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Abstract

Since the 1950’s, the theory of mathematical programming and game theory have been de-

veloped rapidly and extensively. The literature shows the rich theory of linear programming,

convex quadratic programming, and bimatrix game, which are fundamental subjects in these

areas. As a unifying framework of such problems, the linear complementarity problem was

introduced in mathematical programming in the mid 1960’s.

The linear complementarity problem is to find, for a square matrix and a vector, a vector

satisfying linear constraints and complementarity conditions. The linear complementarity

problem has been studied from both theoretical and practical points of view, as it has ap-

plications in many areas such as computer science, economics and physics. While the linear

complementarity problem is hard to solve in general, each of the above applications reduces to

the linear complementarity problem in which input matrices have a certain property. There-

fore, there exist many results on the computational complexity of the linear complementarity

problem in terms of matrix classes. Furthermore, motivated by applications, finding a solu-

tion with a certain property such as an integral solution or a minimum norm solution has

been attracting attention.

This thesis aims to study the theory of linear complementarity problems. In particular,

we focus on two points: the computational complexity and the integrality of the problem.

To investigate the computational complexity, we focus on sparsity of a given matrix.

It is known that we can efficiently find a vector satisfying a system of linear inequalities.

Furthermore, if the inequalities have the highest sparsity, that is, if each inequality involves

at most two variables, then the problem can be solved in a combinatorial way. In this thesis,

we classify the computational complexity of the linear complementarity problem in terms of

sparsity of a given matrix. We also give an efficient algorithm based on a procedure for sparse

linear inequalities, to solve the sparse linear complementarity problem.

As a further study, we investigate the parameterized complexity of the linear complemen-

tarity problem. While the classical complexity theory analyzes the time necessary to solve

a problem exclusively in terms of the input data size, the parameterized complexity theory

takes a specified parameter into account in addition to the input data. Intuitively, the pa-

rameterized complexity theory aims to find out an efficient algorithm when a parameter takes
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a small value. There exist results on parameterized complexity of the bimatrix game with

some parameters. We analyze the parameterized complexity of the linear complementarity

problem by using the idea for the bimatrix game. We note that some existing results cannot

be extended to the linear complementarity problem.

We also study the complexity of finding a solution with a certain property to the linear

complementarity problem. We introduce the problem of finding a solution to an instance of the

linear complementarity problem whose basis is identical to the paired instance. This problem

is called the linear complementarity problem with orientation. We present two applications

of the problem, and show the computational complexity in terms of matrix classes.

The last part of this thesis is concerned with the existence of integral solutions to the

linear complementarity problem. There exist two sufficient conditions for the existence of an

integral optimal solution to the linear programming problem. One is total unimodularity of a

matrix, and the other is total dual integrality of linear constraints, which means that existence

of an integral solution to a dual problem implies that of the primal problem. In the study of

the linear complementarity problem, it was shown that a basic solution (a solution of a special

form) to the problem with a generalization of totally unimodular matrices is integral. In this

thesis, we introduce the notion of total dual integrality to the linear complementarity problem.

Then we show that the total dual integrality gives a sufficient condition for the existence of an

integral solution. To define total dual integrality, we use the linear complementarity problem

with orientation.
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Chapter 1

Introduction

1.1 Background

The linear complementarity problem is one of the most fundamental problems in mathe-

matical programming due to two characteristics: linearity and complementarity. These two

characteristics enable the linear complementarity problem to represent many problems in, for

example, computer science, economics, physics, and engineering [5, 27, 52, 73, 93, 112, 133].

The linear complementarity problem was introduced in the mid 1960’s, in the natural course

of development of mathematical programming and game theory.

1.1.1 Linear and quadratic programming

Modern theory of mathematical programming began to flourish with the emergence of linear

programming and the progress of computer performance. Mathematical programming is a

study of methods to obtain the best value with respect to some objective in a mathematical

model. For example, assume that we wish to go to Hongo Campus of the University of Tokyo

to Komaba Campus as fast as possible. Since the railroad network spreads all over Tokyo,

we have to find the fastest way among many ways to travel. Mathematical programming

helps us solve such a problem. The model is an abstraction of the railroad network, and the

objective is to minimize the time to Komaba Campus. Linear programming aims to find such

a best solution when the objective is represented as a linear function and the model is also

represented as a system of linear inequalities. More precisely, the goal is to find a real vector

x that archives

maximize c⊤x subject to Ax ≤ b,

where A is a real matrix and b and c are real vectors.

A lot of deep research has been done on linear programming since 1940’s, and today

both theoretical and practical importance of linear programming are well recognized. During
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about 1940’s, Kantorovich and Koopmans independently developed linear programming to

solve economic problems, such as how to use available resources to maximize production, or

how to distribute income fairly. For the early studies of Kantorovich and Koopmans, see e.g.,

[77] and [86], respectively. They received the Nobel Prize in Economic Sciences in 1975 for

this contribution. This shows that the linear programming had a significant influence on the

development of economics. In 1947, Dantzig published a practical efficient method to solve

linear programming problems, called the simplex method. As Dantzig wrote in [34], before

1947, people were not so interested in optimization because they had no way to compute

the optimal solution, but since 1947, linear programming has been used for management

of production and transportation. As written in [104], in 1947, von Neumann found the

theoretically important duality theorem of linear programming [106]. Gale, Kuhn, and Tucker

gave a complete proof for the theorem [58]. Duality means that a problem can be viewed

from two perspectives. Danzig noted in [104] that Dantzig also proved the duality theorem

in 1948 independently in an unpublished paper.

A study of measuring efficiency of computation, called computational complexity theory,

began to develop in the mid 1960’s. Around that time, Edmonds [43] argued that we can

regard an algorithm “whose difficulty increases only algebraically” with the size of input data

as an “efficient” algorithm. In linear programming, it was a big issue to find a polynomial-

time algorithm to solve any instance of the linear programming problem. It still remains open

whether a simplex method can be a polynomial-time algorithm, while it is efficient in prac-

tice. A breakthrough in computation of linear programming was brought by Khachiyan and

Karmarkar around 1980. In 1979, Khachiyan showed that the linear programming problem is

solvable in polynomial time [83], although Khachiyan’s algorithm was not useful in practice.

Karmarkar proposed a practical polynomial-time algorithm, called an interior-point method

in 1984 [79]. After that, many researchers developed an interior-point method using dual-

ity of linear programming so that today an interior-point method solves a large-scale linear

programming problem efficiently.

Nevertheless, a simplex method is still interesting in linear programming. An interior-

point method is a weakly polynomial-time algorithm, i.e., the running time is bounded by

a polynomial in the size of numerical values of input data. It remains open to show the

existence of a polynomial-time algorithm whose running time does not depend on numerical

values (such an algorithm is called a strongly polynomial-time algorithm). A simplex method

is considered to be a candidate of a strongly polynomial-time algorithm for the linear program-

ming problem. A simplex method is said to be a combinatorial algorithm based on pivoting.

Pivoting is an operation of transforming the data of a problem instance to demonstrate either

a solution or its nonexistence, and it is often used in numerical linear algebra. Pivoting should

be associated with a rule of transformation, and efficiency of a simplex method depends on

the rule. Although most of the well-known rules have bad instances [2, 53, 54, 63, 74, 82],
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there may exist a good rule with which any instance can be processed in polynomial time.

Recently, the behavior of a simplex method when applied to other problems, such as finding

an optimal policy of a Markov decision process, is often studied [66, 113, 138].

As the linear programming theory grew up, the theory of quadratic programming was also

developed rapidly. Quadratic programming is a method to find a vector x which satisfies a

linear constraint and maximizes or minimizes a quadratic function of form 1
2x

⊤Dx + c⊤x,

where D is a square real matrix, and c is a real vector . A study of quadratic programming

has as long history as linear programming. The method of Lagrange multipliers has been

known for useful to solve unconstrained (nonlinear) optimization problems. In 1951, Kuhn

and Tucker [91] extended this to constrained optimization problems, and presented the first-

order necessary conditions for a solution to the nonlinear programming problem to be optimal,

called the Karush-Kuhn-Tucker (KKT) conditions. Note that the conditions also appeared in

the work of Karush [80]. Frank and Wolfe showed a sufficient condition for the existence of

a global minimum in a quadratic programming problem, known as the Frank-Wolfe theorem,

in 1956 [51]. Nevertheless, it is not doubtful that advances of linear programming theory

made a contribution to revealing the rich theory of quadratic programming. In particular,

the linear programming theory had an impact on the study of a natural generalization of the

linear programming problem, called the convex quadratic programming problem. This is the

quadratic programming problem whose objective functions to be maximized (or minimized)

have a special property, called convexity. In 1959, Wolfe proposed a simplex-method-like

algorithm to solve (nonconvex) quadratic programming problems [137]. Around 1960, Den-

nis [38] and Dorn [40] studied duality in convex quadratic programming. In 1967, Dantzig

and Cottle [33] derived a necessary and sufficient condition for convex quadratic program-

ming problems to have a solution, which includes the results by Dennis and Dorn. In the

late 1980’s, Kapoor and Vaidya [78], and Ye and Tse [139] extended a variant of an interior

point method for linear programming problems to obtain a polynomial-time algorithm for the

convex quadratic programming problem.

In fact, Cottle and Dantzig obtained the above result by generalizing the convex quadratic

programming problem to the linear complementarity problem and studying this generalized

problem. Kojima, Mizuno and Yoshise [85] also obtained an interior-point method for the

linear complementarity problem.

1.1.2 Bimatrix games

Along with the advances of linear programming, game theory also began to develop drastically.

Game theory is a study of strategic interactions among agents, or players. In 1928, game

theory was established by the work of von Neumann [105] as an area in applied mathematics.

In the work, von Neumann dealt with zero-sum game, i.e., the case when the sum of payoffs
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(or costs) of players is always equal to zero. Then he proved the minimax theorem, which is a

fundamental theorem in game theory. Von Neumann and Morgenstern brought game theory

into the field of economics, and published a book [107] in 1944. Their works attracted notable

mathematicians, and Nash was one such mathematicians. Nash is well known for his work in

about 1950 which proved that any finite n-person game has at least one Nash equilibrium, in

which no agent has incentive to change only his/her decision while others keep their decisions

unchanged [102, 103]. In 1994, Nash, together with two economists, Selten and Harsanyi,

received the Nobel Prize in Economic Science for their contribution to the development of

game theory and its application to economics. It should be mentioned that Nash’s proof

in [103] was a nonconstructive proof based on Brouwer fixed-point theorem. Computing

equilibria became a matter in computer science, since as [108] says, efficient computability

makes it possible to predict agents’ equilibrium behavior, while computational intractability

leads to a doubt that an equilibrium might not be reached in the real world. Computer

scientists established game theory from algorithmic point of view, which is called algorithmic

game theory.

As mentioned in [110], the problem of finding a Nash equilibrium is one of the most

important complexity problems of this time. The bimatrix game is a simple but important,

two-person game in algorithmic game theory. This game has two matrices each of which

represents payoffs or costs of one player. It is well known in this area that a Nash equilibrium

of a zero-sum bimatrix game can be found by using linear programming. We note that a Nash

equilibrium is expressed as a pair of two vectors which represent players’ strategies. More

generally, the problem of computing a Nash equilibrium of a zero-sum game is also solvable

by using linear programming [125]. On the other hand, computability of Nash equilibria (in

particular, of bimatrix games) remains unclear. Lemke and Howson proposed a constructive

procedure to find a Nash equilibrium of a bimatrix game [94]. This gave also a constructive

proof of the Nash theorem. Other methods can be found in [90, 95, 136]. The Lemke-Howson

method is efficient in practice, but there exist bad cases which the Lemke-Howson method

takes much time to solve [118]. A polynomial-time algorithm is still unknown, and moreover,

finding a Nash equilibrium is considered to be hard. It is said to be unlikely that there exist a

polynomial-time algorithm, due to the evidence that this problem belongs to the complexity

class PPAD. The class PPAD (Polynomial Parity Arguments on Directed graphs), introduced

by Papadimitriou in 1994 [109], is the set of search problems which are at least as hard as

the problem of finding a Brouwer fixed point. The problem of finding a Nash equilibrium of a

bimatrix game is shown to be PPAD-complete in 1995 by Chen and Deng [12], which means

that this problem is one of the hardest problems in PPAD. See also [14].
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1.1.3 The linear complementarity problem

In the mid 1960’s, Lemke [93], Cottle [24], and Cottle and Dantzig [25] introduced the linear

complementarity problem (LCP), as a unifying problem of the linear and convex quadratic

programming, and the problem of finding Nash equilibrium of bimatrix games.

The formal definition of the LCP is as follows: given an n × n real matrix M and an

n-dimensional real vector q, the linear complementarity problem is to find an n-dimensional

vector z such that

Mz + q ≥ 0, z ≥ 0, z⊤(Mz + q) = 0. (1.1)

The last condition is called the complementarity condition. We denote a problem instance

of the LCP with M and q by LCP(M, q). We say that n is the order of the LCP. For any

vectors satisfying Mz + q ≥ 0 and z ≥ 0, the condition z⊤(Mz + q) = 0 is equivalent to the

condition that for each index i = 1, . . . , n, at least one of zi and (Mz + q)i is equal to zero.

Thus a solution to LCP(M, q) must satisfy Mz + q ≥ 0, z ≥ 0 and

(Mz + q)i = 0 (i ∈ B), zi = 0 (i ̸∈ B)

for some index set B ⊆ {1, . . . , n}. This index set B is called a basis. Once we know a

basis of a solution to the LCP, we can find the solution to the LCP easily by using the

linear programming. Thus finding a basis is essential for the LCP. However, as we describe

later, finding a basis is not considered to be an easy task in the sense of the computational

complexity.

As we can see in [25], the Karush-Kuhn-Tucker condition of a convex quadratic program-

ming problem can be written as an LCP instance. An LCP formulation of finding a Nash

equilibrium of a bimatrix game appears in [94]. Intensive study of the LCP began in 1960’s,

while a special case of the LCP appeared in 1940 [42]. The LCP has two fundamental char-

acteristics in mathematical programming: linearity and complementarity. In fact, the LCP

was called the “fundamental problem” in the early works of the LCP [24, 25]. It is revealed

later that the LCP has applications in many areas, such as computer science, economics,

and physics. An example of such an application in game theory is the mean payoff game.

The mean payoff game is significant in complexity theory, because a decision problem (yes-no

question) associated with this game belongs to the intersection of the complexity class NP

and coNP, where we describe these classes later. Reduction of the mean payoff game to the

LCP was shown in [5]. In economics, the problem of finding a market equilibrium is a well-

known example of the LCP. A market equilibrium is the state of an economy in which the

demands of consumers and the supplies of producers are balanced. The problem of finding

the quantity of production and the prices of commodities at the state is formulated as the

LCP [133]. In physics, the contact problem can be written as the LCP. The contact problem

is to compute the state of two smooth elastic bodies in contact. Roughly speaking, compati-
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bility of deformation is represented as the system of linear inequalities, and contact criterion

is written as the complementarity condition. Thus the contact problem is formulated as the

LCP. See e.g., [19, 52] for the detail. This application leads to the practical use of the LCP.

Indeed, many commercial physics engine, which provides a simulation of physical systems,

solves the contact problem via the LCP.

We mention that computation of a solution (to the LCP) with a certain property is

desired for some applications. For example, it is known that with a high probability, a

randomly chosen bimatrix game has a Nash equilibrium whose vectors have a small number

of positive elements [3]. Intuitively, the number of reasonable choices is small in most cases.

This implies that LCP instances derived from bimatrix games often have solutions with few

positive elements, and finding such a solution to the LCP can save the computation costs.

The problem of finding a market equilibrium is another example. When we deal with an

indivisible commodity, an integral solution to the LCP is suitable for this application [112].

We will describe this later. There exist results to find a solution to the LCP with a certain

property, such as a minimum norm solution [111, 123] or an integral solution [11, 31, 112].

In the theory of the LCP, matrix classes of the input matrix M play a major role, since

the LCP shows different properties depending on a class of input matrices M . In [26], it

was shown that when M is a positive semi-definite matrix (not necessarily symmetric), the

LCP has a solution if the system of linear inequalities in (1.1) is feasible. The LCP instances

obtained from the bimatrix game always has a solution, since the bimatrix game has a Nash

equilibrium. In addition, each of the above applications of the LCP leads to the LCP instances

having matrices with a certain property. In this thesis, we particularly focus on positive semi-

definite matrices, P -matrices, Z-matrices, K-matrices, and sufficient matrices among many

matrix classes concerning the LCP. We note that K-matrices are also called M -matrices.

Existence theory

The earliest existence result on the LCP was the notable fact that LCP(M, q) has a solu-

tion for any real vector q if and only if M is a P -matrix. This was indirectly shown by

Samelson, Thall and Wesler in 1958 whose motivation was in geometry [117]. The notion

of P -matrices was later introduced in the mid 1960’s [59], and properties of P -matrices was

investigated in [47]. However, the beginning of the systematic study of the existence results

was largely due to results on the convex quadratic programming, namely, results by Dorn [40]

and Cottle [22, 23]. These dealt with two fundamental classes of positive definite, and pos-

itive semi-definite matrices. The class of P -matrices is a generalization of positive definite

matrices, and is characterized by a property of associated LCP instances. In order to obtain

matrix classes which are characterized by properties of the LCP with positive semi-definite

matrices, Cottle, Pang and Venkateswaran [28] introduced classes of row sufficient matrices
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and column sufficient matrices as a generalization of positive semi-definite matrices. Both a

row and column sufficient matrix is called a sufficient matrix.

When we focus on matrices with a certain pattern of nonzero entries, we should mention

Z-matrices and the intersection of Z-matrices and P -matrices calledK-matrices. Z-matrices

and K-matrices have been widely studied, and they appear in physical, economic and geomet-

ric applications of the LCP. In 1962, Fiedler and Pták studied systematically these matrices,

and they presented 13 equivalent conditions for a Z-matrix to be a K-matrix [47]. A special

case of the LCP with Z-matrices appeared in [42], and Cottle and Veinott [29] obtained a

more general result. A remarkable characteristic of Z-matrices is that the feasible region of

linear constraints in (1.1) has a good structure, and this characteristic implies that solving

one linear programming problem gives a solution to the LCP with Z-matrices. A larger class,

called hidden Z-matrices, possessing this characteristic was introduced by Mangasarian [96].

Complexity theory

Many methods to solve the LCP have been proposed from the early stage of this literature. In

particular, pivoting methods for the LCP can be found in early works on the LCP at around

1960’s. In 1965, Lemke [93] extended the Lemke-Howson method for the bimatrix game to an

algorithm to solve the LCP. The paper [33] by Dantzig and Cottle in 1967 presented a pivoting

algorithm for the LCP with positive semi-definite matrices, called a principal pivoting method.

The earliest example of principal pivoting methods was proposed by Zoutendijk in 1960 [140]

and Bard in 1972 [4]. The method used in the papers is now called a simple principal pivoting

method, which is similar to the simplex method. The simple principal pivoting method is

applicable to a certain class of the LCP, including the LCP with P -matrices.

Another type of a pivoting method is Chandrasekaran’s algorithm for the LCP with Z-

matrices, proposed in 1970 [9, 116]. If the order of M is n, then the Chandrasekaran’s

algorithm terminates in at most n iterations.

For the purpose of solving the large-scale LCP instances, pivoting methods may not be

suitable for reasons such as round-off errors and data storage, as described in [27]. Round-off

errors may lead to incorrect pivoting and erroneous solutions, and such errors accumulate

rapidly as the number of iterations increases. In practice, a large-scale problem instance

tends to be sparse, which means that input data contains many zeros. Since pivoting methods

destroy the sparsity, we need to store all of the data if we use pivoting methods, and this

is storage consuming. Therefore, there exist some iterative methods such as a Newton-type

method and an interior-point method for the LCP. See [27] for the detail.

In the sense of computational complexity theory, the LCP is considered to be a hard

problem. To be more precisely, the LCP is NP-hard, which was shown by Chung in 1989 [15].

In computational complexity theory, the set of decision problems which can be solved in

polynomial time is called the class P. The class NP (Nondeterministic Polynomial time)
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represents a set of decision problems such that if we are given a certificate that the answer of

a problem instance is “yes”, then we can check it in polynomial time with respect to the size

of input data. Note that this says nothing about when we do not have a certificate. When

we replace “yes” with “no” in the definition of NP, then it defines the class coNP. The class

P is contained in both NP and coNP by definition. Whether or not P coincides with NP is a

big issue in this time. The relationship of difficulty of problems is determined by reduction of

problems. If problem A can be reduced to problem B (in polynomial time with respect to the

input data size of problem A), then we can see that solving problem B is at least as difficult

as problem A, since we can solve problem A via problem B. A problem is called NP-hard, if

any problem in NP can be reduced to the problem.

However, each application reduces to the LCP having matrices with a certain property

as mentioned above, and it is important to identify efficiently solvable classes of the LCP.

We present some known results here. In computational complexity theory, it is important to

estimate the complexity of a problem when the size of input data is sufficiently large. When

we mention the complexity explicitly, we use the notation f(n) = O(g(n)) meaning that there

exists a positive number c such that f(n) ≤ c · g(n) for sufficiently large numbers n.

It is known that the LCP with positive semi-definite matrices can be solved by an interior-

point method [85]. When M is a Z-matrix of order n, the LCP can be solved by a pivoting

algorithm in O(n3) time [9]. We can also solve the LCP with K-matrices easily by the simple

principal pivoting method with any pivoting rule, which terminates in a linear number of

iterations with respect to the order of the LCP [49].

On the other hand, the complexity of the LCP with P -matrices is unknown. Megiddo [97]

showed that if the LCP with P -matrices is NP-hard, then two classes NP and coNP coincide

with each other, which is believed to be unlikely. Thus Megiddo’s result suggests the existence

of a polynomial-time algorithm to solve the LCP with P -matrices. There exists a lot of

the literature attempting to reveal the complexity of the LCP with P -matrices, such as

[49, 50, 62, 132]. It is known that the LCP with P -matrices of order n can be solved in

O(cn) (c < 2) time by a pivoting method [132]. We note that the deciding whether or not

a matrix is a P -matrix was shown to be coNP-complete [30]. This means that recognizing

P -matrices is a hard task. For a larger class containing P -matrices, called P0-matrices, the

LCP is known to be NP-hard [84].

1.2 Our contribution

This thesis investigates theoretical aspects of the LCP: the computational complexity and

the integrality. Throughout this thesis, the main idea of our study is that the LCP can be

regarded as an extension of the system Mz + q ≥ 0, z ≥ 0 of linear inequalities. We also

make use of the concept introduced into the bimatrix game.
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1.2.1 Complexity

The topics can be divided into two parts. The first topic is analysis of the complexity of the

LCP in terms of sparsity of the coefficient matrices. The second topic deals with the problem

of finding a special solution to the LCP, which we call the LCP with orientation.

Sparse linear complementarity problems

The term “sparsity” means that most entries are zero. Such matrices often appear in ap-

plication, such as the contact problem. The contact problem is to compute the state of two

smooth elastic bodies (called Body 1 and Body 2) in contact. We here present a simple case

of the contact problem as an example. See [27] for the detail of this problem.

Suppose that the external force is applied on Body 1, whose value is p, in the vertical

direction. Assume that we know n pairs of two points on surfaces of Body 1 and 2 which

can come in to contact, and that deformations are small. We also know the distance di

between the ith pair of points if two bodies can penetrate each other, for i = 1, . . . , n. Since

the bodies cannot penetrate each other, deformations of the bodies occur. Let zi denote

the contact stress at the ith pair of points. Let v1i and v2i denote the the deformations (in

the vertical direction) at the ith point on Body 1 and 2, respectively. We denote by d the

n-dimensional vector whose ith element is di. We define z, v1, and v2 similarly.

Since the distances between pairs of points are nonnegative, deformations and distances

must satisfy

v1 + v2 + d ≥ 0.

For each pair of points, if the distance between the points is positive, then the contact stress

must be zero. Thus the contact criterion

(v1i + v2i + di) · zi = 0 for i = 1, . . . , n

must be satisfied. In addition, since the deformations are small, we can assume that deforma-

tions are given by v1 = Az and v2 = Bz, where A1 and A2 are known matrices. Therefore, it

suffices to find the vector z satisfying

Az + d ≥ 0, z ≥ 0, z⊤(Az + d) = 0,

where A = A1 + A2, and this coincides with LCP(A, d). When, for example, two bodies are

relatively solid, each deformation is affected by contact stresses of neighbor points. In this

case, the matrix A is sparse.

The rest of this subsection cannot be publicized because a copyright holder’s consent has

not been obtained.
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1.2.2 Integrality

The integrality of the linear programming problem has been studied well. The linear pro-

gramming problem in which the variables are restricted to integers is called the integer linear

programming problem. This problem has many applications, including many NP-hard prob-

lems. One direction in the study of the integer linear programming problem is to obtain a

good approximation of the optimal value. We focus on another direction, which aims to inves-

tigate sufficient conditions that the underlying linear programming problem has an integral

optimal solution. In such a case, we can easily obtain an optimal solution to the integer linear

programming problem.

In the study of the integrality of the linear programming problem, totally unimodular

matrices are important. A square integral matrix is called totally unimodular matrix if

all square submatrices have determinants 0 or ±1. Totally unimodular matrices appear in

combinatorial optimization. It is well known that a linear programming problem with a

totally unimodular matrix and an integral vector has an integral optimal solution, which was

shown by Hoffman and Kruskal in 1956 [71]. Later, in 1977, Edmonds and Giles introduced

the notion of total dual integrality of linear systems [44]. This notion is defined as the dual

problems of the linear programming problems associated with a linear system have an integral

optimal solution. This notion gives a unified framework for linear programming problems

having an integral optimal solution arising in combinatorial optimization. The total dual

integrality of linear systems is deeply related with totally unimodular matrices. It is known

that an integral matrix A is totally unimodular if and only if the linear system Ax ≤ b, x ≥ 0

is totally dual integral for every vector b. For the detail, see e.g., [120].

In this thesis, we focus on integral solutions to the LCP. Integral solutions to the LCP were

first considered by Chandrasekaran [10] in the context of the least element theory. A class of

the LCP having integral solutions was considered earlier by Pardalos and Nagurney [112], with

some applications which need integral solutions. One application is the problem of finding a

market equilibrium, whose LCP formulation was pointed out in [133]. We present a simple

model here. Assume that there are n economic regions which produces and/or consumes a

single indivisible commodity. We know the unit cost cij of shipping between region i and

region j. The problem is to compute the amount of trade and the price of the commodity

for each region at an equilibrium. Let tij denote the number of the commodity shipped from

region i to j, and let pi denote the price of the commodity in region i.

We assume that the amount of the demand in region i is represented as bi − dipi, where

bi and di are positive numbers. Since the amounts of export and import should be balanced

at an equilibrium, variables pij ’s and tij ’s must satisfy

(bi − dipi) +
∑
j ̸=i

tij =
∑
j ̸=i

tji for i = 1, . . . , n.
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In addition, to ensure that there are no more incentives to trade at an equilibrium, variables

pij ’s and tij ’s should satisfy

pi + cij − pj ≥ 0, tij · (pi + cij − pj) = 0 for all i, j.

We can write the problem of finding variables pij ’s and tij ’s satisfying two conditions as

LCP(M, q) by letting z denote the vector consisting of pij ’s and tij ’s, and defining the matrix

M and the vector q appropriately. We remark that since the monetary unit is integral, and

the commodity is indivisible by assumption, an integral solution to LCP(M, q) is suitable for

this model.

The rest of this subsection cannot be publicized because a copyright holder’s consent has

not been obtained.

1.3 Organization of this thesis

The remainder of this thesis is organized as follows. Chapter 2 defines the linear programming,

the bimatrix game, and the integer linear programming, and then it presents existing results

on these problems. Chapter 3 describes fundamental properties of the linear complementarity

problem and its related works. Chapter 4 shows the time complexity of the k-LCP. The results

are also contained in [128, 129]. A part of the results was also mentioned in [127]. Chapter

5 analyzes the parameterized complexity of the LCP. Chapter 6 discusses the applications

and the time complexity of the LCP with orientation, whose description is based on [131].

Chapter 7 introduces total dual integrality of the LCP and shows that it certifies integrality

of the LCP. The results are also contained in [130]. Chapter 8 summarizes this thesis.





Chapter 2

Preliminaries

In this chapter, we present fundamental notation. Then we define the linear programming,

the bimatrix game, and we review previous works.

For a positive integer n, let [n] = {1, . . . , n}. We denote by R,Z, and N the set of real

numbers, integers, and positive integers. A vector or matrix is called real (resp. rational,

integral, respectively) if all its entries are real numbers (resp. rational numbers, integers).

Let A be an m × n real matrix, where A has a row index set [m] and a column index set

[n]. For S ⊆ [m] and T ⊆ [n], we denote by AST the submatrix of A such that S and T are

row and column index sets, respectively. We also define A·T and AS· by A·T = A[m]T and

AS· = AS[n], respectively. If T = {j}, we simply write ASj and A·j instead of AS{j} and

A·{j}, respectively. We similarly define AiT and Ai·. Let z denote a vector in Rn with index

set [n]. In this thesis, we assume that all vectors are column. For index set B ⊆ [n], let zB

denote the subvector of z with elements corresponding to B, i.e., zB in RB. We also denote

by zi the ith element of z for i in [n] For a subset B ⊆ [n], let B denote the complement of

B, i.e., B = [n] \B. We denote by I the identity matrix, i.e., its diagonal entries Iii are ones,

and other entries are zeros. We also denote by 1, 0 the vectors whose elements are all one,

and zero, respectively.

An undirected graph is a pair G = (V,E), where V is a finite set, and E is a family of

unordered pairs {u, v} of elements u, v of V . Each element of V is called the vertex of G, and

each elements of E is called the edge of G. We say that an edge {u, v} connects the vertices

u and v. The vertices u and v are adjacent if there is an edge connecting u and v. The edge

{u, v} is incident with the vertex u and with v, and conversely.

The number of edges incident with a vertex v is called the degree of v. The maximum

degree of the vertices of G is called the degree of G.

An undirected graph G′ = (V ′, E′) is called a subgraph of G = (V,E) if V ′ is a subset of

V , and E′ is a subset of E. In addition, if E′ contains only edges connecting vertices in V ′,

then G′ is called an induced subgraph.
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A directed graph is a pair D = (V,E), where V is a finite set, and E is a finite family of

ordered pairs (u, v) of elements u, v of V . In a similar way to undirected graphs, we say that

elements of V are vertices, and elements of E are edges.

We say that the edge (u, v) leaves u and enters v. An edge leaving a vertex v is said to be

an outgoing edge of v. Similarly, an edge entering a vertex v is said to be an incoming edge

of v. A vertex with no outgoing edges is called a sink, and a vertex with no incoming edges

is a source.

2.1 Linear and quadratic programming

We first introduce some fundamental notation and terminology. For vectors a and b with

common index set [n], we write a ≤ b if ai ≤ bi for i ∈ [n]. If A is a matrix, and b, x be

vectors, then when we write Ax = b or Ax ≤ b, we implicitly assume that if A is an m × n

matrix, then the index sets of b and x are [m] and [n], respectively. For a vector a and a real

number b, a⊤x = b and a⊤x ≤ b are called linear equation and linear inequality, respectively.

For a matrix A and a vector b, we say that

Ax = b and Ax ≤ b

are a system of linear equation and a system of linear inequalities, respectively. We also call

a system consisting of linear equation and linear inequalities a linear system. For a system

Ax ≤ b of linear inequalities, a system A′x ≤ b′ is a subsystem of Ax ≤ b if A′x ≤ b′ arises

from Ax ≤ b by deleting some (or none) linear inequalities in Ax ≤ b. Similarly for a system

of linear equations and a linear system.

2.1.1 Linear programming

Let Ax ≤ b be a system of linear inequalities. A set P of vectors defined by

P = {x | Ax ≤ b}

is called a polyhedron. The linear programming problem is the problem of maximizing or

minimizing a linear function over a polyhedron. A normal form of the linear programming

problem is represented as

max{c⊤x | Ax ≤ b}, (2.1)

where A is a matrix, and b, c are vectors. In this case, a vector x satisfying Ax ≤ b is called

a feasible solution, and the set of feasible solution is called the feasible region. If the feasible

region is nonempty, then the problem is said to be feasible, and otherwise infeasible. The

function x → c⊤x is called the objective function, and c⊤x is the objective value of x. We say
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that a feasible solution which attains the maximum is an optimal solution.

An important characteristic of the linear programming problem is its duality theorem by

von Neumann [106], and Gale, Kuhn and Tucker [58].

Theorem 2.1. Let A be a matrix, and let b and c be vectors. Then it holds that

max{c⊤x | Ax ≤ b} = min{b⊤y | A⊤y = c, y ≥ 0}

if both problems are feasible.

The proof of this theorem is deeply related to the following theorem of alternative [46],

so-called Farkas’ lemma.

Theorem 2.2 (Farkas’ lemma). Let A be a matrix, and b be a vector. Then there exists a

vector x ≥ 0 with Ax = b if and only if b⊤y ≥ 0 for each vector y with A⊤y ≥ 0.

We say that the minimization problem min{b⊤y | A⊤y = c} is the dual problem of the

maximization problem max{c⊤x | Ax ≤ b}, which is called primal. We also say that the

maximization problem is the dual problem of the minimization problem. There are several

equivalent forms for a linear programming problem. For example, we can transform (2.1) into

the form

max{c⊤x | Ax ≤ b, x ≥ 0}

by replacing the matrix and vectors appropriately, and vice versa.

Theorem 2.1 says nothing about the case when either problem is infeasible. In fact, there

are four cases:

(a) both maximization and minimization problems are feasible, and the optimal values are

equal;

(b) the maximization problem is infeasible, and the minimum is unbounded from below;

(c) the minimization problem is infeasible, and the maximum is unbounded from above;

(d) optimal values of both problems are unbounded.

Optimal solutions to a primal and its dual linear programming problem have the following

relation.

Theorem 2.3. Let A be a matrix, and let b and c be vectors. Assume that max{c⊤x | Ax ≤
b} = min{b⊤y | A⊤y = c, y ≥ 0} is finite, and let x and y be feasible solution to the maximum

and the minimum, respectively.

Then the following are equivalent.

(a) x and y are optimal solutions.
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(b) c⊤x = b⊤y.

(c) y⊤(b−Ax) = 0.

The last condition is called complementary slackness. More precisely, for each inequality

aix ≤ bi in Ax ≤ b, exactly one of aix < bi and yi > 0 holds, since b−Ax ≥ 0 and y ≥ 0.

2.1.2 Simplex method

The affine hyperplane {x | c⊤x = δ} is called a supporting hyperplane of P if c is nonzero and

δ = max{c⊤x | x ∈ P}. A subset F of P is called a face of P if F = P or F is the intersection

of P with some supporting hyperplane of P . Alternatively, F is a face of P if and only if F is

nonempty and F = P ∩ {x | A′x = b′} for some subsystem A′x ≤ b′ of Ax ≤ b. In particular,

a face is minimal if it contains no other face. It is known that a minimal face of P can be

represented as {x | A′x = b′} for some subsystem A′x ≤ b′ of Ax ≤ b. A zero-dimensional

face is called a vertex.

A set C of vectors is said to be convex if λx + (1 − λ)y belongs to C for any x, y ∈ C

and 0 ≤ λ ≤ 1. For a set X of vectors, we say that the smallest convex set containing X the

convex hull of X, that is,
{∑t

i=1 λix
i | t ≥ 1, x1, . . . , xt ∈ X, λ1, . . . , λt ≥ 0,

∑t
i=1 λi = 1

}
.

A polyhedron P is called integral if P is the convex hull of the integral vectors in P . A

polyhedron P is integral if and only if any face of P contains an integral vector, or equivalently,

max{c⊤x | x ∈ P} has an integral optimal solution for each vector c such that the maximum

exists.

The oldest practical algorithm for linear programming is Dantzig’s simplex method. Sup-

pose that we aim to solve the linear programming problem (2.1). A simplex method is often

described as an algorithm that moves on vertices of the polyhedron P = {x | Ax ≤ b} from

vertex to vertex until an optimal solution is found. Assuming that we are known a vertex x

of P , a basic procedure of a simplex method is as follows.

A simplex method (basic idea)

Input: A matrix A in Rm×n, a vector b in Rm, and a vertex x of P = {x | Ax ≤ b}.

Step 0: Choose a set B ⊆ [m] such that AB· is nonsingular and AB·x = bB.

Step 1: Let u be a vector defined by uB = (A⊤
B·)

−1c and uB = 0 (A⊤u = c holds by

definition). If u ≥ 0, then return x as an optimal solution.

Step 2: Choose an index i ∈ B with ui < 0. Let w be the column of −(AB·)
⊤ with

index i (thus AB·w ⪇ 0). If Aw ≤ 0, then return w as the certificate that the

maximum is unbounded.

Step 3: Let

λ = min

{
bi −Ai·x

Aj·w
| j ∈ [m], Aj·w > 0

}
.
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Let also j the smallest index attaining this minimum.

Step 4: Replace B with (B ∪ {j}) \ {i}, and x with x+ λw. Then go to Step 1.

In this procedure, the set B is called a basis, and the operation at Step 4 is called pivoting.

Pivoting means transforming the data of a problem instance to demonstrate either a solution

or its nonexistence. This idea is often used in numerical linear algebra. The rule of selecting an

index at Step 2 is a pivoting rule. There exist many pivoting rules for the simplex method. A

simplex method may run into cyclic, but the simplex method with Bland’s rule [6] terminates

after a finite number of iterations. Unfortunately, the simplex method with Bland’s rule is not

a polynomial-time algorithm, since Klee and Minty [82], and Avis and Chivátal [2] found bad

instances with n variables and 2n inequalities where the simplex method with Bland’s rule

takes 2n iterations. Most of known pivoting rules have such bad instances [82, 74, 2, 63, 53, 54].

Nevertheless, theoretical studies on a simplex method are still of interesting. A strongly

polynomial-time algorithm for the linear programming problem is still unknown, and a simplex

method is considered to be a candidate of such an algorithm.

2.1.3 Quadratic programming

The quadratic programming problem is the problem of maximizing or minimizing a quadratic

function over a polyhedron. A typical formulation is

max. f(x) = 1
2x

⊤Qx+ c⊤x

s.t. Ax ≤ b,

where Q is a square matrix, A is a matrix, and b, c are vectors.

A necessary condition for a feasible vector x of the quadratic programming problem (2.2)

to be optimal to (2.2) is given by the Karsh-Kuhn-Tucker condition [80, 91]: There exists a

vector µ satisfying

Qx−A⊤µ+ c = 0,

−Ax+ b ≥ 0,

µ ≥ 0,

µ⊤(−Ax+ b) = 0.

(2.2)

If a feasible solution x of (2.2) satisfies the Karush-Kuhn-Tucker condition, then x attains the

maximum within its neighbors (i.e., sufficiently close vectors to x). Such a vector is called

local optimal to (2.2). If a local optimal solution is optimal in the entire feasible region, it is

called global optimal.
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When the matrix Q is positive semi-definite, i.e., x⊤Qx ≥ 0 holds for any vector x, the

Karush-Kuhn-Tucker condition (2.2) is also a sufficient condition for a feasible vector to be

global optimal. In such a case, the objective function f of the problem (2.2) satisfies that

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for any vectors x, y such that f(x), f(y) < +∞,

and 0 ≤ λ ≤ 1. Such a function is called a convex function. The problem (2.2) with a

positive semi-definite matrix Q is called the convex quadratic programming problem, since

the objective function and the feasible region are both convex.

2.2 Bimatrix games

A bimatrix game consists of two players, called Player I and Player II. Let K and L be finite

sets of strategies of Player I and Player II, respectively, where K ∩ L = ∅. We denote by

k and l the sizes of K and L, respectively. A bimatrix game is given two k × l matrices A

and B, where aij and bij respectively represent costs to Player I and Player II, when Player I

chooses strategy i ∈ K and Player II chooses strategy j ∈ L. We denote by (A,B) a bimatrix

game with Player I’s matrix A and Player II’s matrix B.

A mixed strategy for Player I is a vector x∗ in Rk where x∗i represents the probability of

choosing strategy i ∈ K. That is, a mixed strategy x∗ satisfies that x∗ ≥ 0 and 1⊤x∗ = 1.

A mixed strategy y∗ for Player II is defined analogously. For mixed strategies x∗ and y∗ for

Players I and II, their expected costs are given by (x∗)⊤Ay∗ and (x∗)⊤By∗, respectively. The

pair (x∗, y∗) of mixed strategies is said to be a Nash equilibrium if it satisfies that

(x∗)⊤Ay∗ ≤ x′⊤Ay∗ for all x′ ≥ 0, 1⊤x′ = 1,

(x∗)⊤By∗ ≤ (x∗)⊤By′ for all y′ ≥ 0, 1⊤y′ = 1.

(2.3)

In other words, (x∗, y∗) is a Nash equilibrium if neither player can lower his/her expected

cost by changing only his/her strategy. More specifically, (x∗, y∗) is a Nash equilibrium if and

only if x∗ is a best response to y∗, and vice versa. A mixed strategy x∗ of Player I is called

a best response to Player II’s mixed strategy y∗ if the former condition holds in (2.3). The

definition for Player II’s mixed strategy is similar.

Theorem 2.4 (von Stengel [125]). For a bimatrix game (A,B), Player I’s mixed strategy x∗

is a best response to Player II’s strategy y∗ if and only if it holds that for each i ∈ K,

xi > 0 ⇒ (Ay)i = max
j∈L

(Ay)j .

It is well known that every bimatrix game has a Nash equilibrium.

Theorem 2.5 (Nash [102, 103]). Every bimatrix game has a Nash equilibrium.
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The proof in 1950 was based on Kakutani fixed-point theorem [76], and the one in 1951

uses Brouwer fixed-point theorem [8]. Kakutani fixed-point theorem is a generalization of

Brouwer fixed-point theorem: Let Bd be the d-dimensional closed unit ball.

Theorem 2.6 (Brouwer [8]). Every continuous function f : Bd → Bd has a fixed point, i.e.,

a point x ∈ Bd such that f(x) = x.

The proof of Brouwer’s theorem was not constructive, and thus Nash’s theorem did not

give a constructive procedure to compute a Nash equilibrium of the bimatrix game. Later,

algorithms to find a Nash equilibrium were proposed by Vorob’ev [136], Kuhn [90], Mangasar-

ian [96], and Lemke and Howson [94]. However, none of those is known to be a polynomial-time

algorithm, and moreover, finding a Nash equilibrium is considered to be hard. This doubt

was brought by the work of Cheng and Deng [12] which showed that the problem of finding a

Nash equilibrium of the bimatrix game is a complete problem of the complexity class PPAD.

See also [14].

The class PPAD (Polynomial Parity Arguments on Directed graphs), introduced by Pa-

padimitriou [109], is the set of search problems that can be reduced to the end-of-the-line

problem. The end-of-the-line problem is, given a directed graph G and a specified unbal-

anced vertex of G, to find some other unbalanced vertex, where a vertex in a directed graph

is said to be unbalanced if the number of its incoming edges differs from the number of its out-

going edges. We remark that problems in PPAD are known to have a solution, while finding

the solution is not an easy task. The class PPAD contains many problems of finding a fixed

point. The problem of finding a fixed point in Brouwer’s theorem is PPAD-complete [109].

The problem of finding a Nash equilibrium of the bimatrix game was shown to belong to

PPAD in [109], and its completeness was shown in [12]. As described in [35], PPAD contains

many problems for which researchers have tried for decades to develop efficient algorithm, and

it is still open whether these problems are solvable efficiently. For this reason, PPAD-complete

problems are considered to be hard.

2.3 Integer linear programming

In this section, we consider an integral solution to the linear programming problem. Given

an integral matrix A in Zm×n, and integral vectors b in Zm and c in Zn, the integer linear

programming is to find an integral vector x in Zn which attains max{c⊤x | Ax ≤ b, x ∈ Zn}.
For a polyhedron P , the convex hull of the integral vectors in P is called the integer hull

of P , denoted by PI. It is known that the integer hull of a polyhedron is also a polyhedron.

We say that a polyhedron P = {x | Ax ≤ b} is rational if A is a rational matrix and b is a

rational vector.
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Theorem 2.7 (Meyer [98]). For any rational polyhedron P , the integer hull PI of P is a

rational polyhedron.

Thus we can write an instance of the integer linear programming as the one of the linear

programming problem max{c⊤x | x ∈ PI}, where P = {x | Ax ≤ b}, if once we can know the

expression PI = {x | A′x ≤ b′}.
It is known that the integer linear programming problem is NP-hard, while the linear

programming problem is polynomial-time solvable. This result comes from the NP-hardness

(essentially due to Cook [20]) of the problem of finding an integral feasible solution to Ax ≤ b,

where A is a rational matrix, and b is a rational vector. However, for a polyhedron P appearing

in a combinatorial optimization, PI often coincides with P . In this case, the integer linear

programming problem reduces to the linear programming problem, and hence we can find

solve it in polynomial time. Therefore, such conditions under which P = PI holds have been

studied extensively. In the rest of this section, we present those conditions and related work.

The following are fundamental results.

Lemma 2.8 (Kronecker [89]). Let A be a rational matrix, and let b be a rational vector.

A linear equation Ax = b has an integral solution if and only if y⊤b is an integer for each

rational vector y such that y⊤A is integral.

Lemma 2.9 (Schrijver [120, Chapter 4]). Let A be an n × k integral matrix of full column

rank. Then the g.c.d of k×k subdeterminants of A is one if and only if for any vector x such

that Ax is an integral vector, x is integral.

2.3.1 Integer hull of a polyhedron

Solving the integer linear programming problem is not easy. However, if we know the integer

hull is nonempty, then we can know whether or not the integer linear programming problem

is finite by considering the corresponding linear programming problem.

Proposition 2.10. Let A be a rational matrix, let b be a rational vector, and let c be a vector.

Assume that the integer hull of P = {x | Ax ≤ b} is nonempty. Then max{c⊤x | x ∈ P} is

bounded if and only if max{c⊤x | x ∈ PI} is bounded.

For an integral matrix A, we denote by Ξ(A) the maximum absolute value among de-

terminants of submatrices of A. We denote by ||x||∞ the maximum absolute value among

elements of x.

Theorem 2.11 (Cook, Gerards, Schrijver and Tardos [21]). Let A be an integral matrix, and

let b, c be vectors. Let P = {x | Ax ≤ b}, and suppose that PI ̸= ∅. If there exists an optimal

solution x to max{c⊤x | x ∈ P}, then there also exists optimal solution z to max{x | x ∈ PI}
with ||z − x||∞ ≤ nΞ(A).
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By using the above properties, we know the bound on the size of an optimal solution to the

integer linear programming problem. We measure the size of numbers, vectors, and matrices

as the number of bits in the binary representation. We define size(n) = 1+ ⌈log2(|n|+1)⌉ for
an integer n, and size(r) = size(p) + size(q) for a rational number r = p

q , where p and q are

relatively prime integers. For a rational vector b in Rn, we write size(b) = n+
∑n

i=1 size(bi).

For a rational matrix A in Rm×n, we have size(A) = mn +
∑

i,j⌊size(aij)⌋. We have the

following properties. See e.g. [87] for the detail.

Proposition 2.12. If r1, . . . , rn are rational numbers, then it holds that size(r1 · · · rn) ≤
size(r1) + · · ·+ size(rn), and size(r1 + · · ·+ rn) ≤ 2(size(r1) + · · ·+ size(rn)).

Proposition 2.13. For any rational square matrix A, it holds that size(detA) ≤ 2size(A).

To prove the bound of an optimal solution to the integer linear programming problem, we

need a similar result on the linear programming. See e.g. [87] for the proof.

Lemma 2.14. Let A be a rational matrix, and let b be a rational vector. Assume that

max{c⊤x | Ax ≤ b} has an optimal solution. Then it also has an optimal solution x such that

size(xi) ≤ 4(size(A) + size(b)) for each element xi.

Lemma 2.15. Let A be an integral matrix, and let b, c be vectors. Let also P = {x | Ax ≤ b}.
If max{c⊤x | x ∈ PI} has an optimal solution, then it also has an optimal solution x such

that size(xi) ≤ 13(size(A) + size(b)) for each element xi.

Proof. By Proposition 2.10 and Lemma 2.14, max{c⊤x | x ∈ P} has an optimal solution y

such that size(yi) ≤ 4(size(A) + size(b)) for each element yi. Theorem 2.11 implies that there

exists an optimal solution x to max{c⊤x | x ∈ PI} with ||x − y||∞ ≤ nΞ(A). This implies

that xi ≤ yi + nΞ(A) for each index i. Then we have

size(xi) ≤ 2size(yi) + 2size(nΞ(A))

≤ 8(size(A) + size(b)) + 2(size(n) + 2size(A))

≤ 13(size(A) + size(b)).

2.3.2 Totally unimodular matrix

We say that a polyhedron P is integral if P = PI. One condition for a polyhedron P = {x |
Ax ≤ b} to be integral is totally unimodularity of A. A matrix is called totally unimodular

if all square submatrices have determinants 0 or ±1. In particular, every entry of a totally

unimodular matrix is 0 or ±1.
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Totally unimodular matrices often appear in combinatorial optimization. For example, the

shortest-path problem, the max-flow min-cut problem, and the minimum cost flow problem

can be naturally formulated as the linear programming problem, and the coefficient matrices

of linear constraints are totally unimodular. In fact, the coefficient matrices of the linear

programming problem occurring from these problems are incidence matrices of the directed

graphs. It is well known that an incidence matrix of any directed graph is totally unimodular.

On the other hand, for the undirected case, not every incidence matrix is totally unimodular.

Proposition 2.16. For an undirected graph G, the incidence matrix of G is totally unimod-

ular if and only if the graph G is bipartite.

For a totally unimodular matrix A, the following matrices are also totally unimodular:

[
A I

]
,

[
A −A

]
,

A O

I I

 .

Totally unimodular matrices are well studied in the literature of the integer linear pro-

gramming problem, since they characterize integral polyhedra.

Theorem 2.17 (Hoffman and Kruskal [71]). Let A be an integral matrix. Then A is totally

unimodular if and only if the polyhedron {x | Ax ≤ b, x ≥ 0} is integral for each integral

vector b.

2.3.3 Total dual integrality of linear systems

In the previous subsection, we mentioned that a polyhedron associated with a totally unimod-

ular matrix is integral for any constant vector. A weaker concept than total unimodularity

for integral polyhedra is total dual integrality, introduced by Edmonds and Giles [44].

We first study integral polyhedra. We say that a hyperplane H = {x | c⊤x = δ} is rational

if c is a rational vector and δ is a rational number.

Proposition 2.18. Let P be a rational polyhedron. Then the following are equivalent.

(a) P is integral.

(b) Each face of P contains integral vectors.

(c) Each minimal face of P contains integral vectors.

(d) max{c⊤x | x ∈ P} is attained by an integral vector for any vector c such that the

maximum is finite.
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Proof. It is not difficult to see that (b) ⇔ (c). We show (a) ⇒ (b) ⇒ (d) ⇒ (a).

(a) ⇒ (b): Let F be a face of P , and let x be a vector in F . Note that F = P ∩H, where

H is a supporting hyperplane of P . Since P = PI, we can see that x can be represented as a

convex combination of integral vectors in P , and these vectors belong to H. Thus F contains

an integral vector.

(b) ⇒ (d): For each vector c such that max{c⊤x | x ∈ P} is finite, a polyhedron max{y ∈
P | c⊤y = max{c⊤x | x ∈ P}} (i.e., the set of optimal solutions) is a face of P .

(d) ⇒ (a): Suppose that there exists a vector y ∈ P \ PI. Then by Theorem 2.7, there

exists a linear inequality α⊤x ≤ β such that αx ≤ β holds for any vector x in PI, and αy > β.

This contradicts (d), since max{α⊤x | x ∈ P} is finite by Proposition 2.10, and the maximum

is attained by a vector in P \ PI, which is not integral.

We have further equivalent conditions for a polyhedron to be integral.

Theorem 2.19 (Edmonds and Giles [44]). A rational polyhedron P is integral if and only if

each rational supporting hyperplane of P contains an integral vector.

Proof. If P is integral, then for each supporting hyperplane H, the intersection of H with P

is a face of P , and hence H contains an integral vector.

We assume that each supporting hyperplane contains an integral vector, and show that

each minimal face of P contains an integral vector. Let us denote P = {x | Ax ≤ b}, where A
is a matrix, and b is a vector. Since P is rational, we may assume that A and b are integral.

LetF = {x | A′x = b′} be a minimal face of P , where A′x ≤ b′ is a subsystem of Ax ≤ b. If F

contains no integral vector, then by Theorem 2.8, there exists a vector y such that c = (A′)⊤y

is integral, and δ = (b′)⊤y is not an integer. Since A and b are integral, we may assume

y > 0 by adding a positive integer to elements of y if necessary. Let H = {x | c⊤x = δ}
be a rational hyperplane. It is observed that since δ is not integer, whereas c is integral, H

contains no integral vector, and this contradicts our assumption. Thus it suffices to show that

H is a supporting hyperplane by proving F = P ∩H. It is not difficult to see F ⊆ P ∩H.

Conversely, let x be a vector in P ∩H. It holds that y⊤(A′)x = c⊤x = δ = (b′)⊤y, and hence

y⊤(A′x − b′) = 0 holds. Since y > 0 and A′x ≤ b′ by definition, we have A′x = b′, which

implies x ∈ F . Therefore, H is a supporting hyperplane of P .

Corollary 2.20. Let A be a rational matrix, and let b be a rational vector. Then max{c⊤x |
Ax ≤ b} is attained by an integral vector for each vector c such that the maximum is finite if

and only if max{c⊤x | Ax ≤ b} is integer for each integral vector c such that the maximum is

finite

Proof. If c is integral, then max{c⊤x | Ax ≤ b} is integral if it has an integral optimal solution.

Thus the necessity holds.
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Conversely, we assume that for each integral vector c, max{c⊤x | Ax ≤ b} is an integer if

it is finite. Let H = {x | c⊤x = δ} be a rational supporting hyperplane of P = {x | Ax ≤ b}.
By definition, we havemax{c⊤x | x ∈ P} = δ. Suppose that H contains no integral vector.

Then by Theorem 2.8, there exists a number γ such that γc is an integral vector and γδ is

not an integer. Then we have

max{(|γ|c)⊤x | x ∈ P} = |γ|max{c⊤x | x ∈ P} = |γ|δ ̸∈ Z,

and this contradicts our assumption. Thus H contains an integral vector. Therefore, by

Proposition 2.18 and Theorem 2.19, max{c⊤x | x ∈ P} is attained an integral vector.

Note that earlier partial results appeared also in papers of Chvátal [16], Fulkerson [57],

Gomory [64], and Hoffman [70].

Corollary 2.20 motivated Edmonds and Giles [44] to define the total dual integrality of

linear systems.

Definition 2.21. Let A be a rational matrix, and let b be a rational vector. A system Ax ≤ b

is totally dual integral if the dual problem of max{c⊤x | Ax ≤ b}, that is,

min{b⊤y | A⊤y = c, y ≥ 0} (2.4)

has an integral optimal solution for each integral vector c such that (2.4) is finite.

By this definition and Theorem 2.17, if A is a totally unimodular matrix, then Ax ≤ b is

totally dual integral for each rational vector b.

Theorem 2.22 (Edmonds and Giles [44]). Let A be a rational matrix, and let b be an integral

vector. If Ax ≤ b is a totally dual integral system, then max{c⊤x | Ax ≤ b} has an integral

optimal solution for each vector c such that the maximum is finite.

We have an equivalent formulation:

Theorem 2.23 (Edmonds and Giles [44]). Let A be a rational matrix, and let b be an integral

vector. If Ax ≤ b is a totally dual integral system, then the polyhedron {x | Ax ≤ b} is integral.

It is not difficult to see that if a matrix A is totally unimodular, then a linear system

Ax ≤ b is totally dual integral for every vector b. Hence, we can restate Theorem 2.17 as

follows.

Corollary 2.24 (Hoffman and Kruskal [71]). Let A be an integral matrix. Then A is totally

unimodular if and only if the system Ax ≤ b, x ≥ 0 is totally dual integral for each vector b.



Chapter 3

The linear complementarity

problem

This chapter defines the linear complementarity problem, and also presents related works.

In particular, we focus on matrix classes such as positive semi-definite matrices, P -matrices,

sufficient matrices, Z-matrices, and K-matrices.

3.1 Definition and equivalent formulations

Given an n× n real matrix M and a real vector q, the linear complementarity problem is to

find a vector z such that

Mz + q ≥ 0, z ≥ 0, z⊤(Mz + q) = 0. (3.1)

The last constraint z⊤(Mz + q) = 0 is called the complementarity condition. Under the

assumption of Mz + q ≥ 0 and z ≥ 0, we can replace the complementarity condition with

zi = 0 or (Mz + q)i = 0 for all i = 1, . . . , n.

When we introduce a slack variable w = Mz + q, the LCP can be written as the problem

of finding two vectors w, z such that

w = Mz + q, w, z ≥ 0, z⊤w = 0. (3.2)

The LCP can be interpreted geometrically. For an n × n real matrix M (with row and
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column index sets [n]) and index set B ⊆ [n], define an n× n matrix CM (B) by

CM (B)·i =

−M·i if i ∈ B,

I·i if i ̸∈ B,

where I is the identity matrix. For a matrix A, let posA denote a positive cone spanned by

column vectors of A, i.e., posA = {Ax | x ≥ 0}. posCM (B) is called the complementary

cone of B relative to M . For example, if M1 =

−1 1

1 2

, then the complementary cones are

illustrated in Figure 3.1 below. Similarly, the complementary cones relative to M2 =

1 1

1 2


are shown in Figure 3.2.

Figure 3.1. Complementary cones relative to M1.

Figure 3.2. Complementary cones relative to M2.

We say that a solution z to LCP(M, q) has a basis B ⊆ [n] if it holds that (Mz+ q)B = 0
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and zB = 0. Note that a vector q in Rn is contained in posCM (B) for some B ⊆ [n]

if and only if LCP(M, q) has a solution z with basis B. To see this, suppose that q is

in posCM (B), i.e., there exists a vector x in Rn with CM (B)x = q and x ≥ 0. Then a

vector z defined by zB = xB and zB = 0 is a solution to LCP(M, q), since it holds that

z ≥ 0, zB = 0, (Mz + q)B = MBBxB + qB = 0, and (Mz + q)B = MBBxB + qB ≥ 0. On the

other hand, if LCP(M, q) has a solution z with basis B, then a vector x defined by xB = zB

and xB = MBBzB + qB is contained in posCM (B). Let K(M) =
∪

B⊆[n] posCM (B). Note

that K(M) is not necessarily convex. Figure 3.1 also illustrates such a case.

As we mentioned in the introduction, the LCP is a generalization of the convex quadratic

problem. We can also reduce LCP(M, q) to the quadratic problem

min. z⊤(Mz + q)

s.t. Mz + q ≥ 0, (3.3)

z ≥ 0.

The objective function z⊤(Mz+q) is bounded below by zero. It is observed that this quadratic

problem has the optimal value equal to zero if and only if LCP(M, q) has a solution.

A solution z to LCP(M, q) is called a basic solution (with respect to B) if z is of the form

zB = −M−1
BBqB, zB = 0. (3.4)

Let us notice that LCP(M, q) has a basic solution with respect to B if and only if q ∈
posCM (B) and MBB is nonsingular.

Let LCP(M, q) be an LCP instance. We define two polyhedra associated with LCP(M, q)

by

P (M, q) = {z | Mz + q ≥ 0, z ≥ 0}, and

PB(M, q) = {z ∈ P (M, q) | (Mz + q)B = 0, zB = 0} for B ⊆ [n].

Note that PB(M, q) is a face of P (M, q).
∪

B⊆[n] PB(M, q) represents the set of solutions to

LCP(M, q). Thus LCP(M, q) is equivalent to finding a nonempty set PB(M, q) for some B.

Recall that a solution z to LCP(M, q) is called a basic solution (with respect to B) if z is of

the form

zB = −M−1
BBqB, zB = 0.

We remark that LCP(M, q) has a basic solution with respect to B if and only if q ∈ posCM (B)

and MBB is nonsingular. This is equivalent to the condition that PB(M, q) is a vertex of

P (M, q).
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3.2 Formulations as the linear complementarity problem

We present reductions of the linear programming problem and the problem of finding a Nash

equilibrium of the bimatrix game to the LCP.

3.2.1 Linear programming problem

We consider the linear programming problem

max{c⊤x | Ax ≤ b, x ≥ 0},

where A is a matrix, and b, c are vectors. We assume that the maximum is finite. Then its

dual problem min{b⊤y | A⊤y ≥ c, y ≥ 0} has an optimal solution. Any pair (x, y) of optimal

solutions to the primal and dual linear programming problems satisfies

−Ax+ b ≥ 0, x ≥ 0, x⊤(A⊤y − c) = 0, (3.5)

A⊤y ≥ c, y ≥ 0, y⊤(−Ax+ b) = 0. (3.6)

If we define

M =

 O A⊤

−A O

 , q =

−c

b

 , z =

x
y

 ,

then system (3.5) and (3.6) coincides with LCP(M, q).

3.2.2 Convex quadratic programming problem

Consider the convex quadratic programming problem

min.
1

2
x⊤Qx+ c⊤x

s.t. Ax ≥ b, (3.7)

x ≥ 0,

where Q is a positive semi-definite matrix, A is a matrix, and b, c are vectors. Note that

the case Q = O coincides with the linear programming problem. The Karush-Kuhn-Tucker

condition is written as

Qx−A⊤y + c ≥ 0, x ≥ 0, x⊤(Qx−A⊤y + c) = 0,

Ax− b ≥ 0, y ≥ 0, y⊤(Ax− b) = 0.
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Since Q is positive semi-definite, any vector satisfying the Karush-Kuhn-Tucker condition is

an optimal solution to (3.7). The above conditions define LCP(M, q), where

M =

Q −A⊤

A O

 , q =

 c

−b

 .

3.2.3 Bimatrix game

We reduce the bimatrix game (A,B) to an LCP instance. We may assume that A and B

are positive matrices by adding a large positive number to all entries of A and B, since

this modification does not affect a Nash equilibrium. Let S be the set of Nash equilibria

of the game (A,B). Then the problem of finding a Nash equilibrium of a bimatrix game is

reformulated as the LCP as below (see e.g., [27, Chapter 1]).

Claim 3.1. The problem of finding (x∗, y∗) in S is equivalent to finding two vectors x, y

satisfying

Ay − 1 ≥ 0, x ≥ 0, x⊤(Ay − 1) = 0,

B⊤x− 1 ≥ 0, y ≥ 0, y⊤(B⊤x− 1) = 0.

(3.8)

More precisely, for any (x∗, y∗) in S, vectors x and y defined by

x = x∗/(x∗)⊤By∗, y = y∗/(x∗)⊤Ay∗ (3.9)

satisfy (3.8). Conversely, for any vectors x and y satisfying (3.8), (x∗, y∗) defined by

x∗ = x/1⊤x, y∗ = y/1⊤y (3.10)

belongs to S.

Note that (3.8) coincides with the LCP instance LCP(M,−1), where

M =

 O A

B⊤ O

 .

3.3 Matrix classes

In the theoretical study of the LCP, the matrix classes play a central role. We define some of

well-known matrix classes and present related works on the LCP with those matrices.



30 Chapter3 The linear complementarity problem

3.3.1 Positive semi-definite and positive definite matrices

Recall that a matrix M is called positive semi-definite (PSD) if for any vector x, it holds

that x⊤Mx ≥ 0. If x⊤Mx > 0 for any vector x ̸= 0, then M is called positive definite

(PD). We do not assume that the matrix M is symmetric (i.e., M = M⊤). For example, any

skew-symmetric matrix M (i.e., M = −M⊤) is a PSD-matrix. The following matrices are

examples of PSD-matrices and PD-matrices, respectively:
1 −2 −2

2 3 0

2 −2 1

 ,


1 −2 0

2 3 2

0 −2 1

 .

We denote by PSD-LCP and PD-LCP the LCP with PSD-matrices and PD-matrices,

respectively. The PSD-LCP arises from the reductions of the linear and convex quadratic

programming problems to the LCP.

One fundamental property of the PSD-LCP is the following existence result. We note

that fundamental properties of the PSD-LCP and the PD-LCP are collected in the book [27,

Chapter 3], and our description is based on this book.

Theorem 3.2. Let M be a PSD-matrix, and let q be a vector. If linear system Mz + q ≥
0, z ≥ 0 is feasible, then LCP(M, q) has a solution.

This can be proved by showing that there exists a vector satisfying the Karush-Kuhn-

Tucker condition of the quadratic programming problem (3.3):

(M +M⊤)z −M⊤u+ q ≥ 0,

z⊤((M +M⊤)z −M⊤u+ q) = 0,

u ≥ 0,

u⊤(Mz + q) = 0.

(3.11)

In addition, for PD-matrices, we have a stronger result.

Theorem 3.3. If a matrix M is a PD-matrix, then LCP(M, q) has a unique solution for any

vector q.

Another known property of the PSD-LCP is that the solution set of the PSD-LCP is

convex. Recall that the solution set of LCP(M, q) of order n is represented as the union of

convex polyhedra, that is,
∪

B⊆[n] PB(M, q), and this is not convex in general.
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Theorem 3.4. Let M be a PSD-matrix, and let q be a vector. If LCP(M, q) has a solution,

then the solution set of LCP(M, q) can be represented as a polyhedron

{z | Mz + q ≥ 0, z ≥ 0, q⊤(z − z∗) = 0, (M +M⊤)(z − z∗) = 0},

where z∗ is an arbitrarily solution to LCP(M, q).

3.3.2 P -matrix

For a square matrix M in Rn×n and an index set B ⊆ [n], a submatrix MBB of M is called a

principal submatrix. The determinant of a principal submatrix is a principal minor. We say

that a square matrix M is a P -matrix if all principal minors of M are positive. Here is an

example of P -matrices:

M =


1 0 0

−1 2 3

2 1 2

 .

By definition, if a matrix M is a P -matrix, then all of its principal submatrices MBB and

its transpose M⊤ are also P -matrices. It is known that a symmetric matrix is PD if and only

if it is a P -matrix. Every PD-matrix is a P -matrix.

Theorem 3.5. Let M be a square matrix in Rn×n. The following are equivalent.

(a) M is a P -matrix.

(b) For any vector x, it holds that

[zi(Mz)i ≤ 0 (∀i)] ⇒ [z = 0].

(c) All real eigenvalues of M and its principal submatrices are positive.

The notion of P -matrices gives a characterization for the class of matrices M such that

LCP(M, q) has a unique solution for any vector q.

Theorem 3.6 (Samelson, Thrall and Wesler [117]). A square matrix M is a P -matrix if and

only if LCP(M, q) has a unique solution for any vector q.

This theorem implies Theorem 3.3. Theorem 3.6 originally comes from geometry. In fact,

every complementary cone relative to a P -matrix M of order n is a full dimensional cone,

and does not intersect the interior of other complementary cones, and in addition, K(M)

coincides with Rn, and vise versa. Figure 3.2 illustrates such an example.
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We say that the LCP with P -matrices is the P -LCP. The P -LCP has a combinatorial

algorithm called a simple principal pivoting method proposed by Zoutendjik [140] and Bard [4].

The idea of this method is the same as the simplex method for the linear programming

problem. We use the definition (3.2) of the LCP, that is, finding a pair (w, z) of vectors

satisfying (3.2). We assume that a solution (w, z) to the input LCP instance LCP(M, q)

has no index i such that zi = wi = 0. This assumption is not restrictive; we add some

perturbation to M and q if necessary. Then a simple principal pivoting method is described

as follows.

A simple principal pivoting method

Input: A P -matrix M and a vector q.

Step 0: Let z = 0, w = Mz + q, and let also B = ∅.

Step 1: If wB, zB ≥ 0, then return (w, z).

Step 2: Choose an index i such that zi < 0 or wi < 0.

Step 3: Replace B with B ∪ {i} if i ̸∈ B and B \ {i} otherwise, and compute w and z

by pivoting i. Then go to Step 1.

At Step 2, we need a pivoting rule that defines which index should be selected. Since calcu-

lation of w and z at Step 3 can be done in O(n2) time, the running time of a simple principal

pivoting method depends largely on the number of iterations of Step 3, and this is dominated

by the pivoting rule. There exist several pivoting rules [55, 99, 100]. However, it is also known

that for most of existing rules, a simple principal pivoting method takes an exponential num-

ber of iterations. Thus it still remains open whether a simple principal pivoting method is a

polynomial-time algorithm for the P -LCP or not.

Settlement of the polynomial-time solvability of the P -LCP is significant in the work of the

LCP. Many researchers have been tackling this issue, and there are many results which suggest

the polynomial-solvability of the P -LCP. Megiddo [97] showed that the NP-hardness of the

P -LCP implies NP=coNP. Papadimitriou showed that the P -LCP belongs to PPAD [109],

while its completeness is considered to be unlikely [37]. We should remark that although the

P -LCP always has a solution, the problem of deciding whether or not a matrix is a P -matrix

was shown to be coNP-complete [30].

Stickney and Watson proposed a combinatorial abstraction of the P -LCP based on prin-

cipal pivoting [126]. Recall that a simple principal pivoting method solves the P -LCP by

pivoting one index per iteration. For finite sets A,B, we denote A△B = (A ∪B) \ (A ∪B).

For a P -LCP instance LCP(M, q) of order n, we consider a directed graph G = (V,E) given

by

V = {B | B ⊆ [n]}, E = {(B,B′) | |B △B′| = {i}, (CM (B)−1q)i < 0}.
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The underlying undirected graph is an n-dimensional hypercube. We note that if a directed

edge (B,B′) is contained in E, then (B′, B) is not contained in E, since we have (CM (B′)q)i >

0 (i ∈ B △B′).

This directed graph G has an important property. Every nonempty subcube, including

the whole cube, has a unique sink [126]. A directed hypercube possessing this property is said

to have a unique sink orientation, whose notion was introduced by Szabó and Welzl [132].

The global sink corresponds the basis of the unique solution to LCP(M, q) by definition.

To resolve the computational complexity of the P -LCP, a characterization of unique

sink orientations induced by the P -LCP has been studied intensively. Gärtner, Morris and

Rüst [62] showed that unique sink orientations induced by the P -LCP of order n satisfy the

Holt-Klee condition [72]: There exist n vertex-disjoint paths from the source to the sink.

Foniok,Gärtner, Klaus and Sprecher [50] obtained a result on counting the unique sink orien-

tations induced by the P -LCP.

There are algorithms to find a unique sink in a unique sink orientation, assuming that

we are given an oracle that receives an arbitrary vertex of the hypercube, and returns the

orientations of the incident edges. This problem is also an abstraction of the problem of finding

the smallest enclosing ball of a set of points [132]. For unique sink orientations without cycles,

Gärtner [60, 61] proposed a randomized procedure to find a unique sink with an expected

number of at most e2
√
n oracle calls. For the general case, Szabó and Welzl [132] presented

a deterministic procedure with O(1.61n) oracle calls. We can see that the P -LCP can be

solved in O(cn) time (c < 2) by applying their algorithm. Note that there exists a unique

sink orientation induced by the P -LCP which contains a cycle.

3.3.3 Sufficient matrix

Recall that Theorem 3.2, 3.3 and 3.4 present important characteristics of the PSD-LCP

and PD-LCP. Theorem 3.3 is extended to Theorem 3.6 by generalizing PD-matrices to P -

matrices. Cottle, Pang and Venkateswaran [28] introduced the class of sufficient matrices as

a generalization of PSD-matrices, and showed an extension of Theorem 3.2 and 3.4.

A square matrix M is called column sufficient if for all vectors x, it holds that

[xi(Mx)i ≤ 0 (∀i)] ⇒ [xi(Mx)i = 0 (∀i)].

A matrix M is row sufficient if M⊤ is column sufficient, and sufficient if it is both column

and row sufficient. The class of (column) sufficient matrices contains PSD-matrices and P -
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matrices. Here is an example of row sufficient matrices:
1 0 0

−4 1 −1

2 −1 1

 .

The row-sufficiency of a matrix gives an extension of Theorem 3.2.

Theorem 3.7 (Cottle, Pang and Venkateswaran [28]). For a square matrix M , the following

are equivalent.

(a) M is row sufficient.

(b) For each vector q, if there exists a pair (z, u) of vectors satisfying the Karush-Kuhn-

Tucker condition (3.11) of the quadratic programming problem (3.3), then z is a solution

to LCP(M, q).

The convexity of the solution set of the LCP is characterized by column sufficient matrices.

Theorem 3.8 (Cottle, Pang and Venkateswaran [28]). For a square matrix M , the following

are equivalent.

(a) M is column sufficient.

(b) For each vector q, LCP(M, q) has a (possibly empty) convex solution set.

Sufficient matrices possess the above good properties. In addition, the existence of a

solution to the LCP with sufficient matrices is characterized by duality of the LCP, introduced

by Fukuda and Terlaky [56].

Theorem 3.9 (Fukuda and Terlaky [56]). Let M be a sufficient matrix, and let q be a vector.

Then exactly one of the following holds.

(a) There exists a vector z satisfying Mz + q ≥ 0, z ≥ 0, z⊤(Mz + q) = 0.

(b) There exists a vector u satisfying q⊤u = −1, u ≥ 0, A⊤u ≤ 0, u⊤A⊤u = 0.

This duality theorem implies the duality of the linear programming, since the LCP in-

stances (3.5) and (3.6) have PSD-matrices.
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3.3.4 Z-matrix

A square matrix is called a Z-matrix if all off-diagonal entries are nonpositive. For example,

the matrix

M =


0 −1 −2

−2 −1 0

0 0 3


is a Z-matrix. The class of Z-matrices is invariant under transposition. We say that the LCP

with Z-matrices is the Z-LCP. The polyhedron associated with the Z-LCP has an interesting

property.

Let Ax ≥ b be a system of linear inequalities such that each row of A has at most one

positive element. Let F = {x | Ax ≥ b} be the feasible region. It is well known, as observed

by Veinott [135], that F is closed under the meet ∧, i.e., F contains the meet x ∧ y for any

x, y ∈ F , where (x ∧ y)i = min(xi, yi). Indeed, for each inequality aixi −
∑

j ̸=i ajxj ≥ bk,

where ai ≥ 0 and aj ≥ 0 (j ̸= i), we may assume that (x ∧ y)i = yi, and it then holds that

ai(x ∧ y)i −
∑

j ̸=i aj(x ∧ y)j ≥ aiyi −
∑

j ̸=i ajyj ≥ bk, which implies that x ∧ y ∈ F . Then as

discussed in [27, Theorem 3.11.5], the following holds. Another proof can be found in [29].

Lemma 3.10. Let Ax ≥ b be a system of linear inequalities such that each row of A has at

most one positive element. Let F = {x | Ax ≥ b} be the feasible region. If F is nonempty

and bounded below, then there exists a vector u ∈ F such that x ≥ u for any x ∈ F .

The vector u in this lemma is called the least element of F . It is well known that we can

find the least element, if it exists, by solving a linear programming problem.

Lemma 3.11. Let F be the feasible region of a system of linear inequalities. If the least

element of F exists, then it is the unique optimal solution to the linear programming problem

min. 1⊤x

s.t. x ∈ F.
(3.12)

Let LCP(M, q) be a Z-LCP instance. It is not difficult to see that the polyhedron

P (M, q) = {z | Mz + q ≥ 0, z ≥ 0} is closed under the meet. We can see that P (M, q)

is bounded below by 0. Thus by Lemma 3.10, P (M, q) has a least element. In addition, the

least element is a solution to LCP(M, q). See e.g. [27] for the proof.

Theorem 3.12. Let M be a Z-matrix, and let q be a vector. If the polyhedron P (M, q) is

not empty, then P (M, q) has a least element u. Moreover, u is a solution to LCP(M, q).

Therefore, we can find a solution to the Z-LCP by solving a linear programming problem

(3.12).
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Before it turned out that the linear programming problem can be solved in polynomial

time, Chandrasekaran [9] proposed a polynomial-time pivoting algorithm for the Z-LCP.

More precisely, the algorithm solves the Z-LCP of order n in O(n) steps, and hence the

total running time is O(n3) time. Saigal [116] showed the greediness of Chandrasekaran’s

algorithm.

3.3.5 K-matrix

If a matrix M is a Z-matrix, and also a P -matrix, then M is called a K-matrix. Fiedler and

Pták [47] showed as many as 13 equivalent conditions for a Z-matrix to be a K-matrix. We

list particularly useful conditions in the literature of the LCP.

Theorem 3.13 (Fiedler and Pták [47]). Let A be a Z-matrix. Then the following are equiv-

alent.

(a) A is a K-matrix.

(b) All leading principal minors of M are positive.

(c) The inverse A−1 exists and A−1 ≥ 0.

(d) There exists a vector x ≥ 0 such that Ax > 0.

(e) There exists a vector x > 0 such that Ax > 0.

We call the LCP with K-matrices the K-LCP. By definition, we can solve the K-LCP in

strongly polynomial time by using Chandrasekaran’s algorithm [9] for the Z-LCP. In addition,

the K-LCP possesses a combinatorial structure. Foniok, Fukuda, Gärtner and Lüthi [49]

showed that unique sink orientations induced by the K-LCP of order n have only paths of

length at most 2n. This implies that a simple principal pivoting method with any pivoting

rules can solve the K-LCP in a linear number of iterations.
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Chapter 8

Conclusion

The LCP has been studied since 1960’s, and it has many theoretical and practical applications

in many areas. Although the LCP is NP-hard, there still exist many things to study, such as

identifying polynomial-time solvable cases, and developing efficient algorithms for the LCP

with a small parameter. In this thesis, we have studied the LCP from theoretical aspects.

In Chapter 4, we analyzed the computational complexity of the sparse LCP, i.e., the k-

LCP in which the coefficient matrix has at most k nonzero entries per row. As a main result,

we showed that the 2-LCP is NP-hard, while the sign-balanced 2-LCP is strongly polynomial-

time solvable by presenting a combinatorial algorithm based on procedures for solving sign-

balanced TVPI systems. This completely classifies the computational complexity of the LCP

in terms of sparsity. We note that the algorithm for the sign-balanced 2-LCP matches the

currently best-known bound for the feasibility problem of sign-balanced TVPI systems with

nonnegativity constraints, which can be reduced to the sign-balanced 2-LCP.

In Chapter 5, we analyzed the parameterized complexity of the linear complementarity

problem. Analysis of parameterized computation of a Nash equilibrium of the bimatrix game

has been done earlier. We cannot simply apply the previously known results to the LCP, since

a natural reduction of the bimatrix game to the LCP destroys the sparsity of the matrix.

Nevertheless, the underlying ideas were useful for the LCP. We showed that the problem of

finding a solution to the l-sparse LCP of order n with support of size at most s can be solved

in time exponential in l and s, but polynomial in n. If we know that parameters l and s are

comparatively small, then finding a desired solution is an easy task.

In Chapter 6, we introduced the LCP with orientation to formulate the problem of finding

a solution to an LCP instance whose basis is identical to the paired LCP instance. The LCP

with orientation is a generalization of the LCP. We analyzed the computational complexity

of the LCP with orientation in terms of matrix classes. Then we showed that the LCP with

positive semi-definite matrices, P -matrices, and Z-matrices is NP-hard, while the LCP with

skew-symmetric matrices and K-matrices can be solved in polynomial time.
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In Chapter 7, we discussed integrality of the LCP. We defined total dual integrality of the

LCP with the aid of the LCP with orientation. We showed that the total dual integrality

of the LCP implies that a basic solution to the LCP instances is always integral. Our re-

sult corresponds to the relationship between the total dual integrality of linear systems and

integrality of the linear programming problems. For the LCP with sufficient matrices, or

rank-symmetric matrices, we showed that the total dual integrality of the LCP guarantees

the integrality of the LCP, in the sense that an integral solution exists among solutions with

the same basis. Our results gave alternative proofs to the results in [11, 31].

One important open problem in the theory of LCP is the computational complexity of

the P -LCP. Besides a simple principal pivoting method, there exist algorithms to solve the

P -LCP based on numerical data of problem instances. Polynomial-time algorithms for the

P -LCP remains open, and it is also unknown whether it is PPAD-complete or not. However,

people believe that the P -LCP is unlikely to be hard, relying on Megiddo’s result [97].

One of the future works of this thesis is an analysis of the parameterized complexity of

the LCP with some restriction on the matrix class. It might be worth studying the P -LCP

for the purpose of bringing difficulty of the P -LCP to light.

The study of the relationships between the LCP with orientation and related problems

is also one future work. One of the problems is a generalization of the LCP, called the

the oriented matroid complementarity problem. Indeed, the duality theorem of Fukuda and

Terlaky [56] (Theorem 3.9) was shown via the oriented matroid theory. It is interesting if

some properties of the LCP with orientation can be described by using the oriented matroid

theory. For other topics, we mention the generalized LCP and a unique sink orientation.

Constriction of efficient algorithms for the LCP is an important task. An algorithm to find

an integral solution of the LCP is one of the future works, as there exist algorithms for the

integer linear programming problem such as a cutting-plane method and a branch-and-bound

method. A faster fpt-algorithm than the one in Section ?? is also required. Although the

fpt-algorithm for the p-s-support l-sparse LCP was constructed by using the idea of the one

for the p-l-sparse game with s-support Nash, these two algorithms have a big difference in the

running time. We might be able to improve the time complexity of the p-s-support l-sparse

LCP by improving the analysis or construction of the underlying graph.
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