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Abstract 
 

 Clusters of simple metals such as Na, Au, and Al gain high stability when the 

superatomic orbitals are completely filled with the valence electrons. Al13
–, one of the most 

extensively studied magic clusters, has a closed electronic configuration with 40 valence 

electrons and a highly symmetrical icosahedral motif. In addition, Al13
– is known to be robust 

against oxidation by O2, whereas other Aln
– are easily etched into smaller clusters by 

consecutively release of Al2O fragments. Thus, Al13
– has attracted much attention as a building 

unit of cluster-based nanomaterials. Although several Al13-containing complexes such as Al13Na 

and Al13I– have been successfully formed in gas phase, chemical synthesis of Al13-based 

materials has been a challenge in cluster science. The aim of the thesis is to provide a clue for 

the synthesis of Al13-based materials by a combined approach of experimental results and 

theoretical calculations.  

 In chapter 2, I studied reactions of Aln
– under high-pressure O2 to gain insights into 

the stability of Aln
– under atmospheric conditions. Aluminum cluster anions were generated by 

laser vaporization and were allowed to pass through a cell in which O2 was filled. Compositions 

of the reaction products were determined by time-of-flight mass spectrometer. The reaction of 

Aln
– and O2 under a high-pressure condition yielded the previously unknown aluminum oxides 

Al14O– and Al15O2
–. Photoelectron spectroscopy and density functional theory calculations 

revealed that Al14O– and Al15O2
– are composed of an icosahedral Al13 moiety bonded by one and 

two OAl unit(s), respectively. The preferential formation of Al14O– and Al15O2
– was due to their 

high stability associated with the Al13 moiety and the efficient dissipation of reaction 

exothermicity by collisional cooling. 
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 In chapter 3, I computationally investigated the interaction between Al13 and electron 

donating ligand to stabilize open-shell Al13 by electronic shell closure. From the density 

functional theory calculations of structures of Al13 coordinated by ligand with carbonyl group, it 

was found that ligands with nitrogen atom or two carbon atoms next to carbonyl group can 

donate electron to Al13. Then the structures of Al13(EP)n (n = 0–4), which EP 

(N-ethyl-2-pyrrolidone) is a model of polymer, were extensively investigated. The optimized 

structure of Al13(EP)1 indicated that the EP ligand is chemisorbed to the atop site of Al13 via the 

carbonyl O atom, while donating –0.36 e to the Al13 moiety. The chemisorption to the Al13 

moiety is energetically preferred up to three EP ligands and the total charge accumulated in Al13 

reaches nearly –1 e in Al13(EP)3. The fourth EP ligand, however, prefers to be bound to one of 

the chemisorbed EP ligands via electrostatic interaction rather than to be chemisorbed on Al13. 

The switchover of the bonding scheme of EP at Al13(EP)4 suggests that this phenomenon is 

associated with closure of electronic shell of the Al13 moiety in Al13(EP)3. However, spin 

density analysis revealed that the superatomic orbital 1F of Al13 remains singly occupied even 

after chemisorption of three EP ligands. In conclusion, chemisorption of EP ligands to Al13 does 

not lead to the filling of the superatomic orbital 1F, but formally donates electronic charge 

through polarized Al–O bonding. 

 In chapter 4, I described concluding remarks of the present works. 
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General introduction 
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1.1 Potential of nanoparticles and clusters 

 The field of nanotechnology is one of the most active research areas. 

Nanoparticles, whose diameters are in the range of 1–100 nm, are located at between an 

atom and bulk material (Figure 1.1). Metal nanoparticles are applicable to new materials 

such as catalysts,1–3 optical devices,4,5 magnetic materials,6,7 and bioimaging systems8,9 

because they show attractive properties different from corresponding bulk metal. The 

discovery in 1987 by Haruta and co-workers that small gold particles with 5 nm 

supported on metal oxide could catalyze CO oxidation even at –70 °C10 encouraged 

many researchers to reduce the size of metal particles as small as possible. 

 

 
 

 The particle smaller than about 2 nm and composed of several to few hundred 

of atoms is called “cluster”. Clusters are classified into several categories such as metal 

cluster, covalent cluster, ionic cluster, van der Waals cluster, molecular cluster, 

organometallic cluster, and so on, depending on the nature of interaction between the 

constituent units. It is known that clusters exhibit novel properties different from not 

 
 

Figure 1.1. Relationship between atom, cluster, nanoparticle, and bulk. 
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only atom and bulk but also nanoparticles because of their unique geometrical structure 

and discrete electronic structure. The discovery in gas phase experiment and the 

subsequent large-scale synthesis of C60 fullerene11–13 have led to initiated active 

research on nanocarbon materials including nanotube and graphene. These nanocarbon 

materials show quite different properties from bulk materials (diamond and graphite) 

and will find application in wide areas of technology and science. 

 Spherical clusters are regarded as a “superatom”. A concept of superatom was 

firstly introduced as artificial atoms of semiconductor heterostructure by Watanabe and 

Inoshita.14 They defined superatom as a quasi-atomic system that electrons transferred 

from donor doped in spherical core to surrounding matrix with larger electron affinity 

are accommodated in quantized orbital of potential produced by the ionized core. 

Khanna and Jena were pioneers of applying this concept to clusters.15 They suggested 

that superatoms can form building block of three-dimensional periodic table as 

superhalogens, superalkalis, and, superatomic alkaline-earth metals instead of halogens, 

alkali metals, and alkaline-earth metals of Mendeleev’s periodic table, respectively.16–18 

 

1.2 Free metal clusters 

1.2.1 Generation of free metal clusters 

 Cluster science has greatly developed in a few decades. The clusters isolated 

in vacuum are often used for investigating intrinsic features because of no interaction 

with surroundings. The knowledge about bare clusters is important in understanding 

properties in condensed phase. Generation of metal clusters in gas phase is conducted 

by various methods such as seeded supersonic expansion method, gas-aggregation 

method, laser vaporization method, and electrical arc discharge method.19 The basic 
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principle of metal cluster generation is that metal atoms vaporized from bulk are 

aggregated and cooled by supersonic jet. Any size of clusters can be generated in 

principle depending on conditions. The metal clusters thus generated can be analyzed by 

coupling with apparatus such as mass spectrometer, infrared spectrometer, 

photoelectron spectrometer, photodissociation spectrometer, and surface-induced 

dissociation instrument. 

 

1.2.2 Stability of free metal clusters 

 In the last few decades, both experimental and theoretical studies have been 

conducted extensively about stability, reactivity, and properties of metal clusters. One 

of the earliest works was reported by Knight and co-workers in 1984.20 They measured 

mass spectra of sodium clusters (Nan, n is the number of atoms in the cluster) produced 

in gas phase and found that the clusters showed high mass abundance at specific 

numbers of n, 8, 18, 20, 34, 40, … as shown in Figure 1.2. The clusters that are more 

stable than surrounding size are called magic clusters. The magic numbers of Nan were 

explained successfully by electronic shell closure of the clusters orbital. The valence 

electrons of clusters behave as nearly free electrons in jellium-like potential made by 

uniform positive charged sphere and occupy the quantized orbitals.19,21–23 According to 

this concept, the electronic shells are closed when the number of electrons is 2, 8, 18, 20, 

34, 40, 58, 68, 70, … because corresponding superatomic orbitals, 1S, 1P, 1D, 2S, 1F, 

2P, 1G, 2D, 3S … are completely filled, respectively, and the electronic shell closure 

makes the cluster stable. In case of Nan, because Na is monovalent element ([Ne](3s)1) 

the stability of clusters is expected to be enhanced with n = 2, 8, 18, 20, … same with 

the number of valence electrons as shown in the previous experiments. This electron 
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counting rule can be applied to other simple metals such as Au,24,25 Mg,26 and Al.26,27 

For example, Au is also monovalent element ([Xe](4f)14(5d)10(6s)1) and the magic 

number of Au clusters is known to be 8, 18, 20, … and so on.  

 

 

 

 On the other hand, the magic number of Nan larger than n = 3000 is different 

from those expected from electronic shell closure (Figure 1.3).28 In this size regime, the 

 
Figure 1.2. (a) Positive ion mass spectrum of sodium clusters and (b) the calculated change 

in the electronic energy difference.20 
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atomic packing determines the stability of the clusters. The clusters are stable when they 

take complete icosahedral motif. In summary, the stability of small (n ≤ 1500) clusters 

is determined by the closure of electronic shells, whereas that of larger clusters is 

governed by closure of geometrical shells. 

 

 

 

1.2.3 Reactivity of free metal clusters 

 In gas phase experiments, the number of atoms can be controlled and 

determined at atomic level. The difference of the number of atoms, even one atom, 

 
Figure 1.3. Mass spectra of photoionized Nan. Two sequences of structures are observed at 

equally spaced intervals on the n1/3 scale – an electronic shell sequence and a structural shell 

sequence.28 
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arises the drastic difference of not only stability but also reactivity of the clusters. The 

chemical reactivity of metal clusters with oxygen (O2) has gained interests since it is 

important for understanding the stability in air and catalytic activity for oxidation 

reactions. Figures 1.4(a) and 1.4(b) show the reactivity of Aun
– against O2 and the 

electron affinities of Aun
–, respectively.29 Aun

– with only the even number of anions 

except for n = 16 reacted with O2 and the reactivity was correlated obviously to the 

electron affinities of Aun
–.30,31 The results of photoelectron spectroscopy of adduct 

species AunO2
– revealed that the unpaired electron of even numbered Au cluster anion 

was partially donated to O2.32 
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       (a)  

 
       (b)

  
Figure 1.4. (a) Cluster-size dependence of the reaction of Au cluster anions with O2. The 

separate plots correspond to different O2 concentration. (b) Cluster-size dependence of the 

free energy of the reaction of Au cluster anions with O2 (—, left axis) and the measured 

electron affinities of Au cluster anions (…, right axis).29 
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1.3 Protected metal clusters 

1.3.1 Synthesis of protected metal clusters 

 To apply metal clusters as functional materials, it is necessary to obtain them 

in condensed phase. There are several methods for preparing metal nanoparticles and 

clusters in condensed phase such as reduction method,33 laser ablation method,34,35 

hydrothermal synthesis method,36 and gas condensation method.37,38 Among them, the 

reduction method that reduces metal precursor ions by reducing agent is often used to 

synthesize metal clusters because the size distribution or chemical composition can be 

controlled depending on conditions. Although some of metal clusters are predicted to be 

more stable than neighbors, bare metal clusters are unstable against aggregation in order 

to reduce surface energy. The crucial issue for the synthesis and practical application of 

metal clusters is to stabilize the clusters against aggregation or sintering. A typical 

method of stabilization is protection by organic ligands or immobilization on solid 

supports. Recently, the synthesis of Au and Ag clusters protected by ligand such as 

thiolate (SR), halogen, and phosphine (PR3) has advanced dramatically.39–42 The 

synthesized clusters are characterized by mass spectrometry with electrospray ionization 

and matrix-assisted laser desorption ionization, powder X-ray diffraction analysis, 

transmission electron microscopy, ultraviolet-visible spectroscopy, and so on. So far, a 

lot of protected metal clusters were precisely synthesized and determined the atomic 

structures, for instance [Au11(PR3)8Cl2]+,43 [Au13(PR3)10Cl2]3+,44 [Au25(SR)18]–,45,46 

Au38(SR)24,47 Au102(SR)44,48 and [Ag44(SR)30]4–.41,42 

 

1.3.2 Stability of protected metal clusters 

 The ligands not only sterically protect the clusters from aggregation but also 



 9 

electronically stabilize the clusters by adjusting the formal number of the valence 

electrons confined in the clusters. The stability of the ligand-protected metal clusters 

can be explained by a simple scheme proposed by Häkkinen and co-workers based on 

the superatomic concept.49 They defined the total numbers of valence electrons (n*) of 

[ANXMLS]Z by the following equation: 

 n* = N × VA – M – Z     (1.1) 

where N, M, and S are the numbers of atoms of metal A, ligands X that withdraw 

electrons from metal core, and ligands L that coordinate to the metal core without 

withdrawing electrons, respectively, Z is a net charge and VA is the number of valence 

electrons in a single metal atom. Given that each thiolate or halogen ligand takes one 

electron from the metal core, the n* values in ligand-protected Au and Ag clusters agree, 

in most cases, with those predicted from the spherical electronic shell model. For 

example, the core of [Au25(SR)18]– is determined by single-crystal X-ray diffraction 

analysis to be icosahedral Au13 and its n* value is calculated to be 8 with 1S21P6 (Figure 

1.5).45,46,50  
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1.4 The present study 

1.4.1 Why aluminum? 

 Aluminum is expected to replace to precious metal because it is a ubiquitous 

element and cheap metal. Al nanoparticles that are stable under ambient conditions have 

gained interests as energetic materials,51–56 optical devices,57–59 and hydrogen 

storage/generating materials.60,61 However, Al reacts readily with oxygen while 

releasing a huge amount of heat and produces aluminum oxide on the surface with 

following equation. 

 4Al + 3O2 → 2Al2O3, ΔH = –1675.7 kJ/mol   (1.2) 

To prevent oxidation of the surface, Al nanoparticles are passivated by organic reagents, 

such as poly(vinylpyrrolidone) (PVP),55 poly(methylmethacrylate),55 oleic acid,61 and 

isophthalic acid62 or by embedded in matrices of ammonium nitrate and ammonium 

perchlorate.56 

 

(a)

  

(b)

 
 
 

Figure 1.5. (a) Single-crystal structure45 and (b) electron density of states of [Au25(SR)18]–.50 
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1.4.2 Stability of free aluminum clusters 

 The electron configuration of Al atom is [Ne](3s)2(3p)1. It was found from the 

study of photoelectron spectroscopy of Al clusters that each Al atoms in Aln (n ≥ 9) 

provide three valence electrons because of the hybridization of 3s and 3p orbitals.63 In 

contrast, the theoretical study indicated that the transition of behavior from monovalent 

to trivalent occurred with n between 5 and 7.64 Then, the numbers of valence electrons 

in magic clusters such as Al7
+, Al13

–, and Al23
– are calculated to be 20, 40, and 70 

electrons, respectively. In particular, Al13
–, which is regarded as superatomic noble gas, 

is quite stable because of not only the electronic shell closure with 40 electrons but also 

the icosahedral structure (Figure 1.6). 

 

 

 

1.4.3 Reactivity of free aluminum clusters 

 Atomic level understanding has been obtained for the reaction of Al clusters 

 
 

Figure 1.6. Schematic description of the electronic and geometrical structure of Al13
–. 
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with O2 under single collision condition through the pioneering works of Castleman and 

co-workers.65,66 Al cluster cations and anions were etched into smaller clusters during 

the oxidation, corresponding to the combustion of Al powders. Figure 1.7 shows the 

etching reaction of Al cluster anions with O2 and the following reaction paths were well 

established.67,68 

 Aln
– + O2 → Aln–1O + AlO– or Aln–1 + AlO2

– (n ≤ 7)  (1.3) 

 Aln
– + O2 → Aln–4

– + 2Al2O  (n ≥ 8)    (1.4) 

Interestingly, magic clusters such as Al7
+, Al13

–, and Al23
– showed high tolerance for O2 

in contrast to the efficient oxidation of Al nanoparticles. Such inertness toward O2 has 

been attributed to the closure of electronic shells for the clusters. On the other hand, 

Schnöckel and co-workers reported that Al13
– was degraded to Al9

– with releasing 

2Al2O in the presence of excited O2.69 Theoretical studies have shown that the chemical 

inertness of aluminum magic clusters is due to the barrier required for transition of the 

spin states from triplet intermediates to singlet products in 1Al13
– + 3O2 → 3[Al13⋅O2]– → 

1Al9
– + 2Al2O as shown in Figure 1.8.69–73 
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Figure 1.7. Series of mass spectra showing progression of etching reaction of Aln

– with O2.65 
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 In contrast to the reaction of Aln
– with O2, the reactivity of Aln

– with water 

was found to depend on geometrical structure rather than electronic shell structure.74,75 

The size-dependent reactivity of Al clusters for absorption of one or more water can be 

attributed to the dissociative chemisorption of water at specific surface sites. On the 

other hand, icosahedral Al13
– still showed high resistance to water with large barriers 

because of no complementary active sites. In addition, Al13
– is unreactive even in the 

reaction with other molecules such as methanol,76,77 hydrogen iodide,78 and ammonia,79 

while other sized Aln
– are easier to form adduct species and as a result dissociative 

species. 

 

 

 
Figure 1.8. Energy diagram (calculated) for the interaction of 1O2 and 3O2 on the Al13

– cluster 

surface.69 
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1.4.4 Synthesis of protected aluminum clusters 

 Schnöckel and co-workers synthesized small Al clusters protected by ligands 

called metalloid clusters, Al4Cp*4, Al8Cp*4, SiAl14Cp*6, and Al50Cp*12 (Figure 1.9) 

(Cp* = pentamethylcyclopentadienyl).80–83 The n* values of these clusters are 

calculated to be 8, 20, 40, and 138, respectively, by assuming that each Al atom and Si 

atom provides three and four valence electrons, respectively, while each Cp* ligand 

takes one electron from the Al clusters.84 These n* values are same with those predicted 

from electronic shell closure so that these clusters are expected to show high stability 

even in an atmosphere. However, the above metalloid clusters are easily oxidized in air 

although these are theoretically demonstrated that by employing Cp* the oxidation rates 

are retarded as compared with the less-bulky cyclopentadienyl ligand.85 

 

 

 

 

 (a)

   

(b) 

 
 
 

Figure 1.9. (a) Single-crystal structure of Al50Cp*12 and (b) structure of Cp* 

(pentamethylcyclopentadienyl).82 
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1.4.5 Why Al13 superatom? 

 Magic cluster Al13
– is a potential candidate of building block for air-stable Al 

clusters because of both intrinsic stability and chemical stability under single collision 

condition as shown in sections 1.4.2 and 1.4.3. Now the challenge to producing Al13
– is 

how we can externally supply one extra electron to open-shell Al13. The simplest way of 

supplying one electron to Al13 is to dope an alkali metal atom. Actually, the formation 

of Al13X (X = H, Au, and alkali metals)86,87 in the gas phase has been reported by 

Nakajima and Bowen (Figure 1.10). In addition, Al13
+ moiety of Al13H2O+, which is a 

product of the reaction between Aln
+ and water, was also stabilized by lone-pair 

electrons of water.88 Here I consider to stabilize Al13 by an electron-donating ligand, 

such as PVP: it has been demonstrated experimentally that Pt clusters89,90 and Au 

clusters91,92 stabilized by PVP are negatively charged (Figure 1.11), and it has been 

predicted theoretically that Au13 is negatively charged by electron transfer from PVP.93  

 

 

 

(a)    (b)    (c)

 
 

Figure 1.10. Optimized Structures of Al13X. X = (a) H, (b) Au, and (c) M (M = Li, Na, K, Rb, 

and Cs).87 

H 
Au M 
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1.4.6 Aim of the present study 

 The synthesis of ligand-protected aluminum clusters under inert gas has been 

reported as described in section 1.4.4. However, there are still difficulties on the 

synthesis of aluminum clusters so the examples of the synthesis are very limited. 

Moreover the synthesized aluminum clusters are unstable in air. In order to obtain stable 

aluminum cluster based materials, we have to develop methods to size control synthesis 

and stabilization against oxidation.  

 The aim of the present work is to obtain a hint toward synthesis of 

superatomic Al13-based materials (Figure 1.12). In chapter 2, chemical reactions of Aln
– 

under high-pressure O2 were investigated to gain insights into the stability of Al13
– 

under atmospheric conditions. In chapter 3, interaction between open-shell Al13 and 

electron donating ligand with carbonyl group was studied by density functional theory 

(DFT) calculations to test the hypothesis that the electronic shell of Al13 can be closed 

by electron donation from ligands. 

 

(a)   (b)

 

 (c)

 
 

Figure 1.11. (a) TEM image, (b) XPS spectrum of Au cluster stabilized by PVP, and (c) 

schematic of electron transfer to Au cluster from PVP.92 
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Figure 1.12. Aim of the present work. 
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Chapter 2. 
 

Production of new aluminum oxide clusters 
having Al13 core 

 
 

Abstract 
New aluminum oxide clusters Al14O– and Al15O2

– were observed unprecedentedly in the 
gas-phase reaction of Aln

– and O2. Photoelectron spectroscopic measurements and 
density functional calculations indicated that Al14O– and Al15O2

– are composed of an 
icosahedral Al13 moiety bonded by one and two OAl unit(s), respectively. The 
preferential formation of Al14O– and Al15O2

– is explained in terms of the high stability 
associated with the Al13 moiety and efficient collisional trapping as intermediates of 
oxidative etching reactions. 
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2.1 Introduction 

 Aluminum is known to react readily with oxygen (O2) while releasing a huge 

amount of heat. By taking advantage of this feature, Al powders have been used as 

additives in propellants, explosives and fuels.1 Recent studies have demonstrated that 

the combustion rates of Al particles increased significantly with a decrease in diameter 

down to few tens of nanometers.1–6 Several efforts have been made to synthesize Al 

nanoparticles resistant to oxidation and to apply them as energetic materials.4–6 

Atomic-level understanding has been obtained for the oxidation of much smaller Al 

clusters through the pioneering works of Castleman and co-workers.7,8 Aluminum 

cluster cations and anions are etched into smaller clusters during the oxidation, 

corresponding to the combustion of Al powders. For Al cluster anions, the following 

reaction paths are well established.7,9 

 Aln
– + O2 → Aln–1O + AlO– or Aln–1 + AlO2

– (n ≤ 7)  (2.1) 

 Aln
– + O2 → Aln–4

– + 2Al2O  (n ≥ 8)    (2.2) 

Interestingly, magic clusters such as Al7
+, Al13

–, and Al23
– showed high tolerance for 

O2
7,10 in contrast to the efficient oxidation of Al nanoparticles. Such inertness toward O2 

has been attributed to the closure of electronic shells for the clusters (20, 40, and 70 

valence electrons, respectively).11–15 Theoretical studies have shown that this chemical 

inertness is due to the barrier required for transition of the spin states from triplet 

intermediates to singlet products in 1Al13
– + 3O2 → 3[Al13⋅O2]– → 1Al9

– + 2Al2O.16–18 

 In this chapter, chemical reactions of Aln
– under high-pressure O2 were 

investigated to gain insights into the stability of Al13
– under atmospheric conditions. As 

a result, new products, Al14O– and Al15O2
–, were observed. The electronic and 

geometrical structures of these new aluminum oxides were examined using 
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photoelectron spectroscopy and density functional theory (DFT) calculations. The 

mechanism of the preferential formation of Al14O– and Al15O2
– is also discussed. 

 

2.2 Experimental and computational method 

2.2.1 Experimental method 

 The experimental apparatus used in the present study was composed of a 

cluster source, reaction cell, time-of-flight (TOF) mass spectrometer, and magnetic	
 

bottle-type photoelectron spectrometer (Figure 2.1).19 Experiments were performed at 

10 Hz, and all the pulse sequences described below were controlled by digital delay 

generators (Standard Research Systems, DG645). The vacuum chamber was 

differentially pumped by three turbo molecular pumps at the pumping speeds shown in 

Figure 2.1. Pressure of the source chamber increased from 2 × 10–5 to 4 × 10–3 Pa under 

the typical experimental conditions. The pressure of the photodetachment chamber was 

kept below 1 × 10–5 Pa during the measurement. 

 



 25 

 
 

 Generation of Al cluster was conducted by laser vaporization method.20 First, 

an Al target rod (99.99%; φ = 5 mm; L = 22 mm) with rotating and translating motion 

was irradiated by a focused output of the second or third harmonics of a Nd:YAG laser 

(Spectra-Physics, INDI-HG) 10–50 mJ/pulse. Then, helium gas (99.995%) with a 

backing pressure of 4–8 atm was injected into the channel (L = 28 mm) to produce Al 

clusters by opening a pulse valve with orifice 0.8 mm in diameter (Parker Hannifin, 

series 9) for 200–250 µs. The Al cluster anions produced were allowed to react with O2 

(2 atm; purity 99.5%), which was introduced into the reaction cell through a pulse valve. 

After passing through a channel (φ = 3 mm and L = 7 or 41 mm), the unreacted parent 

clusters and reaction products were expanded into the source chamber and were 

 

Figure 2.1. Schematic of the experimental apparatus. Inset shows an expanded view of part A. 
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extracted perpendicularly by applying a pulsed electric field at about 75 mm 

downstream the exit of the nozzle. The anions were accelerated to 2.3–5.8 keV, steered 

by deflectors and an einzel lens, and detected by a microchannel plate (El-Mul, Double 

MCP 33) located at 1.64 m. The ion signals were recorded using a digital oscilloscope 

(Tectronix, TDS 580D). Typical resolution of the TOF mass spectrometer was ~150. 

 The photoelectron spectra of the parent Al anions and the products at a kinetic 

energy of 2.3 keV were recorded by irradiating the fourth harmonic of a Nd:YAG laser 

(Spectra-Physics, INDI-40) with < 5 mJ/pulse. The detachment laser was polarized to 

parallel with respect to the flight path of the ions. The photoelectrons ejected from the 

cluster anions were collected by a strong magnetic field (~1000 G) produced by a 

permanent magnet and guided by a weak field (~10 G) produced by a solenoid coil to a 

microchannel plate (El-Mul, Double MCP 33) located at 1.07 m. The signals were 

amplified by preamplifier (Standard Research Systems, SR445A) and counted using a 

multichannel scaler (Standard Research Systems, SR430) with a time bin of 5 ns. The 

time-dependent photoelectron spectra were converted to energy-dependent spectra by 

considering the Jacobian factor. The photoelectron spectra accumulated for 

10,000–65,000 laser shots were presented after subtracting the background spectra. The 

electron energy was calibrated using the photoelectron spectrum of I– after deceleration 

using a momentum decelerator;21 I– was produced by dissociative electron attachment to 

CH3I. Typical photoelectron spectra recorded for Aln
– (12 ≤ n ≤ 16) are shown in Figure 

2.2, which reproduced previous results.11–15 Although the resolution of the 

photoelectron spectrometer was not high (230 meV for electrons with a kinetic energy 

of 0.66 eV), this does not affect the discussion. 
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2.2.2 Computational method 

 Electronic and geometrical structures of Al14O–, Al15O2
–, and Aln

– (12 ≤ n ≤ 

16) were calculated by DFT at the B3LYP level with the 6-31G(d) basis set22 using the 

Gaussian 09 package.23 Stability of the optimized clusters was confirmed by analyzing 

the vibrational frequencies. The vertical detachment energy (VDE) was calculated as 

the energy difference between the ground state of the anion and that of the neutral 

cluster with the geometry of the anion. The structures and VDE values of Aln
– (12 ≤ n ≤ 

16) calculated at the same level of theory are summarized in Figure 2.3 and Table 2.1, 

respectively. The results are in good agreement with those reported previously.14,15 

 

 
Figure 2.2. Photoelectron spectra of Aln

– (12 ≤ n ≤ 16). 
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Table 2.1. VDE of Aln
– (12 ≤ n ≤ 16). 

n VDEcal (eV)a VDEexp (eV)b 

12 2.43 2.80 ± 0.1 

13 3.45 3.75 ± 0.1 

14 2.59 2.65 ± 0.1 

15 2.81 2.95 ± 0.1 

16 2.80  

aCalculated for the structures shown in Figure 2.3 at the B3LYP/6-31G(d) level. bFrom ref 12. 

 

Figure 2.3. Optimized structures of Aln
– (12 ≤ n ≤ 16) obtained at the B3LYP/6-31G(d) level. 

The numbers are selected bond lengths (Å). 
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2.3 Results and discussion 

2.3.1 Generation of Al cluster anions 

 Figure 2.4 shows typical mass spectrum of Al cluster anions that was 

measured by the apparatus shown in Figure 2.1. As described above,7–10,16 Al13
– and 

Al23
– were abundant species, reflecting its stability as compared with its neighbors. 

 

 

 

2.3.2 Formation of unprecedented products 

 Figures 2.5(a) and 2.5(b) show portions of the mass spectra of Al cluster 

anions before and after reaction with O2, respectively. After reaction with O2 (Figure 

2.5(b)), the intensity of Al13
– remained unchanged, whereas those of other species 

decreased significantly. In addition, aluminum oxide species, AlO– and AlO2
–, were 

generated. These results can be explained by the oxidative etching reactions of Aln
– 

(Eqs. 2.1 and 2.2)9 and the high tolerance of Al13
–.7,10 Interestingly, two new types of 

aluminum oxide clusters, AlnO– and AlmO2
–, were observed from the cluster source. 

 
Figure 2.4. Typical mass spectrum of Al cluster anions. 
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Among each series, Al14O– and Al15O2
– showed extraordinarily high abundance. The 

Al14O– and Al15O2
– species have not been reported previously although aluminum-rich 

oxide clusters (AlnO and AlmO2) have been studied extensively.24–27 This discovery is 

attributable to a setup of the reaction cell (Figure 2.1); the production of Al14O– and 

Al15O2
– was almost completely suppressed when the length of the channel after the 

reaction cell was reduced from 41 to 7 mm (Figure 2.6). 

 

 
 

 

Figure 2.5. Mass spectra of Aln
– (a) before and (b) after reaction with O2. 
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2.3.3 Photoelectron spectra 

 Figure 2.7 shows photoelectron spectra of Al14O– and Al15O2
– recorded with 

266 nm photons. The spectra of Al14O– and Al15O2
– exhibited asymmetrical bell-shaped 

profiles. The “apparent” VDE values, defined as the energy giving the peak top, of 

Al14O– and Al15O2
– were determined to be 3.86 ± 0.02 and 3.93 ± 0.02 eV, respectively, 

by fitting the data with fourth-order polynomials. 

 

 

 

Figure 2.6. Mass spectrum of Aln
– with O2 with a channel length of 7 mm. 

 

Figure 2.7. Photoelectron spectra of (a) Al14O– and (b) Al15O2
–. 
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2.3.4 Computational results 

 The geometrical structures of the new products were studied by DFT 

calculations (B3LYP/6-31G(d)). For the structural optimization of Al14O–, initial 

structures that contained an OAl unit bonded to icosahedral Al13, either through an O or 

Al site, were considered. Isomers 1, 2, and 3 were obtained by optimization of initial 

structures in which the O atom of the OAl unit is bonded to an atop, a bridge, or a 

hollow site of the Al13, respectively (Figure 2.8). In isomer 1, the icosahedral motif of 

the Al13 moiety was retained. The bond lengths of Al–O and Al13–O were 1.70 and 1.75 

Å, respectively. In isomer 2, the icosahedral Al13 core was deformed into a decahedral 

motif, and the OAl unit was bonded on a tilt. In isomer 3, the O atom is bonded to the 

bridged site of the deformed Al13 core. In contrast, optimization of initial structures in 

which the Al atom of the OAl unit is bonded to the atop site of icosahedral Al13 yielded 

isomer 4, whereas isomer 5 was obtained from those in which the OAl unit is bonded to 

the bridge and hollow sites of Al13 (Figure 2.8). In isomers 4 and 5, the OAl unit was 

bonded to the icosahedral Al13 moiety in an upright configuration. 

 Relative stability and VDE values of isomers 1 – 5 are compared in Table 2.2. 

Isomers 1 – 3, which contain OAl bound to Al13 through an O–Al bond, were 

significantly more stable than 4 and 5, which contained the OAl bound to Al13 through 

an Al–Al bond. A bonding motif similar to 1 – 3 was theoretically predicted for smaller, 

neutral AlnO clusters (n ≤ 10).26 In addition, the VDE value of 1 was 3.27 eV, which is 

slightly less than the experimental value (3.86 eV), whereas those of 2 and 3 were ~2.4 

eV, which is significantly less than the experimental value. 
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Figure 2.8. Optimized structures of isomers (1 – 5) of Al14O– obtained at B3LYP/6-31G(d). The 

oxygen atoms are shown in red. Black and green numbers represent selected bond lengths (Å) 

and Mulliken charges, respectively.  
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 An extensive survey to identify the most stable structure of Al14O– suggested 

that Al15O2
– is constructed by two OAl units bonded to the atop sites of icosahedral Al13 

through the O site. Three isomers (6 – 8) were obtained from initial structures, in which 

two OAl units were bonded to two sites of Al13
– in the para, meta, and ortho positions, 

respectively (Figure 2.9). In isomer 6, the Al13 core retained the icosahedral motif, 

whereas it was strongly distorted by the two AlO units bonded in 7 and 8. Table 2.3 lists 

the relative stability and VDE values of 6 – 8. Isomer 6 is most stable among the three 

isomers, and its VDE value (3.28 eV) is most close to the experimental value (3.93 eV). 

 

Table 2.2. ΔE and VDE of Al14O– Obtained at B3LYP/6-31G(d). 

isomer state symmetry ΔE (eV) VDE (eV)a 

1 2A1 C5v 0.00 3.27b 

2 2A C1 0.65 2.38 

3 2A C1 0.52 2.40 

4 2A C1 1.93 3.39 

5 2A C1 1.79 2.78 

aExperimental value: 3.86 ± 0.02 eV. b3.31 eV at B3LYP/6-31+G(d). 
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2.3.5 Structures of Al14O– and Al15O2
– 

 Relative stability between five isomers of Al14O– (Table 2.2) indicates that 

isomers 1 – 3 are potential candidates. Among 1 – 3, the VDE value calculated for 1 is 

the closest to that of experimental value. Underestimation of the VDE value is also 

 
Figure 2.9. Optimized structures of isomers (6 – 8) of Al15O2

– obtained at B3LYP/6-31G(d). 

The oxygen atoms are shown in red. Black and green numbers represent selected bond 

lengths (Å) and Mulliken charges, respectively.  

Table 2.3. ΔE and VDE of Al15O2
– Obtained at B3LYP/6-31G(d). 

isomers state symmetry ΔE (eV) VDE (eV)a 

6 1A1g D5d 0.00 3.28b 

7 1A C1 0.91 2.88 

8 1A C1 0.43 3.16 

aExperimental value: 3.93 ± 0.02 eV. b3.31 eV at B3LYP/6-31+G(d). 
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found in the calculation of Al12
––Al16

– at the same level of theory (Table 2.1); the 

calculated values are smaller than the experimental values11–15 by 0.06–0.37 eV. 

Comparison of the stability and VDE values indicates that isomer 1 represents the most 

probable structure of new product Al14O–. Similar discussion based in Table 2.3 leads 

us to conclude that isomer 6 is the most plausible candidate for Al15O2
–. I therefore 

conclude that the aluminum oxide anions, Al14O– and Al15O2
–, are constructed by 

bonding one and two OAl units to the icosahedral Al13 core, respectively. These 

structures remind us of superatom cluster compounds composed of Al13 moieties.28–31 

 The bonding scheme between the OAl unit and Al13 in Al14O– (1) was 

examined using the shape of the frontier molecular orbitals. Figure 2.10(d) shows a 

singly occupied molecular orbital (SOMO) of Al14O–, which had a doublet electronic 

configuration. This orbital is constructed via antibonding interaction between the 

SOMO of AlO (Figure 2.10(b)) and the HOMO-1 of Al13
– (Figure 2.10(a)), which is 

lower in energy than its highest occupied molecular orbital (HOMO). In contrast, the 

bonding interaction between the SOMO of AlO and the HOMO-1 of Al13
– creates the 

HOMO-5 of Al14O– (Figure 2.10(c)). Accommodation of two electrons into the 

HOMO-5 is the origin of strong bonding between AlO and Al13
– in Al14O–. 
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2.3.6 Preferential formation of Al14O– and Al15O2
– 

 The question is why are the Al14O– and Al15O2
– ions formed preferentially 

under the present experimental conditions. It is known that reaction of Aln
– (n ≥ 8) with 

O2 proceeds exclusively by releasing a highly stable fragment Al2O (Eq. 2.2).9 In the 

framework of this reaction path, Al14O– and Al15O2
– correspond to intermediates of 

oxidative etching reactions of Al16
– and Al15

–, respectively.32 DFT calculations 

(B3LYP/6-31G(d)) were conducted to estimate enthalpies of the formation of Al14O– 

and Al15O2
– from Al16

– and Al15
– and for the removal of Al2O. The optimized structures 

and enthalpies of the formation of the relevant species are shown in Figures 2.3 and 

2.11 and Table 2.4. The formation of Al14O– from Al16
– was exothermic by 7.46 eV, 

whereas removal of Al2O from Al14O– was endothermic by 1.78 eV (Figure 2.12). The 

formation of Al15O2
– from Al15

– was exothermic by 11.72 eV, whereas the removal of 

Al2O from Al15O2
– was endothermic by 1.92 eV (Figure 2.12). These energetic 

 

Figure 2.10. Charge-density surfaces of (a) HOMO-1 of Al13
–, (b) SOMO of AlO, (c) 

HOMO-5 and (d) SOMO of Al14O– (1). The isodensity values are (a) 0.03 e, (b) 0.05 e, (c) 

0.07 e, and (d) 0.015 e.  
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considerations support that Al14O– and Al15O2
– correspond to stable intermediates of the 

consecutive etching reactions because of the high stability of the icosahedral Al13 

moiety. The observation of these previously unreported species is ascribed to efficient 

collisional stabilization in the reaction cell used in this study. 

 

	
  

 

 

Table 2.4. Total Energy of O2 and AlnOm
–. 

 E (Hartree)a 

O2 –150.3200421 

Al2O –560.1798515 

Al12
– –2909.3725651 

Al13O– –3227.1492532 

Al14O– –3469.6178843 

Al15
– –3636.7520577 

Al15O2
– –3787.3998384 

Al16
– –3879.2035060 

aCalculated for the structures shown in Figures 2.3, 2.8, 2.9, and 2.11 at the 

B3LYP/6-31G(d) level. 

 
Figure 2.11. Optimized structures of Al13O–, Al2O and O2 obtained at the B3LYP/6-31G(d) 

level. The numbers are selected bond lengths (Å).  
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2.4 Conclusion 

 In summary, reaction of Aln
– and O2 under a high-pressure condition yielded 

the previously unknown aluminum oxides Al14O– and Al15O2
–. Photoelectron 

spectroscopy and density functional calculations revealed that Al14O– and Al15O2
– are 

composed of an icosahedral Al13 moiety bonded by one and two OAl unit(s), 

respectively. The preferential formation of Al14O– and Al15O2
– was due to their high 

stability associated with the Al13 moiety and the efficient dissipation of reaction 

exothermicity by collisional cooling. The present findings suggest that these Al oxide 

clusters with an icosahedral Al13 moiety are potential candidates for energetic materials 

 

Figure 2.12. Energy diagrams of production processes of (a) Al14O– and (b) Al15O2
–. 



 40 

stable against oxidation without protecting layers. 
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Chapter 3. 
 

Stabilization of Al13  
by electron donating ligand 

 
 

Abstract 
The sequential bonding of N-ethyl-2-pyrrolidone (EP), a monomer unit of 
poly(vinylpyrrolidone) (PVP), to an open-shell superatom Al13 was studied by density 
functional theory calculations. The first three EP ligands prefer to be chemisorbed on 
the atop sites of Al13 via the carbonyl O atom mainly due to bonding interaction 
between molecular orbitals of EP and the 1S or 1D superatomic orbital of Al13.The 
fourth EP ligand, however, prefers to be bound electrostatically to one of the 
chemisorbed EP ligands rather than to be chemisorbed on Al13. This behavior suggests 
that maximum number of PVP that can be chemisorbed on an Al cluster is determined 
not only by the steric repulsion between adjacent PVP but also by the electronic charge 
accumulated on the Al cluster. The gross Mulliken charge accumulated on the Al13 
moiety increases with the number of EP ligands chemisorbed and reaches nearly –1 e in 
Al13(EP)3, suggesting the closure of the electronic shell of Al13 by ligation of three EP 
ligands. However, the spin density analysis revealed that the superatomic orbital 1F of 
Al13 remains singly occupied even after chemisorption of three EP ligands. In 
conclusion, the Al13 moiety stabilized by PVP remains to be an open-shell superatom 
although it accepts electronic charge through polarized Al–O bonding.
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3.1 Introduction 
 Nanoparticles and clusters of aluminum that are stable under ambient 

conditions have gained current interest as energetic materials,1–3 optical devices,4,5 and 

hydrogen storage materials.6,7 To prevent oxidation of the surface and aggregation, Al 

nanoparticles are passivated by organic reagents, such as poly(vinylpyrrolidone) (PVP), 

poly(methylmethacrylate), oleic acid, and isophthalic acid or embedded in matrices of 

ammonium nitrate and ammonium perchlorate. In contrast, small ligands such as 

pentamethylcyclopentadienyl (Cp*) have been used to synthesize atomically precise Al 

clusters including Al4Cp*4, Al8Cp*4, and Al50Cp*12.8 In these examples, the ligands act 

not only to sterically protect the clusters from aggregation but also to electronically 

stabilize the clusters by adjusting the formal number of the valence electrons confined 

in the clusters (n*). The n* values of the above clusters are calculated to be 8, 20, and 

138, respectively, according to a simple scheme9 developed to explain the electronic 

stability of the ligand-protected Au clusters. In the calculation, it is assumed that each 

Al atom provides three valence electrons due to the hybridization of 3s and 3p orbitals10 

and that each Cp* ligand takes one electron from the Al clusters.11 These n* values 

agree with those predicted from the electronic shell model for spherical clusters of 

simple metals (Au, Na, Al).12 According to the electronic shell model, the clusters gain 

high stability due to closure of the superatomic orbitals (1S, 1P, 1D, 2S, 1F, 2P, 1G, 2D, 

3S, 1H, ...) when n* adopts values of 2, 8, 18, 20, 34, 40, 58, 68, 70, 92, and so on.13 

The above consideration suggests high stability of the above Cp*-protected Al clusters 

in terms of electronic structure. However, they are easily oxidized in air although it was 

theoretically shown that the oxidation rates are retarded by employing Cp* as compared 

with the less bulky cyclopentadienyl ligand.14 
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 Other potential candidates for air-stable Al clusters are magic Al clusters such 

as Al13
– and Al23

– anions12 which are known to be stable against oxygen,15 water,16 and 

methanol.17 The high stability of Al13
– against O2 is ascribed to a perfect icosahedral 

geometrical structure, closed electronic shell with a configuration of 

(1S)2(1P)6(1D)10(2S)2(1F)14(2P)6, and high energy barrier associated with spin 

conversion.18 Now the challenge to producing Al13
– is how we can externally supply 

one extra electron to open-shell Al13. The simplest way of supplying one electron to 

Al13 is to dope an alkali metal atom19 as demonstrated by the formation of Al13X (X = H, 

Au, and alkali metals)19,20 in the gas phase. 

 In this chapter, I examined a stabilization of Al13 by an electron-donating 

ligand, with PVP as a candidate: it has been demonstrated experimentally that Pt 

clusters21–23 and Au clusters24,25 stabilized by PVP are negatively charged. It has also 

been shown theoretically that PVP donates electronic charge to Au13 and Au32 and 

promotes activation of O2.26,27 I studied by density functional theory (DFT) calculations 

the structural evolution of Al13 as a function of the number of PVP and demonstrated 

for the first time that PVP can coordinate to Al13 while donating electronic charge. The 

bonding nature of PVP with Al13 was explained in terms of the interaction between their 

molecular and superatomic orbitals. Spin density analysis revealed that the Al13 moiety 

stabilized by PVP remains to be an open-shell superatom. 

 

3.2 Computational method 

 In the present DFT calculations, I modeled PVP with N-ethyl-2-pyrrolidone 

(EP), which corresponds to a monomeric component of PVP. This simplification is 

reasonable since only a monomeric unit of each PVP may be able to interact with Al13 
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having a highly curved potential surface. In this study, I used the B3LYP and PBE0 

methods which have been used in previous studies on Al clusters.28,29 The structures of 

Al13(EP)n in the doublet state were optimized by the unrestricted B3LYP method for n = 

0–4 with the 6-31G(d) basis set. For comparison, optimization at the PBE0/6-31G(d) 

level was also conducted for n = 0 and 1. Structural optimization was initiated with 

structures in which the O atom of EP is pointing toward or opposite to Al13. The 

optimized structures shown in this chapter had C1 symmetry and no imaginary 

frequencies. The binding energy (BE) of the EP ligand was estimated by subtracting the 

total electronic energy of Al13(EP)n from the sum of those of Al13(EP)n–1 and EP with 

the zero-point energy correction. To estimate the amount of electron transfer and 

bonding nature of Al13(EP)n, the gross Mulliken charge on the Al13 moiety (ΔQ) was 

estimated. The negative value of ΔQ indicates an increase of electronic charge on Al13 

upon ligation of EP. The calculation was conducted by the Gaussian 09 package.30 

 

3.3 Results and discussion 

3.3.1 Structure and stability of Al13(ligand)1 

 Figure 3.1 shows the optimized structure of Al13 (0) and Al13
– (0–) at the 

B3LYP/6-31G(d) level. As reported previously,31 Al13
– has an icosahedral morphology 

(Ih symmetry) and an electronic configuration of (1S)2(1P)6(1D)10(2S)2(1F)14(2P)6: the 

HOMO is not the 2P but 1F orbital because of energy splitting of 1F. In contrast, the 

neutral Al13 has a distorted structure32 and a hole in the 1F orbital (Figure 3.2). The 

optimized structures of Al13 and Al13
– at the PBE0/6-31G(d) level (Figure 3.3) were 

found to be similar to those in Figure 3.1. I used the B3LYP method in the following 
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computational surveys for the structures of Al13(EP)n since the computational cost was 

found to be lower than that at the PBE0 method. 

 

 

 

 

Figure 3.1. Structures of (a) Al13 and (b) Al13
– optimized at B3LYP/6-31G(d). The numbers 

represent the bond lengths in Å. 
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Figure 3.2. Energy diagram and superatomic orbitals of Al13 (0). The solid and dotted lines 

represent occupied and unoccupied orbitals, respectively. 
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 Figure 3.4 shows the result of extensive survey of ligand. All of ligand 

coordinated Al13 was optimized as the structure bound ligand through carbonyl oxygen 

with BE from 0.70 to 1.22 eV (Table 3.1). These ligands can be divided into three types. 

The first is the ligand with at least one nitrogen atom next to carbonyl group (Figures 

3.4(a) to 3.4(e)) and ΔQ was from –0.32 to –0.36 e. The second is the ligand with 

carbon atom both side of carbonyl group (Figures 3.4(f) and 3.4(g)). ΔQ was still 

negatively with about –0.25 e. Al13 core coordinated by the first and second types of 

ligand was similar to icosahedral structure because of electron donation from ligand. On 

the other hand, in the third type of the ligand with hydrogen atom both side of carbonyl 

group (Figure 3.4(h)), ΔQ was +0.37 e and the Al13 core was distorted from icosahedral 

motif. ΔQ of the first group ligand was the most efficient donation in the three types. 

These ligands are likely to occur moving electrons from nitrogen to oxygen so exist 

resonance structure. Then the electron donation is likely to occur efficiently. But the ΔQ 

value was still less than –1 electron. I focused on EP that is monomer unit of PVP and 

searched the number of EP when the electronic shell of Al13 core is closed. 

 

(a)

  

 (b)

 

Figure 3.3. Structures of (a) Al13 and (b) Al13
– optimized at PBE0/6-31G(d). The numbers 

represent the bond lengths in Å. 
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Figure 3.4. Optimized structures of Al13 coordinated by (a) ethylpyrrolidone, (b) 

vinylpyrrolidone, (c) pyrrolidone, (d) ethylene urea, (e) urea, (f) cyclopentanone, (g) acetone, 

and (h) formaldehyde. The numbers represent the bond lengths in Å. Key: pink = Al; red = O; 

gray = C; blue = N; white = H. 
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3.3.2 Structure and stability of Al13(EP)n 

 Three stable structures were obtained for Al13(EP)1. Upon ligation of one EP 

to structure 0, two stable structures 1–2 and 1–3 were obtained as shown in Figure 3.5. 

In both cases, the structure of Al13 is significantly distorted. I obtained structure 1–1 

which has a symmetrical Al13 by using the structure of 0– as an initial structure. The EP 

molecule initially placed at the bridged or hollow site moved to a more stable atop site 

during the optimization. The BE and ΔQ of the three structures are listed in Table 3.2. 

In 1–1 and 1–2, the EP is chemisorbed to the atop site of Al13 via the carbonyl O atom 

with the binding energy of 1.11 and 0.96 eV, respectively. The O–Al distance and 

C–O–Al angle of 1–1 are 1.89 Å and 136.7°, respectively. The structure of 1–1 did not 

change appreciably by optimization at the PBE0/6-31G(d) level (Figure 3.6). 

Interestingly, the gross Mulliken charge on the Al13 moiety in 1–1 is –0.36 e. This 

electron transfer is not simply due to the open electronic structure of Al13, but the 

intrinsic electron-donating ability of the EP ligand. For example, formaldehyde is bound 

Table 3.1. Binding Energy and Charge Distribution of Al13(ligand)1. 

ligand ethyl- 
pyrrolidone 

vinyl- 
pyrrolidone pyrrolidone ethylene urea 

BE (eV)a 1.11 0.96 1.20 1.22 

ΔQ (e)b –0.36 –0.33 –0.33 –0.34 

ligand urea cyclopentanone acetone formaldehyde 

BE (eV)a 1.21 0.79 0.75 0.70 

ΔQ (e)b –0.32 –0.27 –0.24 +0.37 

aBinding energy between ligand and 0. bGross Mulliken charge on the Al13 moiety. 
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to Al13 with the BE of 0.70 eV and takes electronic charge (ΔQ = 0.37 e) from Al13 

(Figure 3.4(h)). As shown later, the EP ligand donates electronic charge even to Al13
– 

having the closed electronic structure (ΔQ = –0.27 e). Okumura reported that EP can 

ligate and donate electronic charge to gold cluster Au13 (BE = 0.65 eV, ΔQ = –0.305 

e).26 On the other hand, the small BE (0.01 eV) and small electron transfer (ΔQ = –0.02 

e) between EP and Al13 in 1–3 suggest van der Waals interaction between them. The EP 

is physisorbed to Al13 with its dipole moment (Figure 3.7) pointing toward Al13 so that 

the electrostatic interaction between the permanent dipole of EP (3.71 D) and the 

induced dipole on Al13 (polarizability = 508 au) is maximized. The results in Figure 3.5 

clearly indicate that the EP ligand acts as an electron-donating ligand to Al13, in sharp 

contrast to Cp* which acts as an electron-withdrawing ligand for Al clusters.8,11 

 

 

 

 
Figure 3.5. Structures of Al13(EP)1 optimized at B3LYP/6-31G(d). The numbers represent the 

bond lengths in Å. Key: pink = Al; red = O; gray = C; blue = N; white = H. 
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Figure 3.7. Structure of EP optimized at B3LYP/6-31G(d). The blue arrow shows the dipole 

moment of EP. Key: red = O; gray = C; blue = N; white = H. 

 
Figure 3.6. Structure of Al13(EP)1 optimized at PBE0/6-31G(d). The bond lengths are in the unit 

of Å and the numbers in parentheses represent the Mulliken charge of the EP molecules. Key: 

pink = Al; red = O; gray = C; blue = N; white = H. 

Table 3.2. Binding Energy and Charge Distribution of Al13(EP)1. 

structure 1–1 1–2 1–3 

BE (eV)a 1.11 0.96 0.01 

ΔQ (e)b –0.36 –0.34 –0.02 
 

aBinding energy between EP and 0. bGross Mulliken charge on the Al13 moiety. 
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 Next, interaction of the second EP ligand with the most stable Al13(EP)1 (1–1) 

was studied. Five stable structures (Figure 3.8) were obtained for Al13(EP)2 after an 

extensive survey of initial structures. The BE and ΔQ values of each structure are 

summarized in Table 3.3. In structures 2–1, 2–2, and 2–3, the second EP ligand is 

chemisorbed on the Al atoms at the ortho, meta, and para positions of the first one in 

1–1, respectively. The O–Al distances of the two EP ligands in 2–1, 2–2, and 2–3 are in 

the range of 1.90–1.97 Å, which is comparable but slightly longer than that in 1–1 (1.89 

Å). The BE values of the second EP are in the range of 0.53–0.68 eV which are slightly 

smaller than that of the first EP in 1–1 (1.11 eV). The BEs of the second EP decrease in 

the order of ortho > meta > para. Regardless of the position, the second EP further 

donates the negative charge to the Al13 moiety. Increment of the gross Mulliken charge 

on the Al13 moiety (ΔΔQ) with respect to that of 1–1 (–0.36 e) was calculated to be in 

the range of –0.27 ~ –0.29 e. 

 Structures 2–4 and 2–5 in which the second EP is not chemisorbed to Al13 

(Figure 3.8) were obtained by optimizing the initial structures in which the second EP is 

placed on the surface of 1–1 with the O atom pointing opposite to the Al13 moiety. 

Structures 2–4 and 2–5 were obtained when the second EP is initially placed at the 

ortho/meta positions and para position of the first EP, respectively. In structure 2–5, the 

BE of the second EP is very small (0.04 eV), and electron transfer from the second EP 

is negligible (ΔΔQ = –0.01 e) as observed in 1–3. This suggests that the second EP is 

physisorbed to the Al13 moiety via van der Waals interaction. In structure 2–4, the 

second EP ligand appears to be bound to the first EP ligand with its dipole moment 

pointing away from the first, positively charged EP ligand (Figure 3.7). Although the 

BE (0.38 eV) is comparable to those for 2–1, 2–2, and 2–3, the electron donation to the 
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Al13 moiety is negligible (ΔΔQ = –0.04 e). These features suggest that attractive 

interaction between the two EP ligands is mainly due to the charge-dipole interaction. 

 

 

 

Figure 3.8. Structures of Al13(EP)2 optimized at B3LYP/6-31G(d). The bond lengths are in 

the unit of Å, and the numbers in parentheses represent the Mulliken charge of the EP 

ligands. Key: pink = Al; red = O; gray = C; blue = N; white = H. 
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 Figures 3.5 and 3.8 indicate that chemisorption is energetically the most 

preferable interaction for the first and second EP ligands. This trend further continued to 

the third EP ligand in Al13(EP)3. Figure 3.9 shows five optimized structures 3–1 to 3–5 

in which the third EP ligands are chemisorbed to different sites of two precursors 

Al13(EP)2 (2–1 and 2–2). Table 3.4 shows the BE and ΔQ of the five structures. 

Regardless of the coordination sites, the O–Al distances of the three EP ligands are in 

the range of 1.91–2.00 Å. The BEs of the third EP in 3–1 to 3–5 are in the range of 

0.33–0.50 eV with respect to the corresponding precursors (2–1 and 2–2), which are 

slightly smaller than those of the first and second EP ligands. The third EP ligand 

further increased the electronic charge of the Al13 moiety by ΔΔQ = –0.25 ~ –0.29 e. As 

a result, the total charge accumulated by the chemisorption of the three EP ligands 

amounts to almost –1 e. 

 

Table 3.3. Binding Energy and Charge Distribution of Al13(EP)2. 

structure 2–1 2–2 2–3 2–4 2–5 

BE (eV)a 0.68 0.65 0.53 0.38 0.04 

ΔQ (e)b –0.63 –0.65 –0.63 –0.40 –0.37 

ΔΔQ (e)c –0.27 –0.29 –0.27 –0.04 –0.01 
 

aBinding energy of EP with respect to 1–1. bGross Mulliken charge on the Al13 moiety. 
cIncrement of the gross Mulliken charge on the Al13 moiety with respect to that of 1–1 (–0.36 

e). 
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Figure 3.9. Structures of Al13(EP)3 optimized at B3LYP/6-31G(d). The bond lengths are in 

the unit of Å, and the numbers in parentheses represent the Mulliken charge of the EP 

ligands. Key: pink = Al; red = O; gray = C; blue = N; white = H. 
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 I also obtained structure 3–6 in which the third EP is bound to one of the EP 

ligands of 2–2 via charge-dipole interaction as can be seen in 2–4. Although the BE 

(0.41 eV) is comparable to those for chemisorption (0.33–0.50 eV) in the other five 

structures, the electron transfer to Al13 is negligibly small (ΔΔQ = –0.06 e). 

 It is interesting to see how the fourth EP ligand interacts with Al13(EP)3 after 

the Al13 moiety accepts ~1 e Mulliken charge from the three EP ligands. Among the ten 

possible combinations to coordinate four EP ligands on Al13 (Figure 3.10), I focused 

only on the structures obtained by binding the fourth EP to the most stable structure of 

Al13(EP)3 (3–5). As a result, four optimized structures were obtained as shown in Figure 

3.11. The BE and ΔQ of the four structures are listed in Table 3.5. In 4–2, 4–3, and 4–4, 

the fourth EP ligand further donates electronic charges (ΔΔQ = –0.18 ~ –0.24 e) to Al13 

via chemisorption (BEs = 0.14–0.35 eV). More importantly, the most stable structure 

Table 3.4. Binding Energy and Charge Distribution of Al13(EP)3. 

structure 3–1 3–2 3–3 3–4 3–5 3–6 

precursor 2–1 2–2 

ΔE (eV)a 0.01 0.01 0.09 0.13 0.00 0.09 

BE (eV)b 0.45 0.45 0.37 0.33 0.50 0.41 

ΔQ (e)c –0.89 –0.92 –0.90 –0.88 –0.92 –0.71 

ΔΔQ (e)d –0.26 –0.29 –0.27 –0.25 –0.27 –0.06 
 

aRelative stability of Al13(EP)3. bBinding energy of EP with respect to precursor. cGross 

Mulliken charge on the Al13 moiety. dIncrement of the gross Mulliken charge on the Al13 moiety 

with respect to that of precursor. 
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was 4–1 in which the fourth EP ligand is not chemisorbed on Al13 but is bound to one of 

the chemisorbed EP ligands with the BE of 0.38 eV as in the case of 2–4 and 3–6. As 

expected, the electronic charge is not transferred to Al13 from the fourth EP. 

 

 

 

 

Figure 3.10. Tree diagram of possible coordination sites of Al13(EP)n. Green balls indicate the 

atom bound to EP. 
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Figure 3.11. Structures of Al13(EP)4 optimized at B3LYP/6-31G(d). The bond lengths are in 

the unit of Å, and the numbers in parentheses represent the Mulliken charge of the EP ligands. 

Key: pink = Al; red = O; gray = C; blue = N; white = H. 
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3.3.3 Switchover of the bonding scheme in Al13(EP)n 

 As demonstrated above, the preferential bonding scheme of EP ligands 

changes from chemisorption to Al13 to bonding to another ligand via electrostatic 

interaction at the fourth EP. Figure 3.12 shows the energy diagram of stepwise ligation 

of Al13(EP)n. Black lines indicate the energy levels of Al13(EP)n with all the EP ligands 

chemisorbed to Al13, while green lines represent the energy levels of Al13(EP)n with one 

of the EP ligands weakly bound to another chemisorbed EP ligand. The incremental 

chemisorption energy of Al13(EP)n was calculated to be 1.1, 0.7, 0.5, and 0.35 eV for n 

= 1–4, respectively, from the energy difference between the most stable isomers (0, 1–1, 

2–1, 3–5, and 4–2). In contrast, the stepwise binding energy of EP toward the already 

chemisorbed EP in Al13(EP)n was calculated to be 0.38, 0.41, and 0.38 eV for n = 2–4, 

respectively, from the energy difference between the most stable isomers (1–1, 2–4, 3–6, 

and 4–1). The chemisorption energy monotonically decreased with n probably due to 

the gradual accumulation of the negative charge to the Al13 moiety, while the 

electrostatic interaction is nearly constant regardless of n. This trend in the binding 

Table 3.5. Binding Energy and Charge Distribution of Al13(EP)4. 

structure 4–1 4–2 4–3 4–4 

BE (eV)a 0.38 0.35 0.24 0.14 

ΔQ (e)b –0.96 –1.16 –1.15 –1.10 

ΔΔQ (e)c –0.04 –0.24 –0.23 –0.18 
 

aBinding energy of EP with respect to 3–5. bGross Mulliken charge on the Al13 moiety. 
cIncrement of the gross Mulliken charge on the Al13 moiety with respect to that of 3–5 (–0.92 

e). 
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energies is the major reason for this switchover of the bonding scheme. The switchover 

behavior observed here suggests that the maximum number of PVP that can be 

chemisorbed on metal clusters is determined not only by the steric repulsion between 

adjacent PVP but also by the electronic charge accumulated on the clusters. 

 

 

 

 

Figure 3.12. Energy diagram of stepwise ligation of Al13(EP)n. The horizontal lines in the 

upper panel and solid bars in the lower panel represent BE and ΔQ with respect to 0, 

respectively. Black color indicates that all the EP ligands are chemisorbed to Al13, while 

green color indicates that one of the EP ligands is weakly bound to another chemisorbed EP 

ligand.  
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3.3.4 Bonding interaction between Al13 and EP 

 In Figure 3.12, the gross Mulliken charges of Al13(EP)n are shown by vertical 

bars. It appears that the switchover of the bonding scheme occurs when the Mulliken 

charge reaches –1 e at Al13(EP)3, suggesting that this phenomenon is associated with 

closure of the electronic shell of the Al13 superatom in Al13(EP)3 (3–5). The electronic 

shell closure of the Al13 moiety in Al13(EP)3 is also suggested by the fact that the 

chemisorption energies of the fourth EP to Al13(EP)3 (3–5) (0.14–0.35 eV, Table 3.5) 

are comparable to that of EP to the electronically closed superatom Al13
– (0.23 eV, 

Table 3.6). In order to test this hypothesis, I examined the bonding interaction between 

EP and Al13. I first compared the shapes of SOMOs of Al13 and Al13(EP)1 (1–1) to see 

whether SOMO of Al13 and HOMO or LUMO of EP are involved in the bonding. As 

shown in Figures 3.13(a) and 3.13(b), the SOMOs of Al13(EP)1 and Al13 look similar in 

shape, indicating that interaction of frontier orbitals of Al13 and EP is small and not the 

origin of the bonding stabilization. I searched for MOs of Al13(EP)1 in which the 

electrons are distributed over the frameworks of Al13 and EP. Such analysis revealed 

that three sets of bonding and antibonding MOs are constructed from occupied 1S, 1P, 

and 1D orbitals of Al13 and occupied MOs of EP (Figure 3.14). Although both the 

bonding and antibonding MOs were fully occupied, the energy gained by occupation of 

bonding MOs was larger than the destabilization energy by occupation of antibonding 

MOs. Especially, the stabilization energies derived from 1S and 1D orbitals were larger 

than that from 1P. This is due to efficient overlap of the p orbital of the carbonyl O 

atom with the 1S or 1D superatomic orbital of Al13 (Figures 3.13(c) and 3.13(d)). 

Namely, electronic charge is formally transferred from PVP to Al13 through polarized 

Al–O bonding between EP and Al13 superatom. 
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(a) (b) (c) (d)

 
Figure 3.13. Shapes of SOMO of (a) Al13 (0) and (b) Al13(EP)1 (1–1) and bonding MOs of 

Al13(EP)1 (1–1) constructed by (c) 1S and (d) 1D superatomic orbitals of Al13. 

Table 3.6. Optimized Structure, Binding Energy, and Charge Distribution of Al13(EP)1
– at 

the Level of B3LYP/6-31G(d). The bond lengths are in the unit of Å and the numbers. Key: 

pink = Al; red = O; gray = C; blue = N; white = H. 

 1 2 

optimized 
structure 

  

BE (eV)a 0.23 0.15 

ΔQ (e)b –0.27 –0.01 

aBinding energy between EP and Al13
–. bGross Mulliken charge on the Al13 moiety. 
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Figure 3.14. Energy diagram of (a) Al13 (0), (b) Al13(EP)1 (1–1), and (c) EP. The solid and 

dotted lines represent occupied and unoccupied orbitals, respectively. (d) Bonding and 

antibonding MOs of Al13(EP)1 constructed by 1S, 1P, and 1D superatomic orbitals of Al13. 
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 I further examined spin density of Al13(EP)3 (3–5). The calculated spin 

density isosurface (Figure 3.15) is very similar to shapes of SOMOs of Al13(EP)3 and 

Al13(EP)1 (1–1) (Figure 3.13(b)). This result indicates that the superatomic orbital 1F of 

Al13 remains singly occupied even after chemisorption of three EP ligands. Namely, the 

electronic shell of Al13 is not closed although the EP ligands donate electronic charge. 

The above analysis implies that energy matching and efficient overlap between the 

relevant MO of the ligand and 1F superatomic orbital are required in order to fill up the 

superatomic orbitals of Al13 by ligation. 

 

 

 

3.4 Conclusion 

 I studied the structures of Al13(EP)n (n = 0–4) by DFT calculations to 

elucidate the bonding nature between PVP and Al13 and to explore the possibility that 

Al13 can be stabilized by closure of the electronic shells via ligation of PVP. The 

 

Figure 3.15. Spin density isosurface of Al13(EP)3 (3–5). 
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optimized structure of Al13(EP)1 indicated that the EP ligand is chemisorbed to the atop 

site of Al13 via the carbonyl O atom, while donating –0.36 e to the Al13 moiety. The 

stabilization is mainly due to bonding interaction between molecular orbitals of EP and 

the 1S or 1D superatomic orbital of Al13. The chemisorption to the Al13 moiety is 

energetically preferred up to three EP ligands, and the total charge accumulated in Al13 

reaches nearly –1 e in Al13(EP)3. The fourth EP ligand, however, prefers to be bound to 

one of the chemisorbed EP ligands via electrostatic interaction rather than to be 

chemisorbed on Al13. The switchover of the bonding scheme of EP at Al13(EP)4 

suggests that this phenomenon is associated with closure of the electronic shell of the 

Al13 moiety in Al13(EP)3. However, spin density analysis revealed that the superatomic 

orbital 1F of Al13 remains singly occupied even after chemisorption of three EP ligands. 

In conclusion, chemisorption of EP ligands to Al13 does not lead to the filling of the 

superatomic orbital 1F, but formally donates electronic charge through polarized Al–O 

bonding. 
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Concluding remarks 
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 To obtain a hint toward synthesis of superatomic Al13 based 

materials, I investigated two themes about Al13 contains clusters. In chapter 2, chemical 

reactions of Aln
– under high-pressure O2 were investigated to gain insights into the 

stability of Al13
– under atmospheric conditions. In chapter 3, interaction between 

open-shell Al13 with electron donating ligand with carbonyl group was studied by 

density functional theory (DFT) calculations to test the hypothesis that the electronic 

shell of Al13 can be closed by electron donation from ligands. In the followings, I 

summarize about each theme and describe about future prospects. 

 

4.1 Production of new aluminum oxide clusters having Al13 core 

 Aln
– were generated by laser vaporization and were allowed to pass through a 

cell in which O2 was filled. Compositions of the reaction products were determined by 

time-of-flight mass spectrometer. The reaction of Aln
– and O2 under a high-pressure 

condition yielded the previously unknown aluminum oxides Al14O– and Al15O2
–. 

Electronic and geometric structures of the new magic clusters, Al14O– and Al15O2
–, were 

studied by magnetic bottle-type photoelectron spectrometer and DFT calculations. The 

VDEs of Al14O– and Al15O2
– were determined to be 3.84 ± 0.02 and 3.88 ± 0.02 eV, 

respectively. DFT calculations at the B3LYP/6-31G(d) level predicted that the most 

stable isomeric structures Al14O– and Al15O2
– are composed of icosahedral Al13 and one 

or two OAl unit(s), respectively. The VDE values of these structures calculated (3.27 

and 3.28 eV, respectively) reproduced the experimental values. It is known that reaction 

of Aln
– (n ≥ 8) with O2 proceeds by releasing a highly stable fragment Al2O. In the 

framework of this reaction path, Al14O– and Al15O2
– correspond to intermediates of 

oxidative etching reactions of Al16
– and Al15

–, respectively. According to DFT 
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calculations, removal of an extra Al2O from Al14O– and Al15O2
– is endothermic by 1.78 

and 1.92 eV, respectively. The preferential formation of Al14O– and Al15O2
– was due to 

their high stability associated with the Al13 moiety and the efficient dissipation of 

reaction exothermicity by collisional cooling. 

 

4.2 Stabilization of Al13 by electron donating ligand 

 From the DFT calculations of structures of Al13 coordinated by ligand with 

carbonyl group, it was found that ligands with nitrogen atom or two carbon atoms next 

to carbonyl group could donate electron to Al13. Then the structures of Al13(EP)n (n = 

0–4) were extensively investigated to test the possibility that Al13 can be stabilized by 

closure of the electronic shells via ligation of PVP. The optimized structure of Al13(EP)1 

indicated that the EP ligand is chemisorbed to the atop site of Al13 via the carbonyl O 

atom, while donating –0.36 e to the Al13 moiety. The chemisorption to the Al13 moiety 

is energetically preferred up to three EP ligands and the total charge accumulated in 

Al13 reaches nearly –1 e in Al13(EP)3. The fourth EP ligand, however, prefers to be 

bound to one of the chemisorbed EP ligands via electrostatic interaction rather than to 

be chemisorbed on Al13. The switchover of the bonding scheme of EP at Al13(EP)4 

suggests that this phenomenon is associated with closure of the electronic shell of the 

Al13 moiety in Al13(EP)3. However, spin density analysis revealed that the superatomic 

orbital 1F of Al13 remains singly occupied even after chemisorption of three EP ligands. 

In conclusion, chemisorption of EP ligands to Al13 does not lead to the filling of the 

superatomic orbital 1F, but formally donates electronic charge through polarized Al–O 

bonding. 
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4.3 Future prospects on Al13-based materials 

 From the reaction under high pressure O2, it was found that Al13
–, Al14O–, and 

Al15O2
– showed high mass abundance. This result suggests that the icosahedral 

containing clusters prohibit further oxidative etching by O2. These cluster anions are 

expected to exist in the air without decomposition when the negative charges are kept 

on them. In addition, it is also expected that combustion of large aluminum clusters will 

terminate when these Al13-based clusters are obtained. Therefore, there is a possibility 

of size-focused synthesis of Al13-based materials by etching reaction in the air. For 

example, widely size distributed aluminum clusters that are generated in gas phase may 

be size-focused to Al13 containing clusters by exposing to the air. 

 DFT calculation about interaction between Al13 and ligand with carbonyl 

group revealed that Al13 could be stabilized by chemisorption of the ligands but its 

electronic shell was not closed. The reason seems that the overlap between frontier 

orbitals of Al13 and ligand is not efficiently. Then there is a possibility that other ligand 

that its frontier orbitals can strongly interact with those of Al13 may make the electronic 

shell of Al13 closed. 
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