2020-01-23T08:21:42Zhttps://repository.dl.itc.u-tokyo.ac.jp/?action=repository_oaipmhoai:repository.dl.itc.u-tokyo.ac.jp:000403762019-12-24T07:27:15Z00312:06865:07071:0707700009:00504:06868:07073:07078
$π_1$ of smooth points of a log del Pezzo surface is finite : Ienghttp://hdl.handle.net/2261/1589Departmental Bulletin PaperGurjar, R. V.A log del Pezzo surface is a normal projective surface $S$ defined over the field of complex numbers, such that $S$ has at most quotient singularities and $-K_S$ is ample, where $K_S$ denotes the canonical divisor. The main result of this work is the following theorem: \proclaimit{Theorem.}{Let $S$ be a log del Pezzo surface. Then the fundamental group of the space of smooth points of $S$ is finite.} We also give a quite precise description of the singularities of $S$ when $S$ has Picard group of rank 1.Journal of mathematical sciences, the University of Tokyo11137180199413405705AA11021653application/pdf415https://repository.dl.itc.u-tokyo.ac.jp/?action=repository_action_common_download&item_id=40376&item_no=1&attribute_id=19&file_no=1Graduate School of Mathematical Sciences, The University of Tokyo2017-06-14