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An associative memory retrieval in a pulse neural network composed of the FitzHugh-Nagumo
neurons is investigated. The memory is represented in the spatio-temporal �ring pattern of the
neurons, and the memory retrieval is accomplished using the uctuation in the system. The storage
capacity of the network is investigated numerically. It is demonstrated that this pulse neural net-
work is capable of an alternate retrieval of two patterns.
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I. INTRODUCTION

Recently, there is a considerable attraction of attentions to the associative memory in neural networks composed
of model neurons which change their dynamical states temporally, such as, chaotic neurons, oscillator neurons, or
spiking neurons [1{14]. They not only arouse the theoretical interests, but also may have a lot to do with the problem
of information coding in the brain [15].
Among them, numerous authors investigate the coupled phase oscillators [3{9], which are the general reduced

model of the coupled limit-cycle oscillators. All the neurons are oscillating with the almost same period, and the
memory is represented in the relative phase di�erences of oscillators, so they can store the analog-valued patterns.
And this model has an advantage that the usual techniques for the theoretical analysis of associative memory [16,17]
are applicable.
On the other hand, neural networks composed of spiking neurons also show the properties of associative memory

[11{13]. In those systems, following models are often used as spiking neurons, namely, the Hodgkin-Huxley equation
which describes the dynamics of squid giant axons, the FitzHugh-Nagumo equation which is the reduced model of
the Hodgkin-Huxley equation, or the leaky integrate-and-�re model which has the internal state described by a linear
di�erential equation and a spiking mechanism with a threshold. The couplings among those neurons are accompanied
with the time delay which models the time for a pulse to propagate on the axon from the pre-synaptic neuron to the
post-synaptic neuron, and the memory is represented in the spatio-temporal �ring pattern of the neurons.
Meanwhile, the physiological environment where neurons operate is thought to be highly noisy [18,19], so the e�ect of

the uctuation may not be neglected. Generally, stochastic resonance (SR) is a well-known phenomenon where a weak
input signal is enhanced by its background uctuation and observed in many nonlinear systems [20{22]. Particularly,
SR in a single neuron is well investigated by numerous researchers both experimentally [23,24] and theoretically
[25{31], and it is proposed that the biological sensory system may utilize SR to improve the sensitivity to the external
input signal. Recently, the e�ect of SR in spatially extended systems, or neural networks, is investigated, and some
new features are reported [32{34]. Concerning SR in the coupled FitzHugh-Nagumo equation, we proposed that the
background uctuation may play a functional role like a parameter of the dynamical system [34].
In the present paper, the associative memory composed of the FitzHugh-Nagumo neurons with the uctuation is

treated, and SR-like e�ects in this system are considered. In Sec. II, a coupled FitzHugh-Nagumo equation and
some quantities are de�ned. In Sec. III, the results of numerical simulations are presented. The memory retrieval by
adding the uctuation into the system and its dependence on the uctuation intensity are examined, and an SR-like
phenomenon is observed. The basin of the attraction and the storage capacity of the system are also investigated
numerically. In Sec. IV, theoretical analyses for the uctuation-induced memory retrieval are presented. In Sec. V,
the simultaneous retrieval of two patterns is observed as the alternate �rings of the particular neurons. Conclusions
and discussions are given in the last section.

II. ASSOCIATIVE MEMORY COMPOSED OF SPIKING NEURONS

In the following, as a model of associative memory, we treat a coupled FitzHugh-Nagumo (FN) equation written as
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� _ui = �vi + ui � u
3
i =3 + Ii(t) + �i(t) +

NX
j=1

Jij(uj(t� dp)� ueq); (1)

_vi = ui � �vi + ; (2)

h�i(t)�j(t
0)i = D�ij�(t� t

0); (3)

where � = 0:8,  = 0:7, � = 0:1, ueq = �1:2, dp = 3, ui and vi denote the internal states of the i-th neuron, Ii(t) is
the external input, �i(t) is the Gaussian white noise which represents the uctuation in the system. Note that a single
FN neuron shows the characteristic of the spiking neuron, namely, it has a stable rest state, and with an appropriate
amount of disturbance it generates a pulse with a characteristic magnitude of height and width, ueq is the equilibrium
value of ui for Ii(t) = 0, �i(t) = 0, and Jij = 0 (i; j = 1; 2; � � � ; N), and that dp is the uniform propagational time
delay.
Then let us make the above N neurons store p random patterns ��i (i = 1; 2; � � � ; N , � = 1; 2; � � � ; p), generated

according to the probability density function

P (��i ) = (1� a)�(��i ) + a�(��i � 1); (4)

where �(x) denotes the delta function and a (0 � a � 1) is the average of �
�

i . Following Yoshioka and Shiino [13], the
connection coe�cients Jij are de�ned as

Jij =
w

Na(1� a)

pX
�=1

�
�

i (�
�

j � a); (5)

where the parameter w scales the strength of Jij and is �xed at w = 0:15 in the following. Note that the matrix
Jij /

P
� �

�

i (�
�

j � a) is used instead of usual Jij /
P

�(�
�

i � a)(�
�

j � a) so as not to give the negative input to the

neurons which store 0's, because the FN neuron can �re even with the negative input due to the rebound e�ect [35].
The external input Ii(t) is de�ned as

Ii(t) = Ixi�(t) (xi 2 f0; 1g); (6)

where I is the strength of the external input, xi is the binary factor which determines whether the input is injected
to the i-th neuron or not, and �(t) is Heaviside's step function which takes 1 for t � 0 and otherwise takes 0. In the
following, I is �xed at I = 0:1, which is so small that each neuron can not �re without the uctuation �i(t). Using
the binary factor xi, the input-overlap m

�

in, which measures the correlation between the pattern �
� = (�

�
1 ; �

�
2 ; � � � ; �

�

N )
and the external input I(t) = (I1(t); I2(t); � � � ; IN (t)), is de�ned as

m
�

in =
1

Na(1� a)

NX
i=1

(�
�

i � a)(xi � a): (7)

III. FLUCTUATION-INDUCED MEMORY RETRIEVAL

Following the above con�gurations, numerical simulations are carried out for N = 200, p = 3, and a = 0:5. Without
loss of generality, the pattern �

1 can be de�ned as

�
1
i =

�
1 1 � i � 100
0 otherwise

; (8)

and the pattern �2 and �3 are determined randomly following the probability density function (4). The external input
is derived by determining the binary factors xi randomly so that the input-overlap m

1
in with the pattern �

1 takes 0:5.
A typical time series of u1(t) for the uctuation intensity D = 0:001 is shown in Fig. 1, where the uctuation around
ueq and the two �rings are observed.
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FIG. 1. A typical time series of u1(t) for N = 200, p = 3, a = 0:5, and D = 0:001. The uctuation around ueq and the two
�rings are observed.

To measure the correlation between the pattern �
� and the time series ui(t) (i = 1; 2; � � � ; N), ui(t) is transformed

into the binary series yi(t) 2 f0; 1g. Firstly, let us de�ne the �ring time of the i-th neuron as the time when ui(t)
exceeds an arbitrary threshold �, and we set � = 0 in the following. Then the time series ui(t) is transformed into the
binary series

yi(t) =

�
1 t < t

f

i + d

0 otherwise
; (9)

where t
f

i is the latest �ring time of i-th neuron at time t, and the parameter d is set close to the characteristic width
of the output pulse and d = 4 is used in the following. Then the output-overlap m

�
out between the pattern �

� and the
binary series y = (y1(t); y2(t); � � � ; yN (t)) is de�ned as

m
�
out =

1

Na(1� a)

NX
i=1

(��i � a)(yi � a): (10)

The �ring times of all the neurons for the uctuation intensity D = 0:001 are shown in Fig. 2 (a), and it is observed
that all the neurons are �ring randomly.
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FIG. 2. The result of numerical simulation, (a) the �ring times of all the neurons and (b) the output-overlap m
1

out with the
pattern �

1, for N = 200, p = 3, a = 0:5, and D = 0:001. All the neurons are �ring randomly, so the retrieval of the pattern �
1

fails.

The output-overlap m
1
out with the pattern �

1 obtained from the time series in Fig. 2 (a) is shown in Fig. 2 (b). It
is observed that m1

out uctuates around 0, so it can be concluded that the retrieval of the pattern �
1 fails.

The �ring times of all the neurons for D = 0:002 are shown in Fig. 3 (a).
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FIG. 3. The result of numerical simulation, (a) the �ring times of all the neurons and (b) the output-overlap m
1

out with the
pattern �

1, for N = 200, p = 3, a = 0:5, and D = 0:002. The retrieval of the pattern �
1 is successful.

It is observed that all the neurons seem to �re randomly at small t, but at t � 40, the neurons which store 1's for
the pattern �

1 start to �re periodically and synchronously. And in Fig. 3 (b), the output-overlap m
1
out increases to

about 0.8 at t � 40, so in this case the retrieval of the pattern �
1 is successful.

The results of the simulation for D = 0:004 are shown in Fig. 4.
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FIG. 4. The result of numerical simulation, (a) the �ring times of all the neurons and (b) the output-overlap m

1

out with the
pattern �

1, for N = 200, p = 3, a = 0:5, and D = 0:004. The neurons which store 0's for pattern �
1 �re with high �ring rates

due to the large uctuation intensity, so the output-overlap is lower than the case of D = 0:002.

The periodic and synchronous �rings are observed again, but the neurons which store 0's for pattern �
1 also �re

with high �ring rates due to the large uctuation intensity, so the output-overlap is lower than the case of D = 0:002.
In Fig. 5, the output-overlap m

1
out at a su�cient large t is plotted against the uctuation intensity D for the

input-overlap m
1
in = 0.8, 0.6, and 0.1.
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FIG. 5. The output-overlap m
1

out against the uctuation intensity D for m1

in = 0:8; 0:6, and 0:1 with N = 200, p = 3, and
a = 0:5. Stochastic resonance-like phenomenon is observed for m1

in = 0:8 and 0:6.

The other parameters are identical with the previous cases. For m1
in = 0:8 and 0:6, the output-overlap m

1
out

increases with the increase of the uctuation intensity D, and it decreases with the increase of D over the optimal
intensity D0 � 0:0015. This phenomenon is similar to so-called stochastic resonance, where a weak input signal is
enhanced by its background uctuation and observed in many nonlinear systems [20{22]. For m1

in = 0:1, the retrieval
of pattern �

1 fails for any value of D.
For the �xed uctuation intensity D = 0:002, the numerically obtained basin of attraction is shown as a function

of the loading rate � = p=N in Fig. 6.
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FIG. 6. The basin of attraction for N = 200, D = 0:002, and a = 0:5. The error bar denotes the standard deviation for ten
samples. The storage capacity is estimated to be about 0.02.

For each loading rate �, two points are plotted, namely, the upper is the equilibrium value of the output-overlap
m

1
out, and the lower is the minimum input-overlap m

1
in which gives the successful memory-retrieval. For � < 0:02,

the standard deviations shown by the error bars are relatively small, but for � � 0:02, they take larger values, that
is, the memory-retrieval states are destabilized. So it can be concluded that the storage capacity �c is about 0.02.
For further discussions, theoretical analyses of the associative memory [16,17] are needed.

IV. THEORETICAL ANALYSIS OF FLUCTUATION-INDUCED MEMORY RETRIEVAL

A. Fluctuation-induced memory retrieval

In this section, we give the qualitative explanation for the uctuation-induced memory retrieval. In the following,
the system with p = 1 is considered for simplicity. Let us de�ne the set of indices of neurons which store 0's in the
pattern �

� = (�
�

1 ; �
�

2 ; � � � ; �
�

N ) as G
�(0), and the set of indices of neurons which store 1's in the pattern �

� as G�(1).
The input Ki injected to the i-th neuron is written as

Ki = �i for i 2 G
1(0); (11)

Ki =
w

Na(1� a)

NX
j=1

(�1j � a)(uj � ueq) + I + �i; (12)

=
w

Na(1� a)

0
@ X
j2G1(0)

(�1j � a)(uj � ueq) +
X

j2G1(1)

(�1j � a)(uj � ueq)

1
A+ I + �i; (13)

= w

0
@� 1

N(1� a)

X
j2G1(0)

(uj � ueq) +
1

Na

X
j2G1(1)

(uj � ueq)

1
A+ I + �i; (14)

= w
�
�huj � ueqij2G1(0) + huj � ueqij2G1(1)

�
+ I + �i for i 2 G

1(1); (15)

where h�ij2A denotes the ensemble average over the set A. Note that the external input I(t) is injected only to the
neurons in G1(1) for simplicity. Because noises for di�erent neurons are statistically independent, the neurons in G1(0)
�re randomly and independently. On the other hand, the neurons in G1(1) have the common input whuj�ueqij2G1(1),
so their �rings may be correlative each other. In the following, we treat this dynamics.
Let us consider an ensemble of N neurons with the uniform coupling term whuj(t � dp) � ueqij and the external

input I+�i, namely, Eqs. (1) and (2) with Jij = w=N and Ii(t) = I . Note that this model approximates the dynamics
of neurons in G

1(1), and that the term huj � ueqij2G1(0) in Eq. (15) is neglected for simplicity. Then let us consider
the number of neurons which �re in the narrow time interval [t; t +�] and denote it by Nzn. If an output pulse of
FN neuron has width d and height M , the perturbation with width � d and height � wMzn is injected to all the
neurons with the delay dp. Let us denote the number of neurons which �re with this perturbation in the time interval
[t+ dp; t + dp +�] by Nzn+1, and assume the relation zn+1 = g(zn). If the FN neuron acts like a threshold device
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with the threshold I0, g(zn) for noise intensity D = 0 is a step function which takes 1 for wMzn + I � I0 and takes
0 otherwise. It is di�cult to derive g(zn) for D 6= 0, but it is expected to be a monotonic increase function of zn.
Numerically obtained g(zn) for D = 0:0005, 0:001, and 0:0012 with N = 100 and I = 0:1 is plotted in Fig. 7.
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FIG. 7. Numerically obtained g(zn) for D=0.0005, 0.001, and 0.0012 with N = 100 and I = 0:1. A saddle-node bifurcation
at D � 0:001 is observed.

The width � of time interval is set at the same size with d of output pulse. It is observed that the number of
intersecting points of y = g(z) with y = z is 3 for D < D0 � 0:001, and 1 for D > D0, the intersecting point z � 1 is
always stable for any D, and that the other intersecting points are generated by a saddle-node bifurcation at D = D0.
The schematic diagram is shown in Fig. 8.

z
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D<D0

D=D0

D>D0

FIG. 8. Schematic diagram of bifurcation of g(z).

Thus, for D > D0, any zn converges to the stable �xed point zn � 1, which means that all the neurons �re
synchronously and periodically with the period dp for D > D0.

B. The dependence of mout on D

In this section, the dependence of mout on D is investigated for D > D0. Assume that the neurons in G
1(1) �re

synchronously and periodically with the period dp and that the neurons in G
1(0) are �ring randomly with �ring rate

depending on D as rG0 = r0 exp(�C=D), where r0 and C are constants. Note that this �ring rate is the inverse of
the �rst passage time for a particle in a double well potential to cross the potential barrier [36], and introduced only
for simplicity.
The distribution of the ratio k of the neurons in G

0(0) which �re in a time interval of width d, and its average hki
are written as
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P (k) = N(1�a)CN(1�a)k(1� exp(�rG0d))
N(1�a)k(exp(�rG0d))

N(1�a)(1�k)
; (16)

hki = 1� exp(�rG0d): (17)

With hki, mout is approximately given by

m
1
out =

1

Na(1� a)

X
i

(�1i � a)(yi � a); (18)

=
1

Na(1� a)
((1� a)(1� a)Na+ (�a)(1� a)N(1� a)hki

+(�a)(�a)N(1� a)(1� hki)); (19)

= exp

�
�r0d exp

�
�

C

D

��
: (20)

Note that Eq. (20) decreases monotonically with the increase of D. This gives the quantitative description of the
decrease of mout for D � D0.

V. ALTERNATE RETRIEVAL OF TWO PATTERNS

In our network, the memory is represented by the synchronized periodic �rings of the neurons which store 1's, and
this period is determined by the propagational time delay dp. So the system has a large degree of freedom along the
time axis for the large dp, that is, during the time between the �rings by one pattern, the system can retrieve other
patterns, in other words, this system can process some \tasks" simultaneously.
To see this ability, numerical simulations are performed for N = 200, p = 3, a = 0:5, and dp = 6:5. Note that the

propagational time delay dp is about twice as long as dp = 3 used in above sections. For simplicity, the pattern �
1

and �
2 are de�ned as

�
1
i=

�
1 1 � i � 100
0 otherwise

; (21)

�
2
i=

�
1 51 � i � 150
0 otherwise

; (22)

respectively, and the pattern �
3 is determined randomly following the probability density function (4). The external

input I(t) is de�ned so that the binary factor xi su�ces

xi=

�
1 51 � i � 100
0 otherwise

: (23)

Note that both input-overlaps m1
out and m

2
out take 0.5.

For the uctuation intensity D = 0:001, the �ring times of all the neurons and the output-overlaps m1
out and m

2
out

are plotted in Fig. 9 (a) and Fig. 9 (b) respectively.
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FIG. 9. The results of numerical simulation, (a) the �ring times and (b) the output-overlaps, for N = 200, p = 3, a = 0:5,
D = 0:001, and dp = 6:5. The retrievals of both pattern �

1 and pattern �
2 fail.

It is observed that the retrievals of both pattern �
1 and pattern �

2 fail with this uctuation intensity.
The �ring times of all the neurons for the uctuation intensity D = 0:002 are plotted in Fig. 10 (a).
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FIG. 10. The results of numerical simulation, (a) the �ring times and (b) the output-overlaps, for N = 200, p = 3, a = 0:5,
D = 0:002, and dp = 6:5. The alternate retrieval of two patterns is observed as the anti-phase oscillations of two output-overlaps.

It is shown that the two patterns �1 and �
2 are retrieved alternatively, accompanied with the time di�erence dp=2.

The output-overlaps m1
out and m

2
out derived from the data in Fig. 10 (a) are shown in Fig. 10 (b). The alternate

retrieval of two patterns is observed as the anti-phase oscillations of two output-overlaps.
The results of the numerical simulation for D = 0:004 are shown in Fig. 11.
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FIG. 11. The results of numerical simulation, (a) the �ring times and (b) the output-overlaps, for N = 200, p = 3, a = 0:5,
D = 0:004, and dp = 6:5. All the neurons are �ring with high �ring rates, so the retrievals of both pattern �

1 and pattern �
2

fail.

In Fig. 11 (a), it is observed that all the neurons are �ring with high �ring rates, so the retrievals of both pattern
�
1 and pattern �

2 fail as in Fig. 11 (b).
From above results, it can be concluded that our system has an ability to retrieve two patterns simultaneously

as the alternate �rings of particular neurons, and the uctuation intensity D plays a signi�cant role to realize this
dynamics.

VI. CONCLUSIONS AND DISCUSSIONS

The associative memory in a pulse neural network composed of the FitzHugh-Nagumo neurons with the propaga-
tional time delay is investigated. In this network, the memory is represented by the synchronous periodic �rings of
the particular neurons. It is found that the memory retrieval in this system is achieved by adding the uctuation,
and there exists an optimal uctuation intensity for the memory retrieval. This phenomenon is similar to so-called
stochastic resonance (SR), where the weak input signal is enhanced by its background uctuation. Though there is no
time-dependent input in our model, the mechanism of associative memory is driven and enhanced by its background
uctuation. The basin of attraction of this system is investigated numerically, and its storage capacity is found to
be �c � 0:02. Note that this storage capacity is smaller than those of previous models, for example, 0.138 for the
Hop�eld model [37], and 0.038 for the coupled phase oscillators [38]. But our network has an ability that the previous
models do not have, that is, an ability to retrieve two patterns as the alternate �rings of the particular neurons. While
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such dynamics as utilizes the degree of freedom along the time axis is proposed by Wang et al. for the network of
bursting neurons [14], our model has the properties that the component of the memory is the single pulse of each
neuron, and that the uctuation in the system is indispensable.
As for the uctuation in the neural system, SR in a single neuron is often investigated, and it is proposed that

the sensory system may utilize SR in order to improve the sensitivity to the external input. Our results show that
the uctuation can play more functional role in higher order dynamics in the brain, like the memory retrieval in the
associative memory. Though Collins et al. propose that the regulating of the uctuation intensity is not required for
the network of large number of neurons [33], but in our dynamics, it is required to regulate the uctuation intensity
to the optimal intensity (see Fig. 5). It might be di�cult to regulate the uctuation intensity if the uctuation in
our model is considered to be the thermal noise in the neural system, but that might be naturally performed if the
uctuation in our system represents the sum of enormous pulses from the pre-synaptic neurons [29{31]. In such case,
the dynamics of the system might be controlled by its background uctuation [34].
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