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Abstract 
To date, more than 30,000 genomes have been sequenced since the publication of the first free-

living organism genome. However, understanding of how genomes exert their functions is lagging 

behind. This is due to laboriousness of measuring dynamics of entities that link genomes and 

phenotypes (e.g., genes and proteins). Such information is required to investigate mechanisms of 

genome functions, and also should provide clues for understanding how genome functions have 

evolved. Recent advent of high-throughput sequencing enables us to obtain genome-wide 

information on not only DNA sequences but also gene expressions and DNA-binding protein 

occupancies more easily than ever before. Thus, by taking advantage of the high-throughput 

sequencing data, now we can investigate genome functions and their evolution. 	



	

 In this thesis, I describe research on genome functions and their evolution using of high-

throughput sequencing data in two topics.	



	

 First, I investigated contribution of CLOCK, a fundamental transcription factor in the 

mammalian circadian oscillator, to circadian rhythms in gene expression levels in a genome-wide 

manner. Circadian rhythms are oscillation with a period of approximately 24 hours in biochemistry, 

physiology, and behavior of organisms. The circadian rhythms are generated by circadian clock. 

Mammalian circadian clock have been well characterized: many key genes are identified and 

systems-biological approaches have been applied. In that, transcriptional and translational feedback 

loops (TTFLs) with dozens of genes are well modeled. Meanwhile, early microarray experiments 

found that many genes out of the TTLFs showed circadian expressions in cells and tissues, which 

raises a question: how these many genes are regulated on a genome-wide manner? To address this 

question, I analyzed high-throughput sequencing data including CLOCK ChIP-Seq, mRNA-Seq, 

and small RNA-Seq data from mouse liver. The new method to enumerate DNA-binding motifs 

from ChIP-Seq data was developed. Application of the method to the ChIP-Seq data revealed 

comprehensive set of CLOCK-binding motifs. In addition, I found that contribution of CLOCK to 

the transcriptome-wide circadian gene expressions as a direct transactivator was smaller than 

expected. Several plausible mechanisms of CLOCK indirectly regulating rhythmically expressed 

genes expressions were discussed.	



	

 Second, I show the possibility of positive selection on gene copy number variations by 

taking advantage of the system of parallel evolution of three-spined sticklebacks. Positive selection 

is an evolutionary process by which an allele increases its frequency in a population. Copy number 

variations (CNVs) constitute a significant proportion of genomic diversity. In particular, gene copy 



number variations (GCNVs), which change the numbers of gene loci in genomes, can significantly 

alter gene functions and dosages, and thus can undergo positive selection. However, positive 

selection of CNVs has not been proved. One way of assessing the possibility is to search for 

increase or decrease of copy numbers in parallel evolution of freshwater groups of three-spined 

stickleback. Parallel evolution is the adaptive evolution in which the same genotypes or phenotypes 

are selected in different but related lineages, and provides strong evidence of positive selections. To 

address the possibility of positive selection on GCNVs using the system of parallel evolution of 

three-spined stickleback, I analyzed resequencing data of multiple individuals from freshwater and 

marine populations. A novel approach was devised to detect GCNVs under parallel selection from 

whole-genome sequencing data with low coverage by comparing two resequencing datasets. 

Application of the method to the resequencing data of sticklebacks revealed GCNVs that were 

likely under parallel selection. Many of the identified GCNVs showed increase in gene copy 

numbers in freshwater individuals, which is consistent with the notion that increase in gene copy 

number would facilitate adaptive evolution. These results suggest that contribution of GCNVs 

should be considered in studies on adaptive evolution.	
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Chapter 1: General introduction 

Studying functions and mechanisms in biology 

Biology is studies of living organisms and biological entities including the biological molecules, 

organelles, cells, tissues, organs. One of major objectives of biology is to reveal functions of 

biological entities, which are observed from various aspects such as chemistry, physiology and 

behavior. Studies of functions are usually accompanied by studies of mechanisms by which 

biological entities exert their functions. 	



	

 Another major goal of biology is understanding of diversity of living organisms. Organisms 

show intra- and inter-species differences in their phenotypes in terms of chemistry, morphology, 

physiology, and behavior. The fundamental step for interpretation of these diversities is 

understanding evolution of the functions and mechanisms, as the title of Dobzhansky’s famous 

essay, “Nothing in Biology Makes Sense Except in the Light of Evolution” (Dobzhansky, 1973).	



	

 In short, investigation of functions of biological entities, the underlying mechanisms and 

evolution of the functions is curtail in biology.	



Understanding of genomes lagging behind 

Molecular bases of phenotypes are of general interest, because it should help understanding the 

functions of biological entities and the underlying mechanisms, and also may provide clues to 

understand evolution of the functions. Advances in genetics, molecular biology, and genome 

sciences enabled biologists to investigate relationships between genes and phenotypes. 	



	

 Genetics has proven inheritance of genetic substance. In addition, geneticists have identified 

genes underlying or associated with various phenotypes. On the other hand, they generally ignored 

the molecular mechanisms in which the genes cause the phenotypes. Such attitude is exemplified by 

what François Jacob wrote about Thomas Morgan’s discovery of the role of chromosome in 

heredity: “Rather than asking questions about physiology and chemistry of genes or speculating 

about possible theories of heredity, he stuck to the facts, thereby founding a genetics that interpreted 

Mendelian inheritance in terms of chromosomal theory” (Jacob, 1998). Thus, using genetics, one 

often knows that genes somehow cause phenotypes and changes in genes somehow cause changes in 

phenotypes.	
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 Molecular biology is the branch of biology that searches for molecular basis underlying 

biological processes. One of the major discoveries in molecular biology is the central dogma, in 

which genetic information is transferred from DNA to RNA through transcription and from RNA to 

proteins through translation (Crick, 1970). The central dogma as well as the subsequent advances in 

biotechnology provided the way to uncover causative links between genes and phenotypes. Using 

molecular biology, biologists have identified genes involved in a particular biological process and 

revealed how the genes or gene products exert their functions.	



	

 Since the genome of Haemophilus influenzae was completely sequenced in 1995 

(Fleischmann et al., 1995), more than 30,000 organisms have had its genomes sequenced (the 

Genomes OnLine Database; https://gold.jgi-psf.org). As genome contains all genetic information 

including coding and non-coding sequences, understanding of genome is the fundamental step 

toward understanding of life especially in the post-genomic era. Genomics has raised two problems. 

One is the difficulty in predicting controls, functions, and interactions of genes and their products 

from genome sequences themselves. Such information has to be obtained by molecular biological 

experiments one by one. The other is the increased number of genes and their combination that 

should be considered in studies of genome functions and their evolution.	



	

 Molecular biology has revealed regulatory relationships of genes and interactions among 

gene products including proteins separately. However, measuring dynamics of entities that link 

genomes and phenotypes (e.g., genes and proteins) is laborious. Consequently, understanding of 

how genomes exert their functions is lagging behind for diverse research topics. Similarly, how 

evolutionary changes in genome caused evolution of genome functions remain often unexplained 

from the point of view of molecular level. Therefore, what we know is often “genome somehow 

causes phenotypes”. Similarity, we know that evolution of genome somehow resulted in evolution 

of phenotypes.	



How to investigate genome functions and their evolution 

Recent advent of high-throughput sequencing enables us to obtain genome-wide information on not 

only DNA sequences but also dynamics of biological molecules more easily than ever before. For 

example, RNA Sequencing (RNA-Seq) can reveal not only expression levels of all genes but also 

alternative splicing patterns. Another example is chromatin immunoprecipitation sequencing (ChIP-

Seq), which can provide genome-wide information on occupancies of DNA-binding proteins. 

Comprehensive measurement of molecular phenotypes under biological processes of interest should 
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facilitate understanding how genome exert its functions and how genome functions have evolved. 

Thus, by taking advantage of the high-throughput sequencing data, now we can investigate genome 

functions and their evolution.	



Outline of this thesis 

This thesis describes researches on genome functions and their evolution using of high-throughput 

sequencing data in two topics. In Chapter 2, I investigated contribution of CLOCK, a fundamental 

transcription factor in the mammalian circadian oscillator, to circadian rhythms in gene expression 

levels in a genome-wide manner. In Chapter 3, I show the possibility of positive selection on gene 

copy number variations by taking advantage of the system of parallel evolution of three-spined 

sticklebacks.	



!
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Chapter 2: CLOCK-controlled regulations of circadian 
rhythms through canonical and non-canonical E-boxes 
	

*

Circadian rhythms are oscillation with a period of approximately 24 hours in biochemistry, 

physiology, and behavior of organisms. The circadian rhythms are generated by circadian clock. 

Mammalian circadian clock have been well characterized: many key genes are identified and 

systems-biological approaches have been applied (Ukai and Ueda, 2010). In that, transcriptional 

and translational feedback loops (TTFLs) with dozens of genes are well modeled (Brown et al., 

2012). Meanwhile, early microarray experiments found that many genes out of the TTLFs showed 

circadian expressions in cells and tissues (Miller et al., 2007; Hughes et al., 2009), which raises a 

question: how these many genes are regulated on a genome-wide manner? In this chapter, I 

investigated contribution of CLOCK, a fundamental transcription factor in TTFL, to circadian 

rhythms in gene expression levels in a genome-wide manner. To this end, I analyzed high-

throughput sequencing data including CLOCK ChIP-Seq, mRNA-Seq, and small RNA-Seq data 

from mouse liver. The new method to enumerate DNA-binding motifs from ChIP-Seq data was 

developed. Application of the method to the ChIP-Seq data revealed comprehensive set of CLOCK-

binding motifs. In addition, I found that contribution of CLOCK to the transcriptome-wide 

circadian gene expressions as a direct transactivator was smaller than expected. Several plausible 

mechanisms of CLOCK indirectly regulating rhythmically expressed genes expressions were 

discussed.	



Background 

Diverse species from bacteria to human show nearly 24-hour rhythms in their physiology and 

behavior even in the condition where no external cues or “zeitgebers” (e.g., light) are available. 

These rhythms are called circadian rhythms. The mechanisms underlying circadian rhythms are 

designated as circadian clocks. A circadian clock is composed of three parts: input pathways, the 

circadian oscillator, and output pathways (Lowrey and Takahashi, 2004). The input pathways 

convey signals to synchronize the circadian oscillator depending on the environments. The 
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Hikari Yoshitane*, Haruka Ozaki*, Hideki Terajima* et al., CLOCK-controlled polyphonic regulation of circadian 
rhythms through canonical and noncanonical E-boxes. Molecular and cellular biology 34, 1776–87 (2014).	


(* Equal contributions)



circadian oscillator generates circadian rhythms. The output pathways were used to regulate 

circadian rhythms in biochemistry, physiology, and behavior. 	



	

 In mammal, the circadian oscillator is the interconnected regulatory network of transcription 

factors (Ukai and Ueda, 2010). Among these transcription factors, CLOCK and BMAL1 are 

fundamental for the circadian oscillator to generate circadian rhythms (Lowrey and Takahashi, 

2004). CLOCK and BMAL1 form heterodimers and activate expression of their target genes, 

including Per and Cry. mRNAs of Per and Cry are then translated to produce PER and CRY 

proteins, which in turn suppress the transactivation by the CLOCK-BMAL1 complex. This negative 

feedback loop makes the CLOCK-BMAL1 complex bind to the target gene loci in a circadian 

manner. Other transcription factors are also shown or thought to function in the regulation of the 

circadian oscillator and the output pathway of circadian gene expression (Ukai and Ueda, 2010). 	



	

 CLOCK binding is thought to be one of the output pathways of circadian gene expression. 

To date, dozens of rhythmically expressed genes such as Dbp have been shown to be directly 

targeted by the CLOCK-BMAL1 complex via the DNA-binding motif E-box (Ripperger and 

Schibler, 2006). The canonical E-box (CACGTG) was the sequence most strongly bound by 

CLOCK and BMAL1 (Gekakis et al., 1998). However, several non-canonical E-boxes have been 

proposed (Yoo et al., 2005; Kiyohara et al., 2008; Kumaki et al., 2008; Ueda et al., 2005). These 

findings raise the question of what is the entire set of CLOCK-binding motifs. The understanding of 

diversity of E-boxes would provide insight into genome-wide regulation of circadian rhythm.	



	

 Previous studies reported that 10-30% of expressed genes show circadian oscillation in the 

expression levels using microarray (Miller et al., 2007; Hughes et al., 2009). However, it was 

unclear to what extent these rhythmically expressed genes are targeted by CLOCK in a genome 

wide manner. On the other hand, the consequences of the CLOCK binding to gene loci also remain 

largely unknown. As circadian gene expressions are involved in proper functioning of metabolism, 

and the disruption of them results in metabolic disorders and diseases (Takahashi et al., 2008; Bass 

and Takahashi, 2010), detail knowledge on the mechanisms and consequences of CLOCK binding 

is of great importance for understanding regulation of metabolism.	



	

 In this study, I investigated the relationship of CLOCK-binding and rhythmic gene 

expression using CLOCK ChIP-Seq, mRNA-Seq, and small RNA-Seq data from mouse liver. I first 

identified nearly 8,000 CLOCK-binding sites on the mouse genome. Then, I developed MOCCS, a 

bioinformatic method to enumerate all binding motifs of DNA-binding proteins from ChIP-Seq 

data. By applying the method to the sequences around the CLOCK-binding sites, I found novel 
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CLOCK-binding motifs and revealed nucleotide selectivity within known and novel CLOCK-

binding motifs. In addition, I detected rhythmically expressed genes using mRNA-Seq and small 

RNA-Seq data, and found that more than 70% of these rhythmically expressed genes were not 

directly targeted by CLOCK. Last, I discussed indirect regulations of the rhythmic genes which are 

not directly targeted by CLOCK.	



!
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Materials and Methods 

High-throughput sequencing data 

All Illumina sequencing data used in this study were obtained at the Fukada lab (Graduate School of 

Science, The University of Tokyo) and the Suzuki lab (Graduate School of Frontier Sciences, The 

University of Tokyo). The sequencing data were generated from the mouse liver sample under the 

light-12-hour:dark-12-hour (LD) condition or the constant dark (DD) condition. Note that time is 

represented by zeitgeber time (ZT) and circadian time (CT) under LD and DD conditions, 

respectively: ZT0 corresponding to the lights-on time and CT0 corresponding to the lights-on time 

in the previous LD cycle.	



	

 The CLOCK ChIP-Seq data (DRP001092) were derived from mouse liver sampled at ZT8, 

ZT22, CT2, CT5, CT8, CT11, CT14, CT17, CT20 and CT22. The mRNA-Seq (DRP001093) and 

small RNA-Seq (DRP001094) data were derived from mouse liver sampled at CT2, CT5, CT8, 

CT11, CT14, CT17, CT20 and CT22. The RNA-Seq data of Bmal1-KO mice and WT littermates 

(DRP001349) were derived from mouse liver sampled at CT2, CT8, CT14, and CT20.	



	

 The CLOCK ChIP-Seq (including ChIP-Seq using 1D4 control IgG and input DNA), 

mRNA-Seq and small RNA-Seq were generated by Illumina GA IIx sequencer (36 bp, single end). 

The RNA-Seq data of Bmal1-KO mice and WT littermates were generated by Illumina HiSeq 2000 

(125 bp for Bmal1-KO mice and 101 bp for WT littermates, paired end).	



Genome sequence and gene annotation 

The mouse genome sequence was obtained from UCSC Genome Browser (mm9) (http://

genome.ucsc.edu/). The annotated gene models (NCBIM37) and the annotations of snRNAs, 

snoRNAs, and rRNAs were taken from Ensembl (release 64) (http://www.ensembl.org/). The 

annotations of tRNAs were retrieved from GTRNADB (http://gtrnadb.ucsc.edu/) (Chan and Lowe, 

2009). The mouse precursor and mature miRNA sequences were downloaded from miRBase 

(release 18) (http://www.mirbase.org/) (Kozomara and Griffiths-Jones, 2011).	



Motif centrality analysis of ChIP-Seq 

Motif centrality analysis of ChIP-Seq (MOCCS) aims at enumerating all significant DNA binding 

motifs of DNA-binding proteins using ChIP-Seq data. The inputs of MOCCS are (1) the locations 

of binding sites of DNA-binding proteins (TFBSs) inferred from peak calling of ChIP-Seq data and 

(2) length of motifs in search (k). First, DNA sequences within the region of ±d bp centered at all 
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TFBSs were searched for occurrences of each k-mer to compute frequency distribution f(x) of the k-

mer around TFBSs, where x (–d ≤ x ≤ d) is the position around TFBSs and is zero if the position is 

on the TFBSs. Then, cumulative relative frequency distribution F(x) of each k-mer is calculated as 

follows: 	



	

 	

 	

 	

 F(x) = ∑–x ≤ i ≤ x f(i) ⁄ ∑–d ≤ j ≤ d f(j) (–d ≤ x ≤ d). 	

	

 	

 (1)	



	

 When a k-mer overrepresents around TFBSs, the frequency distribution of the k-mer takes 

peak-like shapes. To quantify such shape, area under curve (AUC) is calculated for the cumulative 

relative frequency distribution F(x) of each k-mer as follows: 	



	

 	

 	

 	

 	

 AUC = ∑0 ≤ x ≤ d {F(x) – x ⁄ d}.	

	

 	

 	

 (2)	



	

 Finally, k-mers with AUC higher than a threshold are selected as significant motifs. Note 

that AUC for k-mer pair in that the suffix of one k-mer of length l and the prefix of the other k-mer 

of length l are identical would take similar values, and such pairs should be merged for 

interpretation. Therefore, for such pair, only the k-mer with higher AUC value than that of the other 

is reported.	



	

 For the analysis of CLOCK ChIP-Seq data, I set k = 6 because primary interest of this study 

is how mach mismatches to E-box are allowed for CLOCK to binding to the motifs. In addition, I 

focused on k-mers that did not overlap more overrepresented motifs and had at most two 

mismatches to the canonical E-box motif CACGTG. The sequences within the region of ±250 bp 

centered at all CLOCK-binding sites at CT8 or ZT8 were used. The AUC for each k-mer were 

normalized by dividing the value by the standard deviation of the AUC of all 6-mers within 

sequences 501 bp upstream of the transcription start sites of all protein-coding genes. I set the 

threshold for a normalized AUC of >5.	



Motif discovery 

DNA sequences in the window of ±80 bp and ±5 kbp around each CLOCK-binding site were used 

for motif search by MEME (Bailey and Elkan, 1994) and POSMO (Ma et al., 2012), respectively. 	



ChIP-Seq data analysis 

The sequenced reads were mapped to the mouse genome by using Burrows-Wheeler Aligner 

version 0.5.9 (Li and Durbin, 2009) with default parameters. Genome Positioning System (GPS) 

version 1.0 (Guo et al., 2010) was used for peak calling with the options "−s 2100000000 −nrf −q 
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2" (q-value < 0.01). GPS accurately predicts protein-binding sites from ChIP-Seq data at single-

base resolution by using the expectation-maximization algorithm. For each predicted binding site, 

GPS uses control data to calculate the p-value, which is adjusted for multiple testing by a 

Benjamini-Hochberg correction. In this study, ChIP-Seq data with 1D4 control IgG were used as the 

control data. The mapped reads were visualized by using Integrative Genomics Viewer 

(Thorvaldsdóttir et al., 2013). The CLOCK-binding sites were defined by using zeitgeber time 8 

(ZT8) or circadian time (CT8) results, because CLOCK binds to DNA most strongly at ZT8 or CT8.	



mRNA-Seq data analysis 

MapSplice version 1.15.2 (Wang et al., 2010) was used for mapping of RNA-Seq data (WT at eight 

time points), and Cufflinks version 2.0.0 (Trapnell et al., 2010) was used for quantifying the 

expression level of each gene as fragments per kilobase of exon per million fragments (FPKM). A 

gene was defined as an expressed one if the sum of its FPKM values across the eight time points 

was more than 5. 	



	

 A gene was defined as a rhythmically expressed one if its maximal and minimal expression 

values were significantly different (q-value < 0.1), and its expression profile was fitted with cosine 

curves (p-value < 0.01). The q-values were calculated by Cuffdiff (Trapnell et al., 2010). An in-

house R script was applied to estimate periods and phases of gene expression profiles by fitting 

curves using the equation A * cos[2π(t + t0)/T] + B, where A and B are means and standard 

deviations of the gene expression profiles, respectively, T is the period and ranges from 23 to 25 h 

with increments of 0.1 h, t is time, and t0 is the phase and ranges from 0 to 23.9 h with increments 

of 0.1 h.	



	

 The sequenced reads of RNA-Seq data of Bmal1-KO mice (4 time points) were trimmed 

from the 3ʹ′ ends so that their lengths became the same as those of their WT littermates (i.e., 101 

nucleotides) by using an in-house Perl script. TopHat2 version 2.0.6 (Kim et al., 2013) was used to 

map RNA-Seq data of Bmal1-KO mice and WT littermates with default parameters. Cuffdiff 2 

version 2.0.2 (Trapnell et al., 2013) was used to detect differentially expressed genes between 

Bmal1-KO mice and WT littermates at each time point (q-value < 0.1).	



	

 The differences between two phase distributions of rhythmically expressed genes were test 

using Mardia-Watson-Wheeler test (p-value < 0.05 after Bonferroni correction) with R package 

‘circular’.	
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Detection of rhythmic alternative splicing events 

I focused on sequenced reads that were mapped to splice junctions by MapSplice. The transcripts 

with and without cassette-type exons were referred to as long forms and short forms, respectively 

(see Figure 2.4A). The sequenced reads mapped to 5-prime and 3-prime ends of the cassette-type 

exons are referred to as long form reads (5p) and (3p) represent, respectively. Inclusion ratio was 

calculated by counting the number of sequenced reads that were mapped to splice junctions, 5p or 

3p, relative to the total numbers of reads of short form plus 5p (left ratio), or 3p (right ratio), 

respectively. I used two different criteria for circadian variations of the splicing patterns. The first 

criterion was to find out the large change in ratios of constitutively active splicing variants: (i) 

Inclusion ratios were not 0 or 1 at any time point, and (ii) maximal and minimal values differ by 

more than 0.4 in both left ratio and right ratio. The second criterion was aimed at finding a 

significant change (even if it is small) in ratio of the temporarily active splicing variants: (i) 

inclusion ratios were 0 or 1 at a time of at least one time point, (ii) inclusion ratios were in the range 

of 0.2 to 0.8 at any time point, and (iii) the sum of the total numbers of reads of short forms plus 5p 

across all the time points exceeded 80. Among the rhythmic alternative exons, those included in the 

Ensembl gene models were counted.	



small RNA-Seq data analysis 

Because the lengths of the sequenced reads could be longer than the lengths of mature miRNAs, 

adaptor sequences were included on the 3ʹ′ side of the sequenced reads, and hence, they were 

trimmed by cutadapt (Martin, 2011). Bowtie version 0.12.7 (Langmead, 2009) was used for 

mapping, and unmapped reads were discarded. From different pre-miRNA sequences, the same 

sequences of mature miRNAs can be generated, and 1,141 sequences were unique among 1,157 

mature miRNAs stored in miRBase (release 18). The read numbers at various time points were 

normalized, as the total read number mapped to the mouse genome at each time point was the same 

as the number at CT2. A miRNA was determined to be “expressed” if the sum of its normalized 

read numbers across the 8 time points exceeded 100. The cosine fitting analysis was performed to 

calculate p-values of rhythmicity (p < 0.05) and phases.	



	

 Candidate target genes of miRNAs were estimated by TargetScan (release 18) (Garcia et al., 

2011), and those whose ±3 kb from the transcription start sites contained neither E/E’-box 

(CACGT[GT]), E-like box (CAC[ATGC]TG), D-box (TTATG[TC]AA), nor RRE ([AT]A[AT]

[ATGC]T[AG]GGTCA) were analyzed.	
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Gene ontology analysis 

Gene ontology (GO) annotations of the mouse genes were retrieved from Ensembl BioMart. To 

perform a hypergeometric test to identify overrepresented gene ontology terms, an R package, 

“GOstats” (Falcon and Gentleman, 2007), was used with a p-value cutoff of 0.01 . Genes that were 

assigned to each of the following GO terms were designated “transcription factors”: GO:0000122, 

GO:0000978, GO:0000981, GO:0000982, GO:0000983, GO:0000988, GO:0001010, GO:0001011, 

GO:0001071, GO:0001074, GO:0001075, GO:0001077, GO:0001078, GO:0001133, GO:0001190, 

GO:0001200, GO:0001201, GO:0001205, GO:0001206, GO:0001227, GO:0001228, GO:0003700, 

GO:0003705, GO:0004879, GO:0006355, GO:0006357, GO:0038050, GO:0038052, GO:0044212, 

and GO:0045944. 	



!
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Results 

Genome-wide CLOCK-binding sites determined by ChIP-Seq 

To identify genes regulated by CLOCK, binding of CLOCK to the cis-regulatory elements is good 

proxy. To detect CLOCK-binding sites in a genome wide-manner, I analyzed the CLOCK ChIP-Seq 

data (accession number: DRP001092). The number of reads of ChIP-Seq data were >20 million 

reads for each time point (Table 2.1, Table 2.2). The reads were mapped onto the mouse genome, 

allowing at most two mismatches. The CLOCK ChIP-Seq data using samples prepared at 2 time 

points (ZT 8 and 22) under LD conditions identified 5,801 CLOCK-binding sites at ZT8 

(Supplementary Table 2.1 ). CLOCK ChIP-Seq data using samples prepared at 8 time points *

(CT2, 5, 8, 11, 14, 17, 20 and 22) across the day under DD conditions identified 7,978 CLOCK-

binding sites at CT8 (Supplementary Table 2.2). Among them, 2,400 sites of CLOCK binding 

were also detected in a previous study (Koike et al., 2012). Typically, strong peaks of CLOCK-ChIP 

reads were detected at the three positions in the Dbp locus (Figure 2.1A). In addition to these 

established sites, the CLCOK ChIP-Seq data identified many novel CLOCK-binding sites in the 

present study (Figure 2.1B). Overall, the heat maps showed that almost all the binding sites 

exhibited a day-night variation as well as a circadian change in terms of CLOCK occupancy 

(Figure 2.1C). These results confirmed that CLOCK rhythmically binds to DNA in a genome-wide 

manner.	



!
!
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 Supplementary tables are available from the following URL:	

*

https://www.dropbox.com/sh/60pa0bqm3ptiajs/AAArN8TlECJWfd9KWbPPGL10a

https://www.dropbox.com/sh/60pa0bqm3ptiajs/AAArN8TlECJWfd9KWbPPGL10a


!!!!!!!!!!!!!!!!!
Table 2.1: Mapping statistics of CLOCK ChIP-Seq data under the LD condition	



!!

Sample Total 
reads

Unmapp
ed

%Unm
apped

Mapped %Mapp
ed

Unique %Uniq
ue

Multi %Multi

ZT08 CLOCK 24,814,060 1,680,980 6.8 23,133,080 93.2 18,781,183 75.7 4,351,897 17.5

ZT20 CLOCK 20,701,252 1,359,451 6.6 19,341,801 93.4 15,563,274 75.2 3,778,527 18.3

ZT08 1D4 34,903,171 2,106,676 6.0 32,796,495 94.0 26,173,449 75.0 6,623,046 19.0

ZT20 1D4 38,006,035 2,855,626 7.5 35,150,409 92.5 27,809,370 73.2 7,341,039 19.3

ZT08 input 40,149,640 1,503,935 3.7 38,645,705 96.3 30,734,244 76.5 7,911,461 19.7

ZT20 input 39,451,041 1,468,453 3.7 37,982,588 96.3 30,118,349 76.3 7,864,239 19.9
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Table 2.2: Mapping statistics of CLOCK ChIP-Seq data under the DD condition	



Sample Total 
reads

Unmapp
ed

% 
Unmap

ped

Mapped % 
Mapp

ed

Unique % 
Uniqu

e

Multi % 
Multi

CT02 CLOCK 28,316,818 1,828,663 6.5 26,488,155 93.5 20,986,937 74.1 5,501,218 19.4

CT05 CLOCK 23,028,393 1,417,093 6.2 21,611,300 93.8 17,074,439 74.1 4,536,861 19.7

CT08 CLOCK 26,802,107 2,871,361 10.7 23,930,746 89.3 18,959,795 70.7 4,970,951 18.5

CT11 CLOCK 27,007,590 2,222,955 8.2 24,784,635 91.8 19,582,742 72.5 5,201,893 19.3

CT14 CLOCK 28,707,621 1,721,628 6.0 26,985,993 94.0 21,474,636 74.8 5,511,357 19.2

CT17 CLOCK 29,896,705 3,523,487 11.8 26,373,218 88.2 20,731,864 69.3 5,641,354 18.9

CT20 CLOCK 31,648,838 2,032,882 6.4 29,615,956 93.6 23,351,120 73.8 6,264,836 19.8

CT23 CLOCK 28,866,990 2,946,493 10.2 25,920,497 89.8 20,368,507 70.6 5,551,990 19.2

CT02 1D4 32,595,544 2,626,448 8.1 29,969,096 91.9 23,463,410 72.0 6,505,686 20.0

CT05 1D4 25,418,765 1,806,255 7.1 23,612,510 92.9 18,726,553 73.7 4,885,957 19.2

CT08 1D4 25,062,236 1,852,925 7.4 23,209,311 92.6 18,169,953 72.5 5,039,358 20.1

CT11 1D4 37,015,953 2,602,564 7.0 34,413,389 93.0 26,598,399 71.9 7,814,990 21.1

CT14 1D4 26,185,744 1,936,001 7.4 24,249,743 92.6 19,230,910 73.4 5,018,833 19.2

CT17 1D4 24,683,625 3,072,692 12.4 21,610,933 87.6 16,976,003 68.8 4,634,930 18.8

CT20 1D4 30,760,715 5,472,906 17.8 25,287,809 82.2 20,295,386 66.0 4,992,423 16.2

CT23 1D4 35,855,288 9,623,901 26.8 26,231,387 73.2 20,652,349 57.6 5,579,038 15.6

CT02 input 38,132,798 1,987,798 5.2 36,145,000 94.8 27,800,164 72.9 8,344,836 21.9

CT05 input 30,638,235 2,016,149 6.6 28,622,086 93.4 22,227,293 72.5 6,394,793 20.9

CT08 input 29,162,920 1,913,317 6.6 27,249,603 93.4 21,199,983 72.7 6,049,620 20.7

CT11 input 25,952,374 1,480,520 5.7 24,471,854 94.3 18,972,182 73.1 5,499,672 21.2

CT14 input 30,571,894 1,706,418 5.6 28,865,476 94.4 22,444,683 73.4 6,420,793 21.0

CT17 input 23,097,076 1,273,377 5.5 21,823,699 94.5 17,003,154 73.6 4,820,545 20.9

CT20 input 25,783,865 1,389,550 5.4 24,394,315 94.6 18,988,165 73.6 5,406,150 21.0

CT23 input 23,219,016 1,348,074 5.8 21,870,942 94.2 17,052,688 73.4 4,818,254 20.8
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Figure 2.1: Identification of genome-wide CLOCK-binding sites	


(A) The CLOCK ChIP-Seq data for the Dbp locus showing three rhythmic binding sites under DD (CT8, 
left) and LD (ZT8, right) conditions. UP: upstream. I1: first intron. I2: second intron. (B) Overlap of 
CLOCK-binding sites at CT8 in this study with those in a previous study (Koike et al., 2012). An overlap 
was called if CLOCK-binding sites at CT8 were within 120 bp of the peak summits in the previous study. 
(C) Heat maps of the sequenced reads around the identified CLOCK-binding sites under DD (CT8) and LD 
(ZT8) conditions. The sites were ordered by the read number for the data sets at CT8 and ZT8. For 
normalization, the numbers of sequenced reads were divided by the root mean square for each row in the 
maps.	
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Motif centrality analysis of ChIP-Seq 

The CLOCK-BMAL1 complex binds to the canonical palindromic E-box, CACGTG (Gekakis et 

al., 1998), and to its related motifs called Eʹ′-box and E-box-like sequences (Yoo et al., 2005; 

Kiyohara et al., 2005; Kumaki et al., 2008; Ueda et al., 2005). These previous studies focused on 

selected genes, and therefore, present knowledge on the CLOCK-binding sequences might have 

underestimated and/or overestimated the binding motifs. High-quality ChIP-Seq data in this study 

made it possible to quantitatively and comprehensively investigate CLOCK-binding motifs in vivo. 

MEME is a widely used tool for determining DNA-binding motifs (Bailey and Elkan, 1994), and 

BMAL1-binding motifs were defined by using MEME in previous studies (Hatanaka et al., 2010; 

Rey et al., 2011). Here we should consider the feature of MEME, which aims at determining 

representative sequence motifs (Figure 2.2E) rather than explicitly evaluating to what extent each 

of the related motifs is used in a genome-wide manner. 	



	

 In order to extract detailed characteristics of the CLOCK-binding motifs, I developed a 

bioinformatics method termed ‘motif centrality analysis of ChIP-Seq’ (MOCCS), which enumerates 

and evaluates all the significant DNA-binding motifs based on ChIP-Seq data sets. This method 

takes advantage of the fact that significant DNA-binding motifs of transcription factors should 

frequently appear around their binding sites identified by ChIP-Seq. For example, a histogram of the 

appearance of CACGTG or CACGCG around the CLOCK-binding sites showed a sharp peak 

(Figures 2.2AC). To quantify the sharpness of the peak, a cumulative relative frequency curve was 

drawn for every 6-mer (Figures 2.2BD), and the area under the curve (AUC) was calculated. It 

should be noted that when a peak becomes sharper, the AUC becomes larger. The details of 

MOCCS are described in the Materials and Methods section.	



Repertoire of CLOCK-binding motifs 

Application of MOCCS to CLOCK ChIP-Seq data revealed motifs significantly concentrated in the 

CLOCK-binding sites (Figures 2.2BD, and Table 2.3). Reasonably, the motif with the largest AUC 

was the canonical E-box motif CACGTG in both the CT8 and ZT8 data sets, and the second was 

CACGTT (AACGTG) (nucleotides mismatched with CACGTG are underlined), which is another 

established CLOCK-binding motif (Yoo et al., 2005). The other significant motifs included 

CACATG (CATGTG) and CACGCG (CGCGTG): the former is known to function in the promoter 

region of the Dbp gene (Kiyohara et al., 2008), and the latter is evolutionarily conserved in the Per1 
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locus (Kumaki et al., 2008). Overall, the fifth (second) position of the CACGTG sequence was less 

selective, and all CACGNG (CNCGTG) motifs had large AUCs. More importantly, MOCCS 

detected two novel potential motifs, CATGCG (CGCATG) and a palindromic motif, TACGTA.	



	

 Base on the result of MOCCS analysis, promoter assays were performed at the Fukada lab 

to evaluate CLOCK-BMAL1-dependent transcription via all the one-mismatch sequences and the 

two potential motifs with two mismatches (CATGCG and TACGTA). CLOCK and BMAL1 

activated transcription was shown for the canonical E-box CACGTG and six non-canonical 

sequences, CACGTT, CACGCG, CACGGG, CACGAG, CACATG, and CATGCG, all of which 

were predicted by MOCCS. In addition, all of the one-mismatch sequences that were not predicted 

to be CLOCK-binding motifs by MOCCS was revealed to show no CLOCK and BMAL1 activated 

transcription. These observations strongly support the results of MOOCS analysis. For the two-

mismatch sequence CATGCG, the Fukada lab confirmed rhythmic CLOCK-binding to CATGCG 

using the 30-bp genomic sequence around the CLOCK-binding sites containing CATGCG but the 

other motifs. This observation corroborates the MOCCS results indicating that the two-mismatch 

sequence CATGCG functions as a CLOCK-binding motif. In contrast, the other two-mismatch 

potential motif, TACGTA, showed no enhancer activity in the promoter assay. Note that TACGTA 

appeared far less frequently around the CLOCK-binding sites than the other motifs (Table 2.3). 	



	

 Tandem E-boxes with 6- to 7-bp spacer were observed at the BMAL1 binding sites 

identified by BMAL1 ChIP-Seq (Rey et al., 2011). To assess whether The CLOCK-binding motifs 

obtained by MOCCS analysis show the similar tendency, I calculated the relative distance between 

the positions of the seven motifs around the CLOCK-binding sites. The CLOCK-binding motifs 

were found in tandem frequently with a 6- to 7-bp spacer (Figure 2.2G), consistent with Rey et al.  

(2011). In addition, the adjoining sequences around the CLOCK-binding motifs tended to be GC 

rich (data not shown), which is consistent with the CLOCK-binding region model predicted in a 

previous study (Kumaki et al., 2008). These results further support that the canonical and non-

canonical E-boxes revealed by MOCCS analysis would represent the set of bona fide CLOCK-

binding motifs.	



	

 Collectively, MOCCS revealed that the non-canonical E-box motifs CACGNG, CACGTT, 

and CATG[T/C]G were targeted by CLOCK in a genome-wide manner, rather than being limited 

exceptions. Furthermore, MOCCS reveled nucleotide selectivity relative to the canonical CACGTG 

motif on different positions within the E-boxes, as described above. Such detailed information on 

non-canonical E-boxes and nucleotide selectivity could not be extracted from the results obtained 
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from the same dataset by other algorithms for searching DNA-binding motifs such as MEME and 

POSMO (Ma et al., 2012) (Figures 2.2EF). Therefore, MOCCS is a powerful tool for determining 

all DNA-binding motifs from ChIP-Seq data sets.	



!
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Figure 2.2: Determination of CLOCK-binding motifs by MOCCS	


(A and C) Frequency distribution of the indicated sequences around the CLOCK-binding sites observed at 
ZT8 (A) and CT8 (B). The bin size is set for 10 bp. (B and D) Cumulative relative frequency curves of all 
significant motifs around the CLOCK-binding sites observed at ZT8 (B) and CT8 (D). The x axis represents 
absolute values of distance from the CLOCK-binding sites. (E) Overrepresented CLOCK-binding motif 
determined by MEME. (F) Overrepresented CLOCK-binding motif determined by POSMO. (G) Frequency 
histogram of the spacer lengths of tandem CLOCK-binding motifs (CACGNG, CACGTT, and CATG[C/
T]G) in the window of ±40 bp around each CLOCK-binding site.	
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Table 2.3: List of CLOCK-binding motifs revealed by MOCCS	

!!
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Motif Normalized AUC Count

CT8
998,227.51GTGCAC
181,172.01)GTGCAA(TTGCAC
037,159.7)GTGCGC(GCGCAC
019,309.7)GTGTAC(GTACAC
332,126.6)GTGCTC(GAGCAC
375,192.6)GTGCCC(GGGCAC

12119.5ATGCAT
75851.5)GTACGC(GCGTAC

ZT8
195,228.81GTGCAC

01946.11)GTGCAA(TTGCAC
378,201.01)GTGTAC(GTACAC
706,168.9)GTGCGC(GCGCAC
430,141.8)GTGCTC(GAGCAC

83724.7)GTACGC(GCGTAC
6729.6ATGCAT

883,151.6)GTGCCC(GGGCAC



Rhythmic gene expression  

The genome-wide rhythmic CLOCK binding is expected to be accompanied by rhythmic gene 

expression. To detect rhythmically expressed genes, I analyzed the mRNA-Seq (poly(A)-tailed 

RNA-Seq) data (accession number: DRP001092), which were derived from mouse liver at eight 

time points (CT2, 5, 8, 11, 14, 17, 20 and 22) under the DD condition. The sequenced reads were 

mapped onto the mouse genome allowing one mismatch, and this analysis yielded about 20 million 

mapped reads for each sample (Table 2.4). Among 37,314 genes, including noncoding RNAs 

(Ensembl, release 64), 11,926 genes were found to be expressed ones, while 1,126 genes (9.4% of 

expressed genes) were rhythmic in mouse liver (Supplementary Table 2.3). For example, a well-

known rhythmically expressed gene Dbp was rhythmically expressed (Figures 2.3AB), as 

confirmed by the Fukada lab using qRT-PCR. Among the 1,126 rhythmic genes identified, >60% of 

genes were also reported to be rhythmically expressed genes in previous studies (Figure 2.3C) 

(Koike et al., 2012; Menet et al., 2012). The heat map showed a great diversity in circadian phases 

of the rhythmic genes (Figure 2.3D), indicating cooperative actions of the E-box, D-box, and RRE, 

as reported previously (Ueda et al., 2005; Ukai-Tadenuma et al., 2011).	



	

 To understand how strongly each gene is regulated by CLOCK, all the genes were given 

“ChIP scores” based on the CLOCK ChIP-Seq data at CT8 (Supplementary Table 2.4). The ChIP 

score was defined as the total number of sequenced reads that were mapped to all CLOCK-binding 

sites within ±10 kb from the transcription start site of each gene or in the gene body. A total of 2,234 

genes with a ChIP score of >60 were then designated CLOCK targets. Comparative analysis of the 

ChIP-Seq and RNA-Seq data revealed 324 rhythmic genes among 1,629 CLOCK targets expressed 

in mouse liver (Supplementary Table 2.4). 	



	

 In order to strengthen the results, I analyzed the RNA-Seq data using livers of Bmal1-KO 

mice and their WT littermates (The accession number: DRP001349) (Table 2.5). I detected genes 

whose expression levels were significantly changed between Bmal1-KO and WT mice at least at 

one time point (CT2, 8, 14, and 20) (Supplementary Table 2.8). These differentially expressed 

genes were 5.7 times more enriched in the rhythmic CLOCK targets than all the expressed genes, 

which indicates the validity of the rhythmic CLOCK targets defined in this study. 	


!
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Table 2.4: Mapping statistics of the RNA-Seq data under DD condition	



Sampl
e

Total 
reads

Unmappe
d

%Unmapp
ed

Mapped %Mappe
d

Unique %Uniqu
e

Multi %Mul
ti

CT02 31,589,335 2,605,777 8.2 28,983,558 91.8 23,697,620 75.0 5,285,938 16.7

CT05 30,247,944 2,555,944 8.4 27,692,000 91.6 23,074,619 76.3 4,617,381 15.3

CT08 27,419,358 3,940,458 14.4 23,478,900 85.6 19,232,009 70.1 4,246,891 15.5

CT11 35,709,409 6,855,427 19.2 28,853,982 80.8 23,810,327 66.7 5,043,655 14.1

CT14 29,527,144 3,618,354 12.3 25,908,790 87.7 21,593,143 73.1 4,315,647 14.6

CT17 31,809,803 7,233,153 22.7 24,576,650 77.3 20,095,382 63.2 4,481,268 14.1

CT20 31,842,351 3,655,704 11.5 28,186,647 88.5 23,387,453 73.4 4,799,194 15.1

CT23 28,558,329 3,633,244 12.7 24,925,085 87.3 20,709,785 72.5 4,215,300 14.8
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Figure 2.3: Rhythmically expressed genes revealed by mRNA-Seq	


(A) RNA-Seq data at the Dbp locus showing a robust change in its expression level in a time-of-day-
dependent manner. (B) Circadian expression profiles of Dbp transcript in mouse liver revealed by RNA-Seq 
analysis. The mRNA levels are shown as FPKM (fragments per kilobase of exon per million fragments) 
values. (C) Overlaps of rhythmically expressed genes in this study with those in previous RNA-Seq studies 
using mouse liver (Menet et al., 2012; Koike et al., 2012). The genes whose identifiers were correctly 
mapped to the Ensembl gene identification are compared. (D) Heat map of the expression level of each 
rhythmic gene in the RNA-Seq analysis. Genes were ordered by the peak phases from early subjective day to 
late subjective night. The FPKM values were normalized so that the mean and the variance were 0 and 1, 
respectively, for each row of the maps.	
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Table 2.5: Mapping statistics of the RNA-Seq data of Bmal1 KO mice and their littermates under the 
DD condition 	



Sample Total 
reads

Unmappe
d

% 
Unma
pped

Mapped % 
Mappe

d

Unique % 
Uniqu

e

Multi % 
Mult

i

WT CT02 54,816,216 5,450,089 9.9 49,366,127 90.1 42,958,805 78.4 6,407,322 11.7

WT CT08 52,525,606 5,807,780 11.1 46,717,826 88.9 40,732,748 77.5 5,985,078 11.4

WT CT14 69,722,484 7,317,213 10.5 62,405,271 89.5 54,051,215 77.5 8,354,056 12.0

WT CT20 45,099,148 4,914,985 10.9 40,184,163 89.1 34,839,684 77.3 5,344,479 11.9

KO CT02 61,632,346 5,645,028 9.2 55,987,318 90.8 49,605,738 80.5 6,381,580 10.4

KO CT08 66,201,196 6,313,567 9.5 59,887,629 90.5 52,704,061 79.6 7,183,568 10.9

KO CT14 61,737,692 5,297,982 8.6 56,439,710 91.4 50,061,416 81.1 6,378,294 10.3

KO CT20 55,573,622 5,592,694 10.1 49,980,928 89.9 43,942,015 79.1 6,038,913 10.9
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Rhythmic alternative splicing 

The alternative splicing is a key regulator of gene expression as it generates numerous transcripts 

from a single protein-coding gene, which largely increases the use of genetic information. Daily 

fluctuation of splicing of 3ʹ′-terminal intron of Per was reported (Majercak et al., 2004). Unlike 

conventional microarray, RNA-Seq provides opportunity to search for splicing events. Thus, I used 

the mRNA-Seq data to search for temporal variation in alternative splicing events. 	



	

 A cassette type exon (Figure 2.4A) is the most frequent form (25-30%) of alternative 

splicing (Nagasaki et al., 2006). Thus, I focused on the circadian variation of cassette-type 

alternative splicing. Inclusion ratio of alternative exon was calculated by counting the number of 

sequencing reads that were mapped to exon junction, and 83 exons were identified as cassette-type 

exons which was rhythmically spliced (Supplementary Table 2.5). In particular, clear circadian 

rhythms were observed in the alternative splicing of Misshapen-like Kinase 1 (Mink1) and 

Ubiquilin 1 (Ubqln1) genes (Figure 2.4B). These rhythmic splicing should cause time-of-day 

variation of protein functions. MINK1 belongs to the Ste20 kinase family that has been shown to 

act as MAP4K, and a splicing isoform of MINK1 is known to trigger JNK pathway (Hu et al., 

2004), which is important for the circadian clockwork (Yoshitane et al., 2012). On the other hand, 

UBQLN1 contains one ubiquitin-like domain and one ubiquitin-associated domain, and functionally 

associates the ubiquitination machinery with the proteasome. UBQLN1 directly interacts with 

Presenilin1/2, which are catalytic components in gamma-secretase enzyme complex that generates 

beta-amyloid (Haapasalo et al., 2011). Genetic variants in Ubqln1 are reported to increase the risk 

for Alzheimer’s disease by increasing short isoform lacking exon 8 in the brain (Bertram et al., 

2005). In this study, alternative splicing was observed for exon 8 of Ubqln1 in time-of day 

dependent manner, raising the possibility that perturbation of circadian clock increases the risk for 

Alzheimer’s disease. These results suggest that RNA splicing would be a fundamental event that is 

regulated by circadian clock.	



!
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Figure 2.4: Circadian rhythms of alternative splicing events	


(A) Schematic representation of cassette-type alternative splicing. Short form read represents those skipping 
the cassette-type exon. Long form reads (5p) and (3p) represent those mapped to 5ʹ′- and 3ʹ′- ends of the 
cassette-type exons, respectively. (B) Circadian variations of the inclusion ratio of Mink1 exon 21 and 
Ubiquilin1 exon 8 in the RNA-Seq data. Inclusion ratio of the cassette-type exon was calculated by counting 
the number of reads that were mapped to splice junctions, 5p or 3p, relative to the total numbers of reads of 
short form plus 5p (upper panels), or 3p (bottom panels), respectively.	
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Rhythmic small RNAs 

Among CLOCK-target genes at ZT8 or CT8, 89 were pre-miRNA genes (Figures 2.5AB; 

Supplementary Table 2.3). For example, CLOCK was confirmed to target pre-mir-148a, pre-

mir-150, and pre-mir-802 genes by the promoter assay performed at the Fukada lab. However, 

rhythmic expression of pre-miRNA genes were not detected in the mRNA-Seq analysis, while 65 

pre-miRNA genes were expressed, of which 11 were targeted by CLOCK. Yet, it is possible that 

expression levels of mature miRNAs show circadian variation. To address this possibility, I 

analyzed the small RNA-Seq data (accession number: DRP001094). The small RNA-Seq data were 

generated from mouse liver sampled at CT2, CT5, CT8, CT11, CT14, CT17, CT20 and CT22 under 

DD condition. Approximately 70-75% of 20-30 million reads in each sample were mapped onto the 

mouse genome with no mismatches, among which 1,141 unique sequences were identical to mature 

miRNAs stored in miRBase (release 18). I then summed the number of mapped reads across all 

time points for each miRNA and found 270 miRNAs with >100 reads (Supplementary Table 2.6). 

Among these, 84 mature miRNAs showed circadian oscillation (Supplementary Table 2.6). The 

heat map of the relative abundance revealed predominant enrichment of the rhythmic miRNAs 

peaking during the subjective day (Figure 2.5C), consistent with data from a previous study 

(Vollmers et al., 2012). Circadian profiles of typical rhythmic miRNAs are shown in Figure 2.5D. 	



!
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Figure 2.5: Circadian oscillation of miRNAs revealed by small RNA-Seq	


(A and B) The CLOCK ChIP-Seq data around mir-148a (A) and mir-802 (B) loci at CT8. LD and DD 
indicate peak positions of ChIP-Seq reads in ZT8 and CT8, respectively. Black and gray shading indicates 
the CACGTG-type E-box and one-mismatch sequences, respectively. (C) Heat map of small-RNA-Seq 
across the day in constant dark condition. miRNA genes were ordered by the peak phases from early 
subjective day to late subjective night. The numbers of sequenced reads were normalized so that the mean 
and the variance were 0 and 1, respectively, for each row of the maps. (D) Expression profiles of typical 
rhythmic miRNAs in the small-RNA-Seq analysis.	
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Possible functional differences among canonical and non-canonical E-boxes 

In this study, I revealed the canonical and non-canonical E-boxes from CLOCK ChIP-Seq data 

(Table 2.3). Until now, functional differences between canonical/non-canonical E-boxes have been 

unclear owing to scarcity of known CLOCK-binding sites. Large number of the CLOCK-binding 

sites identified in this study provides opportunity to address this issue. To investigate the possibility 

of functional differences among the canonical/noncanonical E-boxes, I compared rhythmicity of 

their target genes and the estimated phased of the rhythmically expressed genes.	



	

 I first searched for occurrence of each motif within ±80 bp of the CLOCK-binding sites at 

CT8, and classified the CLOCK-binding sites according to the patterns of the motif occurrences. To 

clarify functional differences of each motif, I confined the following analyses to the CLOCK-

binding sites of which only one kind of the motifs were found (Table 2.6, Unique). Next, genes 

associated with each CLOCK-binding sites were retrieved (Supplementary Table 2.2), and the 

number of expressed and rhythmically expressed genes were counted for each motif (Table 2.6). 

Most genes associated with the CLOCK-binding sites containing only one kind of E-boxes were 

expressed, consistent with CLOCK’s function as a transactivator.	



	

 To assess whether different E-boxes have different efficacy of activating rhythmic 

expression, I compared the ratio of rhythmically expressed gene relative to expressed genes 

between the canonical E-box (CACGTG) and each of the other non-canonical E-boxes. Among the 

non-canonical E-boxes, CACTTT showed significant decrease in the ratio of rhythmically 

expressed genes (two-sided Fisher’s exact test, p-value < 0.05 after Bonferroni correction) (Table 

2.6). CACGTT has been well known for Eʹ′-box (Yoo et al., PNAS, 2005). Thus, this result suggests 

that functional differences could exist between the canonical E-box and Eʹ′-box. 	



	

 In addition to rhythmicity, distributions of estimated phases for rhythmically expressed 

genes were compared. Some noncanonical E-boxes such as CACGGG appeared to have different 

phase distributions from the canonical one (Figure 2.6). However, difference in phase distributions 

of target genes between CACGTG and every non-canonical E-box was not statistically significant 

(Mardia-Watson-Wheeler test, p-value < 0.05 after Bonferroni correction).	



	

 	



!
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Table 2.6: Canonical and non-canonical E-boxes and rhythmicity 	



(a) Number of the CLOCK-binding sites at CT8 of which the indicated motif was found within ±80 bp.	


(b) Number of the CLOCK-binding sites at CT8 of which only the indicated motif was found within ±80 bp.	


(c) Genes that were associated with the CLOCK-binding sites (see Supplementary table 2.2).	


(d) The p-values of Fisher’s exact test (two-sided) to determine whether there is a nonrandom association 
between motif sequences and rhythmicity (rhythmically expressed or non-rhythmically expressed genes) in 
comparison of the canonical E-box (CACGTG) and each of the other non-canonical E-boxes.	

!

Motif
# of CLOCK binding 

sites (CT8) # of genes p-value of 
Fisher’s 

exact test All Unique All Expressed Rhythmic %Rhythmic

CACGTG 1805 1011 1177 1003 173 17.2 -

CACATG 1477 867 801 692 108 15.6 3.88E-01

CACGCG 696 249 397 351 45 12.8 5.27E-02

CACGGG 646 250 305 263 41 15.6 5.79E-01

CACGTT 640 335 409 369 39 10.6 2.35E-03

CACGAG 540 224 270 229 40 17.5 9.23E-01

CATGCG 316 79 113 103 9 8.7 2.53E-02
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Figure 2.6: Distributions of phases of rhythmically expressed genes associated with the CLOCK-
binding sites	


Shown are distributions of estimated phases of rhythmically expressed genes that are associated with the 
CLOCK-binding sites at CT8 of which only the indicated motif was found within ±80 bp. Rose diagrams 
were visualized using the R package ‘circular’.  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Discussion 

Canonical and non-canonical E-boxes 

The results of MOCCS analysis demonstrates that the CLOCK-BMAL1 complex recognizes 

CACGNG, CACGTT, and CATG[T/C]G in a genome-wide manner. Note that, however, it might be 

possible that other CLOCK-binding motifs were not found owing to potential bias in 

immunoprecipitation efficiency of antibodies. For example, CLOCK is dynamically form protein 

complexes with several proteins depending on the mode of transactivation (Gustafson and Partch, 

2014). Thus, some CLOCK proteins in a particular complex might be less frequently captured by 

the antibody used to generated the CLOCK ChIP-Seq data analyzed in this study. Nevertheless, the 

motifs revealed in this study were at least targeted by CLOCK proteins that were captured by the 

antibody. Therefore, the canonical and non-canonical E-boxes revealed by MOCCS analysis are 

expected to represent the comprehensive set of CLOCK-binding motifs for at least the CLOCK-

binding sites identified in this study.	



MOCCS and existing motif discovery tools 

A transcription factor (TF) recognizes similar but different DNA sequences (Stormo, 2000). This 

variability of sequences targeted by a TF has encouraged developing motif discovery tools to search 

for a representation of the binding specificity of the TF. The two major representations are 

degenerate consensus sequences and position weight matrices (PWMs) (Stormo, 2000). In general, 

motif discovery tools calculate either of the representation. 	



	

 The situation is unchanged in even the ChIP-Seq era. Until now, many ChIP-Seq 

experiments have been performed and they have yielded genome-wide information on occupancy of 

various transcription factors, as exemplified by the ENCODE project (The ENCODE Project 

Consortium, 2012). These new massive datasets have challenged conventional motif discovery tools 

because of the increased size of input sequences (Zambelli et al., 2013). Since ChIP-Seq 

experiments identify the binding sites of the transcription factor under investigation in a genome-

wide manner, the input sequences provided to the motif discovery tools usually amount to 

thousands or ten thousands of sequences with the length of several hundred base pairs. To overcome 

the larger input size, many tools tailored for ChIP-Seq data have been developed to accelerate the 

runtime of search for DNA-binding motifs in the form of degenerate consensus sequences or PWMs 

(e.g., Sharov and Ko, 2009; Kulakovskiy et al., 2010; Bailey 2011; Machanick and Bailey, 2011; 
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Hartmann et al., 2013). In other words, even for the motif discovery tools tailored for ChIP-Seq 

data, the objective is to search for summarized representations of binding specificity of TFs.	



	

 Contrary to these tools, MOCCS aims at extracting all k-mers that are targeted by 

transcription factors, rather than obtaining summarized representation of these k-mers. This has 

become possible with increased number of TFBSs identified by ChIP-Seq. In practice, MOCCS 

calculates frequency distribution of each k-mer around TFBSs, and thereby evaluates each k-mer 

separately to see whether the k-mer is targeted by the transcription factor under investigation. As the 

aims are different from MOCCS, evaluation of MOCCS based on comparison with other existing 

motif discovery tools was not performed in the present study.	



Future perspectives of MOCCS 

In this study, I set the motif length k to 6 and only focused on significant motifs with at most two 

mismatches to the canonical E-box since interest of this study was canonical and non-canonical E-

boxes. To apply MOCCS to the broader fields of ChIP-Seq studies, three future perspectives are 

envisioned. 	



	

 The first is to extend the motif length k. DNA-binding motifs often have longer length than 6 

bp (for example, median length of DNA-binding motifs registered in the JASPAR database is 11 bp: 

JASPAR CORE Vertebrate 5.0_ALPHA; Mathelier et al., 2014). In addition, some motifs consists 

of tandemly-arranged sequences enclosing non-specific spacers. However, simply extending k will 

fail to find significant motifs since longer k-mers occur less frequency and thus would lead to 

unstable calculation of AUCs. To circumvent this issue, for example, combining significant motifs 

with length of less than k to infer k-length motifs is one way to try. 	



	

 The second is overlapping motifs. In this study, I only focused on k-mers with at most two 

mismatched to the canonical E-box. On the other hand, the primary output of MOCCS included k-

mers overlapping with the significant motifs by k−1 length. To properly interpret such overlapping 

motifs, a method to integrate the whole results would be necessary. 	



	

 The third is improvement of statistical thresholding on the AUC scores. Experimental 

validation showed no enhancer activity of TACGTA, one of the other two-mismatch potential motif. 

TACGTA appeared far less frequently around the CLOCK-binding sites than the other motifs 

(Table 2.3), suggesting that the small count of TACGTA presumably lead to the AUC score higher 

than the threshold by chance. To overcome this issue, more sophisticated thresholding considering 

the raw count should be applied in the future.	



���33



Possible mechanisms of rhythmicity in miRNA abundance 

In this study, I found miRNAs showing circadian rhythms in their abundance. One possible 

mechanisms underlying these rhythms is transcriptional regulation of pri-miRNAs by the 

transcription factors with rhythmic expression. Consistently, several miRNAs were shown to be 

targeted by CLOCK (Figure 2.5AB). In addition, as discussed below, other rhythmic transcription 

factors might regulate rhythmic expression of miRNAs that were not directly targeted by CLOCK. 

Thus, analyses of ChIP-Seq data sets of other rhythmic transcription factors would help assess to 

what extent transcriptional regulation is important for generating rhythms in miRNA abundance.	



	

 Another possibility is involvement of the biogenesis processes of miRNAs. The biogenesis 

of miRNAs includes several post-transcriptional processes including processing and maturation 

(Krol et al., 2010), and thus the rhythms in those processes could be a cause of the temporal 

variations of miRNA abundance observed. To address this possibility, I assessed whether rhythmic 

expressions were detected for genes involved in the biogenesis of miRNAs. Genes involved in 

processing (Drosha and Dgcr8), transport (Xpo5), maturation (Dicer1 and TRBP (Tarbp2)), and 

silencing (GW182 (Tnrc6a) and Ago2 (Eif2c2)) of miRNAs did not show in our RNA-seq data 

(Supplementary table 2.3). However, Ago1 (Eif2c1) and Ago4 (Eif2c4), which encode the AGO 

proteins with no silencer activity (Meister, 2013), showed rhythmic expressions with the estimated 

phases of 7.5 and 5.6, respectively (Supplementary table 2.3). Thus, trapping of miRNAs in 

AGO1 and AGO4 might generate rhythms in miRNA abundance. However, it is difficult to explain 

why approximately 70% of expressed miRNAs in the small RNA-Seq data did not show rhythms in 

their abundance, even in the case of miRNAs with high read numbers (Supplementary Table 2.6), 

as several studies demonstrate that miRNAs are randomly loaded to the individual AGO proteins 

(Dueck et al., 2012; Wang et al., 2012). On the other hand, since another study reports preferences 

in miRNA sorting for different AGO proteins in mammals (Burroughs et al., 2011), it is possible 

that miRNAs are sorted preferentially to different AGO proteins in a tissue-specific manner. 

Therefore, further studies on miRNA sorting in mammals are required to conclude whether 

rhythmic expressions of these Ago genes underlie the rhythmicity of mature miRNAs.	



Indirect regulations of rhythmic gene expression by CLOCK 

Comparison of CLOCK ChIP-Seq and RNA-Seq data revealed that 802 rhythmic genes were not 

included in the CLOCK targets, suggesting the importance of the output pathways that are mediated 

by several mechanisms yet regulated by CLOCK. 	
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 Such indirect regulations would be partly mediated by the actions of transcription factors 

that affect the expression of their target genes, as proposed in Miller et al. (2007). In fact, gene 

ontology (GO) analysis identified 250 transcription factors as CLOCK targets, some of which were 

rhythmically expressed in mouse liver (Supplementary Table 2.7). For example, the Fukada lab 

showed that several genes encoding transcription factors of KLF Krüppel-like factor (KLF) family 

were targeted by CLOCK and that those genes show rhythmic expression. Since ChIP-Seq data 

have accumulated in recent years, integration of ChIP-Seq data of diverse transcription factors and 

RNA-Seq data is expected to reveal the multistep cascades of transcription factors as the output 

pathways of the circadian oscillator.	



	

 Among 1084 rhythmically expressed genes, 13 genes were long non-coding RNAs 

(lncRNAs). For instance, the Fukada lab confirmed that 0610005C13Rik is rhythmically expressed 

and targeted by CLOCK. Although functions of most lncRNAs remain largely unknown, lncRNAs 

have been shown to inhibit or enhance gene expression through several mechanisms (Geisler and 

Coller, 2013). Thus, circadian expression of lncRNAs may be one of the output pathways of the 

circadian oscillator. 	



	

 miRNAs have been predicted to target >30% of the protein-coding mRNAs (Lewis et al., 

2005), and the contribution of miRNA expression toward regulating the circadian clockwork in 

several organisms has been shown (Cheng et al., 2007; Kadener et al., 2009; Kojima et al., 2011). 

miRNAs recognize 3ʹ′-UTR sequences of their targets, and thereby, protein synthesis is inhibited, or 

deadenylation/degradation of the target mRNA is triggered. For example, using TargetScan (release 

18, Garcia et al. (2011)), Clock was predicted to be targeted by miR-148a-3p. Experiments 

conducted at the Fukada lab revealed that the mRNA level of Caveolin-1 (Cav1), a known target of 

miR-802 (Lin et al., 2011), shows a circadian rhythm with a phase shifted largely from those of pri-

mir-802 while transcription itself shows no significant circadian variation in Pol2-ChIP analysis. 

Thus, it is possible that post-transcriptional regulation by miRNAs could mediate the output of the 

circadian oscillator. 	



	

 In this study, I showed circadian oscillation of alternative splicing events. Molecular 

mechanism of circadian regulation in global RNA splicing remains unclear, but it is noteworthy that 

CLOCK binding and rhythmic transcription were observed for several genes encoding splicing 

factors such as polypyrimidine tract binding protein (PTBP1) (Supplementary Tables 2.1, 2.2, and 

2.3). PTBP1 binds to pyrimidine-rich sequences represented by UCUU to regulate alternative 

splicing (Pérez et al., 1997). Interestingly, pyrimidine-rich sequences with core element UCUU are 
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observed around alternative cassette exons of Mink1 and Ubqln1 (data not shown). Consistently, 

McGlincy et al. (2012) showed that dozens of splicing factors are rhythmically expressed. They 

also found that circadian alternative splicing events were changed in circadian mutant mice using 

exon-arrays (McGlincy et al., 2012). Hence, splicing regulation by splicing factors that are 

regulated by CLOCK could be one of the output pathways of the circadian oscillator.	



Conclusion 

In this study, I developed MOCCS, a method to enumerate DNA-binding motifs from ChIP-Seq 

data. MOCCS would be useful for broader people to extract DNA-binding motifs at high resolution 

using ChIP-Seq data. 	



	

 This study suggested two types of the output pathways of the circadian oscillation via 

CLOCK. One is direct regulation, i.e., transactivation through CLOCK binding to canonical and 

non-canonical E-box motifs, and the other is indirect regulations through transactivation by other 

transcription factors and post-transcriptional regulations involving miRNAs, lncRNAs, and 

alternative splicing. 	



!
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Chapter 3: Positive selection on gene copy number 
variations in adaptive evolution 
!
Positive selection is an evolutionary process by which an allele increases its frequency in a 

population. Copy number variations (CNVs) constitute a significant proportion of genomic 

diversity. In particular, gene copy number variations (GCNVs), which change the numbers of gene 

loci in genomes, can significantly alter gene functions and dosages, and thus can undergo positive 

selection. However, positive selection of CNVs has not been proved. One way of assessing the 

possibility is to search for increase or decrease of copy numbers in parallel evolution of freshwater 

groups of three-spined stickleback. Parallel evolution is the adaptive evolution in which the same 

genotypes or phenotypes are selected in different but related lineages, and provides strong evidence 

of positive selections. To address the possibility of positive selection on GCNVs using the system of 

parallel evolution of three-spined stickleback, I analyzed resequencing data of multiple individuals 

from freshwater and marine populations. A novel approach was devised to detect GCNVs under 

parallel selection from whole-genome sequencing data with low coverage by comparing two 

resequencing datasets. Application of the method to the resequencing data of sticklebacks revealed 

GCNVs that were likely under parallel selection. Many of the identified GCNVs showed increase in 

gene copy numbers in freshwater individuals, which is consistent with the notion that increase in 

gene copy number would facilitate adaptive evolution. These results suggest that contribution of 

GCNVs should be considered in studies on adaptive evolution.	



Background  *

Detection of positive selection 

Understanding the genetic basis of adaptive evolution is one of the major goals in evolutionary 

biology (Biswas and Akey, 2006; Barrett and Schluter, 2008; Barrett and Hoekstra, 2011; Kocher 

2004; Prentis et al., 2008). When populations adapt to new environments, positive selection can 

increase frequencies of specific genetic variations that have greater fitness than others, sometimes 
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resulting in the fixation of those variations (Biswas and Akey, 2006; Barrett and Schluter, 2008; 

Barrett and Hoekstra, 2011). 	



	

 To detect positive selection, two major approaches have achieved significant success. One 

approach is molecular evolutionary analysis of protein-coding gene sequences. Comparison of the 

synonymous and nonsynonymous nucleotide substitution rates has been adopted by many studies to 

identify positive selection (Biswas and Akey, 2006; Nielsen, 2005). While this approach is 

applicable to only protein-coding genes that have accumulated sufficient numbers of nucleotide 

substitutions, the other approach targets shorter time-scale events by detecting the fixation of single 

nucleotide variations (SNVs) within populations (Biswas and Akey, 2006). Many SNVs were found 

to be associated with phenotypic variations, including cis-elemental SNVs that affect gene 

expression levels (e.g., Cheung et al., 2005). Analyses of polymorphism distributions have revealed 

positive selection of a number of SNVs (e.g., Akey et al., 2004; Carlson et al., 2005).	



Positive selection on gene copy number variations 

These approaches focused on positive selection on variations due to nucleotide substitutions. 

However, it has recently been revealed that copy number variations (CNVs), or gains or losses of 

DNA segments, constitute a significant proportion of genomic diversity (Feuk et al., 2006; Cridland 

and Thornton, 2010; DeBolt 2010; Quinlan et al., 2010; Brown et al., 2012; Handsaker et al., 

2010). Because CNVs are known to result in significant phenotypic effects that include human 

diseases (McCarroll and Altshuler, 2007), they are also expected to be under positive selection. In 

particular, gene copy number variations (GCNVs), which change the numbers of gene loci in 

genomes, can significantly alter gene dosages and yield new gene functions (Kondrashov and 

Kondrashov, 2006; Chen et al., 2008). As expected, the possibility of fixation of CNVs by positive 

selection has been reported in several phylogenetic groups (Emerson et al., 2008; Gazave et al., 

2011).	



Aim of this study 

Parallel evolution, which is the adaptive evolution of the same trait in related but independent 

lineages, can provide evidence of positive selection, because genetic drift is unlikely to produce 

concerted changes in independent lineages (Rundel et al., 2000). 	



	

 The marine and freshwater phenotypes of three-spined sticklebacks (Gasterosteus aculeatus) 

are an excellent system to investigate parallel evolution (Rundel et al., 2000). This species inhabits 
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a large number of marine, estuarine, and freshwater environments in Asia, Europe, and North 

America. After the retreat of Pleistocene glaciers, the marine ancestors have colonized and adapted 

to newly created freshwater habitats over the world, showing repeated changes in the body shape, 

skeletal armor, trophic specialization, pigmentation, salt handling, life history, and mating 

preference (Bell and Foster, 1994; McKinnon and Rundle, 2002). 	



	

 Previous studies revealed that this independent evolution of similar phenotypes in the 

freshwater groups occurred due to parallel selection on the globally shared, standing SNVs in the 

same genes in different freshwater populations, providing strong evidence that positive selection on 

these SNVs contributed to the adaptive evolution toward the freshwater environments (Colosimo et 

al., 2004; Colosimo et al., 2005; Jones et al., 2012). Recently, Feulner et al. (2013) reported a 

significant number of CNVs in a marine population of the sticklebacks. Therefore, as with SNVs, 

GCNVs can also be under parallel selection through the evolution of sticklebacks. To investigate 

this possibility, I analyzed whole-genome resequencing data from marine and freshwater groups of 

three-spined sticklebacks and searched for GCNVs that contributed to the parallel evolution of the 

three-spined sticklebacks.	



!
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Materials and Methods 

Resequencing data 

A resequencing dataset of 10 marine and 10 freshwater individuals was previously generated using 

an Illumina Genome Analyzer II (36-51 bp, single-end), which yielded approximately sixty-million 

million reads (approximately 2.3×) per individual (Jones et al., 2012, Table 3.1). I downloaded the 

data from NCBI Sequence Read Archive (SRA, Leinonen et al. (2011)). The accession numbers 

were SRX077979, SRX079119, SRX079120, SRX077981, SRX077982, SRX077990, SRX077978, 

SRX076627, SRX079121, SRX077983, SRX077984, SRX077986, SRX077980, SRX077988, 

SRX077989, SRX077987, SRX077991, SRX077992, SRX076626, SRX077985, SRX077993, and 

SRX077994.	



	

 The sequenced reads from each individual were mapped to the stickleback genome using the 

Bowtie 0.12.8 software (Langmead et al., 2009) (Figure 1.1A). The Bowtie option of ‘-m 1’ was 

adopted to remove reads with multiple hits. In addition, to obtain reliable GCNVs that were not 

affected by the mapping parameter selection, I adopted three different values (70, 100, and 130) for 

the ‘-e’ option, which designated the maximum permitted total quality values at all mismatched 

positions throughout a read alignment. To avoid the effects of potential PCR duplicates, if multiple 

reads were aligned to the same position, all of the reads except for those with the highest mapping 

quality were removed using SAMtools (version 0.1.18, Li et al. (2009)) with the command 

‘samtools rmdup -s’. The statistics for each mapping option are shown in Table 3.1.	



!
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Table 3.1: Summary of resequencing dataset of 10 marine and 10 freshwater	


sticklebacks and mapping statistics	

!
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!
Genome sequence and gene annotation 

The three-spined stickleback genome sequence (BROADS1.56) and the annotated gene models 

were taken from the Ensembl database (release 72, Hubbard et al. (2002)). The genome sequence 

has been generated from a line derived from a freshwater population (Bear Paw Lake, Jones et al., 

2012).	



	

 For each GCNV likely under parallel selection, I obtained functional annotations of the gene 

from the Ensembl database. If the functional annotations were unavailable, BLASTX searches 

(Altschul et al., 1997) against the NCBI non-redundant protein database (nr) (Benson et al., 2010) 

were conducted with an E-value cutoff of 1e-14, and the hit with the highest bit-score and its 

annotated protein name was retrieved.	



Analysis of resequencing data 

I compared the numbers of mapped reads for each gene between the freshwater and marine groups 

to identify GCNVs under parallel selection (Figure 1.1B). If the numbers of mapped reads were 

significantly larger in the freshwater group, the gene would have been duplicated or multiplied 

specifically in the genomes of the freshwater group. If the numbers were significantly smaller, the 

gene would have been deleted or its copy number would have decreased.	



	

 The most 5ʹ′- and 3ʹ′- positions of each gene were retrieved from the Ensembl annotation, and 

the numbers of mapped reads that overlapped with the above area (i.e., any exonic or intronic 

region) were counted using the ‘intersectBed’ command in BEDTools (Quinlan and Hall, 2010). 

Because insufficient numbers of mapped reads may result in the detection of false GCNVs, I 

removed genes from the subsequent analysis if the median of the numbers of the mapped reads per 

100 bp of the gene lengths was less than one, or if no reads were mapped in at least one individual 

resequencing data. For normalization, the numbers were divided by the total number of mapped 

reads across the genome for each individual. Then, I searched for GCNVs under parallel selection 

by detecting genes that showed significant differences in the normalized read numbers between the 

freshwater and marine groups using the edgeR package (Robinson et al., 2010) with a false 

discovery rate (FDR) < 0.05. I regarded genes that were significant under all of the three different 

mapping options (“-e 70”, “-e 100”, and “-e 130”) as GCNVs likely under parallel selection.	
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 To confirm that the number of identified GCNVs under parallel selection was significantly 

larger than that expected by chance (i.e., by genetic drift), I calculated an empirical p-value based 

on a permutation test. I randomly reallocated the 10 freshwater and 10 marine individuals into two 

groups 10,000 times, performed the same analyses, and obtained the null distribution of numbers of 

GCNVs.	



SNP analysis 

If the identified GCNVs involved gene duplications or multiplications, three or more different 

allelic sequences should be observed within the gene in each individual of each group, because 

three or more different allelic sequences cannot originate from a diploid genome. Thus, I examined 

whether three or more different allelic sequences were observed in the identified GCNVs 

(Figure 1.1C).	



	

 For each of the identified GCNVs, SNVs were called by applying the SAMtools/BCFtools 

pipeline (Li et al., 2009) to the reads that were mapped with the ‘-e 100’ option. The SAMtools/

BCFtools pipeline was used with default parameters, except for the ‘-Q 30’ option, to consider 

bases that were called with high quality only. I enumerated every pair of SNV positions that was 

located within the read length, i.e., 36 bp (within-read-length SNV position pairs). The numbers of 

different nucleotide pairs for each of the within-read-length SNV position pairs were counted, 

where each nucleotide pair was supported by multiple reads. Finally, I selected GCNVs that showed 

three or more different nucleotide pairs in at least three individuals of either group.	



Microarray data analysis 

Microarray data of gills of two families of pure marine and pure freshwater crosses under short and 

long photoperiods (Kitano et al., 2010) were downloaded from Center for Information Biology 

Gene Expression (http://cibex.nig.ac.jp) with the accession number CBX139. Two marine and 

freshwater datasets were treated as biological replicates. If multiple probes were mapped to one 

transcript, the median signal intensity of these probes was used. After removing intra-gene probes, 

genes with significant expression-value differences between the marine and freshwater groups were 

identified using the eBayes method in the limma package (Smyth, 2005). The p-values were 

adjusted for multiple testing using the Benjamini–Hochberg procedure.  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Results and Discussion 

GCNVs that likely contributed to the parallel evolution of three-spined sticklebacks 

I downloaded whole-genome resequencing data of 10 marine and 10 freshwater individuals of 

three-spined sticklebacks (Jones et al., 2012) from NCBI Sequence Read Archive (Leinonen et al., 

2011). Both groups consisted of individuals that were derived from diverse areas along the Pacific 

and Atlantic Ocean coastlines (Table 3.1). Thus, genetic variations that were specifically shared 

among individuals in the freshwater (and marine) group were likely due to parallel selection. 	



	

 The coverage of the resequencing data was low (approximately 2.3× per individual as 

reported in Jones et al., 2012), making it difficult to apply conventional CNV detection tools (e.g., 

Abyzov et al., 2011). Thus, to increase the sensitivity of detecting GCNVs under parallel selection, I 

devised a novel approach that was based on a statistical method (Figures 3.1AB). The sequenced 

reads from each of the 20 individuals were mapped to the reference stickleback genome, and the 

numbers of the mapped reads were counted for each gene to estimate changes in their copy 

numbers. Genes that showed significant differences in the numbers of mapped reads between both 

groups were identified as GCNVs likely under parallel selection (Figures 3.1AB, see Materials and 

Methods).	



	

 Twenty-four genes showed significant differences in the numbers of mapped reads between 

both groups (Figure 3.2 and Table  3.2). Among these genes, five showed more copies in the 

individuals of the marine group (freshwater-decreased GCNVs) and 19 showed more copies in 

those of the freshwater group (freshwater-increased GCNVs). I confirmed that the number of the 

identified GCNVs was significantly larger than that expected by chance based on a permutation test 

(p < 0.05) for each mapping option. Collectively, these results suggested that the 24 GCNVs were 

likely due to parallel selection. Note that the 2.3× coverage of the resequencing data (Jones et al., 

2012) would have led to underestimation of the numbers of GCNVs between the marine and 

freshwater groups. A higher sequencing coverage may result in detection of more GCNVs.	



	

 Among the identified GCNVs, neurexophilin and PC-esterase domain family member 3 

(NXPE3) overlapped with a region that was reported as a CNV in a marine group of three-spined 

sticklebacks (Feulner et al., 2013). In addition, the identified GCNVs included well-known 

multigenic families such as sulfotransferase (SULT), NOD-like receptor (NLR), apolipoprotein L 

(APOL), kinesin family (KIF), and myosin heavy chain (MyHC). The finding that the identified 

GCNVs included genes in multigenic families was consistent with the idea that GCNVs of 
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multigenic family genes are more likely to occur than those of single-copy genes. This is because, 

fatal effects due to copy-number changes of multigenic family genes tend to be less than those of 

single-copy genes (Nguyen et al., 2006). It would be notable that GCNVs were previously observed 

for APOL (Perry et al., 2008), KIF (Conrad et al., 2009) and SULT (Hebbring et al., 2007) in 

primates and for MyHC in fish (Ikeda et al., 2007).  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Figure 3.1: Schematic diagram of the method for identifying GCNVs likely under parallel selection	


(A) Re-sequenced reads (thin lines) from each individual were mapped to the stickleback reference genome 
(thick lines). (B) The numbers of mapped reads that overlapped with genes were counted, and we searched 
for genes that showed significant differences in the normalized read numbers between the freshwater (closed 
circles) and marine groups (open circles) with a false discovery rate (FDR) < 0.05. Genes that showed 
significant differences under the three mapping options were regarded as GCNVs likely under parallel 
selection. (C) The number of different allelic sequences was counted for each of the identified GCNVs by 
enumerating every pair of SNV positions that was located within the read length. If three or more allelic 
sequences were observed for a gene, the GCNV involved duplications or multiplications.	
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Figure 3.2: GCNVs likely under parallel selection	


The normalized numbers of mapped reads per 1-Mb gene length for each gene across the genomes of the (A) 
freshwater and (B) marine groups. Each black point represents the number for each gene in each individual, 
and the green lines represent the mean values for each gene across individuals. (C) The false discovery rate 
of the EdgeR analysis on the differences in the numbers of mapped reads between the freshwater and marine 
groups for each gene. Asterisks indicate the positions of the GCNVs under parallel selection (FDR < 0.05).	
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Table 3.2: Gene copy number variations likely under parallel selection  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Segmental duplications/multiplications or deletions behind the identified GCNVs 

An important characteristic of the 24 GCNVs likely under parallel selection was that they 

frequently appeared at close locations on the genomes (Figure 3.2). This observation implied that 

those GCNVs would have resulted from segmental duplications/multiplications or deletions of 

genomic regions that contained multiple genes (i.e., gene clusters). Figure 3.3 represents the ratios 

of the numbers of reads that were mapped to genes in and around the gene clusters in the linkage 

groups VIII and XIX, which were suspected to have experienced segmental duplications or 

deletions. This observation was consistent with a previous study that reported that CNVs sometimes 

involve segmental duplications (Gazave et al., 2011).	



	

 Next, I compared the locations of the 24 GCNVs with divergent regions that were 

designated by Jones et al. (2012), because a previous study reported that many CNVs in primates 

overlapped with genes under positive selection (Gokcumen et al., 2011). The divergent regions 

were three-spined stickleback genomic regions whose sequences showed signs of parallel evolution 

of nucleotide variations between the marine and freshwater groups. The aforementioned gene 

cluster in the linkage group XIX overlapped with the divergent regions, suggesting that both 

nucleotide sequences and copy numbers of the genes in this region would have been under parallel 

selection during adaptation to the freshwater environment. However, most of the GCNVs did not 

overlap with the divergent regions, which suggested that their copy numbers, but not sequences, 

would have been under parallel selection (Table 3.2).	
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Figure 3.3: Segmental duplications/multiplications or deletions underlying the clusters of GCNVs 
likely under parallel selection	


Gene clusters that included GCNVs likely under parallel selection located in the linkage groups (A) VIII and 
(B) XIX are shown with three genes upstream or downstream. Each point represents the ratio of the average 
of the normalized numbers of the mapped reads between the two groups. The identified GCNVs with more 
copies in the marine and freshwater groups are colored by orange and blue, respectively. Genes were 
excluded from visualization if the median of the numbers of mapped reads per 100 bp of the gene length was 
less than one or if no reads were mapped in at least one individual. The error bars indicate standard 
deviations of the ratios that were calculated for pairs of freshwater and marine groups derived from the same 
geographic regions. (If multiple samples were derived from the same geographic region for either group, the 
average of the normalized number of reads was used for the calculation.)	
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Larger gene copy numbers in the derivative, freshwater phenotype 

Among the 24 GCNVs likely under parallel selection, larger gene copy numbers were more 

frequently associated with the freshwater group (19 out of 24, Table 3.2). This was consistent with 

the fact that the freshwater phenotype is derivative, because increase, rather than decrease, in gene 

copy numbers is expected to facilitate adaptation to new environments by introducing new 

physiology and morphology to the organism (Hoffmann and Willi, 2008). For example, Chen et al. 

(2008) suggested that duplications of protein coding genes contributed to the physiological fitness 

of Antarctic notothenioids in freezing polar conditions. In particular, the freshwater-increased 

GCNVs included two genes involved in the inflammatory response (APOL2, NLRC5) and two 

genes that were homologous to MyHC (ENSGACG00000002902, ENSGACG00000002933). A 

previous study showed parallel divergences between littoral and pelagic phenotype pairs of three-

spined stickleback MHC genes, which are key genes in the immune system and would be associated 

with parasite communities in each habitat (Scharsack et al., 2007). Various types of myosin genes 

were reported to have appeared during the evolution of teleost fish, and those variations were 

supposed to have contributed to the adaptation to variable aquatic conditions (Ikeda et al., 2007). 

Thus, I expect that those GCNVs would have played important roles in adaptation to the freshwater 

environment.	



	

 The larger gene copy numbers in the freshwater group could be due to the choice of the 

reference genome sequence. I used the reference genome that was generated from a freshwater 

lineage, thus the mapping efficiency of the sequencing data of the marine group might be lower for 

genes that accumulated many SNVs between the marine and freshwater groups. To examine 

whether the detected GCNVs were derived from the mapping efficiency bias toward the freshwater 

group, I investigated the frequencies of SNVs of the 19 freshwater-increased GCNVs using reads 

that were mapped with the ‘-e 100’ option. The most divergent gene was ENSGACG00000015099, 

which contained an average of 1.02 SNVs per 1 kb along the gene body in the marine group. This 

frequency was insufficient to produce the observed differences in the numbers of mapped reads. 

Therefore, the mapping efficiency bias was unlikely to explain the large number of the freshwater-

increased GCNVs.	



GCNVs that were likely due to duplication or multiplication 

To confirm whether the detected GCNVs under parallel selection were due to duplications or 

multiplications in the freshwater group, I counted the numbers of different allelic sequences within 

the regions of the GCNVs (Figure  3.1C). Two freshwater-increased GCNVs 
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(ENSGACG00000003408 and APOL2) (Figures 3.4AB) were strongly predicted to be such 

GCNVs, because they were supported by at least two within-read-length SNV position pairs in 

three individuals of the freshwater group (Tables  3.2 and 3.3). Read depths along the genomic 

coordinates were not stable probably due to sequencing biases, thus their differences were clearly 

observed in the regions with large read depths. It was notable that the read depths in the intronic 

regions of APOL2 of the freshwater group were higher than those of the marine group 

(Figure 3.4B), suggesting that this gene was recently duplicated with their intronic sequences. In 

addition, multiple copies of one freshwater-decreased GCNV (ENSGACG00000003374) 

(Figure 3.4C) were predicted to exist on the genomes of the marine group by the same analysis on 

the marine group. Another freshwater-decreased GCNV (NXPE3) was also supported by at least one 

within-read-length SNV position pair in three individuals of the marine group (Tables 3.2 and 3.3). 

The copy numbers of these two genes (ENSGACG00000003374 and NXPE3) would have 

decreased during the adaptation to the freshwater environment.	



	

 The APOL2 gene is a member of the apolipoprotein L gene family. This gene family is 

involved in pathogen immunity and was previously reported to have been under positive selection 

in primates (Smith and Malik, 2009). Another previous study found copy number differences in the 

APOL1 gene between human and chimpanzee and suggested that these differences were involved in 

the adaptive phenotype differentiation of the inflammatory response (Perry et al., 2008). The 

duplications or multiplications of APOL2 might have contributed to adaption of the immune system 

to the freshwater environment. For ENSGACG00000003408, I conducted BLASTX searches 

against NCBI nr database because no functional descriptions were available in the Ensembl 

database. The best hit for this gene was a neoverrucotoxin subunit alpha-like gene of Oreochromis 

niloticus with E-value = 0.0 (Accession numbers of the hits were XP_003449498, XP_003449506, 

and XP_003449483). This gene was reported to be overexpressed in the brooding tissue of pregnant 

specimens of a species in genus Syngnathus (Small et al., 2013), which belongs to the same order 

as the three-spined stickleback does. The duplications or multiplications of 

ENSGACG00000003408 might have had roles in pregnancy functions in the freshwater 

environment. I could not obtain any hit for ENSGACG00000003374. A previous study reported 

GCNVs of NXPE3 within marine populations (Feulner et al., 2013). NXPH3 is a neuropeptide-like 

molecule that functions in brain (Beglopoulos et al., 2005), and neuropeptides were suggested to 

control migratory behaviors (Mueller et al., 2011). The decrease of the NXPE3 copy numbers in the 

freshwater group might have been associated with their anadromous behavior (Bell and Foster, 

2000).  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!
Figure 3.4: Numbers of mapped reads in two freshwater-increased and one freshwater-decreased 
GCNVs	


Each point and line represent the normalized numbers and average normalized numbers, respectively, of the 
mapped reads per 200-bp non-overlapping window for 10 freshwater (black) and 10 marine (red) individuals. 
(A and B) Two freshwater-increased and (C) one freshwater-decreased GCNVs that were confirmed by three 
or more different allelic sequences, are shown. Gene models are shown at the bottom of each panel.	
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Table 3.3: Numbers of SNV pairs in which three or more haplotypes were observed based on '-e 100' 
mapping condition	
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Differential expressions of genes between the two environments 

If the two strongly supported freshwater-increased GCNVs actually contributed to the parallel 

evolution of the three-spined sticklebacks, the amount of transcription products of these genes 

should be important for the adaptation. Thus, I analyzed microarray data of gills of three-spined 

sticklebacks in marine and freshwater groups under the short and long photoperiod conditions 

(Kitano et al., 2010), and evaluated whether these two genes showed significant differential 

expressions between the two groups. As expected, the gene expression values of APOL2 and 

ENSGACG00000003408 were higher in the freshwater group than those in the marine group highly 

significantly (p < 0.005 after Bonferroni correction) under the short photoperiod condition (Table 

3.4). The short photoperiod condition resembled winter, thus these genes might have contributed to 

the fitness though the overwintering survival (Barrett et al., 2008).	



	

 In addition to the above two freshwater-increased GCNVs, another freshwater-increased 

GCNV, ENSGACG00000002551, showed higher expression in freshwater than in marine groups 

under the short-photoperiod condition (Table 3.4). Although the analysis of the numbers of different 

allelic sequences in the present study did not detect duplication for the GCNV, it is possible that the 

actually duplicated GCNVs were overlooked owing to low coverage of the resequencing data. Thus, 

ENSGACG00000002551 would be the important candidate for future studies to investigate 

GCNVs. 	



	

 The observed increase in expression levels of freshwater-increased GCNVs in the 

freshwater group might possible be due to a potential bias toward higher expression levels in 

freshwater groups in the microarray data used in the present study. To assess this possibility, I 

searched for differentially expressed genes between marine and freshwater groups irrespective of 

the genes being GCNVs identified in this study. Of 22913 genes, 374 genes showed higher 

expression in marine individuals and 385 genes showed higher expression in freshwater individuals 

(adjusted p-value < 0.05) (Figure 3.5). This indicates that differences in gene expression levels 

were not biased toward higher expression in freshwater groups, further supporting that the increased 

abundance of mRNAs of GCNVs might have contributed to adaptation to the freshwater 

environments.	



!
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!!!!!!!!!!!!!!
Table 3.4: GCNVs that showed higher expression in freshwater than marine groups in gills under the 
short-photoperiod condition	



(a) Logarithms 2 of fold changes of gene expression levels in marine groups over those of freshwater groups.	


(b) The p-values were adjusted for multiple testing using the Benjamini–Hochberg procedure.	

!

Ensembl gene ID Ensembl transcript ID log2FC p-value Adjusted 
p-

Duplication 
detected

ENSGACG00000014553 ENSGACT00000019239 -1.3725 5.255E-04 3.227E-02 Yes

ENSGACG00000003408 ENSGACT00000004466 -1.2225 5.706E-04 3.329E-02 Yes

ENSGACG00000002551 ENSGACT00000003350 -1.1700 8.343E-04 3.787E-02 No
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Figure 3.5: Comparison of differentially expressed genes between marine and freshwater groups by 
microarray analysis	


The 759 genes with differential expression in the gill between marine and freshwater groups under the short 
photoperiod are shown (adjusted p-value < 0.05). The y-axis represents log2 of fold changes of expression 
levels (marine/freshwater). The positive and negative values of the y-axis indicate higher expression in 
marine and freshwater groups, respectively. The x-axis represents genes ordered by the fold changes. Red 
bars indicate GCNVs for which differential expressions between marine and freshwater groups were 
detected.  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Conclusion 

In this study, I showed the possibility that GCNVs underwent positive selection in the parallel 

evolution of the three-spined sticklebacks and had a role in the adaptation to the freshwater 

environment. It would be notable that many CNVs were found in a marine population of three-

spined sticklebacks (Feulner et al., 2013), which suggests the existence of globally shared, standing 

CNVs that can contribute to the parallel evolution within natural population. These results suggest 

that the contribution of GCNVs should be considered in studies on adaptive evolution of diverse 

species.	
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