃ = 2

∫ T

0

∫

ω

(
u(f)− uδ

)
(u′(f)f̃ ) dxdt+ 2α

∫

Ω

f f̃ dx

=

∫ T

0

∫

ω

(
u(f)− uδ

)
u(f̃ ) dxdt + 2α

∫

Ω

f f̃ dx. (4.49)

Here u′(f)f̃ denotes the Fréchet derivative of u(f) in the direction f̃ , and the linearity of (4.47)

with respect to the source term immediately yields

u′(f)f̃ = lim
ε→0

u(f + ε f̃ )− u(f)
ε

= u(f̃ ).

Obviously, it is extremely expensive to use (4.49) directly to evaluate J ′(f)f̃ for all f̃ ∈ L2(Ω),

since one should solve the system (4.47) for u(f̃ ) with f̃ varying in L2(Ω) in the computation

for a single fixed f .

In order to reduce the computational costs in evaluating the Fréchet derivatives, we introduce

the adjoint system of (4.47) for Problem 4.1, that is, the following backward terminate-boundary

value problem

z(f)





(∂2t −4)2z = χω

(
u(f)− uδ

)
in Ω× [0, T ),

∂`tz = 0 (` = 0, 1, 2, 3) in Ω× {T },
∂νz = ∂ν4z = 0 on ∂Ω× [0, T ),

(4.50)

where χω denotes the characterization function of ω. The generalized solution to (4.50) is

similarly defined as that in Definition 4.1. In fact, since χω

(
u(f)− uδ

)
∈ L2(Ω × (0, T )), it is

readily seen that z(f) ∈ H2(Ω× (0, T )). Therefore, for f, f̃ ∈ L2(Ω), we use z(f) and u(f̃ ) as

mutual test functions for each other to further treat the first term in (4.49) as

∫ T

0

∫

ω

(
u(f)− uδ

)
u(f̃ ) dxdt =

∫ T

0

∫

Ω

χω

(
u(f)− uδ

)
u(f̃ ) dxdt

=

∫ T

0

∫

Ω

(
∂2t z(f)−4z(f)

)(
∂2t u(f̃ )−4u(f̃ )

)
dxdt

=

∫ T

0

∫

Ω

f̃ h z(f) dxdt, (4.51)
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indicating

J ′(f)f̃ = 2

∫

Ω

(∫ T

0

h z(f) dt+ αf

)
f̃ dx.

Since f̃ is arbitrarily chosen in L2(Ω), the above observation suggests a characterization of the

solution to the minimization problem (4.48).

Lemma 4.3 f∗ ∈ L2(Ω) is the minimizer of the functional J(f) in (4.48) only if it satisfies

the Euler equation ∫ T

0

h z(f∗) dt+ αf∗ = 0, (4.52)

where z(f∗) solves the backward system (4.50) with the coefficient f∗.

To solve the nonlinear equation (4.52), one may employ the iteration

fm+1 =
K

K + α
fm −

1

K + α

∫ T

0

h z(fm) dt, (4.53)

where K > 0 is a tuning parameter acting as a weight between the previous and current steps.

It turns out that the convergence of the above iteration relies on the choice ofK. To this end,

we notice the fact that (4.53) in principle coincides with the iterative thresholding algorithm,

which can be deduced from the minimization problem of a surrogate functional (see, e.g., [22]).

Actually, fixing f̃ ∈ L2(Ω), we introduce a surrogate functional Js(f, f̃ ) of J(f) as

Js(f, f̃ ) := J(f) +K‖f − f̃ ‖2L2(Ω) − ‖u(f)− u(f̃ )‖2L2(ω×(0,T )).

For the positivity of Js, there should hold K‖f‖2L2(Ω) ≥ ‖u(f)‖2L2(ω×(0,T )) for all f ∈ L2(Ω).

This is achieved by taking any

K ≥ ‖A‖2, where
A : L2(Ω)→ L2(ω × (0, T )),

f 7→ u(f)|ω×(0,T ).
(4.54)

The boundedness of the linear operator A immediately follows from Proposition 4.2. Hence,

there holds

J(f) = Js(f, f) ≤ Js(f, f̃), ∀ f̃ ∈ L2(Ω),

and thus Js(f, f̃ ) can be regarded as a small perturbation of J(f) when f̃ is chose to f . On

the other hand, we see from (4.51) that

Js(f, f̃ ) = 2

∫ T

0

∫

ω

u(f)
(
u(f̃ )− uδ

)
dxdt + ‖uδ‖2L2(ω×(0,T )) − ‖u(f̃ )‖2L2(ω×(0,T ))

+ α‖f‖2L2(Ω) +K‖f − f̃ ‖2L2(Ω)

= K‖f − f̃ ‖2L2(Ω) + α‖f‖2L2(Ω) + 2

∫ T

0

∫

Ω

f h z(f̃ ) dxdt

− ‖u(f̃ )‖2L2(ω×(0,T )) + ‖uδ‖2L2(ω×(0,T ))

= (K + α)‖f‖2L2(Ω) − 2

∫

Ω

f

(
K f̃ −

∫ T

0

h z(f̃ ) dt

)
dx

+K‖f̃ ‖2L2(Ω) − ‖u(f̃ )‖2L2(ω×(0,T )) + ‖uδ‖2L2(ω×(0,T )).

Since this is a quadratic form with respect to f when uδ and f̃ are fixed, we conclude

argmin
f∈L2(Ω)

Js(f, f̃ ) =
K

K + α
f̃ − 1

K + α

∫ T

0

h z(f̃ )dt.
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Consequently, the iterative update (4.53) is equivalent to solving the minimization problem

minf∈L2(Ω) J
s(f, f̃ ) with f̃ = fm. Moreover, the convergence of this iteration was proven in [22]

for any bounded linear operator A, provided that the constant K > 0 is chosen according to

condition (4.54).

Now we are ready to state the main algorithm for the numerical reconstruction.

Algorithm 4.1 Choose a tolerance ε > 0, a regularization parameter α > 0 and a tuning

parameter K > 0 according to (4.54). Give an initial guess f0, and set m = 0.

1. Compute fm+1 by the iterative update (4.53).

2. If ‖fm+1 − fm‖L2(Ω)/‖fm‖L2(Ω) ≤ ε, stop the iteration. Otherwise, update m ← m + 1

and return to Step 1.

It reveals that at each step in the iteration, it suffices to solve the forward system (4.47) once

for u(fm) and the backward system (4.50) once for z(fm) subsequently, which only involves

the computational costs for solving four wave equations. Therefore, the implementation of

Algorithm 4.1 is easy and time-saving. As will be shown in many numerical experiments in the

next section, the purposed algorithm is also considerably efficient and accurate even for three

spatial dimensions.

We summarize this section by stating the convergence result concerning Algorithm 4.1,

which is a direct application of [22, Theorem 3.1].

Lemma 4.4 Let K > 0 be a constant satisfying condition (4.54), and α > 0 be a suitably

chosen regularization parameter. Then for any f0 ∈ L2(Ω), the sequence {fm}∞m=1 generated

by the iteration (4.53) converges strongly to the solution of the minimization problem (4.48).

4.5 Numerical experiments

Now we are well prepared to apply the iterative thresholding algorithm developed in the

previous section to the numerical treatment for Problem 4.1. Although the double hyperbolic

equation was derived from the three-dimensional time cone model, we are also interested in

implementing several examples in lower spatial dimensions in order to observe the numerical

performances, because Algorithm 4.1 itself is independent of dimensions.

On the basis of the governing equation (4.47), we assign the general settings of the recon-

struction as follows. Without lose of generality, we set Ω = (0, 1)d (d = 1, 2, 3), and the duration

is basically taken as T = 1. Nevertheless, considering assumption (4.6) for the theoretical sta-

bility, sometimes we may enlarge T with respect to the choices of ω to guarantee a reasonable

reconstruction. Although the difference between the noiseless data u(ftrue) and the actually

observed data uδ was evaluated in the L2(ω × (0, T ))-norm in Section 4.4, here for simplicity

we produce uδ by adding uniform random noises to u(ftrue), i.e.

uδ(x, t) = u(ftrue)(x, t) + δ rand(−1, 1), ∀x ∈ ω, ∀ t ∈ (0, T ),

where rand(−1, 1) denotes the uniformly distributed random number in [−1, 1], and δ ≥ 0 is

the noise level. Here we choose δ as a certain portion of the amplitude of the true solution,

namely

δ := δ0 max
Ω×[0,T ]

|u(ftrue)|, 0 ≤ δ0 < 1.

Regarding the parameters involved in Algorithm 4.1, we take ε = 1% δ0 as the stopping criteria,

and α = δ3 as the regularization parameter. The choice of α is based on repeated experiments,
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which mostly leads to accurate results. We will always take constant initial guesses f0, which

are usually rather inaccurate in our numerical tests. Finally, the tuning parameter K > 0 will

be selected according to the size of ω, the duration T , and the known component h(x, t) of the

source term.

We briefly mention the numerical discretization for solving the forward system (4.3) and

the backward system (4.50) at each step of the iteration (4.53). Similarly to (4.17)–(4.18), we

define v := ∂2t u − 4u and deal with two wave equations with respect to u and v instead of

(4.47). In our implementations, we employ the von Neumann scheme for the one-dimensional

case, and the alternating direction implicit (ADI) method for two- and three-dimensional cases

(see [28, 45]). For instance, in case of d = 3, we work on the equidistant grids

xi1 = xi2 = xi3 = i∆x (i = 0, 1, . . . , Nx), tn = n∆t (n = 0, 1, . . . , Nt)

with Nx∆x = 1 and Nt ∆t = T , where ∆x and ∆t are the step lengths in space and time

respectively. Introducing the ratio κ := (∆t/∆x)2 and the difference operators

δ2x1
wi,j,k

n := wi+1,j,k
n − 2wi,j,k

n + wi−1,j,k
n ,

δ2x2
wi,j,k

n := wi,j+1,k
n − 2wi,j,k

n + wi,j−1,k
n ,

δ2x3
wi,j,k

n := wi,j,k+1
n − 2wi,j,k

n + wi,j,k−1
n ,

we discretize the time evolution of the governing equation in (4.47) as





vi,j,kn+1/3 − 2 vi,j,kn + vi,j,kn−1 =
κ

4
δ2x1

(
vi,j,kn+1/3 + 2 vi,j,kn + vi,j,kn−1

)
+ κ

(
δ2x2

+ δ2x3

)
vi,j,kn

+∆t2 f(xi1, x
j
2, x

k
3)h(x

i
1, x

j
2, x

k
3 , tn),

vi,j,kn+2/3 − v
i,j,k
n+1/3 =

κ

4
δ2x2

(
vi,j,kn+2/3 − 2 vi,j,kn + vi,j,kn−1

)
,

vi,j,kn+1 − vi,j,kn+2/3 =
κ

4
δ2x3

(
vi,j,kn+1 − 2 vi,j,kn + vi,j,kn−1

)
,





ui,j,kn+1/3 − 2 ui,j,kn + ui,j,kn−1 =
κ

4
δ2x1

(
ui,j,kn+1/3 + 2 ui,j,kn + ui,j,kn−1

)
+ κ

(
δ2x2

+ δ2x3

)
ui,j,kn

+∆t2 vi,j,kn ,

ui,j,kn+2/3 − u
i,j,k
n+1/3 =

κ

4
δ2x2

(
ui,j,kn+2/3 − 2 ui,j,kn + ui,j,kn−1

)
,

ui,j,kn+1 − ui,j,kn+2/3 =
κ

4
δ2x3

(
ui,j,kn+1 − 2 ui,j,kn + ui,j,kn−1

)
,

where ui,j,kn and vi,j,kn stand for approximations of u(xi1, x
j
2, x

k
3 , tn) and v(x

i
1, x

j
2, x

k
3 , tn) respec-

tively, and ui,j,kn+1/3, u
i,j,k
n+2/3, etc. denote some intermediate values. The backward system (4.50)

is discretized in the same manner. It turns out that the ADI method performs efficiently even

in the three-dimensional case: it takes less than 3 seconds for a problem of 403 × 40 scale.

On the other hand, the involved integrals in (4.53) are simply approximated by the composite

trapezoid rule.

In the following, we shall test the reconstruction method by a lot of test examples in one,

two and three spatial dimensions. Other than the illustrative figures, we mainly evaluate the

numerical performances by the number M of iterations, the relative L2 error

err :=
‖fM − ftrue‖L2(Ω)

‖ftrue‖L2(Ω)

and the elapsed time, where fM is understood as the numerical solution to Problem 4.1.
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4.5.1 One- and two-dimensional examples

We start from the one-dimensional case, where we set a step length of 1/100 for both space

and time. We will choose such observable subdomains ω that cover the boundary of the whole

domain, namely ∂ω ⊃ ∂Ω = {0, 1}. In this case, it is readily seen that taking T = 1 is enough

to validate assumption (4.6). On the other hand, we always take h(x, t) = 2+t, which is strictly

isolated from zero at t = 0 and hence satisfies assumption (4.4).

Example 4.1 In this example, we fix ftrue(x) = 1 − cos(πx) and the initial guess f0 ≡ 1.

We carry out numerical tests with different combinations of the noise level δ and the thickness

of ω to see their influences on the stability of reconstructions. First, we fix ω = Ω \ [0.1, 0.9]
and enlarge the noise levels from 1%, 2%, 4% to 8% of the amplitude of u(ftrue). Next, we fix

δ0 = 8% and shrink the size of ω from Ω\ [0.2, 0.8] to Ω\ [0.05, 0.95]. The choices of parameters

in the tests and corresponding numerical performances are listed in Table 4.1. For a better

understanding of the reconstructions, we visualize several representative examples in Table 4.1

to compare the true solution with the recovered ones in Figure 4.2.

Table 4.1: Parameter settings and the corresponding numerical performances in Example 4.1
under various combinations of noise levels and observable subdomains.

δ0 ω K M err elapsed time illustration
1% Ω \ [0.1, 0.9] 1.5× 10−4 9 0.22% 0.56 s Figure 4.2(a)
2% Ω \ [0.1, 0.9] 1.5× 10−4 8 0.25% 0.49 s
4% Ω \ [0.1, 0.9] 1.5× 10−4 8 0.36% 0.47 s
8% Ω \ [0.1, 0.9] 1.5× 10−4 7 0.87% 0.43 s
8% Ω \ [0.2, 0.8] 4× 10−4 11 0.48% 0.59 s
8% Ω \ [0.05, 0.95] 10−4 11 2.01% 0.62 s Figure 4.2(b)
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Figure 4.2: Illustrations of the true solution and several representative reconstructed solutions in
Example 4.1 with various combinations of noise levels and observable subdomains. (a) δ0 = 1%,
ω = Ω \ [0.1, 0.9]. (b) δ0 = 8%, ω = Ω \ [0.05, 0.95].

Remarkably, Example 4.1 suggests a strong robustness of Algorithm 4.1 against the mea-

surement error. In fact, one can easily observe from the first part of Table 4.1 that the relative

errors of the numerical solutions only increase moderately as the noise levels are doubled. Con-

sidering the appearance of approximation errors at various procedures in the algorithm, relative

errors less than 1% in numerical reconstructions are more than satisfactory in view of the ill-

posedness of Problem 4.1. As was explained in Subsection 3.4.1 where a similar algorithm
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for single hyperbolic equations was studied, this phenomenon results from the tendency that

u(f)|ω×(0,T ) takes an averaged state of uδ in a sense that the difference can be minimized.

Consequently, as long as the observation data keep oscillating around u(ftrue), the algorithm is

insensitive to the noise level to a certain extent.

In contrast, the reconstructions appear more sensitive to the smallness of the observable

subdomains ω than to the measurement error. This can be witnessed from the second part of

Table 4.1, which obviously comes from the limited information captured in ω.

Here we emphasize that a delicate choice of the tuning parameter K is crucial to the conver-

gence speed. Although Lemma 4.4 ensures the convergence by taking sufficiently large K > 0, a

critical choice ofK according to (4.54) can considerably accelerate the iteration (4.53). However,

to this end one should give a sharp estimate for the operator norm of A defined in (4.54), which

is impossible in general. Throughout this section, K are adjusted by repeated experiments to

achieve fast convergence and accurate results.

Thanks to the robustness of Algorithm 4.1 against the measurement error, henceforth the

noise level will be taken as 5% of the amplitude of u(ftrue) in all examples.

Example 4.2 Now we investigate the influence of the properties of the true solution ftrue

upon the numerical performance of Algorithm 4.1. More precisely, we fix ω = Ω \ [0.1, 0.9],
and select (a) f a

true(x) = x, (b) f b
true(x) = sin(πx) + x, (c) f c

true(x) = 1 − cos(2πx)/2 or (d)

f d
true(x) = |2x − 1|. Correspondingly, we set K = 10−4. Comparisons of the true solutions

with the reconstructed ones are shown in Figure 4.3. The numbers M of iterations and relative

errors are collected in Table 4.2.
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Figure 4.3: Illustrations of the true solutions and the corresponding reconstructions in Example

4.2. (a) f a
true(x) = x. (b) f b

true(x) = sin(πx) + x. (c) f c
true(x) = 1 − cos(2πx)/2. (d) f d

true(x) =
|2x− 1|.
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Table 4.2: Numerical performances of the reconstructions in Example 4.2 with various choices
of true solutions.

ftrue(x) f0 M err illustration
x 1/2 20 6.16% Figure 4.3(a)

sin(πx) + x 5 54 5.38% Figure 4.3(b)
1− cos(2πx)/2 5 34 2.51% Figure 4.3(c)
|2x− 1| −2 69 7.91% Figure 4.3(d)

The last three lines of Table 4.2 suggest the delicacy in selecting the initial guess f0. Actually,

for the reconstructions of f b
true, f

c
true and f d

true, we adopt such initial guesses that are quite

separated from the true solutions. As is shown in Figure 4.3(b)–(d), these true solutions achieve

maximum (minimum) inside Ω, and repeated experiments indicate that only an initial guess

strictly larger than the maximum (smaller than the minimum) can yield reasonable result.

This reveals the possible existence of local minimizers to which the iteration may converge with

different initial guesses.

Next, it appears in Figures 4.2 and 4.3 that the normal derivatives of the reconstructed

solutions vanish on the boundary. In fact, since f0 is always taken as constant, by induction

we see from (4.53) that

∂νfm+1 =
K

K + α
∂νfm −

1

K + α

∫ T

0

h ∂νz(fm) dt = 0 on ∂Ω

because ∂νz(fm)|∂Ω×(0,T ) = 0 and h is chosen as x-independent. This may lead to certain

divergence of the reconstruction from the true solution near the boundary, which is extremely

obvious in Figure 4.3(a)–(b).

Finally, we also find a strong smoothing property of Algorithm 4.1. According to the reg-

ularity result in Proposition 4.2, one can expect an H3(Ω)-regularity throughout the iteration

(4.53) provided that the initial guess f0 and the known component h of the source term are suffi-

ciently smooth. Such an increased smoothness, however, prevents us from proper identifications

of non-smooth true solutions (see Figure 4.3(d)).

Now we turn to the two-dimensional case, where we set the mesh size in time and space

as 1/80. Without lose of generality, we always generate the subdomain ω by removing a

closed rectangle in Ω = (0, 1)2 whose edges are parallel to the coordinate axes. Due to the

geometry condition for the reconstruction, ∂ω should include at least two adjacent edges of ∂Ω.

Meanwhile, although assumption (4.6) asserts that T > diam(Ω \ ω) is necessary, numerical

experiments demonstrates that taking T = 1 works in most instances.

Example 4.3 In this example, we fix h(x, t) = 1 + t and consider the reconstruction of

ftrue(x) = ftrue(x1, x2) = 1− cos(πx1) cos(πx2).

First, we fix the initial guess as f0 ≡ 1 and test the algorithm with the subdomains

ω = Ω \ [0.2, 0.8]2, ω = Ω \ [0.1, 0.9]2, ω = Ω \ [0.05, 0.95]2, ω = Ω \ [0.1, 0.9]× [0, 0.9].

In the first three choices, we keep the coverage ∂ω ⊃ ∂Ω and reduce the thickness of ω from 0.2,

0.1 to 0.05. The last choice of ω, however, only covers 3 edges of ∂Ω. The settings of ω and K as

well as the corresponding numerical performances are listed in Table 4.3. As a representative,

the surface plot of the reconstructed solution with ω = Ω \ [0.05, 0.95]2 is illustrated in Figure

4.4(a).
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Table 4.3: Several pairs of parameter settings and the corresponding numerical performances
in Example 4.3 under various choices of observable subdomains. Here we fix T = 1 and f0 ≡ 1.

ω K M err elapsed time illustration
Ω \ [0.2, 0.8]2 8.5× 10−5 18 0.19% 9.77 s
Ω \ [0.1, 0.9]2 5× 10−5 16 0.26% 9.01 s

Ω \ [0.05, 0.95]2 3× 10−5 17 0.40% 9.99 s Figure 4.4(a)
Ω \ [0.1, 0.9]× [0, 0.9] 4.5× 10−5 18 1.14% 9.85 s

Next, we further reduce the coverage of ∂Ω and fix ω = Ω \ [0, 0.9]2 to see the influence of

the observing duration T and the initial guess f0. More precisely, we consider the following

three pairs

T = 1, f0 ≡ 1; T = 1.3, f0 ≡ 1 and T = 1, f0 ≡ 0.

The choices of K and the corresponding numerical performances are collected in Table 4.4.

Especially, we display the reconstructed values at the corner x = (0, 0) for further comparisons.

The surface plots of the reconstructed solutions are illustrated in Figure 4.4(b)–(d).
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Figure 4.4: Illustrations of several representative reconstructed solutions in Example 4.3 with
different settings. (a) ω = Ω \ [0.05, 0.95]2, T = 1, f0 ≡ 1. (b) ω = Ω \ [0, 0.9]2, T = 1, f0 ≡ 1.
(c) ω = Ω \ [0, 0.9]2, T = 1.3, f0 ≡ 1. (d) ω = Ω \ [0, 0.9]2, T = 1, f0 ≡ 0.

As expected, it is readily seen from Example 4.3 (especially Table 4.3) that in the two-

dimensional case, our algorithm mostly inherits the robustness, accuracy and efficiency observed

in its one-dimensional counterpart. Nevertheless, we discover the difference on the length T . As

was mentioned before, assumption (4.6) requires T > diam(Ω \ ω) for the theoretical stability,
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Table 4.4: Several pairs of parameter settings and the corresponding numerical performances
in Example 4.3 with the observable subdomain ω = Ω \ [0, 0.9]2.

T f0 K M err fM (0, 0) illustration
1 1 4× 10−5 145 18.33% 0.89 Figure 4.4(b)
1.3 1 3.4× 10−4 202 8.92% 0.40 Figure 4.4(c)
1 0 4× 10−5 71 5.77% 0.01 Figure 4.4(d)

which is not satisfied in most of our tests. However, all test examples in Table 4.3 show

surprisingly high accuracy of reconstructions, indicating a possibility that assumption (4.6) on

T is more than necessary.

Other than those similarities to the one-dimensional case, here we should emphasize that the

numerical performance depends more heavily on how much ω can cover ∂Ω than its thickness.

Typically, we compare the relative errors and iteration steps for ω = Ω \ [0.05, 0.95]2 and

ω = Ω \ [0, 0.9]2. Although the areas of ω are identical in both cases, that ω covering only 2

edges of ∂Ω yields much larger error and requires more steps until convergence. In detail, we

pay special attention on the uncovered corner x = (0, 0), and it turns out that fM (0, 0) ≈ 0.89.

One can also see clearly from Figure 4.4(b) that the numerical solution fM fails to match with

ftrue near x = (0, 0), though it seems much better elsewhere.

To treat the case of ω = Ω \ [0, 0.9]2, we enlarge the observing duration according to

assumption (4.6) and set T = 1.3 > diam(Ω \ ω). After performing the same reconstruction,

we find a great improvement in the numerical result, namely, the relatively error is remarkably

reduced, and especially fM (0, 0) ≈ 0.40 (see also Figure 4.4(c)). This supports the feasibility

of assumption (4.6) in some sense, that is, an adequate observing duration is required for the

distant information to reach ω due to the finite propagation speed of wave.

In addition, we adjust the initial guess to see the importance of a priori information. We

take again T = 1 and set f0 ≡ 0, which matches well with ftrue near the uncovered corner

x = (0, 0). We conclude from Figure 4.4(d) and Table 4.4 that the corresponding numerical

performance is even better than that with T = 1.3 and f0 ≡ 1, and the iteration converges

faster. As one can imagine, the reconstructed value at x = (0, 0) becomes extremely close to

the true value ftrue(0, 0) = 0.

4.5.2 Three-dimensional examples

Finally, we proceed to the reconstruction of the source term ftrue in three spatial dimensions.

To reduce the computational complexity, we enlarge the mesh size to 1/40 in time and space.

Similarly to the two-dimensional case, we generate the observable subdomain ω by removing

a closed cube in Ω = (0, 1)3 whose edges are parallel to the coordinate axes, and require ∂ω

to include at least three mutually adjacent faces of ∂Ω according to the geometry condition.

For simplicity, we fix T = 1 and h(x, t) = 1 + t. To visualize the three-variate functions

fM (x1, x2, x3), we will show 4 representative sections for each of them at x3 = 1/8, 3/8, 5/8

and 7/8.

Example 4.4 Consider the reconstruction of

ftrue(x) = ftrue(x1, x2, x3) = 1− cos(πx1) cos(πx2) cos(πx3).

As before, we test Algorithm 4.1 by choosing various ω with different thicknesses and coverage
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of ∂Ω as follows

ω = Ω \ [0.1, 0.9]3, ω = Ω \ [0.05, 0.95]3, ω = Ω \ [0, 0.95]× [0.05, 0.95]2,

ω = Ω \ [0, 0.95]2 × [0.05, 0.95], ω = Ω \ [0, 0.95]3.

Except for the choice of ω = Ω \ [0, 0.9]3, we keep f0 ≡ 1 as the initial guess, whereas choose

f0 ≡ 1 or f0 ≡ 0 to test the influence of the initial guess in this critical case. The settings of

parameters and the corresponding numerical performances are listed in Table 4.5, and several

representative reconstructed solutions are illustrated in Figure 4.5. Especially, we note that for

ω = Ω \ [0, 0.9]3, the reconstructed value at the uncovered corner x = (0, 0, 0) with f0 ≡ 1 is

approximately 0.94 and, in contrast, that with f0 ≡ 0 yields fM (0, 0, 0) ≈ 0.02.

Table 4.5: Parameter settings and the corresponding numerical performances in Example 4.4
under various choices of observable subdomains and initial guesses.

ω f0 K M err elapsed time illustration
Ω \ [0.1, 0.9]3 1 6× 10−5 39 0.61% 237.31 s
Ω \ [0.05, 0.95]3 1 4× 10−5 41 0.76% 265.43 s

Ω \ [0, 0.95]× [0.05, 0.95]2 1 3× 10−5 37 0.91% 236.40 s Figure 4.5(a)
Ω \ [0, 0.95]2 × [0.05, 0.95] 1 2.8× 10−5 42 1.50% 264.75 s Figure 4.5(b)

Ω \ [0, 0.95]3 1 2.7× 10−5 86 12.31% 551.36 s Figure 4.5(c)
Ω \ [0, 0.95]3 0 2.7× 10−5 60 6.23% 387.91 s Figure 4.5(d)

Example 4.5 Finally, we test our algorithm by selecting true solutions with different de-

grees of monotonicity as before. We choose

f a
true(x) = f a

true(x1, x2, x3) = 1− sinx1 cos(πx2)x3, (4.55)

f b
true(x) = f b

true(x1, x2, x3) = 1 + exp

(
x1 + x2

2

)
sinx3, (4.56)

f c
true(x) = f c

true(x1, x2, x3) = 1− cos(πx1)x2 cos(2x3) (4.57)

and set ω = Ω \ [0, 0.95]2 × [0.05, 0.95], K = 3 × 10−5. Comparisons of the corresponding

sections of true solutions and the reconstructed ones are shown in Figure 4.6, and the numerical

performances are listed in Table 4.6.

Table 4.6: Numerical performances of the reconstructions in Example 4.5 for various choices of
true solutions.

ftrue f0 M err illustration
f a
true (see (4.55)) 1 26 2.18% Figure 4.6(a1)–(a2)
f b
true (see (4.56)) 2 28 3.31% Figure 4.6(b1)–(b2)
f c
true (see (4.57)) 1 29 3.62% Figure 4.6(c1)–(c2)

Again, the iterative thresholding algorithm behaves almost identically in the above three-

dimensional examples as that in lower dimensional ones. Collecting the phenomena observed

in all the above examples, we evaluate the performance of Algorithm 4.1 as follows.

• Algorithm 4.1 processes strong robustness against the oscillating measurement errors.

• The convergence speed of Algorithm 4.1 depends heavily on a delicate choice of the tuning

parameter K.
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Figure 4.5: Illustrations of several representative reconstructed solutions in Example 4.4 with
various observable subdomains and initial guesses. (a) ω = Ω \ [0, 0.95]× [0.05, 0.95]2, f0 ≡ 1.
(b) ω = Ω \ [0, 0.95]2 × [0.05, 0.95], f0 ≡ 1. (c) ω = Ω \ [0, 0.95]3, f0 ≡ 1. (d) ω = Ω \ [0, 0.95]3,
f0 ≡ 0.
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Figure 4.6: Illustrations of the true solutions and the corresponding reconstructions in Example

4.5. (a1) f a
true defined in (4.55). (a2) Reconstruction of f a

true. (b1) f
b
true defined in (4.56). (b2)

Reconstruction of f b
true. (c1) f

c
true defined in (4.57). (c2) Reconstruction of f c

true.
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• The thickness of the observable subdomain ω influences moderately on the numerical

performance.

• The boundary behavior of the reconstruction relies on that of the initial guess f0 and the

known component h(x, t) of the source term, which may cause local inaccuracy.

• The extent to which ∂ω can cover ∂Ω greatly dominates the numerical performance.

• When ∂ω fails to cover the majority of ∂Ω, the numerical performance can be improved

by increasing the observing duration T or adjusting the initial guess f0.

4.A Reconstruction by final observation data

Independent of the previous sections, in this appendix we consider the determination of f

from the final observation data u( · , T ). More precisely, we impose the homogeneous Dirichlet

boundary condition to the three-dimensional time cone model and formulate the inverse source

problem as follows.

Problem 4.2 Let Ω ⊂ R3 and T > 0 be given, and u satisfy





Hρu = f h in Ω× (0, T ],

∂`tu = 0 (` = 0, 1, 2, 3) in Ω× {0},
u = 4u = 0 on ∂Ω× (0, T ],

(4.58)

where h was defined in (4.3). Provided that ρ and g are known, determine f(x) (x ∈ Ω) by the

final observation data u in Ω× {T }.

To discuss the stability for the above problem, we need the follow lemma, which is a Dirichlet

counterpart of Lemma 4.1.

Lemma 4.5 Assume that ∂Ω is of C2 class, G ∈ L2(Ω×(0, T )), a ∈ H1
0 (Ω) and b ∈ L2(Ω).

Then there is a unique solution to





∂2tw −4w = G in Ω× (0, T ],

w = a, ∂tw = b in Ω× {0},
w = 0 on ∂Ω× (0, T ].

(4.59)

such that w ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)), and there holds the energy estimate

E(t) :=
(
‖∂tw( · , t)‖L2(Ω) + ‖∇w( · , t)‖L2(Ω)

)1/2

≤
(
‖b‖L2(Ω) + ‖∇a‖L2(Ω)

)1/2
+ ‖G‖L1(0,t;L2(Ω)) (0 ≤ t ≤ T ). (4.60)

Moreover, there exists CΩ > 0 depending only on the diameter diam(Ω) of Ω such that

‖w( · , t)‖L2(Ω) ≤ CΩ

{(
‖b‖L2(Ω) + ‖∇a‖L2(Ω)

)1/2
+ ‖G‖L1(0,t;L2(Ω))

}
(0 ≤ t ≤ T ). (4.61)

Proof. The basic solvability of (4.59) is the classical result (see, e.g., Lions and Magenes [47]).

To show the energy estimate (4.60), we multiply ∂tw to both sides of (4.59) and take formal

integral in Ω for any t ∈ [0, T ] to obtain

E(t)E′(t) =
1

2

d

dt

(
E(t)2

)
=

1

2

d

dt

(∫

Ω

(|∂tw(x, t)|2 + |∇w(x, t)|2) dx
)
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=
1

2

d

dt

(∫

Ω

|∂tw(x, t)|2 dx
)
+

∫

Ω

∇∂tw(x, t) · ∇w(x, t) dx

−
∫

∂Ω

∂tw(x, t) ∂νw(x, t) dσ

=

∫

Ω

∂tw(x, t) (∂
2
t w(x, t) −4w(x, t)) dx =

∫

Ω

∂tw(x, t)G(x, t) dx

≤ ‖∂tw( · , t)‖L2(Ω) ‖G( · , t)‖L2(Ω) ≤ E(t) ‖G( · , t)‖L2(Ω)

or equivalently E′(t) ≤ ‖G( · , t)‖L2(Ω) except for the trivial case, where we have applied

Green’s formula and Hölder’s inequality. Hence, taking integral in (0, t) and noting the fact

L1(0, t;L2(Ω)) ⊂ L2(0, t;L2(Ω)), we have

E(t)− E(0) =

∫ t

0

E′(s) ds ≤
∫ t

0

‖G( · , s)‖L2(Ω) ds ≤ ‖G‖L1(0,t;L2(Ω)) (0 ≤ t ≤ T ),

which is indeed (4.60). Moreover, we further apply Poincaré’s inequality to deduce

‖w( · , t)‖L2(Ω) ≤ CΩ ‖∇w( · , t)‖L2(Ω) ≤ CΩE(t),

where CΩ is a positive constant only dependent on diam(Ω). By (4.60), we obtain (4.61)

immediately.

Based on the repeated uses of Lemma 4.5, we can give a stability estimate for Problem 4.2

under the smallness assumption on Ω.

Proposition 4.3 Let ∂Ω be of C2 class and u be the solution to (4.58), where f ∈ L2(Ω)

and g, ρ satisfy

g ∈ H3(0, T ;L∞), g( · , 0) = ∂tg( · , 0) = 0a.e. in Ω,

∃ g0 > 0 such that |g( · , T )| ≥ g0 a.e. in Ω,

ρ ∈ C3[0, T ], ∃ ρ0 > 0 such that ρ ≥ ρ0 in [0, T ].

If diam(Ω) is sufficiently small, then there exists a constant C = C(Ω, T, ρ, g) > 0 such that

‖f‖L2(Ω) ≤ C ‖42u( · , T )‖L2(Ω). (4.62)

Proof. Similarly to the treatments in Section 4.2, it suffices to investigate the following two

initial-boundary value problem





�U = V in Ω× (0, R(T )],

U = ∂τU = 0 in Ω× {0},
U = 0 on ∂Ω× (0, R(T )],





�V = f H in Ω× (0, R(T )],

V = ∂τV = 0 in Ω× {0},
V = 0 on ∂Ω× (0, R(T )],

(4.63)

where H( · , τ) := 8π g( · , R−1(τ))

ρ(R−1(τ))
.

First we introduce an auxiliary function Ṽ := ∂2τV . Since the assumption g( · , 0) = ∂tg( · , 0) = 0

a.e. in Ω implies H( · , 0) = ∂tH( · , 0) = 0 a.e. in Ω, it is easily verified that Ṽ satisfies





�Ṽ = f ∂2τH in Ω× (0, R(T )],

Ṽ = ∂τ Ṽ = 0 in Ω× {0},
Ṽ = 0 on ∂Ω× (0, R(T )].
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According to (4.61), we have the estimate

‖∂2τV ( · , τ)‖L2(Ω) = ‖Ṽ ( · , τ)‖L2(Ω) ≤ CΩ ‖f ∂2τH‖L1(0,τ ;L2(Ω))

≤ CΩ ‖∂2τH‖L1(0,τ ;L∞(Ω)) ‖f‖L2(Ω) (0 ≤ t ≤ T ),

where CΩ > 0 is a constant only dependent on diam(Ω). Therefore, by the assumption |g( · , t)| ≥
g0 a.e. in Ω and taking τ = R(T ) in (4.58), the above inequality immediately yields

8π g0
ρ(T )

‖f‖L2(Ω) ≤ ‖∂2τV ( · , R(T ))‖L2(Ω) + ‖4V ( · , R(T ))‖L2(Ω)

≤ CΩ ‖∂2τH‖L1(0,R(T );L∞(Ω)) ‖f‖L2(Ω)

+ ‖∂2τ4U( · , R(T ))‖L2(Ω) + ‖42u( · , T )‖L2(Ω). (4.64)

Here we have to further decompose V by the relation V = �U since V ( · , R(T )) involves the

time derivative of U( · , R(T )) which is not observable.

Next, we shall give an estimate for the term ‖∂2τ4U( · , R(T ))‖L2(Ω) in (4.64). Since f ∂3τH ∈
L2(Ω× (0, T )), we further introduce an auxiliary function V̂ := ∂τ Ṽ = ∂3τV , which satisfies





�V̂ = f ∂3τH in Ω× (0, R(T )],

V̂ = 0, ∂τ V̂ = f ∂2τH( · , 0) in Ω× {0},
V̂ = 0 on ∂Ω× (0, R(T )].

Then the application of Lemma 4.5 with respect to V̂ yields the regularity ∂2τ Ṽ = ∂τ V̂ ∈
C([0, R(T )];L2) ⊂ L2(Ω× (0, R(T ))). Furthermore, it follows from the energy estimate (4.60)

that

‖∂2τ Ṽ ( · , τ)‖L2(Ω) = ‖∂τ V̂ ( · , τ)‖L2(Ω) ≤ ‖f ∂2τH( · , 0)‖L2(Ω) + ‖f ∂3τH‖L1(0,τ ;L2(Ω))

≤
(
‖∂2τH( · , 0)‖L∞(Ω) + ‖∂3τH‖L1(0,R(T );L∞(Ω))

)
‖f‖L2(Ω) (4.65)

for 0 ≤ τ ≤ R(T ).
Finally, we introduce Ũ := ∂2τ4U . Simple calculations give





�Ũ = 4Ṽ = ∂2τ Ṽ − f ∂2τH in Ω× (0, R(T )],

Ũ = ∂τ Ũ = 0 in Ω× {0},
Ũ = 0 on ∂Ω× (0, R(T )],

where the inhomogeneous term has already been proved to be in L2(Ω× (0, R(T ))). Therefore,

it follows from estimates (4.61) and (4.65) that

‖∂2τ4U( · , R(T ))‖L2(Ω) = ‖Ũ( · , R(T ))‖L2(Ω)

≤ CΩ

(
‖∂2τ Ṽ ‖L1(0,R(T );L2(Ω)) + ‖f ∂2τH‖L1(0,R(T );L2(Ω))

)

≤ CΩ

{
R(T )

(
‖∂2τH( · , 0)‖L∞(Ω) + ‖∂3τH‖L1(0,R(T );L∞(Ω))

)

+‖∂2τH‖L1(0,R(T );L∞(Ω))

}
‖f‖L2(Ω),

which, together with (4.64), indicates

8π g0
ρ(T )

‖f‖L2(Ω) ≤ CΩ

{
R(T )

(
‖∂2τH( · , 0)‖L∞(Ω) + ‖∂3τH‖L1(0,R(T );L∞(Ω))

)

+2 ‖∂2τH‖L1(0,R(T );L∞(Ω))

}
‖f‖L2(Ω) + ‖42u( · , T )‖L2(Ω).
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The coefficient of ‖f‖L2(Ω) on the right-hand side can be absorbed into that on the left-hand

side provided that diam(Ω) is sufficiently small. In fact, if CΩ is sufficiently small such that,

for example,

4π g0
ρ(T )

≥ CΩ

{
R(T )

(
‖∂2τH( · , 0)‖L∞(Ω) + ‖∂3τH‖L1(0,R(T );L∞(Ω))

)
+ 2 ‖∂2τH‖L1(0,R(T );L∞(Ω))

}
,

then there is a constant C = C(Ω, R(T ), H) = C(Ω, T, ρ, h) > 0 such that (4.62) holds. The

proof is completed.

It is natural to consider the removal of the smallness restriction on the domain Ω as well

as various assumptions on g. However, it turns out that non-uniqueness of the reconstruction

may occur in a relaxed setting. Actually, a conditional uniqueness can be expected from the

following simplified one-dimensional example.

Example 4.6 Consider





Hρu(x, t) = f(x) g(t)/ρ(t) (0 < x < L, 0 < t ≤ T ),
u(x, 0) = ∂tu(x, 0) = 0 (0 < x < L),

u(0, t) = u(L, t) = 0 (0 < t ≤ T ),
(4.66)

that is, g is further assumed to be space-independent. In this case, f ∈ L2(0, L) is uniquely

determined by u( · , T ) if and only if there holds

∫ R(T )

0

sin

(
πn (R(T )− τ)

L

)
g(R−1(τ))

ρ(R−1(τ))
dτ 6= 0 (n = 1, 2, . . .). (4.67)

In other words, (4.67) holds if and only if u( · , T ) = 0 implies f = 0.

In fact, as usually we investigate the equivalent problem





�U(x, t) = 2 f(x) g(R−1(τ))/ρ(R−1(τ)) (0 < x < L, 0 < τ ≤ R(T )),
U(x, 0) = ∂τU(x, 0) = 0 (0 < x < L),

U(0, τ) = u(L, τ) = 0 (0 < τ ≤ R(T ))

instead of (4.66). By the combination of Duhamel’s principle and the separation of variables,

it is straightforward to write

U( · , τ) =
∞∑

n=1

√
L

2λn
(f, ϕn)

(∫ τ

0

ϕn(τ − ζ)
g(R−1(ζ))

ρ(R−1(ζ))
dζ

)
ϕn, (4.68)

where ( · , · ) denotes the inner product in L2(0, L), and

λn =
(πn
L

)2
, ϕn(x) =

√
2

L
sin
(√

λn x
)

(n = 1, 2, . . .)

form the eigensystem of −∂2x with the homogeneous Dirichlet boundary condition.

Now we suppose that u( · , T ) = U( · , R(T )) = 0. Since {ϕn}∞n=1 is a complete orthonormal

system of L2(0, L), there should holds

√
L

2λn
(f, ϕn)

(∫ τ

0

ϕn(τ − ζ)
g(R−1(ζ))

ρ(R−1(ζ))
dζ

)
= 0 (n = 1, 2, . . .).

However, condition (4.67) eliminates other possibilities than (f, ϕn) = 0 for all n = 1, 2, . . .,

indicating f = 0 immediately.
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On the opposite side, we argue by contradiction. Supposing that there exists a natural

number n0 such that (4.67) is invalid, then it follows from (4.68) that (f, ϕn0) 6= 0 is possible

even if U( · , R(T )) = 0, indicating that f does not necessarily vanishes.

Consequently, the identification of f by u( · , T ) is not unique once the condition (4.67) is

dissatisfied by any n ∈ N.
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Chapter 5

Strong Maximum Principle for

Fractional Diffusion Equations

and an Application to an

Inverse Source Problem

The strong maximum principle is one of the remarkable characterizations of parabolic equa-

tions, which is expected to be partly inherited by fractional diffusion equations. Based on the

corresponding weak maximum principle, in this chapter we establish a strong maximum prin-

ciple for single-term time-fractional diffusion equations, which is slightly weaker than that for

the parabolic case. As a direct application, we give a uniqueness result for a related inverse

source problem on the determination of the temporal component of the inhomogeneous term

which is assumed to be in form of separation of variables.

5.1 Introduction and main results

Let Ω be an open bounded domain in Rd (d = 1, 2, 3) with a smooth boundary (for example,

of C∞ class), and 0 < α < 1. Consider





∂αt u(x, t) +Au(x, t) = F (x, t) (x ∈ Ω, 0 < t ≤ T ),
u(x, 0) = a(x) (x ∈ Ω),

u(x, t) = 0 (x ∈ ∂Ω, 0 < t ≤ T ),

(5.1)

(5.2)

(5.3)

where ∂αt denotes the Caputo derivative defined by

∂αt f(t) :=
1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α ds,

and Γ( · ) denotes the usual Gamma function. Here A is an elliptic operator defined for f ∈
D(A) := H2(Ω) ∩H1

0 (Ω) as

Af(x) = −
d∑

i,j=1

∂j(aij(x)∂if(x)) + c(x)f(x) (x ∈ Ω),

98
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where aij = aji (1 ≤ i, j ≤ d) and c ≥ 0 in Ω . Moreover, it is assumed that aij ∈ C1(Ω),

c ∈ C(Ω) and there exists a constant δ > 0 such that

δ

d∑

i=1

ξ2i ≤
d∑

i,j=1

aij(x)ξiξj (∀x ∈ Ω , ∀ (ξ1, . . . , ξd) ∈ R
d).

The assumptions on the initial value a and the source term F will be specified later. For

various properties of the Caputo derivative, we refer to Diethelm [67], Kilbas, Srivastava and

Trujillo [86], Podlubny [116] and Zhou [134]. See also [75,123] for further contents on fractional

calculus.

The governing equation (5.1) is called a fractional diffusion equation and is a model equation

for describing the anomalous diffusion phenomena in highly heterogeneous aquifer and complex

viscoelastic material (see Metzler and Klafter [109] and the references therein). Indeed, although

the single-term time-fractional diffusion equation inherits certain properties from the classical

diffusion equation (i.e., α = 1), it differs considerably from the traditional one especially in

the senses of its limited smoothing effect in space and slow decay in time. In Luchko [101], a

maximum principle for (5.1)–(5.3) was established, and the uniqueness of a classical solution was

proved. Luchko [102] represented the generalized solution to (5.1)–(5.3) with F = 0 by means of

the Mittag-Leffler function and gave the unique existence result. Sakamoto and Yamamoto [121]

carried out a comprehensive investigation including the well-posedness of (5.1)–(5.3) as well as

the long-time asymptotic behavior of the solution. It turns out that the spatial regularity

of the solution is only moderately improved from that of the initial value, and the solution

decays with order t−α as t→∞. Recently, the Lipschitz stability of the solution to (5.1) with

respect to α and the diffusion coefficient was proved as a byproduct of an inverse coefficient

problem in Li et al. [96]. Very recently, Gorenflo et al. [73] redefined the Caputo derivative in

the fractional Sobolev spaces and investigated (5.1) from the viewpoint of the operator theory.

Regarding numerical treatments, we refer to [99,108] for the finite difference method and [79–81]

for the finite element method. Meanwhile, equation (5.1) has also gained population among

inverse problem researchers; recent literatures include [65, 83, 105, 111, 118, 122, 129, 132]. On

the controllability theory, we refer to [70, 71]. For other discussions concerning equation (5.1),

see, e.g., Gorenflo et al. [74], Luchko [100] and Prüss [117]. As a further generalized model

for the anomalous diffusion, Li et al. [89] discussed the time-fractional diffusion equations with

distributed orders and gave long time and short time asymptotic estimates.

In this chapter, we are interested in the strong maximum principle for fractional diffusion

equations. As one of the remarkable characterizations of parabolic equations, the classical

strong maximum principle asserts that the solution u to (5.1)–(5.3) with α = 1 and F = 0 is

strictly positive in Ω × (0,∞) if the initial value a satisfies a ≥ 0 and a 6≡ 0. Since (5.1) with

0 < α < 1 keeps some characters of diffusion, it is natural to expect the parallel generalization.

Based on the weak maximum principle obtained in [101] (see Lemma 5.3), first we establish a

strong maximum principle for the initial-boundary value problem (5.1)–(5.3) with F = 0, which

is slightly weaker than that for the parabolic case.

Theorem 5.1 Let a ∈ L2(Ω) satisfy a ≥ 0 and a 6≡ 0, F = 0, and u be the solution to

(5.1)–(5.3). Then for any x ∈ Ω, the set Ex := {t > 0; u(x, t) ≤ 0} is at most a countable set

which admits only ∞ as its possible accumulation point.

According to the weak maximum principle (see [101]), it reveals that actually Ex = {t >
0; u(x, t) = 0}, and the above theorem asserts the strict positivity of u(x, t) for all x ∈ Ω and
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almost all t > 0 except for the zero measure set Ex. So far, we do not know if Ex = ∅ although
it can be conjectured.

Next, we consider an inverse source problem for (5.1)–(5.3) under the assumption that the

inhomogeneous term F is in form of separation of variables.

Problem 5.1 Let x0 ∈ Ω and T > 0 be arbitrarily given, and u be the solution to (5.1)–

(5.3) with a = 0 and F (x, t) = ρ(t) g(x), where ρ ∈ C1[0, T ] and g ∈ C∞
0 (Ω). Provided that g

is known, determine ρ(t) (0 ≤ t ≤ T ) by the single point observation data u(x0, t) (0 ≤ t ≤ T ).

The above problem is concerned with the determination of the temporal component ρ in

the inhomogeneous term F (x, t) = ρ(t) g(x) in (5.1). The spatial component g simulates e.g. a

source of contaminants which may be dangerous. Although g is usually limited to a small region

given by supp g(⊂⊂ Ω), its influence may expand wider because ρ(t) is large. We are requested

to determine the time-dependent magnitude by the pointwise data u(x0, t) (0 ≤ t ≤ T ), where

x0 is understood as a monitoring point.

For the case of x0 ∈ supp g, we know the both-sided stability estimate as well as the unique-

ness for Problem 5.1 (see Sakamoto and Yamamoto [121]). For the case of x0 /∈ supp g, there

were no published results even on the uniqueness. From the practical viewpoints mentioned

above, it is very desirable that x0 should be spatially far from the location of the source, that

is, the case x0 /∈ supp g should be discussed for the inverse problem.

As a direct application of Theorem 5.1, we can give an affirmative answer for the uniqueness

regarding Problem 5.1.

Theorem 5.2 Under the same settings in Problem 5.1, we further assume that g ≥ 0 and

g 6≡ 0. Then u(x0, t) = 0 (0 ≤ t ≤ T ) implies ρ(t) = 0 (0 ≤ t ≤ T ).

For the same kind of inverse source problems for parabolic equations, we refer to Cannon

and Esteva [63], Saitoh, Tuan and Yamamoto [119, 120].

The rest of this chapter is organized as follows. Section 5.2 introduces the notations and

collects the existing results on problem (5.1)–(5.3), and Sections 5.3–5.4 are devoted to the

proofs of Theorems 5.1–5.2, respectively.

5.2 Preliminaries

To start with, we fix some general settings and notations. Let L2(Ω) be a usual L2-space with

the inner product ( · , · ) and H1
0 (Ω), H

2(Ω) denote the Sobolev spaces (see, e.g., Adams [1]).

Let {(λn, ϕn)}∞n=1 be the eigensystem of the symmetric uniformly elliptic operator A in (5.1)

such that 0 < λ1 < λ2 ≤ · · · , λn → ∞ as n → ∞ and {ϕn} ⊂ H2(Ω) ∩ H1
0 (Ω) forms an

orthonormal basis of L2(Ω). Then the fractional power Aγ is well-defined for γ ≥ 0 (see, e.g.,

Pazy [115]) with

D(Aγ) =

{
f ∈ L2(Ω);

∞∑

n=1

|λγn(f, ϕn)|2 <∞
}
, Aγf :=

∞∑

n=1

λγn(f, ϕn)ϕn,

and D(Aγ) is a Hilbert space with the norm

‖f‖D(Aγ) =

(
∞∑

n=1

|λγn(f, ϕn)|2
)1/2

.

Also we note that D(Aγ) ⊂ H2γ(Ω) for γ > 0 and especially D(A1/2) = H1
0 (Ω).
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For 1 ≤ p ≤ ∞, we say that f ∈ Lp(0, T ;D(Aγ)) provided

‖f‖Lp(0,T ;D(Aγ)) :=





(∫ T

0

‖f( · , t)‖pD(Aγ) dt

)1/p

if 1 ≤ p <∞

ess sup
0<t<T

‖f( · , t)‖D(Aγ) if p =∞




<∞.

Similarly, for 0 ≤ t0 < T , we say that f ∈ C([t0, T ];D(Aγ)) provided

‖f‖C([t0,T ];D(Aγ)) := max
t0≤t≤T

‖f( · , t)‖D(Aγ) <∞.

In addition, we define C((0, T ];D(Aγ)) :=
⋂

0<t0<T C([t0, T ];D(Aγ)).

To represent the explicit solution of (5.1)–(5.3), we first recall the Mittag-Leffler function

(see, e.g., Podlubny [116])

Eα,β(z) :=

∞∑

k=0

zk

Γ(αk + β)
(z ∈ C, α > 0, β ∈ R), (5.4)

which possesses the following properties.

Lemma 5.1 (a) Let 0 < α < 2 and β ∈ R be arbitrary. Then there exists a constant

C = C(α, β) > 0 such that

|Eα,β(−η)| ≤
C

1 + η
(η ≥ 0).

(b) For λ > 0 and α > 0, we have

d

dt
Eα,1(−λ tα) = −λ tα−1Eα,α(−λ tα) (t > 0).

Concerning some important existing results of the solution to (5.1)–(5.3) with 0 ≤ α ≤ 1,

we state the following two lemmata for later use.

Lemma 5.2 (see [121]) Fix T > 0 arbitrarily. Concerning the solution u to (5.1)–(5.3)

with 0 ≤ t ≤ T , the followings hold true.

(a) Let a ∈ L2(Ω) and F = 0. Then there exists a unique weak solution u ∈ C([0, T ];L2(Ω))∩
C((0, T ];H2(Ω) ∩H1

0 (Ω)), which is explicitly written as

u( · , t) =
∞∑

n=1

Eα,1(−λntα) (a, ϕn)ϕn (5.5)

in C([0, T ];L2(Ω)) ∩ C((0, T ];H2(Ω) ∩ H1
0 (Ω)). Moreover, u : (0, T ] → L2(Ω) is analytically

extended to a sector {z ∈ C; z 6= 0, |argz| < π/2}.
(b) Let a ∈ H2(Ω) ∩ H1

0 (Ω) and F = 0. Then there exists a unique weak solution u ∈
C([0, T ];H2(Ω) ∩H1

0 (Ω)), and the representation (5.5) holds in C([0, T ];H2(Ω) ∩H1
0 (Ω)).

(c) Let a = 0 and F ∈ L∞(0, T ;L2(Ω)). Then there exists a unique weak solution u ∈
L2(0, T ;H2(Ω) ∩H1

0 (Ω)) such that limt→0 ‖u( · , t)‖L2(Ω) = 0.

Lemma 5.3 (Weak maximum principle) Let a ∈ L2(Ω) be nonnegative, F = 0, and u be

the solution to (5.1)–(5.3). Then there holds u ≥ 0 a.e. in Ω× (0,∞).

We note that the above lemma is a special case of [101, Theorem 2], but the settings on

the initial value and the elliptic operator are more general. In fact, the same argument as that

in [101] also works in our settings, which indicates Lemma 5.3 immediately. Here we omit the

details.
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5.3 Proof of Theorem 5.1

Throughout this section, we take F = 0 in (5.1). We divide the proof of Theorem 5.1 into

three steps.

Step 1. Using the Mittag-Leffler functions and the eigensystem {(λn, ϕn)}∞n=1, for N ∈ N

we set

GN (x, y, t) :=

N∑

n=1

Eα,1(−λntα)ϕn(x)ϕn(y) (x, y ∈ Ω, t > 0).

According to Lemma 5.2(a), there holds

u(x, t) = lim
N→∞

∫

Ω

GN (x, y, t) a(y) dy

in C([0,∞);L2(Ω)) ∩ C([t0,∞);H2(Ω) ∩H1
0 (Ω)) for any a ∈ L2(Ω) and any t0 > 0. Since the

spatial dimensions d ≤ 3, the Sobolev embedding implies H2(Ω) ⊂ C(Ω). Therefore, for any

fixed x ∈ Ω and t > 0, we see that GN (x, · , t) is weakly convergent to

G(x, y, t) :=

∞∑

n=1

Eα,1(−λntα)ϕn(x)ϕn(y) (5.6)

as a series with respect to y. In particular, we obtain G(x, · , t) ∈ L2(Ω) for all x ∈ Ω and all

t > 0. Moreover, the solution to (5.1)–(5.3) can be represented as

u(x, t) =

∫

Ω

G(x, y, t) a(y) dy (x ∈ Ω, t > 0). (5.7)

Next we show that for arbitrarily fixed x ∈ Ω and t > 0, G(x, y, t) ≥ 0 for almost all y ∈ Ω.

Actually, assume that on the contrary there exist x1 ∈ Ω and t1 > 0 such that

|ω1| > 0, ω1 := {y ∈ Ω; G(x1, y, t1) < 0},

where | · | denotes the Lebesgue measure. Then it is readily seen that

∫

Ω

G(x1, y, t1)χω1(y) dy < 0, (5.8)

where χω1 is the characteristic function of ω1 satisfying χω1 ∈ L2(Ω) and χω1 ≥ 0. On the

other hand, Lemma 5.3 and (5.7) imply that for all x ∈ Ω and t > 0, there holds

∫

Ω

G(x, y, t) a(y) dy ≥ 0 (∀ a ∈ L2(Ω), a ≥ 0),

which contradicts with (5.8) by taking a = χω1 .

Step 2. Now we fix an initial value a ∈ L2(Ω) such that a ≥ 0 and a 6≡ 0. Again by Lemma

5.3, we have u ≥ 0 in Ω × (0,∞). Meanwhile, by Lemma 5.2(a) and the Sobolev embedding,

we see u ∈ C(Ω× [0,∞)).

Assume contrarily that there exists x0 ∈ Ω such that the set Ex0 = {t > 0; u(x0, t) ≤ 0} =
{t > 0; u(x0, t) = 0} contains an accumulation point which is not ∞. Since u(x0, t) is analytic

with respect to t > 0 (see Lemma 5.2(a)), we conclude u(x0, t) = 0 for t > 0, that is,

u(x0, t) =

∫

Ω

G(x0, y, t) a(y) dy = 0 (t > 0).
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Since both G(x0, · , t) and a are nonnegative in Ω, we deduce G(x0, y, t) a(y) = 0 for almost

all y ∈ Ω and t > 0. Since a 6≡ 0, G(x0, · , · ) should vanish in the cylinder ω × (0,∞), where

ω := {x ∈ Ω; a(x) > 0} and |ω| > 0. By the representation (5.6), this indicates

∞∑

n=1

Eα,1(−λntα)ϕn(x0)ϕn(x) = 0 (t > 0, x ∈ ω). (5.9)

Henceforth C > 0 denotes generic constants independent of n and t ≥ 0, which may change

line by line. Let ψ ∈ C∞
0 (ω) be arbitrarily chosen. Then it follows from (5.9) that

∞∑

n=1

Eα,1(−λntα)ϕn(x0)(ϕn, ψ) = 0 (t > 0). (5.10)

We shall show that the series is convergent in C[0,∞). In fact, by the Sobolev embedding

H2(Ω) ⊂ C(Ω) for d ≤ 3, first we estimate

|ϕn(x0)| ≤ ‖ϕn‖C(Ω) ≤ C‖ϕn‖H2(Ω) ≤ C‖Aϕn‖L2(Ω) ≤ Cλn.

Next, since ψ ∈ C∞
0 (ω) ⊂ D(A`) for any ` ∈ N, we have

|(ϕn, ψ)| =
|(ϕn,A`ψ)|

λ`n
≤
C‖ϕn‖L2(Ω)‖ψ‖C2`(Ω)

λ`n
≤ Cλ−`

n .

On the other hand, we know λn ∼ n2/d as n → ∞ (see, e.g., Courant and Hilbert [66]).

Therefore, the combination of the above estimates yields

|Eα,1(−λntα)ϕn(x0)(ϕn, ψ)| ≤ Cλ−(`−1)
n ≤ C n−2(`−1)/d as n→∞,

where Eα,1(−λntα) is bounded by applying Lemma 5.1(a). Since we restrict d ≤ 3, it suffices

to choose ` = 3 so that the order 2(`− 1)/d > 1, which guarantees

∞∑

n=1

|Eα,1(−λntα)ϕn(x0)(ϕn, ψ)| <∞ (∀ t ≥ 0, ∀ψ ∈ C∞
0 (ω)).

Step 3. Recall that the Laplace transform of Eα,1(−λntα) reads (see, e.g., Podlubny [116,

p.21]) ∫ ∞

0

e−ztEα,1(−λntα) dt =
zα−1

zα + λn
(Re z > λ1/αn ),

which is analytically extended to Re z > 0. Since the series in (5.10) is convergent in C[0,∞),

we can take the Laplace transform with respect to t in (5.10) to derive

∞∑

n=1

zα−1

zα + λn
ϕn(x0)(ϕn, ψ) = 0 (Re z > 0, ∀ψ ∈ C∞

0 (Ω)),

that is,
∞∑

n=1

1

ζ + λn
ϕn(x0)(ϕn, ψ) = 0 (Re ζ > 0, ∀ψ ∈ C∞

0 (Ω)). (5.11)

By a similar argument for the convergence of (5.10), we see that the above series is convergent

in any compact set in C\ {−λn}∞n=1, and the analytic continuation in ζ yields that (5.11) holds

for ζ ∈ C \ {−λn}∞n=1. Especially, since the first eigenvalue λ1 is single, we can choose a small

circle around −λ1 which does not contain −λn (n ≥ 2). Integrating (5.11) on this circle, we

have

ϕ1(x0)(ϕ1, ψ) = 0 (∀ψ ∈ C∞
0 (ω)).
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Since ψ ∈ C∞
0 (ω) is arbitrarily chosen, there holds ϕ1(x0)ϕ1(x) = 0 for almost all x ∈ ω. This

contradicts with the strict positivity of the first eigenfunction ϕ1 (see, e.g., Evans [27]).

Consequently, for any x ∈ Ω, the set Ex = {t > 0; u(x, t) ≤ 0} contains at most ∞ as an

accumulation point. The proof of Theorem 5.1 is completed.

5.4 Proof of Theorem 5.2

Now we turn to the proof of the uniqueness for Problem 5.1. Recall that the governing

equation reads





∂αt u(x, t) +Au(x, t) = ρ(t) g(x) (x ∈ Ω, 0 < t ≤ T ),
u(x, 0) = 0 (x ∈ Ω),

u(x, t) = 0 (x ∈ ∂Ω, 0 < t ≤ T ),
(5.12)

where ρ ∈ C1[0, T ] and g ∈ C∞
0 (Ω). First we verify the following Duhamel’s principle for the

fractional diffusion equation.

Lemma 5.4 Let u be the solution to (5.12) with ρ ∈ C1[0, T ] and g ∈ C∞
0 (Ω). Then u

allows the representation

u( · , t) =
∫ t

0

µ(t− s) v( · , s) ds (0 < t < T ),

where

µ(t) :=
1

Γ(α)

d

dt

∫ t

0

ρ(s)

(t− s)1−α
ds (0 < t < T ) (5.13)

and v satisfies 



∂αt v +Av = 0 in Ω× (0, T ],

v = g in Ω× {0},
v = 0 on ∂Ω× (0, T ].

(5.14)

We note that a similar Duhamel’s principle was provided in [93, Lemma 3.3], which considers

the case of multi-term time-fractional derivatives. Nevertheless, we give an independent proof

for the sake of self-containedness.

Proof. First, since ρ g ∈ L∞(0, T ;L2(Ω)), Lemma 5.2(c) indicates that u ∈ L2(0, T ;H2(Ω) ∩
H1

0 (Ω)) and limt→0 ‖u( · , t)‖L2(Ω) = 0. By setting

ũ( · , t) :=
∫ t

0

µ(t− s) v( · , s) ds, (5.15)

we shall demonstrate

u = ũ in L2(0, T ;H2(Ω) ∩H1
0 (Ω)), ũ = 0 on ∂Ω× (0, T ], lim

t→0
‖ũ( · , t)‖L2(Ω) = 0.

Since ρ ∈ C1[0, T ], simple calculations for (5.13) yield

µ(t) =
1

Γ(α)

d

dt

(
− ρ(s) (t− s)α

α

∣∣∣∣
s=t

s=0

+
1

α

∫ t

0

(t− s)αρ′(s) ds
)

=
1

Γ(α)

d

dt

(
ρ(t)

α
tα +

1

α

∫ t

0

(t− s)αρ′(s) ds
)
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=
1

Γ(α)

(
ρ(0)

t1−α
+

∫ t

0

ρ′(s)

(t− s)1−α
ds

)
(5.16)

and hence µ ∈ C(0, T ]. Concerning the solution v to (5.14), since g ∈ C∞
0 (Ω) ⊂ H2(Ω)∩H1

0 (Ω),

it follows from Lemma 5.2(b) that v ∈ C([0, T ];H2(Ω) ∩H1
0 (Ω)). Together with the fact that

µ ∈ L1(0, T ) by applying Young’s inequality to (5.16), we deduce ũ ∈ C([0, T ];H2(Ω)∩H1
0 (Ω)),

ũ = 0 on ∂Ω× (0, T ] and ũ( · , 0) = 0 by definition (5.15). On the other hand, according to the

explicit representation (5.5) and Lemma 5.1(b), we see

∂tv( · , t) = −tα−1w( · , t), where

w( · , t) :=
∞∑

n=1

λnEα,α(−λntα) (g, ϕn)ϕn =

∞∑

n=1

Eα,α(−λntα) (Ag, ϕn)ϕn.

A similar argument as that in [121] and Lemma 5.2(a) immediately yield w ∈ C([0, T ];L2(Ω)).

In order to show u = ũ, it suffices to verify that ũ also satisfies the governing equation (5.12),

which possesses a unique solution (see Lemma 5.2(c)). To calculate ∂αt ũ, first we formally

calculate

∂tũ( · , t) = ∂t

∫ t

0

µ(s) v( · , t− s) ds =
∫ t

0

µ(s) ∂tv( · , t− s) ds+ µ(t) v( · , 0)

= −
∫ t

0

µ(s) (t− s)α−1w( · , t− s) ds+ µ(t) g.

Since
∫ t

0 |µ(s) (t − s)α−1| ds <∞ for 0 < t ≤ T and w ∈ C([0, T ];L2(Ω)), we can easily justify

that the above differentiation makes sense in L2(Ω) for 0 < t ≤ T . By definition, we have

∂αt ũ( · , t) =
1

Γ(1− α)

∫ t

0

∂sũ( · , s)
(t− s)α ds = I1 + I2 g, where

I1 :=
1

Γ(1− α)

∫ t

0

1

(t− s)α
∫ s

0

µ(τ) ∂sv( · , s− τ) dτds,

I2 :=
1

Γ(1− α)

∫ t

0

µ(s)

(t− s)α ds.

The governing equation (5.14) for v and formula (5.16) for µ imply respectively

I1 =
1

Γ(1− α)

∫ t

0

µ(τ)

∫ t

τ

∂sv( · , s− τ)
(t− s)α dsdτ

=

∫ t

0

µ(τ)

(
1

Γ(−α)

∫ t−τ

0

∂sv( ·, , s)
(t− τ − s)α ds

)
dτ =

∫ t

0

µ(τ) ∂ατ v( · , t− τ) dτ

= −
∫ t

0

µ(τ)Av( · , t − τ) dτ = −A
∫ t

0

µ(τ) v( · , t − τ) dτ = −Aũ( · , t),

I2 =
1

Γ(1− α) Γ(α)

∫ t

0

1

(t− s)α
(
ρ(0)

s1−α
+

∫ s

0

ρ′(τ)

(s− τ)1−α
dτ

)
ds

=
1

Γ(1− α) Γ(α)

(
ρ(0)

∫ t

0

ds

(t− s)α s1−α
+

∫ t

0

ρ′(τ)

∫ t

τ

ds

(t− s)α(s− τ)1−α
dτ

)

= ρ(0) +

∫ t

0

ρ′(τ) dτ = ρ(t). (5.17)

Therefore, we conclude ∂αt ũ+Aũ = ρ g and the proof is completed.

At this stage, we can proceed to show Theorem 5.2 by applying the established strong

maximum principle.
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Completion of Proof of Theorem 5.2. Let the conditions in the statement of Theorem 5.2 be

valid, namely, it is assumed that ρ ∈ C1[0, T ], g ∈ C∞
0 (Ω), g ≥ 0, g 6≡ 0, and the solution u

to (5.12) vanishes in {x0} × [0, T ] for some x0 ∈ Ω. According to Duhamel’s principle proved

above, we have

u(x0, t) =

∫ t

0

µ(t− s) v(x0, s) ds = 0 (0 ≤ t ≤ T ),

where µ was defined in (5.13) and v solves (5.14). It reveals in the proof of Lemma 5.4 that µ ∈
L1(0, T ). Meanwhile, Lemma 5.2(b) and the Sobolev embedding indicate v ∈ C([0, T ];H2(Ω)∩
H1

0 (Ω)) ⊂ C(Ω × [0, T ]), yielding v(x0, · ) ∈ C[0, T ] ⊂ L1(0, T ). Therefore, the Titchmarsh

convolution theorem (see [128]) implies the existence of T1, T2 ≥ 0 satisfying T1 + T2 ≥ T such

that µ(t) = 0 for almost all t ∈ (0, T1) and v(x0, t) = 0 for all t ∈ [0, T2]. However, since the

initial value g of (5.14) satisfies g ≥ 0 and g 6≡ 0, Theorem 5.1 asserts that v(x0, · , ) only admits

at most a finite number of zero points. As a result, the only possibility is T2 = 0 and thus

T1 = T . Together with the fact that µ ∈ C(0, T ], we have proved

µ(t) = 0 (t ∈ (0, T ]). (5.18)

Next, we claim that ρ(0) = 0. In fact, if we assume contrarily that ρ(0) 6= 0, then by

ρ ∈ C1[0, T ] and the representation (5.16) for µ, we estimate

|µ(t)| ≥ 1

Γ(α)

( |ρ(0)|
t1−α

−
∫ t

0

|ρ′(s)|
(t− s)1−α

ds

)
≥ 1

Γ(α)

( |ρ(0)|
t1−α

− ‖ρ
′‖C[0,T ]

α
tα
)

(0 < t ≤ T ).

Therefore, for sufficiently small t > 0 such that t < α |ρ(0)|/‖ρ′‖C[0,T ], the above inequality

indicates µ(t) 6= 0, which contradicts with (5.18). Moreover, there holds limt→0 µ(t) = 0.

Finally, it suffices to utilize the following reverse formula

ρ(t) =
1

Γ(1 − α)

∫ t

0

µ(s)

(t− s)α ds,

which was already obtained as a byproduct in (5.17). The above formula, together with (5.18)

and limt→0 µ(t) = 0, imply ρ ≡ 0 in [0, T ] immediately, which completes the proof.



Chapter 6

Initial-Boundary Value Problems

for Multi-Term Time-Fractional

Diffusion Equations with Positive

Constant Coefficients

In this chapter, we investigate the well-posedness and the long-time asymptotic behavior

for initial-boundary value problems for multi-term time-fractional diffusion equations. The

governing equation under consideration includes a linear combination of Caputo derivatives in

time with decreasing orders in (0, 1) and positive constant coefficients. By exploiting several

important properties of multinomial Mittag-Leffler functions, various estimates follow from the

explicit solutions in form of these special functions. Then we prove the uniqueness and contin-

uous dependency of the solutions on initial values and source terms. As a direct application,

we further verify the Lipschitz continuous dependency of solutions with respect to coefficients

and orders of fractional orders, which is fundamental for the optimization approach to the re-

lated coefficient inverse problem. Finally, by a Laplace transform argument, it turns out that

the decay rate of the solution as t → ∞ is given by the minimum order of the time-fractional

derivatives.

6.1 Introduction

Let Ω be an open bounded domain in Rd with a smooth boundary (for example, of C∞ class)

and T > 0 be fixed arbitrarily. For a fixed positive integer m, let αj and qj (j = 1, . . . ,m) be

positive constants such that 1 > α1 > · · · > αm > 0. Consider the following initial-boundary

value problem for the multi-term time-fractional diffusion equation





m∑

j=1

qj∂
αj

t u(x, t) +Au(x, t) = F (x, t) (x ∈ Ω, 0 < t ≤ T ),

u(x, 0) = a(x) (x ∈ Ω),

u(x, t) = 0 (x ∈ ∂Ω, 0 < t ≤ T ),

(6.1)

(6.2)

(6.3)

where the elliptic operator A and the Caputo derivative ∂
αj

t are defined as that in Chapter

5, and we can assume q1 = 1 without lose of generality. The regularities of the initial value

107
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a and the source term F will be specified later, and we abbreviate α := (α1, . . . , αm) and

q := (q1, . . . , qm) for later convenience.

In the case of m = 1, equation (6.1) is reduced to its single-term counterpart (5.1). As was

mentioned in the previous chapter, the above formulation has been studied extensively from

different aspects due to its vast capability of modeling the diffusion in heterogeneous media

(see Adams and Gelhar [58], Ginoa et al. [72], Hatano and Hatano [76], Nigmatullin [114]

and the references therein). As a natural extension, equation (6.1) is expected to improve the

modeling accuracy in depicting the anomalous diffusion due to its potential feasibility. However,

to the authors’ best knowledge, published works on this extension are quite limited in spite of

rich literatures on its single-term version. Luchko [103] developed the maximum principle

for problem (6.1)–(6.3) and constructed a generalized solution when F = 0 by means of the

multinomial Mittag-Leffler functions. Jiang et al. [77] considered fractional derivatives in both

time and space and derived analytical solutions. As for the asymptotic behavior, for m = 2 it

reveals in Mainardi et al. [106] that the dominated decay rate of the solution is related to the

minimum order of time fractional derivative. On the other hand, Beckers and Yamamoto [60]

investigated (6.1)–(6.3) with m = 2 and q2 = q2(x) and obtained a weaker regularity result

than that in [121]. Following the same line, Li and Yamamoto [94] further generalized the

formulation to m ≥ 2 and qj = qj(x) (j = 2, . . . ,m) and obtained the analyticity and the weak

unique continuation. On the inverse problems, we refer to [95] for the determination of m, α

and constant q, and [87] for that of m, α, x-dependent q and a zeroth order coefficient in A.
Very recently, Jin et al. [78] developed semidiscrete and fully discrete Galerkin finite element

methods for (6.1)–(6.3).

In this chapter, we are concerned with the well-posedness and the long-time asymptotic

behavior of the solution to the initial-boundary value problem (6.1)–(6.3), and we attempt to

establish results parallel to that for the single-term case. On the basis of the explicit representa-

tion of the solution, by exploiting several properties of the multinomial Mittag-Leffler function,

we give estimates for the solution, which imply the continuous dependency of solutions on ini-

tial values and source terms. Next we will deduce the Lipschitz stability of the solution to

(6.1)–(6.3) with respect to αj , qj (j = 1, . . . ,m) and diffusion coefficients. As a direct corollary,

we can establish an existence result for the optimization approach to the simultaneous recon-

struction of various coefficients. Finally, for the long-time asymptotic behavior, we employ the

Laplace transform in time to show that the decay rate as t→∞ is exactly t−αm , where αm is

the minimum order of Caputo derivatives in time.

The rest of this chapter is organized as follows. The main results concerning problem (6.1)–

(6.3) are collected in Section 6.2: Theorems 6.1–6.3 and Corollary 6.1 are concerned with the

well-posedness, and Theorem 6.4 gives the long-time asymptotic estimate of the solution. The

proofs of the well-posedness results are given in Section 6.3 on the basis of several properties of

the multinomial Mittag-Leffler functions. Due to the difference of techniques, the asymptotic

behavior is proved in Section 6.4. Next, the proofs of technical lemmata on the multinomial

Mittag-Leffler functions are postponed to Section 6.5. Finally, concluding remarks are given in

Section 6.6.

6.2 Main results

In this section, we state the main results obtained in this chapter. More precisely, we give

a priori estimates for the solution u to (6.1)–(6.3) with respect to the initial value (Theorem

6.1), the source term (Theorem 6.2), and Lipschitz continuous dependency of the solutions on
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coefficients and orders (Theorem 6.3) so that stability and uniqueness follow, and we describe

the asymptotic behavior of the solution in Theorem 6.4.

To this end, first we recall the settings and notations introduced in Section 5.2, especially

the eigensystem {(λn, ϕn)}∞n=1 of the operator A as well as the fractional power Aγ and the

induced function spaces D(Aγ) with γ ≥ 0. On the other hand, the orders α = (α1, . . . , αm)

and the coefficients q = (q1, . . . , qm) are restricted in the admissible sets

U := {(α1, . . . , αm) ∈ R
m; α ≥ α1 ≥ α2 ≥ · · · ≥ αm ≥ α},

V := {(q1, . . . , qm) ∈ R
m; q1 = 1, qj ∈ [q, q] (j = 2, . . . ,m)},

(6.4)

where we fix 1 > α > α > 0 and q > q > 0. Without lose of generality, here we allow the

coincidence of some adjacent orders in α. Actually, if it happens that αj = αj+1, then the

governing equation (6.1) just degenerates to its lower order version.

Now we are well-prepared to consider the dependency of the solution u to the initial-

boundary value problem (6.1)–(6.3) upon the initial value a and the source term F . In view of

the superposition principle, it suffices to deal with the cases F = 0, a 6= 0 and a = 0, F 6= 0

separately.

Theorem 6.1 Let F = 0. Fix α ∈ U , q ∈ V and a ∈ D(Aγ) with some γ ∈ [0, 1], where we

interpret 1
1−γ = ∞ if γ = 1. Concerning the solution u to the initial-boundary value problem

(6.1)–(6.3), the followings hold true.

(a) There is a unique solution u ∈ C([0, T ];L2(Ω))∩C((0, T ];H2(Ω)∩H1
0 (Ω)) to (6.1)–(6.3).

Actually, u ∈ L 1
1−γ (0, T ;H2(Ω) ∩H1

0 (Ω)) and there exists a constant C = C(Ω, T,α, q,A) > 0

such that

‖u‖C([0,T ];L2(Ω)) ≤ C‖a‖L2(Ω), (6.5)

‖u( · , t)‖H2(Ω) ≤ C‖a‖D(Aγ)t
α1(γ−1) (0 < t ≤ T ). (6.6)

(b) We have

lim
t→0
‖u( · , t)− a‖D(Aγ) = 0. (6.7)

(c) There holds ∂tu ∈ C((0, T ];L2(Ω)). Moreover, there is a constant C = C(Ω, T,α, q,A) >
0 such that

‖∂tu( · , t)‖L2(Ω) ≤ C‖a‖D(Aγ)t
α1γ−1 (0 < t ≤ T ). (6.8)

(d) If γ > 0, then ∂βt u ∈ L
1

1−γ (0, T ;L2(Ω)) for 0 < β ≤ α1. Moreover, for 0 < β < 1, there

exists a constant C = C(Ω, T,α, q,A) > 0 such that

‖∂βt u( · , t)‖L2(Ω) ≤ C‖a‖D(Aγ)t
α1γ−β (0 < t ≤ T ). (6.9)

We note that for larger γ ∈ (0, 1], the assumption a ∈ D(Aγ) on an initial value is stronger,

and estimates (6.6)–(6.9) are improved, that is, the singularities of the right-hand side at t = 0

in (6.6), (6.8) and (6.9) are weaker and the norm on the left-hand side of (6.7) is stronger.

Theorem 6.2 Let a = 0. Fix α ∈ U , q ∈ V and F ∈ Lp(0, T ;D(Aγ)) with some p ∈ [1,∞]

and γ ∈ [0, 1], where we interpret 1/p = 0 if p = ∞. Concerning the solution u to the initial-

boundary value problem (6.1)–(6.3), the followings hold true.

(a) If p = 2, then there is a unique solution u ∈ L2(0, T ;D(Aγ+1)) to (6.1)–(6.3). Moreover,

there exists a constant C = C(Ω, T,α, q,A) > 0 such that

‖u‖L2(0,T ;D(Aγ+1)) ≤ C‖F‖L2(0,T ;D(Aγ)).
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(b) If p 6= 2, then there is a unique solution u ∈ ⋂0<ε≤1L
p(0, T ;D(Aγ+1−ε)) to (6.1)–(6.3).

Moreover, there exists a constant C = C(Ω, T,α, q,A) > 0 such that

‖u‖Lp(0,T ;D(Aγ+1−ε)) ≤
C

ε
‖F‖Lp(0,T ;D(Aγ)) for each ε ∈ (0, 1]. (6.10)

(c) If α1p > 1, then

lim
t→0
‖u( · , t)‖D(Aκ) = 0 (6.11)

for 0 < κ < γ + 1− 1
α1p

.

For larger γ, the conclusions of Theorem 6.2(a) is improved, and in (6.10) if we would like

to estimate the left-hand side by a stronger norm in D(Aγ+1−ε), then ε > 0 should be smaller

at the expense that the factor C
ε of the right-hand side should be larger. The role of ε is the

same for estimate (6.15) later.

Remark 6.1 We compare the conclusions in Theorems 6.1–6.2 with those of single-term

cases obtained in [121]. In case of the homogeneous source term, i.e. F = 0 in (6.1), it turns out

that Theorem 6.1 is a parallel extension of its single-term counterpart. For instance, in Theorem

6.1 the regularity results for initial values a ∈ L2(Ω), a ∈ H1
0 (Ω) and a ∈ H2(Ω)∩H1

0 (Ω) agree

with those in [121, Theorem 2.1]. Especially, it will be readily seen from the proof of Theorem

6.1 that the regularity of the solution u at any positive time can be improved from the initial

regularity by 2 orders in space, namely, u( · , t) ∈ D(Aγ+1) if a ∈ D(Aγ) for 0 < t ≤ T .
On the other hand, if the source term F does not vanish, the improvement of regularity in

space is strictly less than 2 orders except for the special case that F is L2 in time. For example,

if F ∈ L2(Ω × (0, T )), then it follows from Theorem 6.2(a) that u ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)),

which coincides with [121, Theorem 2.2]. However, if F ∈ Lp(0, T ;L2(Ω)) with p 6= 2, then

Theorem 6.2(b) asserts u ∈ Lp(0, T ;D(A1−ε)), where ε ∈ (0, 1] can be arbitrarily small but is

never zero. The technical reason is that only in case of p = 2 one can take advantage of a newly

established property in Bazhlekova [59] (see Lemma 6.4).

Now as the elliptic operator A, we consider a special but physically important form

ADu(x, t) := −div(D(x)∇u(x, t)),

where D = D(x) denotes a diffusion coefficient. On the basis of these established results, we

can consider the dependency of the solution on D and the orders of Caputo derivatives. More

precisely, we evaluate the difference between the solutions u and ũ to





m∑

j=1

qj∂
αj

t u+ADu = 0 in Ω× (0, T ],

u = a in Ω× {0},
u = 0 on ∂Ω× (0, T ]

(6.12)

and 



m∑

j=1

q̃j∂
α̃j

t ũ+AD̃ũ = 0 in Ω× (0, T ],

ũ = a in Ω× {0},
ũ = 0 on ∂Ω× (0, T ]

(6.13)

respectively.
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Theorem 6.3 Fix a ∈ D(Aγ) with some γ ∈ (0, 1]. Let u and ũ be the solutions to (6.12)

and (6.13) respectively, where α, α̃ ∈ U , q, q̃ ∈ V (see definition (6.4) for U ,V) and

D, D̃ ∈ W := {D ∈ C1(Ω); D ≥ δ in Ω , ‖D‖C1(Ω) ≤M} (6.14)

with fixed δ > 0 and M > 0. Then there exists a constant C = C(Ω, T, ‖a‖D(Aγ),U ,V ,W) > 0

such that

‖u− ũ‖
L

1
1−γ (0,T ;D(A1−ε))

≤ C

ε




m∑

j=1

|αj − α̃j |+
m∑

j=2

|qj − q̃j |+ ‖D − D̃‖C1(Ω)


 (6.15)

for each ε ∈ (0, 1] if 0 < γ < 1
2 , and

‖u− ũ‖L2(0,T ;H2(Ω)) ≤ C




m∑

j=1

|αj − α̃j |+
m∑

j=2

|qj − q̃j |+ ‖D − D̃‖C1(Ω)


 (6.16)

if γ ≥ 1
2 .

The above theorem extends a similar Lipschitz stability result in [96] for the single-term

case. It is also fundamental for the optimization approach to the related coefficient inverse

problem by extra measurements. As a typical example, we apply Theorem 6.3 to establish

an existence result for the simultaneous reconstruction of α, q, D(x) by the partial boundary

observation of the normal derivative of the solution.

Corollary 6.1 Fix p > d and a subboundary Σ ⊂ ∂Ω arbitrarily. Denote by u(α, q, D) the

unique solution to (6.12) with a ∈ L2(Ω),α ∈ U , q ∈ V and

D ∈ W̃ :=
{
D ∈ W 2,p(Ω);D ≥ δ in Ω , ‖D‖W 2,p(Ω) ≤ M̃

}
(6.17)

with fixed δ > 0 and M̃ > 0, where U ,V was defined in (6.4). Then for any given w ∈
L1(0, T ;L2(Σ)), there exists a minimizer to the minimization problem

min
(α,q,D)∈U×V×W̃

‖∂νu(α, q, D)− w‖L1(0,T ;L2(Σ)).

In [96], a similar result for the single-term case was established under the homogeneous

Neumann boundary condition with the observation data u(α,D) on Σ× (0, T ), which is phys-

ically more natural than the setting in Corollary 6.1. In fact, one can give parallel proofs for

Theorems 6.1–6.3 with the boundary condition ∂νu = 0 on ∂Ω × (0, T ] instead of (6.3), but

here we omit this part for consistency.

In Sakamoto and Yamamoto [121], the decay rate of the solution to the single-term time-

fractional diffusion equation (5.1) was shown to be t−α as t→∞. Here we give a generalization

for the multi-term case where we specify the principal term of the solution as t→∞.

Theorem 6.4 Let F = 0. Fix α ∈ U , q ∈ V and a ∈ L2(Ω). Then there is a unique

solution u ∈ C([0,∞);L2(Ω)) ∩ C((0,∞);H2(Ω) ∩ H1
0 (Ω)) to (6.1)–(6.3). Moreover, there

exists a constant C = C(Ω, T,α, q,A) > 0 such that

∥∥∥∥u( · , t)−
qm

Γ(1− αm)

A−1a

tαm

∥∥∥∥
H2(Ω)

≤ C‖a‖L2(Ω)

tmin{αm−1,2αm}
as t→∞. (6.18)
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Remark 6.2 We explain the significance of the Theorem 6.4. It reveals that the decay rate

of u( · , t) in sense of H2(Ω) is exactly t−αm as t → ∞. In fact, inequality (6.18) implies that

there exist constants C2 > C1 > 0 such that

C1‖a‖L2(Ω)t
−αm ≤ ‖u( · , t)‖H2(Ω) ≤ C2‖a‖L2(Ω)t

−αm as t→∞. (6.19)

Consequently, it turns out that the decay rate t−αm is the best possible. In other words, if

‖u( · , t)‖H2(Ω) ≤ C t−β as t→∞

for some order β > αm and some constant C > 0, then u(x, t) = 0 for x ∈ Ω and t > 0.

Actually, in this case it is easily inferred from the lower bound in (6.19) that there should be

a = 0 in Ω. Therefore, Theorem 6.1 and the upper bound in (6.19) immediately imply u ≡ 0

in Ω× (0,∞). Furthermore, (6.18) also gives the convergence rate of the approximation

u( · , t)− qm
Γ(1− αm)

A−1a

tαm
→ 0 in H2(Ω) as t→∞,

that is, t−min{αm−1,2αm}.

6.3 Proofs of main results

In this section, we give proofs for the well-posedness results stated in Section 6.2.

In the discussion of single-term time-fractional diffusion equations, it turns out that the

solutions can be explicitly represented by the usual Mittag-Leffler function (5.4), and it plays

a remarkable role especially for obtaining estimates for the stability. Since explicit solutions

to the multi-term case are also available by using a generalized form of (5.4) called the multi-

nomial Mittag-Leffler function, we shall take advantage of several important properties of this

generalization so that similar arguments are still feasible for multi-term time-fractional diffusion

equations. Here we only state those properties as technical lemmata in this section and provide

the proofs later in Section 6.5.

The multinomial Mittag-Leffler function is defined as (see Luchko and Gorenflo [104])

E(β1,...,βm),β0
(z1, . . . , zm) :=

∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)
∏m

j=1 z
kj

j

Γ(β0 +
∑m

j=1 βjkj)
, (6.20)

where we assume 0 < β0 < 2, 0 < βj < 1 and zj ∈ C (j = 1, . . . ,m). Here (k; k1, . . . , km)

denotes the multinomial coefficient

(k; k1, . . . , km) :=
k!

k1! · · · km!
with k =

m∑

j=1

kj ,

where kj (1 ≤ j ≤ m) are non-negative integers.

Concerning the relation between multinomial Mittag-Leffler functions with different param-

eters, we have the following lemma.

Lemma 6.1 Let 0 < β0 < 2, 0 < βj < 1 (j = 1, . . . ,m) and zj ∈ C (j = 1, . . . ,m) be fixed.

Then
1

Γ(β0)
+

m∑

j=1

zjE(β1,...,βm),β0+βj
(z1, . . . , zm) = E(β1,...,βm),β0

(z1, . . . , zm).
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Concerning the regularity of the solution to a single-term time-fractional diffusion equation,

the estimate (see [116, p. 35])

|Eα,β(−η)| ≤
C

1 + η
(η ≥ 0)

is essential. Here we extend the above inequality to the multinomial case.

Lemma 6.2 Let 0 < β < 2 and 1 > α1 > · · · > αm > 0 be given. Assume that α1π/2 <

µ < α1π, µ ≤ |arg(z1)| ≤ π and there exists K > 0 such that −K ≤ zj < 0 (j = 2, . . . ,m).

Then there exists a constant C > 0 depending only on µ, K, αj (j = 1, . . . ,m) and β such that

|E(α1,α1−α2,...,α1−αm),β(z1, . . . , zm)| ≤ C

1 + |z1|
.

For later use, we adopt the abbreviation

E
(n)
α′,β(t) := E(α1,α1−α2,...,α1−αm),β(−λntα1 ,−q2tα1−α2 , . . . ,−qmtα1−αm) (t > 0), (6.21)

where λn is the n-th eigenvalue of A, 0 < β < 2, and αj , qj are those positive constants in

(6.1). Especially, regarding the derivative of tα1E
(n)
α′,1+α1

(t) with respect to t > 0, we state the

following technical lemma.

Lemma 6.3 Let 1 > α1 > · · · > αm > 1. Then

d

dt

{
tα1E

(n)
α′,1+α1

(t)
}
= tα1−1E

(n)
α′,α1

(t) (t > 0).

Now we are ready to employ the multinomial Mittag-Leffler functions to show the well-

posedness results.

6.3.1 Proof of Theorem 6.1

When the source term F vanishes, it was shown in [103] that the explicit solution to (6.1)–

(6.3) is given by

u( · , t) =
∞∑

n=1

(
1− λntα1E

(n)
α′,1+α1

(t)
)
(a, ϕn)ϕn, (6.22)

where ϕn is the n-th eigenfunction of A. With the aid of Lemmata 6.1–6.3, it is straightforward

to give estimates for the solution by the initial value.

Completion of Proof of Theorem 6.1. Let a ∈ D(Aγ) with some fixed γ ∈ [0, 1]. In this proof,

C > 0 denotes generic positive constants depending at most on Ω, T,α, q,A but independent

of the initial value a, which may vary from line by line.

(a) First, a direct application of Lemma 6.2 yields

∣∣∣1− λntα1E
(n)
α′,1+α1

(t)
∣∣∣ ≤ 1 + λnt

α1
C

1 + λntα1
≤ C.

Thus, we take advantage of (6.22) to derive

‖u( · , t)‖L2(Ω) =

{
∞∑

n=1

∣∣∣1− λntα1E
(n)
α′,1+α1

(t)
∣∣∣
2

|(a, ϕn)|2
}1/2

≤ C‖a‖L2(Ω)
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for 0 < t ≤ T , where we use the fact that {ϕn} forms an orthonormal basis of L2(Ω). Since the

summation in (6.22) converges in L2(Ω) uniformly in t ∈ [0, T ], we get u ∈ C([0, T ];L2(Ω)) or

(6.5). Furthermore, by the definition of D(A), we see

‖u( · , t)‖2D(A) =

∞∑

n=1

(
λn

∣∣∣1− λntα1E
(n)
α′,1+α1

(t)
∣∣∣
)2
|(a, ϕn)|2.

In order to treat the term 1− λntα1E
(n)
α′,1+α1

(t), we substitute

β0 = 1, β1 = α1, z1 = −λntα1 , βj = α1 − αj and zj = −qjtα1−αj (j = 2, . . . ,m)

in Lemma 6.1 and then utilize Lemma 6.2 to deduce

∣∣∣1− λntα1E
(n)
α′,1+α1

(t)
∣∣∣ =

∣∣∣∣∣∣
E

(n)
α′,1(t) +

m∑

j=2

qjt
α1−αjE

(n)
α′,1+α1−αj

(t)

∣∣∣∣∣∣

≤
∣∣∣E(n)

α′,1(t)
∣∣∣+ C

m∑

j=2

tα1−αj

∣∣∣E(n)
α′,1+α1−αj

(t)
∣∣∣ ≤ C

m∑

j=1

tα1−αj

1 + λntα1
.

Therefore, for 0 < t ≤ T , we estimate

‖u( · , t)‖2D(A) =
∞∑

n=1

∣∣∣λ1−γ
n

(
1− λntα1E

(n)
α′,1+α1

(t)
)∣∣∣

2

|λγn(a, ϕn)|2

≤ C2
∞∑

n=1




m∑

j=1

λ1−γ
n tα1−αj

1 + λntα1




2

|λγn(a, ϕn)|2

≤ C2
∞∑

n=1




m∑

j=1

(λnt
α1)1−γ

1 + λntα1
tα1γ−αj




2

|λγn(a, ϕn)|2

≤ C2




m∑

j=1

tα1γ−αj




2
∞∑

n=1

|λγn(a, ϕn)|2 ≤
(
C‖a‖D(Aγ)t

α1(γ−1)
)2
,

where we use the fact

(λnt
α1)1−γ

1 + λntα1
≤





1

1 + λntα1
if λnt

α1 ≤ 1

λnt
α1

1 + λntα1
if λnt

α1 ≥ 1




≤ 1

in the third inequality. This, together with the fact D(A) ⊂ H2(Ω), yield the estimate (6.6).

Furthermore, it follows immediately from (6.6) and α1 < 1 that u ∈ L 1
1−γ (0, T ;H2(Ω)∩H1

0 (Ω)).

(b) In order to investigate the asymptotic behavior near t = 0, first we have

‖u( · , t)− a‖2D(Aγ) =

∞∑

n=1

∣∣∣λntα1E
(n)
α′,1+α1

(t)
∣∣∣
2

|λγn(a, ϕn)|2 ≤
(
C‖a‖D(Aγ)

)2
<∞

for 0 ≤ t ≤ T by a direct calculation and Lemma 6.2. On the other hand, in view of Lemma

6.1, the term λnt
α1E

(n)
α′,1+α1

(t) can be rewritten as

λnt
α1E

(n)
α′,1+α1

(t) = −(E(n)
α′,1(t)− 1)−

m∑

j=2

qjt
α1−αjE

(n)
α′,1+α1−αj

(t).
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Thanks to the fact that limt→0(E
(n)
α′,1(t) − 1) = 0 and the boundedness of E

(n)
α′,1+α1−αj

(j =

2, . . . ,m) by Lemma 6.2 for each n = 1, 2, . . ., the above observation implies

lim
t→0

(λnt
α1E

(n)
α′,1+α1

(t)) = 0 (∀n = 1, 2, . . .).

Therefore, (6.7) follows immediately from Lebesgue’s dominated convergence theorem.

(c) In order to deal with ∂tu, we make use of Lemma 6.3 to obtain

∂tu( · , t) = −tα1−1
∞∑

n=1

λnE
(n)
α′,α1

(t)(a, ϕn)ϕn.

Then a similar argument to that for (6.6) indicates

‖∂tu( · , t)‖2L2(Ω) = t2(α1−1)
∞∑

n=1

∣∣∣λ1−γ
n E

(n)
α′,α1

(t)
∣∣∣
2

|λγn(a, ϕn)|2

≤ C2t2(α1−1)
∞∑

n=1

(
(λnt

α1)1−γ

1 + λntα1
tα1(γ−1)

)2

|λγn(a, ϕn)|2

≤
(
C‖a‖D(Aγ)t

α1γ−1
)2

(0 < t ≤ T )

or (6.8). This implies ∂tu ∈ C((0, T ];L2(Ω)) immediately.

(d) Finally, to give estimates for ∂βt u with 0 < β < 1 when γ > 0, we employ (6.8) and turn

to the definition of the Caputo derivative to obtain

‖∂βt u( · , t)‖L2(Ω) =
1

Γ(1− β)

∥∥∥∥
∫ t

0

∂su( · , s)
(t− s)β ds

∥∥∥∥
L2(Ω)

≤ C
∫ t

0

‖∂su( · , s)‖L2(Ω)

(t− s)β ds

≤ C‖a‖D(Aγ)

∫ t

0

sα1γ−1(t− s)−β ds ≤ C‖a‖D(Aγ)t
α1γ−β (0 < t ≤ T ),

that is, (6.9), where the first inequality follows from Minkowski’s inequality for integrals. Espe-

cially, as long as β ≤ α1, there holds α1γ − β > γ − 1 and obviously ∂βt u ∈ L
1

1−γ (0, T ;L2(Ω)).

Collecting all the results above, we complete the proof of Theorem 6.1.

6.3.2 Proof of Theorem 6.2

In order to construct an explicit solution when the initial value a vanishes, we apply the

eigenfunction expansion method. In other words, we seek for a solution to (6.1)–(6.3) of the

particular form

u( · , t) =
∞∑

n=1

Tn(t)ϕn (0 < t ≤ T ), (6.23)

where ϕn is the n-th eigenfunction of A. The substitution of (6.23) into (6.1) yields

∞∑

n=1




m∑

j=1

qj∂
αj

t Tn(t)


ϕn = −

∞∑

n=1

λnTn(t)ϕn +

∞∑

n=1

(F ( · , t), ϕn)ϕn.

Therefore, it is readily seen from the orthogonality of {ϕn} and the homogeneous initial condi-

tion (6.3) that Tn satisfies an initial value problem for an ordinary differential equation





m∑

j=1

qj∂
αj

t Tn(t) + λnTn(t) = (F ( · , t), ϕn) (0 < t ≤ T ),

Tn(0) = 0.
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Then it follows from [104, Theorem 4.1] that

Tn(t) =

∫ t

0

sα1−1E
(n)
α′,α1

(s)(F ( · , t− s), ϕn) ds,

implying that the solution takes the form of a convolution

u( · , t) =
∫ t

0

U(s)F ( · , t− s) ds, (6.24)

where

U(t)f := tα1−1
∞∑

n=1

E
(n)
α′,α1

(t)(f, ϕn)ϕn. (6.25)

Before proceeding to the proof, we introduce a key lemma for showing Theorem 6.2(a).

Lemma 6.4 (see [59, Theorem 3.2]) The function tα1−1E
(n)
α′,α1

(t) is positive for t > 0.

Completion of Proof of Theorem 6.2. Let F ∈ Lp(0, T ;D(Aγ)) with some fixed p ∈ [1,∞] and

γ ∈ [0, 1]. In this proof, C > 0 denotes generic positive constants depending at most on

Ω, T,α, q,A but independent of F and the choice of ε.

(a) Let p = 2. According to the expression (6.24)–(6.25), formally we write

‖u( · , t)‖2D(A) =

∞∑

n=1

λ2n

(∫ t

0

sα1−1E
(n)
α′,α1

(s)(F ( · , t− s), ϕn) ds

)2

.

Using Young’s inequality for convolutions, we estimate

‖u‖2L2(0,T ;D(A)) =

∞∑

n=1

λ2n

∥∥∥∥
∫ t

0

sα1−1E
(n)
α′,α1

(s)(F ( · , t− s), ϕn) ds

∥∥∥∥
2

L2(0,T )

≤
∞∑

n=1

(
λn

∫ T

0

tα1−1|E(n)
α′,α1

(t)| dt
)2

‖(F ( · , t), ϕn)‖2L2(0,T ).

By Lemma 6.4, we can remove the absolute value of E
(n)
α′,α1

(t) and apply Lemma 6.3 to derive

∫ T

0

tα1−1|E(n)
α′,α1

(t)| dt =
∫ T

0

tα1−1E
(n)
α′,α1

(t) dt = Tα1E
(n)
α′,1+α1

(T ).

Consequently, we use Lemma 6.2 to conclude

‖u‖2L2(0,T ;H2(Ω)) ≤ C2‖u‖2L2(0,T ;D(A)) ≤ C2
∞∑

n=1

(
λnT

α1E
(n)
α′,1+α1

(T )
)2
‖(F ( · , t), ϕn)‖2L2(0,T )

≤ C2
∞∑

n=1

‖(F ( · , t), ϕn)‖2L2(0,T ) =
(
C‖F‖L2(Ω×(0,T ))

)2
.

(b) Fix ε ∈ (0, 1] arbitrarily. First we give an estimate for (6.25) with f ∈ D(Aγ). Similarly

to the proof of Theorem 6.1, we apply Lemma 6.2 to deduce

‖U(t)f‖2D(Aγ+1−ε) = t2(α1−1)
∞∑

n=1

∣∣∣λ1−ε
n E

(n)
α′,α1

∣∣∣
2

|λγn(f, ϕn)|2

≤ C2t2(α1−1)
∞∑

n=1

(
(λnt

α1)1−ε

1 + λntα1
tα1(ε−1)

)2

|λγn(f, ϕn)|2
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≤
(
C‖f‖D(Aγ)t

α1ε−1
)2

(0 < t ≤ T ).

Using (6.24) and Minkowski’s inequality for integrals, formally we have

‖u( · , t)‖D(Aγ+1−ε) =

∥∥∥∥
∫ t

0

U(s)F ( · , t− s) ds
∥∥∥∥
D(Aγ+1−ε)

≤
∫ t

0

‖U(s)F ( · , t− s)‖D(Aγ+1−ε) ds

≤ C
∫ t

0

‖F ( · , t− s)‖D(Aγ)s
α1ε−1 ds (0 < t ≤ T ). (6.26)

Finally, it follows from Young’s inequality for convolutions that

‖u‖Lp(0,T ;D(Aγ+1−ε)) ≤ C
∥∥∥∥
∫ t

0

‖F ( · , t− s)‖D(Aγ)s
α1ε−1 ds

∥∥∥∥
Lp(0,T )

≤ C‖F‖Lp(0,T ;D(Aγ))

∫ T

0

tα1ε−1 dt ≤ C

ε
‖F‖Lp(0,T ;D(Aγ)).

This completes the verification of (6.10).

(c) Assume α1p > 1 and fix κ ∈ (0, γ + 1 − 1
α1p

) arbitrarily. To investigate the asymptotic

behavior near t = 0, we apply Hölder’s inequality to (6.26) with ε = γ + 1− κ to see

‖u( · , t)‖D(Aκ) ≤ C‖F‖Lp(0,t;D(Aγ))

(∫ t

0

s(α1(γ+1−κ)−1)p′

ds

)1/p′

,

where p′ is the conjugate number of p, i.e. 1/p + 1/p′ = 1. Since κ < γ + 1 − 1
α1p

, we

see (α1(γ + 1 − κ) − 1)p′ > −1 and then limt→0

∫ t

0 s
(α1(γ+1−κ)−1)p′

ds = 0, indicating (6.11)

immediately.

6.3.3 Proof of Theorem 6.3 and Corollary 6.1

As a direct application of Theorems 6.1–6.2, it is straightforward to show the Lipschitz

stability of the solution with respect to various coefficients.

Proof of Theorem 6.3. Let a ∈ D(Aγ) with some fixed γ ∈ (0, 1]. In this proof, C > 0 denotes

general constants depending at most on Ω, T, ‖a‖D(Aγ),U ,V ,W but independent of the specific

choices of the coefficients and ε ∈ (0, 1].

First, a direct application of Theorem 6.1 immediately yields u ∈ Lp(0, T ;H2(Ω) ∩H1
0 (Ω))

and ∂βt u ∈ Lp(0, T ;L2(Ω)) for 0 < β ≤ α1, where we abbreviate p := 1
1−γ . More precisely,

there exists C > 0 such that

‖u‖Lp(0,T ;H2(Ω)) ≤ C, ‖∂βt u‖Lp(0,T ;L2(Ω)) ≤ C (0 < β ≤ α1). (6.27)

On the other hand, by taking the difference of systems (6.13) and (6.12), it turns out that the

system for v := ũ− u reads





m∑

j=1

q̃j∂
α̃j

t v = LD̃v + F in Ω× (0, T ],

v = 0 in Ω× {0},
v = 0 on ∂Ω× (0, T ],
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where we set

F :=
m∑

j=1

q̃j(∂
αj

t u− ∂α̃j

t u) +
m∑

j=2

(qj − q̃j)∂αj

t u+ LD̃−Du.

Without loss of generality, we assume α1 ≥ α̃1, or otherwise we investigate v := u− ũ instead.

Therefore, together with D, D̃ ∈ C1(Ω), we see F ∈ Lp(0, T ;L2(Ω)) from (6.27). Now it is

straightforward to employ Theorem 6.2(b) to obtain

‖u− ũ‖Lp(0,T ;D(A1−ε)) = ‖v‖Lp(0,T ;D(A1−ε)) ≤
C

ε
‖F‖Lp(0,T ;L2(Ω)). (6.28)

Especially, if γ ≥ 1
2 , we see p = 1

1−γ ≥ 2 and hence Lp(Ω × (0, T )) ⊂ L2(0, T ;L2(Ω)). It then

follows from Theorem 6.2(a) that

‖u− ũ‖L2(0,T ;H2(Ω)) ≤ C‖F‖L2(Ω×(0,T )) ≤ C‖F‖Lp(0,T ;L2(Ω)). (6.29)

Therefore, it suffices to dominate ‖F‖Lp(0,T ;L2(Ω)) by the difference of coefficients.

To this end, first it is readily seen from (6.27) that

‖F‖Lp(0,T ;L2(Ω)) ≤
m∑

j=1

q̃j‖∂αj

t u− ∂α̃j

t u‖Lp(0,T ;L2(Ω)) +

m∑

j=2

|qj − q̃j |‖∂αj

t u‖Lp(0,T ;L2(Ω))

+ C‖D − D̃‖C1(Ω)‖u‖Lp(0,T ;H2(Ω))

≤ C




m∑

j=1

‖∂αj

t u− ∂α̃j

t u‖Lp(0,T ;L2(Ω)) +
m∑

j=2

|qj − q̃j |+ ‖D − D̃‖C1(Ω)


 .

To give an estimate for ∂
αj

t u− ∂α̃j

t u by |αj − α̃j |, we adopt a similar treatment as that in [96,

Proposition 1] and decompose it by definition as

∂
αj

t u( · , t)− ∂α̃j

t u( · , t) = 1

Γ(1 − αj)

∫ t

0

∂su( · , s)
(t− s)αj

ds− 1

Γ(1− α̃j)

∫ t

0

∂su( · , s)
(t− s)α̃j

ds

= I1j ( · , t) + I2j ( · , t),

where

I1j ( · , t) :=
Γ(1− α̃j)− Γ(1− αj)

Γ(1− α̃j)
∂
αj

t u( · , t),

I2j ( · , t) :=
1

Γ(1− α̃j)

∫ t

0

{(t− s)−αj − (t− s)−α̃j}∂su( · , s) ds.

Since αj , α̃j ∈ [α, α] and the Gamma function is Lipschitz continuous in [1−α, 1−α], it follows
from (6.27) that

‖I1j ‖Lp(0,T ;L2(Ω)) =
|Γ(1− α̃j)− Γ(1− αj)|

Γ(1− α̃j)
‖∂αj

t u‖Lp(0,T ;L2(Ω)) ≤ C|αj − α̃j |. (6.30)

In order to treat I2j , we recall the estimate (6.8) for ∂tu and utilize Minkowski’s inequality for

integrals to deduce

‖I2j ( · , t)‖L2(Ω) =
1

Γ(1− α̃j)

∥∥∥∥
∫ t

0

{(t− s)−αj − (t− s)−α̃j}∂su( · , s) ds
∥∥∥∥
L2(Ω)

≤
∫ t

0

|(t− s)−αj − (t− s)−α̃j |‖∂su( · , s)‖L2(Ω) ds
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≤ C
∫ t

0

|(t− s)−αj − (t− s)−α̃j | sα1γ−1 ds

= C

∫ t

0

|s−αj − s−α̃j | (t− s)α1γ−1 ds.

Using the mean value theorem, we have

|s−αj − s−α̃j | = | ln s| s−α̂j(s)|αj − α̃j |,

where α̂j(s) is a parameter depending on s such that

min{αj, α̃j} ≤ α̂j(s) ≤ max{αj , α̃j} ≤ α1

by the assumption α1 ≥ α̃1. Henceforth, we assume T > 1 without lose of generality. We prove

separately in the cases 0 < t ≤ 1 and 1 < t ≤ T . First, let 0 < t ≤ 1. Then there holds

0 < s < 1 and hence

s−α̂j(s) ≤ s−α1 = sεs−α1−ε,

where ε > 0 is sufficiently small such that α1(1 − γ) + ε < 1 − γ. Since | ln s| sε ≤ C for

0 < s < 1, we obtain

‖I2j ( · , t)‖L2(Ω) ≤ C|αj − α̃j |
∫ t

0

| ln s| s−α̂j(s)(t− s)α1γ−1 ds

≤ C|αj − α̃j |
∫ t

0

(| ln s| sε)s−α1−ε(t− s)α1γ−1 ds

≤ C|αj − α̃j | t−α1(1−γ)−ε (0 < t ≤ 1), (6.31)

where we apply the boundedness of the Beta function B(1 − α1 − ε, α1γ) and γ > 0. Second,

let 1 < t ≤ T . Then it is readily seen that t− s > 1− s for 0 < s < 1 and | ln s| s−α̂j(s) ≤ C for

1 ≤ s < t. These observation, together with the inequality (6.31) for t = 1, indicate

‖I2j ( · , t)‖L2(Ω) ≤ C|αj − α̃j |
(∫ 1

0

+

∫ t

1

)
| ln s| s−α̂j(s)(t− s)α1γ−1 ds

≤ C|αj − α̃j |
(∫ 1

0

| ln s| s−α̂j(s)(1− s)α1γ−1 ds+ C

∫ t

1

(t− s)α1γ−1 ds

)

≤ C|αj − α̃j | (1 < t ≤ T ). (6.32)

The combination of (6.31) and (6.32) immediately yields

‖I2j ( · , t)‖L2(Ω) ≤ C|αj − α̃j | t−α1(1−γ)−ε (0 < t ≤ T )

and thus ‖I2j ‖Lp(0,T ;L2(Ω)) ≤ C|αj − α̃j | because α1(1 − γ) + ε < 1 − γ = 1/p. Consequently,

collecting the estimate (6.30) for I1j , we conclude

‖F‖Lp(0,T ;L2(Ω)) ≤ C




m∑

j=1

‖I1j + I2j ‖Lp(0,T ;L2(Ω)) +
m∑

j=2

|qj − q̃j |+ ‖D − D̃‖C1(Ω)




≤ C




m∑

j=1

|αj − α̃j |+
m∑

j=2

|qj − q̃j |+ ‖D − D̃‖C1(Ω)


 ,

implying (6.15) and (6.16) with the aid of (6.28) and (6.29) respectively.
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On the basis of Theorem 6.3, we can immediately show Corollary 6.1 by a minimizing

sequence argument.

Proof of Corollary 6.1. Fix a ∈ L2(Ω). First, by the assumption p > d, it follows from the

embedding relation (see Adams [1])

W 2,p(Ω) ⊂ C1,1−d/p(Ω) ⊂⊂ C1(Ω)

that the embedding W 2,p(Ω) ⊂ C1(Ω) is compact. Especially, we have W̃ ⊂ W (see the

definitions (6.14) and (6.17) for W , W̃). Therefore, for any triples (α, q, D), (α̃, q̃, D̃) ∈ U ×
V × W̃ , the trace theorem and Theorem 6.3 with γ = 0, ε = 1/4 imply

∥∥∥∂νu(α, q, D)− ∂νu(α̃, q̃, D̃)
∥∥∥
L1(0,T ;L2(Σ))

≤ C
∥∥∥u(α, q, D)− u(α̃, q̃, D̃)

∥∥∥
L1(0,T ;D(A3/4))

≤ C




m∑

j=1

|αj − α̃j |+
m∑

j=2

|qj − q̃j |+ ‖D − D̃‖C1(Ω)


 . (6.33)

On the other hand, fixing the partial boundary observation data w ∈ L1(0, T ;L2(Σ)), we set

δ0 := inf
(α,q,D)∈U×V×W̃

‖∂νu(α, q, D)− w‖L1(0,T ;L2(Σ))

and pick a minimizing sequence {(α(`), q(`), D(`))}∞`=1 ⊂ U × V × W̃ such that

lim
`→∞

∥∥∥∂νu(α(`), q(`), D(`))− w
∥∥∥
L1(0,T ;L2(Σ))

= δ0. (6.34)

As U ,V , W̃ are bounded and closed in respective reflexible spaces, we can extract a subsequence,

still denoted by {(α(`), q(`), D(`))}, such that

α
(`) → α

∗ ∈ U and q
(`) → q

∗ ∈ V in R
m,

D(`) ⇀ D∗ ∈ W̃ weakly in W 2,p(Ω)
as `→∞. (6.35)

Using the compactness of the embedding W 2,p(Ω) ⊂ C1(Ω), we have

D(`) → D∗ strongly in C1(Ω) as `→∞. (6.36)

Now it suffices to verify that (α∗, q∗, D∗) is indeed a minimizer. Actually, it follows from (6.33)

that

‖∂νu(α∗, q∗, D∗)− w‖L1(0,T ;L2(Σ)) ≤
∥∥∥∂νu(α∗, q∗, D∗)− ∂νu(α(`), q(`), D(`))

∥∥∥
L1(0,T ;L2(Σ))

+
∥∥∥∂νu(α(`), q(`), D(`))− w

∥∥∥
L1(0,T ;L2(Σ))

≤ C




m∑

j=1

∣∣∣α∗
j − α(`)

j

∣∣∣+
m∑

j=2

∣∣∣q∗j − q(`)j

∣∣∣+ ‖D∗ −D(`)‖C1(Ω)




+
∥∥∥∂νu(α(`), q(`), D(`))− w

∥∥∥
L1(0,T ;L2(Σ))

.

Passing `→∞ and applying (6.34)–(6.36), we conclude

‖∂νu(α∗, q∗, D∗)− w‖L2(0,T ;L2(Σ)) ≤ δ0,

indicating that (α∗, q∗, D∗) is the desired minimizer by definition.
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6.4 Proof of Theorem 6.4

Independently of the previous section, now we study the long-time asymptotic behavior of

the solution u to (6.1)–(6.3) with F = 0 by a Laplace transform argument. In this section,

C > 0 denotes generic constants depending at most on Ω,α, q,A but independent of the initial

value a.

Although an explicit representation (6.22) is available in this case, we write the solution in

form of

u( · , t) =
∞∑

n=1

un(t)ϕn (t > 0) (6.37)

by use of the eigensystem {(λn, ϕn)} of A, where a direct calculation and the orthogonality of

{ϕn} yield 



m∑

j=1

qj∂
αj

t un(t) + λnun(t) = 0 (t > 0),

un(0) = (a, ϕn),

n = 1, 2, . . . . (6.38)

The proof of Theorem 6.4 relies on the following lemma.

Lemma 6.5 Let un (n = 1, 2, . . .) solve the initial value problem (6.38). Then there exists

a constant C > 0 such that
∣∣∣∣un(t)−

qm
λnΓ(1− αm)

(a, ϕn)

tαm

∣∣∣∣ ≤
C|(a, ϕn)|

λntmin{αm−1,2αm}
(t� 1). (6.39)

Proof. We abbreviate an := (a, ϕn) for simplicity. Applying the Laplace transform

(Lf)(s) :=
∫ ∞

0

e−stf(t) dt

to (6.38) and using the formula

L(∂βt f)(s) = sβL(f)(s) − sβ−1f(0+) (0 < β < 1),

we are led to the transformed algebraic equation

L(un)(s) =
an
w(s)

m∑

j=1

qjs
αj−1, w(s) :=

m∑

j=1

qjs
αj + λn.

Noting that the Laplace transform of un has a branch point zero, we should cut off the negative

part of the real axis so that the function w(s) does not vanish in the main sheet of the Riemann

surface including its boundaries on the cut. In fact, for s = r eiθ, we see that sin(αjθ) (j =

1, · · · ,m) share the same signal and thus Im(w(s)) =
∑m

j=1 qjr
αj sin(αjθ) 6= 0 since qj > 0.

Therefore, the inverse Laplace transform of L(un) can be represented by an integral on the

Hankel path Ha(0+) (i.e., the loop constituted by a small circle |s| = ε with ε→ 0 and by the

two borders of the cut negative real axis). Actually, it suffices to consider the following integral

1

2π i

∫

C

L(un)(s) est ds (6.40)

and estimate each

H`(t;R) :=

∫

C`

L(un)(s) est ds (` = 1, · · · , 5),

where the loop C and its partitions C` (` = 1, . . . , 5) are illustrated in Figure 6.1.
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Figure 6.1: The loop C and its partition.

For H1(t;R), noting that |s| = R > 1 and using a change of variable, we have

|H1(t;R)| =
∣∣∣∣
∫

C1

L(un)(s) est ds
∣∣∣∣ ≤ C|an|

∫ π

π/2

Rαm eRt cos θ dθ

= C|an|Rαm

∫ 0

−1

eRtη

√
1− η2

dη (t > 0).

Furthermore, we break up the above integral in [−1, 0] into two parts and calculate their bounds

respectively as

Rαm

∫ 0

−1

eRtη

√
1− η2

dη = Rαm

(∫ −1/2

−1

+

∫ 0

−1/2

)
eRtη

√
1− η2

dη

≤ Rαm e−Rt/2

∫ −1/2

−1

dη√
1− η2

+ CRαm

∫ 0

−1/2

eRtη dη

≤ CRαm e−Rt/2 + CRαm−1 1− e−Rt/2

t
→ 0 as R→∞ (t > 0).

Therefore, for any t > 0, we see that H1(t;R) → 0 as R → ∞. Similarly to the calculation of

H1(t;R), we have H3(t;R)→ 0 as R→∞ for any t > 0. On the other hand, since R cos θ ≤ b
for all θ ∈ [θR, π/2] where θR denotes the argument of point A, we have

|H2(t;R)| ≤ C|an|Rαm

∫ π/2

θR

eRt cos θ dθ ≤ C|an|Rαm ebt
(π
2
− θR

)

= C|an|Rαm ebt
(
π

2
− arccos

1

R

)
→ 0 as R→∞.

Therefore, since w(s) has no zero in the main sheet of the Riemann surface including the

boundaries on the cut, the integral in (6.40) vanishes. By Fourier-Mellin formula (see, e.g.,

[124]), we have

un(t) = lim
M→∞

1

2π i

∫ b+iM

b−iM

L(un)(s) est ds =
1

2π i

∫

Ha(ε)

L(un)(s) est ds.
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Here the integral is taken on the segment from b− iM to b+iM , and Ha(ε) denotes the Hankel

path in C defined as

Ha(ε) := {s ∈ C; arg s = ±π, |s| ≥ ε} ∪ {s ∈ C; −π ≤ arg s ≤ π, |s| = ε}.

By a similar argument as above, we find

1

Γ(1− αm) tαm
= lim

M→∞

1

2π i

∫ b+iM

b−iM

sαm−1 est ds =
1

2π i

∫

Ha(ε)

sαm−1 est ds.

It is now straightforward to show that the contribution from the Hankel path Ha(ε) as ε→ 0

is provided by

un(t)−
qman

λnΓ(1− αm) tαm
= an

∫ ∞

0

H(r, λn) e
−rt dr, where (6.41)

H(r, λn) := −
1

π
Im






 1

w(s)

m∑

j=1

qjs
αj−1 − qm

λn
sαm−1



∣∣∣∣∣∣
s=r eiπ



 .

To give the desired estimate (6.39), we observe that |w(s)| ≥ Cλn as long as r = |s| ≤ ε0λn,

where ε0 > 0 is sufficiently small. This indicates

|H(r, λn)| ≤
∣∣∣∣∣
λn
∑m−1

j=1 qjs
αj−1 −∑m

j=1 qjqms
αj+αm−1

λn(
∑m

j=1 qjs
αj + λn)

∣∣∣∣∣

≤ C|an|
λn




m−1∑

j=1

|s|αj−1 +

m∑

j=1

|s|αj+αm−1


 (∀ |s| ≤ ε0λn).

Meanwhile, for any s = r e±iπ with r ≥ ε0λn, we know that

|H(r, λn)| ≤
∑m−1

j=1 qjr
αj−1

|Im∑m
j=1 qjs

αj | +
∑m

j=1 qjqmr
αj+αm−1

λn|Im
∑m

j=1 qjs
αj | ≤ C.

Using these estimates, we break up the integral in (6.41) into two parts and give respective

bounds as

∣∣∣∣∣

∫ ε0λn

0

H(r, λn) e
−rt dr

∣∣∣∣∣ ≤
C

λn

∫ ∞

0




m−1∑

j=1

rαj−1 +

m∑

j=1

rαj+αm−1


 e−rt dr

≤ C

λn




m−1∑

j=1

1

tαj
+

m∑

j=1

1

tαj+αm


 ,

∣∣∣∣
∫ ∞

ε0λn

H(r, λn) e
−rt dr

∣∣∣∣ ≤ C
∫ ∞

ε0λn

e−rt dr =
C

t eε0λnt
≤ C

λnt2
.

Collecting the above two estimates, we obtain (6.39) for sufficiently large t.

Proof of Theorem 6.4. Let u take the form of (6.37) which solves (6.1)–(6.3) with a ∈ L2(Ω)

and F = 0, and fix any T > 0 sufficiently large. For all t ≥ T , it immediately follows from

Lemma 6.5 and the eigenfunction expansion that

∥∥∥∥u( · , t)−
qm

Γ(1− αm)

A−1a

tαm

∥∥∥∥
H2(Ω)

≤ C
∥∥∥∥∥

∞∑

n=1

(
un(t)−

qm
λnΓ(1− αm)

(a, ϕn)

tαm

)
ϕn

∥∥∥∥∥
D(A)
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= C

(
∞∑

n=1

∣∣∣∣λnun(t)−
qm

Γ(1− αm)

(a, ϕn)

tαm

∣∣∣∣
2
)1/2

≤ C

tmin{αm−1,2αm}

(
∞∑

n=1

|(a, ϕn)|2
)1/2

=
C‖a‖L2(Ω)

tmin{αm−1,2αm}
,

implying u ∈ C([T,∞);H2(Ω) ∩H1
0 (Ω)). On the other hand, since Theorem 6.1(a) guarantees

u ∈ C([0, T ];L2(Ω))∩C((0, T ];H2(Ω)∩H1
0 (Ω)), the proof is finished by combining the regularity

results in the finite and infinite time spans.

Remark 6.3 If some qj0 is negative, then we cannot obtain the asymptotic estimate for the

solution u of the initial-boundary value problem (6.1)–(6.3). In fact, for some n ∈ N sufficiently

large, we study the following problem




∂
1/2
t u− 3λn∂

1/4
t u+Au = 0 in Ω× (0,∞),

u = anϕn = (a, ϕn)ϕn in Ω× {0},
u = 0 on ∂Ω× (0,∞),

where (λn, ϕn) is the n-th pair in the eigensystem of the elliptic operator A, and a ∈ L2(Ω).

The Laplace transform of the solution reads

L(u)(s) = an
w(s)

(
s−1/2 − 3λns

−3/4
)
ϕn, w(s) := s1/2 − 3λns

1/4 + λn.

We see that {s; w(s) = 0} is a finite set with all of the zero points having finite multiplicities

in the main sheet of the Riemann surface, and there is no zero point on the negative part of

the real axis since λn is sufficiently large. Furthermore, we can prove that there exist zeros of

w(s) having positive real parts. In fact, obviously

r± :=
3λn ±

√
9λ2n − 4λn
2

> 0

solves w(r±) = 0, and we have

w′(r±) =
1

2
r
−1/2
± − 3λn

4
r
−3/4
± 6= 0.

Note that
1

2π i

∫

C

L(u)(s) est ds =
∑

Res{L(u)(s) est, C},

where C is defined in Figure 6.1, Res{f, C} denotes the residue of function f in the domain

enclosed by C, and the sum is taken over all the poles of L(u)(s) est in this domain. Repeating

the argument in the proof of Lemma 6.5, we deduce

u(t) = lim
M→∞

1

2π i

∫ b+iM

b−iM

L(u)(s) estds =
∑

Res{L(u)(s) est}+ 1

2π i

∫

Ha(0+)

L(u)(s) est ds.

Here the sum is taken over all the poles of L(u)(s) est lying on the left-hand side of the line

{z = b + iM ; M ∈ R} with b > r+, and there are only finite terms in this summation since

w(s) only has a finite number of zero points including multiplicities in the main sheet of the

Riemann surface cutting of the negative axis. We can easily see that

Res{(L(u)(s) est)|s=r±} =
r
−1/2
± − 3λnr

−3/4
±

w′(r±)
er±tanϕn.

Of course er±t tend to infinity as t→∞ since r± > 0, indicating that the asymptotic behavior

in Theorem 6.4 does not hold for this case.
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6.5 Proofs of Lemmata 6.1–6.3

This section is devoted to the verifications of the technical lemmata regarding several im-

portant properties of the multinomial Mittag-Leffler functions in Section 6.3. To this end, first

we recall the following formula for multinomial coefficients (see Berge [61])

m∑

j=1

(k − 1; k1, . . . , kj−1, kj − 1, kj+1, . . . , km) = (k; k1, . . . , km). (6.42)

If some kj0 vanishes, we understand (k − 1; k1, . . . , kj0−1, kj0 − 1, kj0+1, . . . , km) = 0 and (6.42)

degenerates to its lower dimensional version.

Proof of Lemma 6.1. According to definition (6.20), we directly calculate

m∑

j=1

zjE(β1,...,βm),β0+βj
(z1, . . . , zm)

=

m∑

j=1

∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km) zj
∏m

`=1 z
k`

`

Γ(β0 + βj +
∑m

`=1 β`k`)

=

∞∑

k=0

m∑

j=1





zk+1
j

Γ(β0 + βj(k + 1))
+

∑

k1+···+km=k
kj<k

(k; k1, . . . , km) zj
∏m

`=1 z
k`

`

Γ(β0 + βj +
∑m

`=1 β`k`)





(6.43)

=

∞∑

k=0

m∑

j=1





zk+1
j

Γ(β0 + βj(k + 1))
+

∑

k1+···+km=k+1
0<kj<k+1

(k; k1, . . . , kj−1, kj − 1, kj+1, . . . , km)
∏m

`=1 z
k`

`

Γ(β0 +
∑m

`=1 β`k`)





=

∞∑

k=0





m∑

j=1

zk+1
j

Γ(β0 + βj(k + 1))
+

∑

k1+···+km=k+1
k`<k+1 (∀ `)

(k + 1; k1, . . . , km)
∏m

`=1 z
k`

`

Γ(β0 +
∑m

`=1 β`k`)





(6.44)

=

∞∑

k=0

∑

k1+···+km=k+1

(k + 1; k1, . . . , km)
∏m

`=1 z
kj

j

Γ(β0 +
∑m

`=1 β`k`)

=

∞∑

k=1

∑

k1+···+km=k

(k; k1, . . . , km)
∏m

`=1 z
k`

`

Γ(β0 +
∑m

`=1 β`k`)
= E(β1,...,βm),β0

(z1, . . . , zm)− 1

Γ(β0)
,

where we apply formula (6.42) to obtain (6.44). In (6.43), we distill the case kj = k in the j-th

term and substitute kj + 1 with kj for the others to proceed to the next equality.

Next, to give an estimate for the multinomial Mittag-Leffler function, we turn to a complex

variable argument which is motivated by a similar treatment in [104].

Proof of Lemma 6.2. Let αj , zj (j = 1, . . . ,m) and β be assumed as that in the statement of

Lemma 6.2 and introduce the notation

Eα′,β(z1, . . . , zm) := E(α1,α1−α2,...,α1−αm),β(z1, . . . , zm).

In the sequel, we denote by C a general positive constant depending at most on µ, K, αj

(j = 1, . . . ,m) and β. First we rewrite the multinomial Mittag-Leffler function (6.20) in an
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alternative form with the aid of the contour integral representation of 1/Γ(z) (see [116, §1.1.6])
that

1

Γ(z)
=

1

2α1π i

∫

Υ(R,θ)

exp(ζ1/α1)ζ(1−z−α1)/α1 dζ,

where R > 0 is a constant to be determined later and α1π/2 < θ < µ. Here γ(R, θ) denotes the

contour

Υ(R, θ) := {ζ ∈ C; |ζ| = R, |arg(ζ)| ≤ θ} ∪ {ζ ∈ C; |ζ| > R, |arg(ζ)| = ±θ}.

Then it follows from the multinomial formula that

Eα′,β(z1, . . . , zm)

=
1

2α1π i

∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)

m∏

j=1

z
kj

j

×
{∫

Υ(R,θ)

exp(ζ1/α1 )ζ(1−β−α1(k+1)−α2k2−···−αmkm)/α1 dζ

}

=
1

2α1π i

∫

Υ(R,θ)

exp(ζ1/α1 )ζ(1−β)/α1−1

×
∞∑

k=0





∑

k1+···+km=k

(k; k1, . . . , km)

(
z1
ζ

)k1 m∏

j=2

(
zj

ζ1−αj/α1

)kj



 dζ

=
1

2α1π i

∫

Υ(R,θ)

exp(ζ1/α1 )ζ(1−β)/α1−1
∞∑

k=0


z1
ζ

+
m∑

j=2

zk

ζ1−αj/α1




k

dζ.

In order to guarantee the convergence of the summation with respect to k, it is required that
∣∣∣∣∣∣
z1
ζ

+

m∑

j=2

zj

ζ1−αj/α1

∣∣∣∣∣∣
< 1, ∀ ζ ∈ Υ(R, θ).

Since |zj | ≤ K for j = 2, . . . ,m, the above inequality is achieved by taking R such that

R > |z1|+K

m∑

j=2

Rαj/α1 .

Moreover, if we restrict, for example, |z1| ≤ K, then R can be fixed as a constant depending

only on K and αj (j = 1, . . . ,m). Now we deduce for |zj | ≤ K (j = 1, . . . ,m) that

Eα′,β(z1, . . . , zm) =
1

2α1π i

∫

Υ(R,θ)

exp(ζ1/α1 )ζ(1−β)/α1

ζ − z1 −
∑m

j=2 zjζ
αj/α1

dζ. (6.45)

Next we fix z2, . . . , zm as negative parameters and regard both sides of (6.45) as functions

of the single complex variable z1, which allows the application of the principle of analytic

continuation to extend equality (6.45) to a domain including {z1 ∈ C; µ ≤ |arg(z1)| ≤ π} (see
Figure 6.2).

For |z1| > R, we investigate the denominator of the integrand in (6.45). Since zj < 0 and

αj < α1 for j = 2, . . . ,m, it turns out that the curve ζ −∑m
j=2 zjζ

αj/α1 (ζ ∈ Υ(R, θ)) locates

on the right-hand side of Υ(R, θ); that is, Υ(R, θ) is shifted by the term −∑m
j=2 zjζ

αj/α1 to

the positive direction. This observation immediately implies

min
ζ∈Υ(R,θ)

∣∣∣∣∣∣
ζ − z1 −

m∑

j=2

zjζ
αj/α1

∣∣∣∣∣∣
≥ min

ζ∈Υ(R,θ)
|ζ − z1| ≥ |z1| sin(µ− θ).
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Figure 6.2: Settings of Lemma 6.2 and the contour Υ(R, θ). If z1 is located in the shaded domain
A, we employ the principle of analytic continuation and the contour integral representation
(6.45). When z1 is in the shaded domain B, it suffices to argue by definition (6.20).

Therefore, we come up with the estimate

|Eα′,β(z1, . . . , zm)| = 1

2α1π

∣∣∣∣∣

∫

Υ(R,θ)

exp(ζ1/α1 )ζ(1−β)/α1

ζ − z1 −
∑m

j=2 zjζ
αj/α1

dζ

∣∣∣∣∣

≤
(

1

2α1π sin(µ− θ)

∫

Υ(R,θ)

| exp(ζ1/α1 )||ζ(1−β)/α1 | dζ
)

1

|z1|
.

The integral along Υ(R, θ) converges, because for ζ such that arg(ζ) = ±θ and |ζ| > R, there

holds

| exp(ζ1/α1 )| = exp(|ζ|1/α1 cos(θ/α1)) with cos(θ/α1) < 0,

while the integral on the arc {ζ ∈ C; |ζ| = R, |arg(ζ)| ≤ θ} is a constant. Consequently

|Eα′,β(z1, . . . , zm)| ≤ C

|z1|
, µ ≤ |arg(z1)| ≤ π, |z1| > R. (6.46)

For µ ≤ |arg(z1)| ≤ π such that |z1| ≤ R, it is directly verified that

|Eα′,β(z1, . . . , zm)| =
∣∣∣∣∣
∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)
∏m

j=1 z
kj

j

Γ(β + α1k −
∑m

j=2 αjkj)

∣∣∣∣∣

≤
∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)
∏m

j=1 |zj |kj

Γ(β + α1k −
∑m

j=2 αjkj)

≤ C
∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)
∏m

j=1 |zj |kj

Γ(β + (α1 − α2)k)

= C

∞∑

k=0

1

Γ(β + (α1 − α2)k)




m∑

j=1

|zj|




k

≤ C
∞∑

k=0

(R + (m− 1)K)k

Γ(β + (α1 − α2)k)
≤ C,
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which, together with (6.46), finishes the proof.

Finally, we treat Lemma 6.3. Here we recall the abbreviation E
(n)
α′,β(t) in (6.21).

Proof of Lemma 6.3. By definition, we carry out a direct differentiation and utilize the formula

Γ(s) = Γ(s+ 1)/s to derive

d

dt

{
tα1E

(n)
α′,1+α1

(t)
}

=
d

dt

{
∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)(−λn)k1
∏m

j=2(−qj)kj tα1(k+1)−α2k2−···−αmkm

Γ(1 + α1(k + 1)−∑m
j=2 αjkj)

}

=

∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)(−λn)k1
∏m

j=2(−qj)kj tα1(k+1)−α2k2−···−αmkm−1

Γ(α1(k + 1)−∑m
j=2 αjkj)

= tα1−1
∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)(−λntα1)k1
∏m

j=2(−qjtα1−αj )kj

Γ(α1 + α1k1 +
∑m

j=2(α1 − αj)kj)

= tα1−1E
(n)
α′,α1

(t).

Here we use the fact that tα1E
(n)
α′,1+α1

(t) is real analytic for t > 0 so that termwise differentia-

tions are available.

6.6 Concluding remarks

We summarize this chapter by providing several concluding remarks. Concerning the

initial-boundary value problem (6.1)–(6.3) for multi-term time-fractional diffusion equations,

we mainly investigate the well-posedness and the long-time asymptotic behavior of the solu-

tion, which turn out to be mostly parallel to those of the single-term prototype. On the basis

of the representation of solutions and a careful analysis of multinomial Mittag-Leffler functions,

we succeed in dominating the solutions by the initial value a and the source term F . Although

uniqueness and stability also follow from the maximum principle developed in [103], we carry

out various estimates so that regularity and short-time asymptotic behaviors of the solutions

are directly connected with the regularity of a and F (see Theorems 6.1–6.2). Furthermore, in

Theorem 6.3 we establish the Lipschitz stability of the solution with respect to αj , qj and the

diffusion coefficient, which is not only important by itself but also applicable to the correspond-

ing inverse coefficient problem when treated by a minimization approach (see [96, Theorem

5]).

Simultaneously, we also obtain an extended version of [121, Corollary 2.6] in Theorem 6.4,

which asserts that, if the solution does not vanish identically, then its decay rate cannot be faster

than t−αm , where αm is the minimum order of fractional time-derivative. It is a remarkable

property of fractional diffusion equations because the classical diffusion equation admits non-

zero solutions decaying exponentially. This characterizes the slow diffusion in contrast to the

classical one.

In the formulation of the initial-boundary value problem, we emphasize that the coefficients

qj of the time derivatives are positive constants because this assumption is obligatory not only

to acquire explicit solutions but also to apply the Laplace transform in time, which are essential

in the discussions of well-posedness and asymptotic behavior, respectively. On the other hand,

if qj are space-dependent, then explicit solutions are not available so that one should rely on

a fixed point argument for the unique existence of solution, and the improvement of regularity
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in space is strictly less than 2 orders (see [60, Theorem 2]). On the other hand, if some qj0 is

negative, then one may construct a counterexample in which the asymptotic property fails (see

Remark 6.3).

However, in view of practical applications and theoretical interests, the linear non-symmetric

diffusion equation with positive variable coefficients of Caputo derivatives in time can be re-

garded as a more feasible model equation than that we have studied in this chapter, but it will

be definitely more challenging. Though still under consideration, we expect to establish parallel

results for this more generalized case.



Chapter 7

The Galerkin Finite Element

Method for Multi-Term

Time-Fractional Diffusion

Equations

Based on the theoretical results obtained in the previous chapter, here we consider the

numerical treatments for the initial-boundary value problem for a multi-term time-fractional

diffusion equation on a bounded convex polyhedral domain. We analyze a space semidiscrete

scheme based on the standard Galerkin finite element method using continuous piecewise linear

functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term

are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete

scheme based on a finite difference discretization of the time-fractional derivatives, and discuss

its stability and error estimate. Extensive numerical experiments for one- and two-dimensional

problems confirm the theoretical convergence rates.

7.1 Introduction

In this chapter, we consider the following initial-boundary value problem for a multi-term

time fractional diffusion equation




m∑

j=1

qj∂
αj

t u(x, t) = 4u(x, t) + F (x, t) (x ∈ Ω, 0 < t ≤ T ),

u(x, 0) = a(x) (x ∈ Ω),

u(x, t) = 0 (x ∈ ∂Ω, 0 < t ≤ T ),

(7.1)

where T > 0, Ω is a bounded convex polygonal domain in Rd (d = 1, 2, 3) with a boundary ∂Ω,

and ∂
αj

t u denotes the Caputo derivative (see [86, p. 91]). The above problem is a special case

of (6.1)–(6.3) investigated in the previous chapter, that is, the operator A = −4 instead of a

general symmetric elliptic operator. Here we inherit the assumptions on the positive coefficients

αj and qj (j = 1, 2, . . . ,m), that is, 1 > α1 > · · · > αm > 0 and q1 = 1. For later convenience,

we abbreviate α = (α1, . . . , αm) and q = (q1, . . . , qm).

In the case of m = 0, the model (7.1) reduces to its single-term counterpart

∂αt u = 4u+ F in Ω× (0, T ]. (7.2)

130
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This model has been studied extensively from different aspects due to its extraordinary capabil-

ity of modeling anomalous diffusion phenomena in highly heterogeneous aquifers and complex

viscoelastic materials [58, 114]. It is the fractional analogue of the classical diffusion equation:

with α = 1, it recovers the latter, and thus inherits some of its analytical properties. However,

it differs considerably from the latter in the sense that, due to the presence of the nonlocal

fractional derivative term, it has limited smoothing property in space and slow asymptotic

decay in time [121], which in turn also impacts related numerical analysis [81] and inverse

problems [83, 121].

The model (7.1) was developed to improve the modeling accuracy of the single-term model

(7.2) for describing anomalous diffusion. For example, in [125], a two-term fractional-order

diffusion model was proposed for the total concentration in solute transport, in order to distin-

guish explicitly the mobile and immobile status of the solute using fractional dynamics. The

kinetic equation with two fractional derivatives of different orders appears also quite naturally

when describing subdiffusive motion in velocity fields [110]; see also [85] for discussions on the

model for wave-type phenomena.

There are very few mathematical studies on the model (7.1). Luchko [103] established

a maximum principle for problem (7.1), and constructed a generalized solution for the case

F ≡ 0 using the multinomial Mittag-Leffler function. Jiang et al. [77] derived formal analytical

solutions for the diffusion equation with fractional derivatives in both time and space. Li and

Yamamoto [94] established the existence, uniqueness, and the Hölder regularity of the solution

using a fixed point argument for problem (7.1) with variable coefficients {qj}. Very recently, Li

et al. [88] showed the uniqueness and continuous dependence of the solution on the initial value

a and the source term F , by exploiting several properties of the multinomial Mittag-Leffler

function.

The potential applications of the model (7.1) motivate the design and analysis of numerical

schemes that have optimal (with respect to data regularity) convergence rates. Such schemes

are especially valuable for problems where the solution has low regularity. The case m = 0,

i.e., the single-term model (7.2), has been extensively studied, and stability and error estimates

were provided; see [97, 126, 131] for the finite difference method, [90, 91, 130] for the spectral

method, [79–81,92,107,112,113] for the finite element method, and [62,69] for meshfree methods

based on radial basis functions, to name a few. In particular, in [79–81], the authors established

almost optimal error estimates with respect to the regularity of the initial data a and the right-

hand side F for a semidiscrete Galerkin scheme. These studies include the interesting case of

very weak data, i.e., a ∈ D(Aγ) and F ∈ L∞(0, T ;D(Aγ)) for −1/2 < γ < 0 (see Subsection

7.2.1 for the definition of the fractional power Aγ and the domain D(Aγ)).

Numerical methods for the multi-term case for an ordinary differential equation were consid-

ered in [68,84]. In [133], a scheme based on the finite element method in space and a specialized

finite difference method in time was proposed for (7.1), and error estimates were derived. We

also refer to [98] for a numerical scheme based on a fractional predictor.corrector method for

the multi-term time fractional wave-diffusion equation. The error analysis in these works is

done under the assumption that the solution is sufficiently smooth and therefore it excludes

the case of low regularity solutions. This is the main goal of the present study. However, the

derivation of optimal with respect to the regularity error estimates requires additional analysis

of the properties of problem (7.1), e.g., stability, asymptotic behavior for t ↓ 0. Relevant re-

sults of this type have recently been obtained in [88], which, however, are not enough for the

analysis of the semidiscrete Galerkin scheme, and hence in Section 7.2, we make the necessary

extensions.
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Now we describe the semidiscrete Galerkin scheme. Let {Th}0<h<1 be a family of shape

regular and quasi-uniform partitions of the domain Ω into d-simplexes, called finite elements,

with a maximum diameter h. The approximate solution uh is sought in the finite element space

Xh of continuous piecewise linear functions over the triangulation Th

Xh =
{
f ∈ H1

0 (Ω); f is linear over ω, ∀ω ∈ Th
}
.

The semidiscrete Galerkin FEM for problem (7.1) is: find uh(t) ∈ Xh such that





m∑

j=1

qj
(
∂
αj

t uh(t), vh
)
+ (∇uh(t),∇vh) = (Fh(t), vh) (∀ vh ∈ Xh, 0 < t ≤ T ),

uh(0) = ah,

(7.3)

where ah and Fh(t) are appropriate approximations of the initial data a and the source term

F ( · , t) whose choice will depend on their smoothness. We shall study the convergence of the

semidiscrete Galerkin FEM (7.3) for the case of initial data a ∈ D(Aγ), −1/2 < γ ≤ 1, and

right-hand side F ∈ L∞(0, T ;D(Aγ)), −1/2 < γ ≤ 1/2. The case of nonsmooth data, i.e.,

−1/2 < γ < 0, is very common in inverse problems and optimal control (see [83, 121]); see

also [64, 82] for the parabolic counterpart.

The goal of this chapter is to develop a numerical scheme based on the finite element approx-

imation for the model (7.1), and provide a complete error analysis. We derive error estimates

optimal with respect to the data regularity for the semidiscrete scheme, and a convergence rate

O(h2+τ2−α1) for the fully discrete scheme in case of a smooth solution, where τ is the step size

in time, and α1 is the highest order of the Caputo derivatives in (7.1). Specifically, our essential

contributions are as follows. First, we generalize the regularity results in the previous chapter

by allowing less regular initial value and source term (see Theorems 7.1–7.3). Second, we de-

rive nearly optimal error estimates for a semidiscrete Galerkin scheme for both homogeneous

and inhomogeneous problems (see Theorems 7.4–7.7, which cover both smooth and nonsmooth

data. Third, we develop a fully discrete scheme based on a finite difference method in time, and

establish its stability and error estimates (see Theorem 7.8). We note that the derived error

estimate for the fully discrete scheme holds only for smooth solutions.

The rest of the chapter is organized as follows. In Section 7.2, we first recall properties of

Mittag-Leffler functions introduced in Chapter 6, and then refine the well-posedness results to

cover lower regularity cases. The readers not interested in the analysis may proceed directly to

Section 7.3, where almost optimal error estimates for their semidiscrete Galerkin finite element

approximations are given. Then a fully discrete scheme based on a finite difference approxima-

tion of the Caputo fractional derivatives is given in Section 7.4, and an error analysis is also

provided. Finally, extensive numerical experiments are presented to illustrate the accuracy and

efficiency of the Galerkin scheme, and to verify the convergence theory. In the sequel, we denote

by C a generic constant, which may differ at different occurrences, but always independent of

the mesh size h and time step size τ .

7.2 Well-posedness and refined estimates

This section is concerned with the well-posedness of problem (7.1). We generalize and refine

the regularity results obtained in the previous chapter for the homogeneous and inhomogeneous

problems.
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7.2.1 Preliminary

For the sake of self-containedness, we recall the general notations and the multinomial

Mittag-Leffler functions for the solution representation, which were introduced in Chapter 6.

Let L2(Ω) be the usual L2-space equipped with the inner produce ( · , · ). Denote by H1
0 (Ω),

H−1(Ω), etc. the Sobolev spaces (see, e.g., Adams [1]). For simplicity, ( · , · ) will also refer

to the pairing between H−1(Ω) and H1
0 (Ω) throughout this chapter. Let {λn, ϕn}∞n=1 be the

eigensystem of A = −4 such that 0 < λ1 < λ2 ≤ · · · , λn → ∞ as n → ∞ and {ϕn} ⊂
H2(Ω) ∩ H1

0 (Ω) forms an orthonormal basis of L2(Ω). Then the fractional power Aγ is well-

defined for γ ≥ −1/2 (see, e.g., Pazy [115]) with

D(Aγ) =

{
f ∈ H−1(Ω);

∞∑

n=1

|λγn(f, ϕn)|2 ≤ ∞
}
, Aγf :=

∞∑

n=1

λγn(f, ϕn)ϕn,

and D(Aγ) is a Hilbert space with the norm

‖f‖D(Aγ) =

(
∞∑

n=1

|λγn(f, ϕn)|2
)1/2

.

We know that {λ1/2n ϕn}∞n=1 forms an orthonormal basis inH−1(Ω), and ‖·‖D(A−1/2) ∼ ‖·‖H−1(Ω)

is the norm in H−1(Ω). Further, it is easy to verify that ‖f‖D(A1/2) = ‖∇f‖L2(Ω) is also

the norm in H1
0 (Ω), and ‖f‖D(A) = ‖4f‖L2(Ω) is equivalent to the norm in H2(Ω) ∩ H1

0 (Ω)

(see [127, Lemma 3.1]). Note that {D(Aγ)}γ≥−1/2 forms a Hilbert scale of interpolation spaces,

and D(Aγ) ⊂ H2γ(Ω) for γ > 0. For 1 ≤ p ≤ ∞, we say that f ∈ Lp(0, T ;D(Aγ)) provided

‖f‖Lp(0,T ;D(Aγ)) :=





(∫ T

0

‖f( · , t)‖pD(Aγ) dt

)1/p

if 1 ≤ p <∞

ess sup
0<t<T

‖f( · , t)‖D(Aγ) if p =∞




<∞.

In order to represent the solution to (7.1), we shall utilize the multinomial Mittag-Leffler

function defined as (see Luchko and Gorenflo [104])

E(β1,...,βm),β0
(z1, . . . , zm) :=

∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)
∏m

j=1 z
kj

j

Γ(β0 +
∑m

j=1 βjkj)
.

Here 0 < β0 < 2, 0 < βj < 1, zj ∈ C (j = 1, . . . ,m), and (k; k1, . . . , km) denotes the multinomial

coefficiet

(k; k1, . . . , km) :=
k!

k1! · · · km!
with k =

m∑

j=1

kj ,

where kj (j = 1, . . . ,m) are non-negative integers.

Concerning the properties of the multinomial Mittag-Leffler functions, we recall the following

lemmata proved in Chapter 6, which will play important roles in refining the regularity results.

Lemma 7.1 Let 0 < β0 < 2, 0 < βj < 1 (j = 1, . . . ,m) and zj ∈ C (j = 1, . . . ,m) be fixed.

Then
1

Γ(β0)
+

m∑

j=1

zjE(β1,...,βm),β0+βj
(z1, . . . , zm) = E(β1,...,βm),β0

(z1, . . . , zm).
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Lemma 7.2 Let 0 < β < 2 and 1 > α1 > · · · > αm > 0 be given. Assume that α1π/2 <

µ < α1π, µ ≤ |arg(z1)| ≤ π and there exists K > 0 such that −K ≤ zj < 0 (j = 2, . . . ,m).

Then there exists a constant C > 0 depending only on µ, K, αj (j = 1, . . . ,m) and β such that

|E(α1,α1−α2,...,α1−αm),β(z1, . . . , zm)| ≤ C

1 + |z1|
.

For later use, we adopt the same abbreviation

E
(n)
α′,β(t) := E(α1,α1−α2,...,α1−αm),β(−λntα1 ,−q2tα1−α2 , . . . ,−qmtα1−αm) (t > 0)

as (6.21), where λn is the n-th eigenvalue of A, 0 < β < 2, and αj , qj are those positive

constants in (7.1). To treat the inhomogeneous case, i.e., the source term F 6= 0, we need the

following key lemma.

Lemma 7.3 For each n = 1, 2, . . ., the function tα1−1E
(n)
α′,α1

(t) is completely monotone.

Moreover, there exists a constant C = C(α) > 0 such that
∫ t

0

∣∣∣sα1−1E
(n)
α′,α1

(s)
∣∣∣ ds ≤ C

λn
(t > 0).

According to the previous chapter, we can write the explicit solution to (7.1) by using the

multinomial Mittag-Leffler functions and the eigensystem {λn, ϕn} as

u( · , t) =
∞∑

n=1

(
1− λntα1E

(n)
α′,1+α1

(t)
)
(a, ϕn)ϕn +

∫ t

0

U(s)F ( · , t− s) ds (0 < t ≤ T ), (7.4)

where

U(t)f := tα1−1
∞∑

n=1

E
(n)
α′,α1

(t)(f, ϕn)ϕn (f ∈ D(A−1/2)). (7.5)

The operator U(t) has the following smoothing property.

Lemma 7.4 Fix f ∈ D(Aγ) with some γ ∈ (−1/2, 1]. Then for any 0 < t ≤ T , there exists

a constant C = C(Ω, T,α, q) > 0 such that for 0 ≤ κ− γ ≤ 1, there holds

‖U(t)f‖D(Aκ) ≤ C‖f‖D(Aγ)t
α1(1+γ−κ)−1.

Proof. The definition (7.5) of U(t) and Lemma 7.2 immediately yield

‖U(t)‖2D(Aκ) = t2(α1−1)
∞∑

n=1

∣∣∣λκnE(n)
α′,α1

(t)(f, ϕn)
∣∣∣
2

= t2(α1(1+γ−κ)−1)
∞∑

n=1

∣∣∣(λntα1)κ−γE
(n)
α′,α1

(t)
∣∣∣
2

|λγn(f, ϕn)|2

≤
(
C tα1(1+γ−κ)−1

)2 ∞∑

n=1

∣∣∣∣
(λnt

α1)κ−γ

1 + λntα1

∣∣∣∣
2

|λγn(f, ϕn)|2

≤
(
C tα1(1+γ−κ)−1

)2 ∞∑

n=1

|λγn(f, ϕn)|2 =
(
C‖f‖D(Aγ)t

α1(1+γ−κ)−1
)2
,

where in the second inequality we use the fact

(λnt
α1)κ−γ

1 + λntα1
≤





1

1 + λntα1
if λnt

α1 ≤ 1

λnt
α1

1 + λntα1
if λnt

α1 ≥ 1




≤ 1

since 0 ≤ κ− γ ≤ 1.
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7.2.2 Solution regularity

First we recall known regularity results. In [94], Li and Yamamoto investigated the same

problem under a more general setting of variable coefficients, namely, qj = qj(x) (j = 2, . . . ,m).

It reveals that the unique mild solution u satisfies

u ∈
{
C((0, T ];D(A1−ε)) ∩ C([0, T ];L2(Ω)), when a ∈ L2(Ω), F = 0,

C([0, T ];D(A1−ε)) ∩ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)), when a = 0, F ∈ L∞(0, T ;L2(Ω)),

where ε > 0 can be arbitrarily small. In Chapter 6, these results were refined for the case of

constant coefficients, i.e., problem (6.1)–(6.3). In particular, it was shown that for a ∈ D(Aγ)

with γ ∈ [0, 1] and F = 0, there holds u ∈ L1/(1−γ)(0, T ;H2(Ω) ∩ H1
0 (Ω)). For a = 0 and

F ∈ Lp(0, T ;D(Aγ)) with p ∈ [1,∞], γ ∈ [0, 1], there holds u ∈ Lp(0, T ;D(Aγ+1−ε)) for

arbitrarily small ε > 0. Here we follow the same approach and extend these results to a slightly

more general setting, namely a ∈ D(Aγ) and F ∈ L2(0, T ;D(Aγ)) with γ ∈ (−1/2, 1]. The

nonsmooth case, i.e., γ < 0, arises commonly in related inverse problems and optimal control

problems.

As before, we shall separate the cases of F = 0 and a = 0 to derive the regularities of

the solutions, respectively. These results will be essential for the error analysis of the space

semidiscrete Galerkin scheme (7.3) in Section 7.3. First we consider the homogeneous problem

with initial data a ∈ D(Aγ) with γ ∈ (−1/2, 1].

Theorem 7.1 Let u be the solution to problem (7.1) with F ≡ 0 and a ∈ D(Aγ) (γ ∈
(−1/2, 1]). Then there exists a constant C = C(Ω, T,α, q) > 0 such that for 0 ≤ κ − γ ≤ 1,

there holds

‖u( · , t)‖D(Aκ) ≤ C‖a‖D(Aγ)t
α1(γ−κ) (0 < t ≤ T ).

Proof. Taking F = 0 in (7.4) immediately gives

u( · , t) =
∞∑

n=1

(
1− λntα1E

(n)
α′,1+α1

(t)
)
(a, ϕn)ϕn.

Then by Lemma 7.2, we have for 0 ≤ κ− γ ≤ 1 that

‖u( · , t)‖2D(Aκ) =
∞∑

n=1

(
λκ−γ
n

∣∣∣1− λntα1E
(n)
α′,1+α1

(t)
∣∣∣
)2
|λγn(a, ϕn)|2.

To treat the term 1− λntα1E
(n)
α′,1+α1

(t), we utilize Lemma 7.1 and apply Lemma 7.2 to deduce

∣∣∣1− λntα1E
(n)
α′,1+α1

(t)
∣∣∣ =

∣∣∣∣∣∣
E

(n)
α′,1(t) +

m∑

j=2

qjt
α1−αjE

(n)
α′,1+α1−αj

(t)

∣∣∣∣∣∣

≤
∣∣∣E(n)

α′,1(t)
∣∣∣+ C

m∑

j=2

tα1−αj

∣∣∣E(n)
α′,1+α1−αj

(t)
∣∣∣ ≤ C

m∑

j=1

tα1−αj

1 + λntα1
.

Therefore, we estimate for 0 < t ≤ T that

‖u( · , t)‖2D(Aκ) ≤ C2
∞∑

n=1




m∑

j=1

λκ−γ
n tα1−αj

1 + λntα1




2

|λγn(a, ϕn)|2

= C2
∞∑

n=1

(
(λnt

α1)κ−γ

1 + λntα1
tα1(1+γ−κ)−αj

)2

|λγn(a, ϕn)|2
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≤ C2




m∑

j=1

tα1(1+γ−κ)−αj




2
∞∑

n=1

|λγn(a, ϕn)|2 ≤
(
C‖a‖D(Aγ)t

α1(γ−κ)
)2
.

The proof of limt↓0 ‖u( · , 0)− a‖D(Aγ) = 0 coincides with that for Theorem 6.1(b) and we omit

the details here.

Now we turn to the inhomogeneous problem with a nonsmooth right-hand side and the

homogeneous initial condition.

Theorem 7.2 Let u be the solution to (7.1) with a = 0 and F ∈ L∞(0, T ;D(Aγ)) (γ ∈
(−1/2, 1/2]). Then u ∈ L∞(0, T ;D(Aγ+1−ε)) for any ε ∈ (0, 1]. Furthermore, there exists a

constant C = C(Ω, T,α, q) > 0 such that

‖u( · , t)‖D(Aγ+1−ε) ≤
C

ε
‖F‖L∞(0,t;D(Aγ))t

α1ε. (7.6)

Hence, it is a solution to problem (7.1) with the homogeneous initial condition in the sense that

limt↓0 ‖u( · , t)‖D(Aγ+1−ε) = 0 for arbitrarily small ε > 0.

Proof. Fix ε ∈ (0, 1] arbitrarily. Taking a = 0 in (7.4) and applying Lemma 7.4, we immediately

obtain

‖u( · , t)‖D(Aγ+q−ε) =

∥∥∥∥
∫ t

0

U(s)F ( · , t− s) ds
∥∥∥∥
D(Aγ+1−ε)

≤
∫ t

0

‖U(s)F ( · , t− s)‖D(Aγ+1−ε) ds

≤ C
∫ t

0

s−1+α1ε‖F ( · , t− s)‖D(Aγ) ds ≤
C

ε
‖F‖L∞(0,t;D(Aγ))t

α1ε,

which shows the desired estimate.

Next we extend Theorem 7.2 to allow less regular right-hand sides F ∈ L2(0, T ;D(Aγ))

with −1/2 < γ ≤ 1. Similarly to Theorem 6.2(a), it will be verified that the solution u satisfies

the governing equation as an element in the space L2(0, T ;D(Ωγ+1)). However, it may happen

that the satisfaction of the homogeneous initial condition becomes meaningless in the usual

sense. In Remark 7.1 below, we argue that the weakest class of the source term that produces

a legitimate weak solution of (7.1) is F ∈ Lp(0, T ;D(Aγ)) with p > 1/α1 and −1/2 < γ ≤ 1.

Obviously, for 1/2 < α < 1, it does give a solution u ∈ L2(0, T ;D(Aγ+1)).

Theorem 7.3 Let u be the solution to (7.1) with a = 0 and F ∈ L2(0, T ;D(Aγ)) (γ ∈
(−1/2, 1/2]). Then u ∈ L2(0, T ;D(Aγ+1)), and there exists a constant C = C(Ω, T,α, q) > 0

such that

‖u‖L2(0,t;D(Aγ+1)) ≤ C‖F‖L2(0,t;D(Aγ)) (0 < t ≤ T ).

Proof. Now we substitute the explicit form (7.5) of U(t) into (7.4) to formally write

‖u( · , t)‖2D(Aγ+1) =

∞∑

n=1

λ2n

(∫ t

0

sα1−1E
(n)
α′,α1

(s)λγn(F ( · , t− s), ϕn) ds

)2

.

Using Young’s inequality for convolutions along with Lemma 7.3, we deduce

‖u‖2L2(0,t;D(Aγ+1)) =

∞∑

n=1

λ2n

∥∥∥∥
∫ s

0

rα1−1E
(n)
α′,α1

(r)λγn(F ( · , s− r), ϕn) dr

∥∥∥∥
2

L2(0,t)

≤
∞∑

n=1

(
λn

∫ t

0

sα1−1E
(n)
α′,α1

(s) ds

)2

‖λγn(F ( · , s), ϕn)‖2L2(0,t)
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≤ C2
∞∑

n=1

‖λγn(F ( · , s), ϕn)‖2L2(0,t) =
(
C‖F‖L2(0,t;D(Aγ))

)2
.

This completes the proof.

Remark 7.1 The condition F ∈ L∞(0, T ;D(Aγ)) in Theorem 7.2 can be weakened to

F ∈ Lp(0, T ;D(Aγ)) with p > 1/α1. In fact, it follows from Lemma 7.4 and Hölder’s inequality

that

‖u( · , t)‖D(Aγ) ≤
∫ t

0

‖U(s)F ( · , t− s)‖D(Aγ) ds ≤ C
∫ t

0

sα1−1‖F ( · , t− s)‖D(Aγ) ds

≤ C‖F‖Lp(0,t;D(Aγ))

(∫ t

0

sp
′(α1−1) ds

)1/p′

= C‖F‖Lp(0,t;D(Aγ))t
α1−1/p,

where p′ is the conjugate number of p, and we easily infer p′(α1 − 1) = p(α1−1)
p−1 > −1 from

p > 1/α1. Then it is obvious that the initial condition u( · , 0) = 0 holds in the sense that

limt↓0 ‖u( · , t)‖D(Aγ) = 0. Hence for any α ∈ (1/2, 1) the solution remains a legitimate solution

under the weaker condition F ∈ L2(0, T ;D(Aγ)).

7.3 Error estimates for semidiscrete Galerkin scheme

Now we derive and analyze the space semidiscrete Galerkin FEM scheme (7.3). First we

describe the semidiscrete scheme, and then derive almost optimal error estimates for the ho-

mogeneous and inhomogeneous problems separately. In the analysis we essentially use the

technique developed in [81] and improved in [79, 80].

7.3.1 Semidiscrete scheme

To describe the scheme, we need the L2(Ω) projection Ph : L2(Ω)→ Xh and Ritz projection

Rh : H1
0 (Ω)→ Xh, respectively, defined by

(Phf, gh) = (f, gh), (∇Rhf,∇gh) = (∇f,∇gh) (∀gh ∈ Xh).

The operators Rh and Ph satisfy the following approximation property.

Lemma 7.5 (see [127]) Let f ∈ D(Aγ) with 1/2 ≤ γ ≤ 1. Then the operator Rh satisfies

‖Rhf − f‖L2(Ω) + h‖∇(Rhf − f)‖L2(Ω) ≤ C h2γ‖f‖D(Aγ).

Further, for κ ∈ [0, 1/2] we have

‖Phf − f‖D(Aκ) ≤
{
C h2(1−κ)‖f‖D(A) (∀ f ∈ D(A)),
C h1−2κ‖f‖D(A1/2) (∀ f ∈ D(A1/2)).

By interpolation, the operator Ph is also bounded on D(Aκ), −1/2 ≤ κ ≤ 0.

Now we can describe the semidiscrete Galerkin scheme. Introducing the discrete Laplacian

4h : Xh → Xh defined by

−(4hfh, gh) = (∇fh,∇gh) (fh, gh ∈ Xh)
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and setting Fh(t) := PhF ( · , t), we may write the spatially discrete problem (7.3) as




m∑

j=1

qj∂
αj

t uh(t)−4huh(t) = Fh(t) (0 < t ≤ T ),

uh(0) = ah,

(7.7)

where ah ∈ Xh is an approximation to the initial data a. Next, by using the eigensystem

{λhn, ϕh
n}Nn=1 of the discrete Laplacian −4h, we can give a solution representation of (7.7) as

uh(t) =

N∑

n=1

(
1− λhntα1E

(n,h)
α′,1+α1

(t)
)
(ah, ϕ

h
n)ϕ

h
n +

∫ t

0

Uh(s)Fh(t− s) ds, where (7.8)

Uh(t)fh := tα1−1
N∑

n=1

E
(n,h)
α′,α1

(t)(fh, ϕ
h
n)ϕ

h
n, fh ∈ Xh, (7.9)

E
(n,h)
α′,β (t) := E(α1,α1−α2,...,α1−αm),β(−λhntα1 ,−q2tα1−α2 , . . . ,−qmtα1−αm).

On the finite element space Xh, we introduce the discrete norm

|||fh|||D(Aγ) :=

(
N∑

n=1

∣∣(λhn)γ(fh, ϕh
n)
∣∣2
)1/2

(fh ∈ Xh).

The norm |||·|||D(Aγ) is well defined for all γ ∈ R. Clearly, |||fh|||D(A1/2) = ‖fh‖D(A1/2) and

|||fh|||D(A0) = ‖fh‖L2(Ω) for any fh ∈ Xh. Further, the following inverse inequality holds

(see [81]): if the mesh Th is quasi-uniform, then for any κ > γ,

|||fh|||D(Aκ) ≤ C h2(γ−κ)|||fh|||D(Aγ) (∀ fh ∈ Xh). (7.10)

Lemma 7.6 Assume that the mesh Th is quasi-uniform. Let uh(t) satisfy (7.8) with F = 0.

Then for any ah ∈ Xh, there exists a constant C = C(Ω, T,α, q) > 0 such that for 0 ≤ κ−γ ≤ 1,

there holds

|||uh(t)|||D(Aκ) ≤ C|||ah|||D(Aγ)t
α1(γ−κ) (0 < t ≤ T ).

Proof. By the representation (7.8) , we have for 0 ≤ κ− γ ≤ 1 that

|||uh(t)|||2D(Aκ) =

N∑

n=1

(
(λhn)

κ−γ
∣∣∣1− λhntα1E

(n,h)
α′,1+α1

(t)
∣∣∣
)2 ∣∣(λhn)γ(ah, ϕh

n)
∣∣2 .

By the same argument as that in the proof of Theorem 7.1, we apply Lemmata 7.1–7.2 to

deduce ∣∣∣1− λhntα1E
(n,h)
α′,1+α1

(t)
∣∣∣ ≤ C

m∑

j=1

tα1−αj

1 + λhnt
α1
,

which yields

|||uh(t)|||2D(Aκ) ≤ C2
N∑

n=1




m∑

j=1

(λhn)
κ−γtα1−αj

1 + λhnt
α1




2

∣∣(λhn)γ(ah, ϕh
n)
∣∣2

≤
(
C tα1(γ−κ)

)2 N∑

n=1

(
(λhnt

α1)κ−γ

1 + λhnt
α1

)2 ∣∣(λhn)γ(ah, ϕh
n)
∣∣2

≤
(
C|||ah|||D(Aγ)t

α1(γ−κ)
)2

for 0 < t ≤ T .
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The next result is a discrete analogue to Lemma 7.4.

Lemma 7.7 Let Uh(t) be defined by (7.9) and fh ∈ Xh. Then there exists a constant

C = C(Ω, T,α, q) > 0 such that

|||Uh(t)fh|||D(Aκ) ≤
{
C|||fh|||D(Aγ)t

α1(1+γ−κ)−1, 0 ≤ κ− γ ≤ 1,

C|||fh|||D(Aγ)t
α1−1, κ < γ.

Proof. The proof for the case 0 ≤ κ − γ ≤ 1 is similar to that of Lemma 7.4. The another

assertion follows from the fact that {λhn}Nn=1 are bounded from zero independent of h.

In view of the superposition principle, again we separate the discussions on the homogeneous

and inhomogeneous problems, that is, the cases of F = 0 and a = 0 respectively. In the sequel,

we abbreviate u(t) := u( · , t) for simplicity.

7.3.2 Error estimates for the homogeneous problem

To derive error estimates for the homogeneous problem, first we consider the case of smooth

initial data, i.e., a ∈ D(A). To this end, we split the error uh(t)− u(t) into two terms as

uh − u = (uh −Rhu) + (Rhu− u) =: ϑ+ %.

By Lemma 7.5 and Theorem 7.1, we have

‖%(t)‖L2(Ω) + h‖∇%(t)‖L2(Ω) ≤ C h2‖u(t)‖D(A) ≤ C h2‖a‖D(A) (0 < t ≤ T ). (7.11)

So it suffices to get proper estimates for ϑ(t), which is given below.

Lemma 7.8 Let F = 0, a ∈ D(A), ah = Rha and ϑ(t) := uh(t) − Rhu(t). Then there

exists a constant C = C(Ω, T,α, q) > 0 such that for κ = 0, 1/2, there holds

‖ϑ(t)‖D(Aκ) ≤ C h2(1−κ)‖a‖D(A) (0 < t ≤ T ).

Proof. Using the identity 4hRh = Ph4, we note that ϑ satisfies





m∑

j=1

qj∂
αj

t ϑ(t)−4hϑ(t) = −Ph




m∑

j=1

qj∂
αj

t %(t)


 (0 < t ≤ T ),

ϑ(0) = 0.

By the representation (7.8), we have

ϑ(t) = −
∫ t

0

Uh(s)Ph




m∑

j=1

qj∂
αj

t %(t− s)


 ds.

Then by Lemma 7.7, Lemma 7.5 and Theorem 7.1, we deduce for κ = 0, 1/2 and 0 < t ≤ T

that

‖ϑ(t)‖D(Aκ) ≤
∫ t

0

∥∥∥∥∥∥
Uh(s)Ph




m∑

j=1

qj∂
αj

t %(t− s)



∥∥∥∥∥∥
D(Aκ)

ds

≤ C
∫ t

0

sα1(1−κ)−1

∥∥∥∥∥∥
Ph




m∑

j=1

qj∂
αj

t %(t− s)



∥∥∥∥∥∥
L2(Ω)

ds
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≤ C
∫ t

0

(t− s)α1(1−κ)−1

∥∥∥∥∥∥

m∑

j=1

qj∂
αj

t %(s)

∥∥∥∥∥∥
L2(Ω)

ds

≤ C h2(1−κ)

∫ t

0

(t− s)α1(1−κ)−1

∥∥∥∥∥∥

m∑

j=1

qj∂
αj

t u(s)

∥∥∥∥∥∥
D(A1−κ)

ds

≤ C h2(1−κ)

∫ t

0

(t− s)α1(1−κ)−1‖u(s)‖D(A2−κ) ds

≤ C h2(1−κ)‖a‖D(A)

∫ t

0

(t− s)α1(1−κ)−1sα1(κ−1) ds ≤ C h2(1−κ)‖a‖D(A),

where we use the fact that
∑m

j=1 qj∂
αj

t u = 4u in the fifth inequality.

Using (7.11), Lemma 7.8 and the triangle inequality, we arrive at our first estimate, which

is formulated in the following theorem.

Theorem 7.4 Let F = 0, a ∈ D(A) and u, uh be the solutions to (7.1) and (7.3) with

ah = Rha, respectively. Then there exists a constant C = C(Ω, T,α, q) > 0 such that

‖uh(t)− u(t)‖L2(Ω) + h‖∇(uh(t)− u(t))‖L2(Ω) ≤ C h2‖a‖D(A) (0 < t ≤ T ).

Now we turn to the nonsmooth case, i.e., a ∈ D(Aγ) with −1/2 < γ ≤ 1/2. Since the

Ritz projection Rh is not well-defined for nonsmooth data, we use instead the L2(Ω)-projection

ah = Pha and split the error uh(t)− u(t) into two terms as

uh − u = (uh − Phu) + (Phu− u) =: ϑ̃+ %̃. (7.12)

By Lemma 7.5 and Theorem 7.1, we have for −1/2 < γ ≤ 1/2 that

‖%̃(t)‖L2(Ω) + h‖∇%̃(t)‖L2(Ω) ≤ C h2(1+min(0,γ))‖u(t)‖D(A1+min(0,γ))

≤ C h2(1+min(0,γ))tα1(max(γ,0)−1)‖a‖D(Aγ) (0 < t ≤ T ).

Thus, we only need to estimate the term ϑ̃(t), which is stated in the following lemma.

Lemma 7.9 Let F = 0, a ∈ D(Aγ) with −1/2 < γ ≤ 1/2, ah = Pha and ϑ̃(t) :=

uh(t) − Phu(t). Then there exists a constant C = C(Ω, T,α, q) > 0 such that for κ = 0, 1/2,

there holds

‖ϑ̃(t)‖D(Aκ) ≤ C h2(1+min(γ,0)−κ)σh ‖a‖D(Aγ)t
α1(max(γ,0)−1) (0 < t ≤ T ),

where σh = | lnh|.

Proof. Using the identities

Ph




m∑

j=1

qj∂
αj

t %̃


 =

m∑

j=1

qj∂
αj

t Ph(Phu− u) = 0

and 4hRh = Ph4, we see that ϑ̃ satisfies





m∑

j=1

qj∂
αj

t ϑ̃(t)−4hϑ̃(t) = −4h(Rhu− Phu)(t) (0 < t ≤ T ),

ϑ̃(0) = 0.

(7.13)
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By the representation (7.8), we have

ϑ̃(t) = −
∫ t

0

Uh(s)4h(Rhu− Phu)(t− s) ds. (7.14)

Then by Lemma 7.6, there holds for κ = 0, 1/2 and arbitrarily small ε > 0 that

‖Uh(s)4h(Rhu− Phu)(t− s)‖D(Aκ) ≤ C sα1ε−1|||4h(Rhu− Phu)(t− s)|||D(Aκ−1+ε)

≤ C sα1ε−1|||(Rhu− Phu)(t− s)|||D(Aκ+ε).

Moreover, by (7.10), Theorem 7.1 and Lemma 7.5, we have for −1/2 < γ ≤ 1/2 that

‖Uh(s)4h(Rhu− Phu)(t− s)‖D(Aκ)

≤ C h2(1+min(γ,0)−κ−ε) sα1ε−1‖u(t− s)‖D(A1+min(γ,0))

≤ C h2(1+min(γ,0)−κ−ε)‖a‖D(Aγ)s
α1ε−1(t− s)α1(max(γ,0)−1) (κ = 0, 1/2).

Then we plug the above estimate back into (7.14) to obtain

‖ϑ̃(t)‖D(Aκ) ≤ C h2(1+min(γ,0)−κ−ε)‖a‖D(Aγ)

∫ t

0

sα1ε−1(t− s)α1(max(γ,0)−1) ds

≤ C ε−1h2(1+min(γ,0)−κ−ε)‖a‖D(Aγ)t
α1(max(γ,0)−1) (κ = 0, 1/2, 0 < t ≤ T ),

where the last inequality follows from the fact that
∫ t

0

sα1ε−1(t− s)α1(max(γ,0)−1) ds = tα1(ε+max(γ,0)−1)Γ(α1ε)Γ(1 + α1(max(γ, 0)− 1))

Γ(1 + α1(ε+max(γ, 0)− 1))

and the estimate Γ(α1ε) = Γ(1 + α1ε)/(α1ε) ≤ C ε−1. Now with the choice ε = 1/σh and the

fact that h−1/| lnh| is uniformly bounded for h > 0, we obtain the desired estimate.

Now the triangle inequality yields an error estimate for the case of a nonsmooth initial data.

Theorem 7.5 Let F = 0, a ∈ D(Aγ) with −1/2 < γ ≤ 1/2, and u, uh be the solutions of

(7.1) and (7.3) with ah = Pha, respectively. Then there exists a constant C = C(Ω, T,α, q) > 0

such that

‖uh(t)− u(t)‖L2(Ω) + h‖∇(uh(t)− u(t))‖L2(Ω) ≤ C h2(1+min(γ,0))σh ‖a‖D(Aγ)t
α1(max(γ,0)−1)

for 0 < t ≤ T , where σh = | lnh|.

7.3.3 Error estimates for the inhomogeneous problem

Now we derive error estimates for Galerkin approximations of the inhomogeneous problem

with a = 0 and F ∈ L∞(0, T ;D(Aγ)) (−1/2 < γ ≤ 0) in both L2- and L∞-norms in time. The

case F ∈ L∞(0, T ;D(Aγ)), 0 < γ ≤ 1/2 is simpler and can be treated analogously. To this end,

we appeal again to the splitting (7.12). By Theorem 7.2 and Lemma 7.5, the following estimate

holds for %̃:

‖%̃(t)‖L2(Ω) + h‖∇%̃(t)‖L2(Ω) ≤ C h2(1+γ−ε)‖u(t)‖D(A1+γ−ε)t
−α1ε

≤ C ε−1h2(1+q−ε)‖F‖L∞(0,t;D(Aγ)) (0 < t ≤ T ).

Now the choice σh = | lnh| and ε = 1/σh yields

‖%̃(t)‖L2(Ω) + h‖∇%̃(t)‖L2(Ω) ≤ C h2(1+γ)σh ‖F‖L∞(0,t;D(Aγ)) (0 < t ≤ T ).

Thus, it suffices to bound the term ϑ̃.
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Lemma 7.10 Let a = 0, F ∈ L∞(0, T ;D(Aγ)) with −1/2 < γ ≤ 0 and ϑ̃(t) be defined by

(7.14). Then there exists a constant C = C(Ω, T,α, q) > 0 such that

‖ϑ̃(t)‖L2(Ω) + h‖∇ϑ̃(t)‖L2(Ω) ≤ C h2(1+γ)σ2
h ‖F‖L∞(0,t;D(Aγ)) (0 < t ≤ T ).

where σh = | lnh|.

Proof. By (7.8) and Lemma 7.7, we deduce for κ = 0, 1/2 that

‖ϑ̃(t)‖D(Aκ) ≤
∫ t

0

‖Uh(s)4h(Rhu− Phu)(t− s)‖D(Aκ) ds

≤ C
∫ t

0

sα1ε−1|||4h(Rhu− Phu)(t− s)|||D(Aκ−1+ε) ds

≤ C
∫ t

0

sα1ε−1|||(Rhu− Phu)(t− s)|||D(Aκ+ε) ds (0 < t ≤ T ).

Further, using (7.10) and Lemma 7.5, we deduce

‖ϑ̃(t)‖D(Aκ) ≤ C h−ε

∫ t

0

sα1ε−1‖(Rhu− Phu)(t− s)‖D(Aκ) ds

≤ C h2(1+γ−κ−ε)

∫ t

0

sα1ε−1‖u(t− s)‖D(A1+γ−ε) ds (κ = 0, 1/2, 0 < t ≤ T ).

Now by (7.6) and the choice ε = 1/σh, we get for κ = 0, 1/2 and 0 < t ≤ T that

‖ϑ̃(t)‖D(Aκ) ≤ C ε−1h2(1+γ−κ−ε)‖F‖L∞(0,t;D(Aγ))

∫ t

0

sα1ε−1(t− s)α1ε ds

≤ C ε−2h2(1+γ−κ−ε)‖F‖L∞(0,t;D(Aγ)) ≤ C h2(1+γ−κ)σ2
h ‖F‖L∞(0,t;D(Aγ)),

where the second inequality follows from

∫ t

0

sα1ε−1(t− s)α1ε ds ≤ tα1ε

∫ t

0

sα1ε−1 ds =
2

α1ε
tα1ε ≤ C ε−1.

This completes the proof of the lemma.

An inspection of the proof of Lemma 7.10 indicates that for 0 < γ ≤ 1/2, one can get rid of

the factor σh. Now we can state an error estimate in L∞-norm in time.

Theorem 7.6 Let a = 0, F ∈ L∞(0, T ;D(Aγ)) with −1/2 < γ ≤ 0, and u, uh be the

solutions of (7.1) and (7.3) with Fh = PhF , respectively. Then there exists a constant C =

C(Ω, T,α, q) > 0 such that

‖uh(t)− u(t)‖L2(Ω) + h‖∇(uh(t)− u(t))‖L2(Ω) ≤ C h2(1+γ)σ2
h ‖F‖L∞(0,t;D(Aγ)) (0 < t ≤ T ),

where σh = | lnh|.

Finally, we derive an error estimates in L2-norm in time. To this end, we need a discrete

analogue of Theorem 7.3, whose proof follows identically and hence is omitted here.

Lemma 7.11 Let uh be the solution of (7.3) with ah = 0. Then for arbitrary γ > −1/2,
there exists a constant C = C(Ω, T,α, q) > 0 such that

∫ t

0

|||uh(s)|||2D(Aγ+1) ds ≤ C
∫ t

0

|||Fh(s)|||2D(Aγ) ds (0 < t ≤ T ).
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Theorem 7.7 Let a = 0, F ∈ L∞(0, T ;D(Aγ)) with −1/2 < γ ≤ 0, and u, uh be the

solutions of (7.1) and (7.3) with Fh = PhF , respectively. Then there exists a constant C =

C(Ω, T,α, q) > 0 such that

‖uh − u‖L2(0,t;L2(Ω)) + h‖∇(uh − u)‖L2(0,t;L2(Ω)) ≤ C h2(1+γ)‖F‖L2(0,t;D(Aγ)) (0 < t ≤ T ).

Proof. We use again the splitting (7.12). By Theorem 7.3 and Lemma 7.5,

‖%̃‖L2(0,t;L2(Ω)) + h‖∇%̃‖L2(0,t;L2(Ω)) ≤ C h2(1+γ)‖u‖L2(0,t;D(A1+γ))

≤ C h2(1+γ)‖F‖L2(0,t;D(Aγ)) (0 < t ≤ T ).

By (7.8), (7.13), Lemma 7.11 and Lemma 7.5, we have for κ = 0, 1/2 that

∫ t

0

‖ϑ̃(s)‖2D(Aκ) ds ≤ C
∫ t

0

|||4h(Rhu− Phu)(s)|||2D(Aκ−1) ds

≤ C
∫ t

0

‖(Rhu− Phu)(s)‖2D(Aκ) ds ≤
(
C h2(1+γ−κ)‖u‖L2(0,t;D(A1+γ))

)2

≤
(
C h2(1+γ−κ)‖F‖L2(0,t;D(Aγ))

)2
(0 < t ≤ T ).

Combing the above two estimates yields the desired assertion.

7.4 A fully discrete scheme

Now we describe a fully discrete scheme for problem (7.1) based on the finite difference

method introduced in [97]. To discretize the time-fractional derivatives, we divide the interval

[0, T ] uniformly with a time step size τ = T/Nt (Nt ∈ N). For β ∈ (0, 1), we perform the

discretization at each knot t` = ` τ (` = 1, . . . , Nt) as

∂βt f(t`) =
1

Γ(1− β)
∑̀

i=1

∫ ti

ti−1

f ′(s)

(t` − s)β
ds ≈ 1

Γ(1− β)
∑̀

i=1

f(ti)− f(ti−1)

τ

∫ ti

ti−1

ds

(t` − s)β
+Rβ,τ

`

=
1

Γ(2− β)
∑̀

i=1

dβi
f(t`−i+1)− f(t`−i)

τβ
+Rβ,τ

` ,

where dβi := i1−β − (i − 1)1−β (i = 1, 2, . . .), and Rβ,τ
` denotes the local truncation error. Lin

and Xu [97, Lemma 3.1] (see also [126, Lemma 4.1]) showed that Rβ,τ
` can be bounded as

|Rβ,τ
` | ≤ C τ2−β max

0≤t≤T
|f ′′(t)| (f ∈ C2[0, T ], ` = 1, 2, . . . , Nt). (7.15)

Then the multi-term fractional derivative
∑m

j=1 qj∂
αj

t u(x, t) at t = t` in (7.1) can be discretized

by
m∑

j=1

qj∂
αj

t u(x, t`) = Pτ (∂t)u(x, t`) +Rτ
` (x), (7.16)

where the discrete differential operator Pτ (∂t) is defined by

Pτ (∂t)u(x, t`) :=
1

Γ(2− α1)

∑̀

i=1

Pi
u(x, t`−i+1)− u(x, t`−i)

τα1
,

and the coefficients Pi (i = 1, 2, . . .) are defined by

Pi =

m∑

j=1

Γ(2− α1) qj d
αj

i τα1−αj

Γ(2− αj)
.
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Then by (7.15), the local truncation error Rτ
` (x) of the approximation Pτ (∂t)u(x, t`) is bounded

by

|Rτ
` (x)| ≤ C

m∑

j=1

qjτ
2−αj max

0≤t≤T
|∂2t u(x, t)| ≤ C τ2−α1 max

0≤t≤T
|∂2t u(x, t)|. (7.17)

By the monotonicity and convergence of {dβi } (see [97, Eqn. (13)]), we know that

P0 > P1 > . . . > 0 and Pi → 0 as i→∞. (7.18)

Now we are ready to propose the following fully discrete scheme: find u`h ∈ Xh (` =

1, . . . , Nt) such that

(Pτ (∂t)u
`
h, vh) + (∇u`h,∇vh) = (F `, vh) (∀ vh ∈ Xh), (7.19)

where F ` = F ( · , t`). By setting η = Γ(2−α1) τ
α1 , the fully discrete scheme (7.19) is equivalent

to finding u`h ∈ Xh such that for all vh ∈ Xh and ` = 1, . . . , Nt,

P0(u
`
h, vh) + η(∇u`h,∇vh) =

`−1∑

i=1

(Pi−1 − Pi)(u
`−i
h , vh) + P`−1(u

0
h, vh) + η(F `, vh). (7.20)

The next result gives the stability of the fully discrete scheme.

Lemma 7.12 The fully discrete scheme (7.20) is unconditionally stable, i.e., there exists a

constant C = C(Ω, T,α, q) > 0 such that

‖u`h‖L2(Ω) ≤ ‖u0h‖L2(Ω) + C max
1≤i≤`

‖F i‖L2(Ω) (` = 1, . . . , Nt).

Proof. The case ` = 1 is trivial, and we proceed by induction. By observing the monotone

decreasing property of the sequence {Pi} from (7.18) and choosing vh = u`h in (7.20), we

deduce

P0‖u`h‖L2(Ω) ≤
`−1∑

i=1

(Pi−1 − Pi)‖u`−i
h ‖L2(Ω) + P`−1‖u0h‖L2(Ω) + η‖F `‖L2(Ω)

≤
`−1∑

i=1

(Pi−1 − Pi)‖u`−i
h ‖L2(Ω) + P`−1‖u0h‖L2(Ω) + η max

1≤i≤`
‖F i‖L2(Ω)

≤ P0‖u0h‖L2(Ω) + (C(P0 − P`−1) + η) max
1≤i≤`

‖F i‖L2(Ω).

Using the monotonicity of {Pi} again gives

C(P0 − P`−1) + η ≤ C P0 − (C PNt − η).

It suffices to choose a constant C such that C PNt − η > 0. Recalling τ = T/Nt and noting the

concavity of the function b(τ) = (T + τ)1−α1 , we get b(τ) − b(0) ≤ b′(0)τ , i.e., (T + τ)1−α1 −
T 1−α1 ≤ (1− α1)T

−α1τ , and thus

dα1

Nt+1 = (N + 1)1−α1 −N1−α1 =
(
(T + τ)1−α1 − T 1−α1

)
τα1−1 ≤ (1− α1)T

−α1τα1 .

Hence

PNt ≤
m∑

j=1

Γ(2− α1) qj (1 − αj)T
α1−αj

Γ(2 − αj)
T−α1τα1 =: C0 T

−α1τα1 .

Thus by choosing C = Tα1/C0, we obtain

P0‖u`h‖L2(Ω) ≤ P0‖u0h‖L2(Ω) + C P0 max
1≤i≤`

‖F i‖L2(Ω).

The desired result follows by dividing both sides by P0.
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Next we state an error estimate for the fully discrete scheme. In order to analyze the

temporal discretization error, we assume that the solution is sufficiently smooth.

Theorem 7.8 Let a ∈ D(A) and F ∈ L∞(0, T ;D(A1/2)). Suppose that the solution u is

sufficiently smooth, and let {u`h}Nt

`=0 ⊂ Xh be the solution to the fully discrete scheme (7.20) with

u0h satisfying ‖u0h−a‖L2(Ω) ≤ C h2‖a‖D(A). Then there exists a constant C = C(Ω, T,α, q) > 0

such that

‖u`h − u(t`)‖L2(Ω) ≤ C
{
h2
(
‖a‖D(A) + ‖F‖L∞(0,t`;D(A1/2)) + max

0≤t≤t`
‖∂tu(t)‖D(A)

)

+τ2−α1 max
0≤t≤t`

‖∂2t u(t)‖L2(Ω)

}
(` = 1, . . . , Nt).

Proof. We split the error e` := u(t`)− u`h into two terms as

e` = (u(t`)−Rhu(t`)) +
(
Rhu(t`)− u`h

)
=: %` + ϑ`.

Here %` is a special case of %(t) := u(t)−Rhu(t) with t = t`. Applying Lemma 7.5, we have

‖%(t)‖L2(Ω) ≤ C h2‖u(t)‖D(A) ≤ C h2
(
‖a‖D(A) + ‖F‖L∞(0,T ;D(A1/2))

)
, (7.21)

‖∂t%(t)‖L2(Ω) ≤ C h2‖∂tu(t)‖D(A). (7.22)

It suffices to bound the term ϑn. By comparing (7.1) and (7.19), we derive the error equation

{
(Pτ (∂t)ϑ

n, vh) + (∇ϑn,∇vh) = (ξn, vh) (∀ vh ∈ Xh, 1 ≤ ` ≤ Nt),

ϑ0 = Rha− u0h,
(7.23)

where the right-hand side ξn is given by

ξn = Pτ (∂t)Rhu(t`)−
m∑

j=1

qj∂
αj

t u(t`) = −Pτ (∂t)%
` −Rτ

` =: ξ`1 + ξ`2,

and the truncation error Rτ
` is defined in (7.16). Using the identity

%i − %i−1 =

∫ tj

ti−1

∂t%(t) dt

and the inequality (7.22), we can bound the term ξ`1 by

‖ξ`1‖L2(Ω) ≤ C

∥∥∥∥∥∥
∑̀

i=1

%(ti)− %(ti−1)

τ

m∑

j=1

qj

∫ ti

ti−1

ds

(t` − s)αj

∥∥∥∥∥∥
L2(Ω)

≤ C

τ

∑̀

i=1

∫ ti

ti−1

‖∂t%(t)‖L2(Ω) dt

m∑

j=1

qj

∫ ti

ti−1

ds

(t` − s)αj

≤ C h2 max
0≤t≤t`

‖∂tu(t)‖D(A)

m∑

j=1

qj

∫ t`

0

ds

(t` − s)αj
≤ C h2 max

0≤t≤t`
‖∂tu(t)‖D(A).

Meanwhile, the second term ξ`2 can be bounded using (7.17). Then by the stability from Lemma

7.12 for the error equation (7.23), we obtain

‖ϑ`‖L2(Ω) ≤ C
(
‖ϑ0‖L2(Ω) + max

1≤i≤`
‖ξi1‖L2(Ω) + max

1≤i≤`
‖ξi2‖L2(Ω)

)
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≤ C
{
h2
(
‖a‖D(A) + max

0≤t≤t`
‖∂tu(t)‖D(A)

)
+ τ2−α1 max

0≤t≤t`
‖∂2t u(t)‖L2(Ω)

}
, (7.24)

where ϑ0 is estimated by the choice of u0h and Lemma 7.5 as

‖ϑ0‖L2(Ω) = ‖Rha− u0h‖L2(Ω) ≤ ‖Rha− a‖L2(Ω) + ‖a− u0h‖L2(Ω) ≤ C h2‖a‖D(A).

The combination of (7.21) and (7.24) immediately yields the desired error estimate.

Remark 7.2 The error estimate in Theorem 7.8 holds only if the solution u is sufficiently

smooth u. There seems no known error estimate expressed in terms of the initial data (and

right-hand side) only for fully discrete schemes for nonsmooth initial data even for the single-

term time-fractional diffusion equation with a Caputo fractional derivative.

7.5 Numerical experiments

In this section, we present one-and two-dimensional numerical experiments to verify the

error estimates in Sections 7.3 and 7.4. We shall discuss the cases of a homogeneous problem

and an inhomogeneous problem separately. Without lose of generality, we consider the following

initial-boundary value problem for a fractional diffusion equation with two Caputo derivatives

in time throughout this section





∂αt u+ ∂βt u = 4u+ F in Ω× (0, T ],

u = a in Ω× {0},
u = 0 on ∂Ω× (0, T ],

(7.25)

where we basically fix α = 0.5 and β = 0.2. Only in Subsection 7.5.1 and Example 7.1, we

choose various α to compare the numerical performances.

7.5.1 The case of a smooth solution

Here we consider the one-dimensional case of (7.25) on the unit interval Ω = (0, 1). In

order to verify the estimate in Theorem 7.8, we first check the situation that the solution u is

sufficiently smooth. Set

a(x) = x− x2, F (x, t) = 2

(
t2−α

Γ(3− α) +
t2−β

Γ(3− β)

)
(x− x2) + 2(1 + t2).

Then the exact solution u is given by u(x, t) = (1 + t2)(x− x2), which is very smooth.

In our computation, we divide the unit interval Ω = (0, 1) into Nx equidistant subintervals

with the mesh size h = 1/Nx. Similarly, the time span is also equally partitioned with a step

length τ . Here we choose Nx large enough so that the space discretization error is negligible,

and the time discretization error dominates. We evaluate the accuracy of the numerical ap-

proximation u`h by the normalized errors ‖u`h−u(t`)‖L2(Ω)/‖a‖L2(Ω). In Table 7.1, we show the

temporal convergence rates, indicated under the column “Rate” (the number in bracket is the

theoretical rate), for three different α values, which fully confirms the theoretical result. See

also Figure 7.1 for the plot of the convergence rates.
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Table 7.1: Numerical results for the case with a smooth solution at t = 1 with β = 0.2 and

α = 0.25, 0.5, 0.95, discretized on a uniform mesh of mesh size h = 2−10 and τ = 0.2 × 2−k

(k = 1, . . . , 5).

α Norm τ = 1/10 τ = 1/20 τ = 1/40 τ = 1/80 τ = 1/160 Rate
0.25 L2 5.58e-4 1.73e-4 5.25e-5 1.51e-5 3.90e-6 ≈ 1.81 (1.75)
0.5 L2 1.45e-3 5.11e-4 1.78e-4 6.17e-5 2.08e-5 ≈ 1.55 (1.50)
0.95 L2 7.92e-3 3.79e-3 1.82e-3 8.73e-4 4.20e-4 ≈ 1.06 (1.05)
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Figure 7.1: Numerical results for the case with a smooth solution at t = 1 with β = 0.2 and
α = 0.25, 0.5, 0.95.

7.5.2 Homogeneous problems

In this subsection, we present numerical results to illustrate the spatial convergence rates in

section 7.3 in case of F = 0 in (7.25). We performed numerical tests for initial data with different

smoothness. In order to check the convergence rate of the semidiscrete scheme, we discretize

the fractional derivatives with a tiny time step, and thus the temporal discretization error is

negligible. For each example, we evaluate the error e(t) = u(t)−uh(t) by the normalized errors

‖e(t)‖L2(Ω)/‖a‖L2(Ω) and ‖∇e(t)‖L2(Ω)/‖a‖L2(Ω). The normalization enables us to observe the

behavior of the error with respect to time in case of nonsmooth initial data. For simplicity, we

still consider the one-dimensional case with Ω = (0, 1).

Example 7.1 We first choose a smooth initial value a(x) = sin(2πx) which belongs to

H2(Ω) ∩ H1
0 (Ω), and perform the tests with β = 0.2 and α = 0.25, 0.5, 0.95. The numerical

results show that for all three different values of α, the convergence rates in L2- and H1-norms

of the error turn out to be O(h2) and O(h) respectively (see Figure 7.2). As the value of α

increases from 0.25 to 0.95, the error at t = 1 decreases accordingly, which resembles that for

the single-term case in [81].
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Figure 7.2: Numerical results for Example 7.1 at t = 1 with β = 0.2 and α = 0.25, 0.5, 0.95,

discretized on a uniform mesh h = 2−k (k = 3, . . . , 7) and τ = 2× 10−5.

Example 7.2 Next, we choose a nonsmooth initial value a(x) = χ(0,1/2](x), that is, the

characterization function of (0, 1/2]. It is known that a ∈ D(A1/4−ε) for arbitrarily small ε > 0.
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Here we are particularly interested in the errors for t close to zero, and thus we also present

the errors at t = 0.01 and t = 0.001 in Table 7.2. The numerical results fully confirm the

theoretically predicted rates for the nonsmooth initial data. Further, in Table 7.3 we show the

L2-norm of the error for fixed h = 2−6 as t ↓ 0. We observe that the error deteriorates as t ↓ 0.
Noting that a almost belongs to D(A1/4), it follows from Theorem 7.5 that the error grows like

O(t−3α1/4), which is in excellent agreement with the numerical experiments in Table 7.3.

Table 7.2: Numerical results for Example 7.2 at t = 1, 0.01, 0.001, discretized on a uniform

mesh h = 2−k (k = 3, . . . , 7) and τ = t/(5× 104).

t Norm k = 3 k = 4 k = 5 k = 6 k = 7 Rate
1 L2 1.86e-3 4.64e-4 1.16e-4 2.87e-5 6.88e-6 ≈ 2.02 (2.00)

H1 4.89e-2 2.44e-2 1.22e-2 6.07e-3 2.96e-3 ≈ 1.01 (1.00)
0.01 L2 8.04e-3 2.00e-3 5.01e-4 1.24e-4 2.98e-5 ≈ 2.03 (2.00)

H1 2.31e-1 1.16e-1 5.79e-2 2.88e-2 1.40e-2 ≈ 1.01 (1.00)
0.001 L2 1.65e-2 4.14e-3 1.03e-3 2.56e-4 6.18e-4 ≈ 2.01 (2.00)

H1 5.15e-1 2.58e-1 1.29e-1 6.41e-2 3.13e-2 ≈ 1.01 (1.00)

Table 7.3: L2-error with h = 2−6 as t ↓ 0 in Example 7.2.

t 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8 Rate
L2-norm 2.56e-4 5.39e-4 1.15e-3 2.91e-3 6.77e-3 1.55e-2 ≈ −0.37 (≈ −3/8)

Example 7.3 In this example, we choose a nonsmooth initial value with even lower reg-

ularity as a(x) = δ1/2(x), that is, a Dirac function concentrating at x = 1/2. Actually,

a ∈ D(A−1/4−ε) for arbitrarily small ε > 0. The numerical results show a superconvergence

with a rate of O(h2) in the L2-norm and a rate of O(h) in the H1-norm (see Figure 7.3(a)).

This is attributed to the fact that in one spatial dimension, the solution with a Dirac function

as the initial data is smooth from both sides of the support point, and the finite element spaces

Xh possess a good approximation property. When the singular point x = 1/2 is not aligned

with the grid, Figure 7.3(b) indicates an O(h3/2) and O(h1/2) convergence rate for the L2- and

H1-norm of the error respectively, which agrees with our theoretical results.

7.5.3 Inhomogeneous problems

Now we consider the inhomogeneous problem with a = 0 in (7.25) on the unit interval

Ω = (0, 1). Similarly to the previous subsection, we adjust the smoothness of data to test their

influence upon the numerical performance.

Example 7.4 We first choose F (x, t) = χ[0,1,2](x) (χ[1/2,1](t)+1), which belongs to L∞(0, T ;

D(A1/4−ε) for arbitrarily small ε > 0. Since Theorem 7.6 guarantees a time-independent error

estimate, we only present the errors ‖e(t)‖L2(Ω) and ‖∇e(t)‖L2(Ω). In Table 7.4, we present the

L2- and H1-errors at t = 1, 0.01, 0.001. The numerical results agree well with our theoretical

predictions, i.e., O(h2) and O(h) convergence rates for the L2- and H1-norms of the error,

respectively.

Example 7.5 In this example, we choose F (x, t) = δ1/2(x) (χ[1/2,1](t) + 1), which involves

a Dirac function concentrating at x = 1/2 in space and then F ∈ L∞(0, T ;D(A−1/4−ε) for arbi-

trarily small ε > 0. In Table 7.6, we show the error and convergence rates at t = 1, 0.01, 0.001.

Here the mesh size h is chosen as h = 1/(2k + 1) (k = 3, . . . , 7), and thus the support of
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Figure 7.3: Numerical results for Example 7.3 at t = 0.005, 0.01, 1 with the step length τ =

t/(5× 104) in time. (a) x = 1/2 aligns with the grid when h = 2−k (k = 3, . . . , 7). (b) x = 1/2
does not align with the grid for h = 1/(2k + 1) (k = 3, . . . , 7).

Table 7.4: Numerical results for Example 7.4 at t = 1, 0.01, 0.001, discretized on a uniform

mesh h = 2−k (k = 3, . . . , 7) and τ = t/(5× 104).

t Norm k = 3 k = 4 k = 5 k = 6 k = 7 Rate
1 L2 1.76e-3 4.40e-4 1.10e-4 2.71e-5 6.53e-6 ≈ 2.01 (2.00)

H1 4.72e-2 2.36e-2 1.18e-2 5.86e-3 2.86e-3 ≈ 1.01 (1.00)
0.01 L2 6.34e-4 1.59e-4 3.96e-5 9.82e-6 2.38e-6 ≈ 2.01 (2.00)

H1 1.89e-2 9.46e-3 4.72e-3 2.35e-3 1.15e-3 ≈ 1.01 (1.00)
0.001 L2 4.55e-4 1.15e-4 2.88e-5 1.15e-6 1.73e-6 ≈ 2.02 (2.00)

H1 1.45e-2 7.31e-3 3.66e-3 1.82e-3 8.88e-4 ≈ 1.01 (1.00)
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the Dirac function does not align with the grid. The results indicate an O(h1/2) and O(h3/2)
convergence rate for the H1- and L2-norm of the error respectively, which agrees well with the

theoretical prediction. However, if the Dirac function is supported at a grid point, both L2-

and H1-norm of the error exhibit a superconvergence phenomenon, namely, order O(h2) and

O(h) respectively, which are one half order higher than theoretical ones (see Table 7.5). This

superconvergence still awaits theoretical justifications.

Table 7.5: Numerical results for Example 7.5 at t = 0.1, 0.01, 0.001, discretized on a uniform

mesh h = 1/(2k + 1) (k = 3, . . . , 7) and τ = t/(5× 104).

t Norm k = 3 k = 4 k = 5 k = 6 k = 7 Rate
1 L2 1.02e-2 4.01e-3 1.49e-3 5.35e-4 1.82e-4 ≈ 1.49 (1.50)

H1 3.24e-1 2.35e-1 1.65e-1 1.11e-1 6.94e-2 ≈ 0.50 (0.50)
0.01 L2 4.66e-3 1.91e-3 7.29e-4 2.64e-4 9.02e-5 ≈ 1.45 (1.50)

H1 1.54e-1 1.14e-1 8.16e-2 5.54e-2 3.47e-2 ≈ 0.55 (0.50)
0.001 L2 4.30e-3 1.83e-3 7.12e-4 2.61e-4 8.97e-5 ≈ 1.45 (1.50)

H1 1.47e-1 1.11e-1 8.05e-2 5.50e-2 3.45e-2 ≈ 0.55 (0.50)

Table 7.6: Numerical results for Example 7.5 at t = 1, 0.01, 0.001, discretized on a uniform

mesh h = 2−k (k = 3, . . . , 7) and τ = t/(5× 104).

t Norm k = 3 k = 4 k = 5 k = 6 k = 7 Rate
1 L2 5.35e-4 1.34e-4 3.35e-5 8.31e-6 2.01e-6 ≈ 2.01 (1.50)

H1 1.49e-2 7.48e-3 3.74e-3 1.86e-3 9.07e-4 ≈ 1.01 (0.50)
0.01 L2 6.67e-4 1.67e-4 4.17e-5 1.04e-5 2.52e-6 ≈ 2.03 (1.50)

H1 2.56e-2 1.29e-2 6.44e-3 3.20e-3 1.56e-3 ≈ 1.02 (0.50)
0.001 L2 8.19e-4 2.08e-4 5.22e-5 1.30e-5 3.19e-6 ≈ 2.02 (1.50)

H1 3.96e-2 2.00e-2 1.00e-3 4.98e-3 2.45e-3 ≈ 1.01 (0.50)

7.5.4 Two-dimensional examples

Finally, we present three two-dimensional examples with various choices of initial value and

right-hand side on the unit square Ω = (0, 1)2.

(a) Nonsmooth initial data a = χ(0,1/2)×(0,1) and F = 0.

(b) Nonsmooth initial data with lower regularity a = δΓ and F = 0. Here Γ denotes the union

of {1/4}×[1/4, 3/4]∪[1/4, 3/4]×{3/4} clockwise and [1/4, 3/4]×{1/4}∪{3/4}×[1/4, 3/4]
counterclockwise. The duality is defined by 〈δΓ, v〉 =

∫
Γ
v(s) ds. By Hölder’s inequality

and the continuity of the trace operator from D(A1/4+ε) to L2(Γ) for any ε > 0 (see [1]),

we deduce δΓ ∈ D(A−1/4−ε) for arbitrarily small ε > 0.

(c) Nonsmooth right-hand side F (x, t) = χ(0,1/2)×(0,1)(x) (χ[1/20,1/10](t) + 1) and a = 0.

To discretize the problem, we divide the each direction into Nx = 2k equally spaced subin-

tervals with a mesh size h = 1/Nx, so that the domain [0, 1]2 is divided into N2
x small squares.

We get a symmetric mesh by connecting the diagonal of each small square.

The numerical results for example (a) are shown in Tables 7.7, which agree well with the

theoretical rate in Theorem 7.5, with a rate O(h2) and O(h) respectively for the L2- and H1-

norm of the errors. Interestingly, for example (b), both the L2-norm and H1-norm of the errors
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exhibit superconvergence (see Table 7.8). The numerical results for example (c) confirm the

theoretical results (see Table 7.9). The solution profiles for examples (b) and (c) at t = 0.1 are

shown in Figure 7.4, from which the nonsmooth region of the solution can be clearly observed.

Table 7.7: Numerical results for example (a) at t = 0.1, 0.01, 0.001, discretized on a uniform

mesh h = 2−k (k = 3, . . . , 7) and τ = t/104.

t Norm k = 3 k = 4 k = 5 k = 6 k = 7 Rate
0.1 L2 5.25e-3 1.35e-3 3.38e-4 8.24e-5 1.98e-5 ≈ 2.06 (2.00)

H1 9.10e-2 4.53e-2 2.25e-2 1.09e-2 4.99e-3 ≈ 1.04 (1.00)
0.01 L2 1.25e-2 3.23e-3 8.09e-4 1.97e-4 4.65e-5 ≈ 2.05 (2.00)

H1 2.18e-1 1.08e-1 5.35e-2 2.62e-2 1.27e-2 ≈ 1.05 (1.00)
0.001 L2 3.02e-2 7.84e-3 1.97e-3 4.81e-4 1.16e-4 ≈ 2.03 (2.00)

H1 5.30e-1 2.64e-1 1.31e-1 6.38e-2 3.14e-2 ≈ 1.04 (1.00)

Table 7.8: Numerical results for example (b) at t = 0.1, 0.01, 0.001, discretized on a uniform

mesh h = 2−k (k = 3, . . . , 7) and τ = t/104.

t Norm k = 3 k = 4 k = 5 k = 6 k = 7 Rate
0.1 L2 1.18e-2 3.18e-3 8.41e-4 2.18e-4 5.41e-5 ≈ 1.92 (1.50)

H1 2.25e-1 1.13e-1 6.60e-2 3.40e-2 1.66e-2 ≈ 0.92 (0.50)
0.01 L2 2.82e-2 7.62e-3 2.28e-3 5.26e-4 1.25e-4 ≈ 1.95 (2.00)

H1 5.66e-1 3.09e-1 1.65e-1 8.52e-2 4.19e-2 ≈ 0.94 (1.00)
0.001 L2 6.65e-2 1.83e-3 4.98e-3 1.33e-3 3.30e-4 ≈ 1.91 (2.00)

H1 1.66e0 8.93e-1 4.75e-1 2.43e-1 1.21e-1 ≈ 0.95 (1.00)

Table 7.9: Numerical results for example (c) at t = 0.1, 0.01, 0.001, discretized on a uniform

mesh h = 2−k (k = 3, . . . , 7) and τ = t/104.

t Norm k = 3 k = 4 k = 5 k = 6 k = 7 Rate
0.1 L2 2.28e-3 5.86e-4 1.47e-4 3.58e-5 7.91e-6 ≈ 2.07 (2.00)

H1 3.97e-2 1.97e-2 9.77e-3 4.76e-3 2.13e-3 ≈ 1.06 (1.00)
0.01 L2 1.06e-3 2.73e-4 6.86e-5 1.67e-6 3.70e-7 ≈ 2.06 (2.00)

H1 1.85e-2 9.18e-3 4.56e-3 2.22e-3 9.94e-4 ≈ 1.06 (1.00)
0.001 L2 8.66e-4 2.28e-4 5.75e-5 1.40e-6 3.11e-7 ≈ 2.04 (2.00)

H1 1.56e-2 7.82e-3 3.88e-3 1.90e-3 8.47e-4 ≈ 1.05 (1.00)

7.6 Concluding remarks

In this chapter, we have developed a simple numerical scheme based on the Galerkin finite

element method for a multi-term time fractional diffusion equation which involves multiple Ca-

puto fractional derivatives in time. A complete error analysis of the space semidiscrete Galerkin

scheme is provided. The theory covers the practically very important case of nonsmooth initial

data and right-hand side. The analysis relies essentially on some refined regularity results of

the multi-term time fractional diffusion equation. Further, we have developed a fully discrete

scheme based on a finite difference discretization of the Caputo fractional derivatives. The

stability and error estimate of the fully discrete scheme were established, provided that the

solution is smooth. The extensive numerical experiments in one-and two-dimension fully con-
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Figure 7.4: Numerical solutions of examples (b) and (c) with h = 2−6 at t = 0.1.

firmed our convergence analysis: the empirical convergence rates agree well with the theoretical

predictions for both smooth and nonsmooth data.
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