2008 年度 修士論文

窓ガラスの音響透過損失に関する数値解析 板振動場における周辺支持部のモデル化について

Numerical analysis of sound transmission loss of glass pane Study on modeling of edge support system of plate vibration field

江川 健一

Kenichi, Egawa

2009 年 1 月 26 日

東京大学大学院新領域創成科学研究科

社会文化環境学専攻

目次

第1章	序論・・	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 1	
1.1	研究の背景・	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 1	
1.2	既往関連論文	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 3	
1.2	研究の目的・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 4	
1.3	本論文の構成	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 4	

第	2 章		音場	・板	版	動場	数	値	解	析	\mathcal{O}_{i}	基	礎	理	論	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 7	
2	2.1	はじ	じめに	•••	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 7	
2	2.2	音場	の数	値解	郁.	理論	ì•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 7	
	2.2.1	l	音場	の基	礎	方程	式	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 7	
	2.2.2	2	境界	要素	法	こよ	る	音	場	の	定	式/	ſŁ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 8	
2	2.3	板振	動場	の理	論	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 1	1
	2.3.1	l	板振	動場	すのえ	基礎	方	程	式	の	導	出	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 1	1
	2.3.2	2	板振	動場	りの	竟界	·条	件	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 1	4
	2.3.3	3	有限	要素	法	こよ	る	定	式	化	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 1	6
2	2.4	音響	振動	連成	(系)	の定	式	化	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 2	2

第3	章	入射	条件	・解	術	司涉	支娄	tσ)診	と定	ΞlC]関	目す	- 7	5枪	清	ł	•	•	•	•	•	•	•	•	•	•	•	•	•	• 23
3.1	は	はじめん	. • ۲	••	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 23
3.2	入	、射条(牛に艮	目する	る検	討	は	じる	め	に	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 23
3	.2.1	解相	折モラ	デル	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 23
3	.2.2	透ì	過損り	长計 算	算 ▪	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 24
3	.2.3	解相	沂対象	良・	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 25
3	.2.4	結果	果と孝	专察	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 26
3.3	解	解析周波	皮数に	こ関う	する	検	討	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 26
3	.3.1	1/3	オク	ター	ーブ	帯	或值	直0	り貨	〕 上	出注	去	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 26
3	.3.2	結果	果と孝	专察	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 27
3.4	ま	ミとめ	•••	••	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 29

4.1	はし	じめに・	•••	•••	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 31
4.2	窓た	ブラスの	周辺っ	友持	部の	のモ	デ	ル	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 31
4.2.	1	T モテ	ジル	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 32
4.2.2	2	TR モ	デル	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 33
4.2.	3	TRM	モデル	. •	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 33
4.2.4	4	T _c RM	モデル	. •	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 35
4.3	板の	ワインビ	ーダン	ノス	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 37
4.4	板站	#部のエ	ネルミ	ギー	吸山	又率	<u> </u>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 38
4.5	周辺	1支持部	のエジ	ネル	ギー	一揁]失	:に	関	す	る	検	討	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 40
4.5.	1	パラメ	ータの	D設	定		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 40
4.5.	2	結果と	考察	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 42
4.6	まと	: & · ·	••	•••	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 52

第5章	ţ	端部打	員失る	を反	こ映	:L	たう	亡約日常	野辽	痿让	哥指] 4	÷7	を浿	則値	国に	2関	す	-7	枋	清	ł	•	•	•	•	•	•	•	•	• 53
5.1	はじ	めに	••	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 53
5.2	集中	バネ	モデ	シル	• 3	単性	È連	続	体	モ	デ	ル	に	関	す	る	考	察	•	•	•	•	•	•	•	•	•	•	•	•	• 53
5.2.1	l	解析	手法	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 53
5.2.2	2	解析	対象	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 53
5.2.3	3	結果	:と考	察	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 54
5.3	音響	透過	損失	子	则,	式と	<u>උ</u>	比	較	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 57
5.3.1	l	音響	透過	損;	失け	のう	ら測]	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 57
5.3.2	2	結果	:と考	察	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 57
5.4	実測	値と	の比	較	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 66
5.4.1	l	模型	実験	の	斑	要,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 66
5.4.2	2	結果	と考	察	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 67
5.5	まと	め・	• •	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 77

参考文献

謝辞

付録 A 修士論文要旨

付録 B 学会発表論文

第1章

序論

1.1 研究の背景

近年、都市部において六本木ヒルズに代表される超高層ビルや集合住宅の建設が進ん でおり、今後もこの傾向は継続されると思われる。居住者は住環境の利便性・安全性・保 健性に加え、眺望の良さ等の快適性を好む傾向がある。しかし都市部においては居住空間 と外部騒音の高い環境が隣接することが多い。そこで建築物の遮音性能向上が快適な住環 境を得る上での重要な条件となってきており外部騒音を遮断するための遮音設計が重要に なってくる。遮音設計に関して、日本建築学会環境工学委員会音環境小委員会は外周壁の 遮音設計予測フロー [1] を提示している。

建築物の遮音性能で特に空気伝搬音による建築物の遮音性能は窓の性能によるところが 大きいといえる。こうした建築物の部位性能の評価方法は実験的手法と数値解析手法に大 きく二分される。共に長短があるため、ケースに応じて適切な使い分けが必要である。

実験による手法は、1930年代以前は基準となる音源と測定する音を耳で聴いて比較した りするなど、文字通り、音の測定からはじまった。しかし、1930年代にメータで騒音レベ ルを読み取る支持騒音計が登場してから目覚しく進歩を遂げ、今では測定器と測定方法を 記したマニュアルさえあれば、どんな測定でも可能となる時代が近づきつつある[2]。

窓ガラスの遮音性能測定に関する実験的手法としては JIS A 1416: 2000 で厳密に規定され ている「実験室における建築部材の空気音遮断性能の測定方法」がある [3]。この手法は ISO 140-1,3 に整合されて改訂されている [4]。JIS A 1416: 2000 は壁、床、ドア、窓、外周壁部 材、外周壁等の建築部材の空気音遮音性能を実験室で測定することを目的としたものであ り、窓ガラスの性能判断の拠り所となる遮音性能測定方法として一般的に用いられている。

しかしこの方法に即して、均質で一様な厚さの材料で測定したにもかかわらず、公表され る音響透過損失の測定結果が測定ごとに一致するものではないといわれている。その原因 としては実験室である残響室の影響や板サイズの影響など様々な要因が考えられるものの、 どのように影響を及ぼしているかわかっていないのが現状である。この影響の解明のため、 パラメトリックスタディによる検討が考えられるが、実験室実験

法では大掛かりな設備が必要になること、設定の変更が容易ではないこと、コストがかか るなど様々な問題点がある。 第1章 序論

一方、数値解析手法では、解析精度への信頼が不十分なことやソフトウェアのブラック ボックス化などの欠点はあるものの、パラメトリックスタディが容易に行えることや、大 規模な実験設備・実験コストが不要なこと、改修計画の検討に再利用が可能など様々な利 点を有している。これらの理由から数値シミュレーションは有用である。

数値解析手法は音の波動性を無視した幾何音響的手法と音場の波動方程式に基づく波動 音響的手法に大別される。幾何音響的手法は、虚像法 (Image Source Method) や 音線法 (Ray Tracing Method)、改良手法 (Backtracing, Cone Tracing, Beam Tracing) 等に代表される。 この手法の特徴は、音の波動性を無視し、エネルギーの伝搬を幾何学的に取り扱っている ことである。波動音響手法と比較すると厳密性には欠けるものの、計算コストの削減によ りコンサートホールなどの大規模音場の音響設計等に有効である。しかし解析精度に限界 があるのがこの手法の欠点である。

波動音響的手法は、有限差分法 (Finite Difference Method : FDM)、有限要素法 (Finite Element Method : FEM)、境界要素法 (Boundary Element Method : BEM)等に代表される。いず れも理論的に音の波動性を考慮しており、空間領域・時間領域・周波数領域において高精 度の解析が可能である。しかし FDM では境界形状・境界条件の取り扱いに注意が必要な こと、FEM では計算コストが大きいこと、BEM では特異積分や外部問題における解の一 意性への注意が必要なこと等、各手法は未だ改良の余地があり実用化の域には達していな い。

実際の音響透過現象は、(1) 音源室の音場条件と壁体への入射条件、(2) 音波が入射する 壁体のサイズや剛性等の物性値、(3) 間柱等壁体の支持条件、(4) 周辺支持部でのエネルギ 一損失、(5) 受音室の音場条件等に影響を受ける極めて複雑な現象である。また音波の入射 による板振動場から放射の影響など考慮すべき事項は多々あるが、その中でも周辺支持部 でのエネルギー損失が音響透過損失に及ぼす影響は大きい。

そこでこうした複雑な現象を解明し多様な部材への適用可能性の観点から、佐久間ら [5, 16] は離散系波動解析に基づく手法の構築を行っている。そこでは部材の振動系について は有限要素法を、音響系には境界要素法を適用し連成させ、透過損失予測値を求める手法 が提案されている。しかしこの手法による検討では簡易化のため、境界条件として固定・ 単純支持を仮定し、端部損失は板の内部損失を反映させていた。しかしながら、実際に用 いられるパテやシリコン等で支持された窓ガラスの音響透過現象を模擬するには、上述し たように周辺支持部に板振動により生じる振動のエネルギー損失を適切に組み込んだモデ ル化が不可欠である。その上で周辺支持部の端部損失を適切に評価する必要がある。

2

<u>第1章</u>序論

1.2 既往関連研究

前節では研究の背景から音場の評価における実験的手法・数値解析手法の概要とそれぞ れの遮音性能測定・または予測手法について述べた。また音響透過損失予測において周辺 支持条件を考慮することの重要性について言及した。ここでは窓ガラスの遮音性能また板 ガラスの端部損失について取り扱った既往の研究について整理する。

窓ガラスの遮音性能に関する研究は数多く行われている。実験室におけるガラスの音響 透過損失の測定に関する研究としては、吉村ら [6, 7, 8] が周辺支持部でのエネルギー吸収 について、パテ・シリコン・ガスケット支持を用いて評価を行っている。

壁体部材の遮音性能予測に関する研究では、SEA 法[9] やモード展開法 [10] による研究 が行われている。SEA 法を用いた研究としては黒木 [9] が SEA 法を用いて単層壁の遮音 性能の解析を行っている。またモード展開法による研究としては川井 [10] が平面波が垂直 に入射した場合の円形板の遮音気候を振動している板への媒質の反作用力及び内部損失を も考慮して解析を行っている。また大鶴ら [29]は、有限要素法を用いて板の遮音特性を求 める研究をしている。真田ら [30] は音響透過損失値に及ぼす試料サイズの影響について、 入射条件を考慮して検討を行っている。Roman Vinokur [31] や Bong-Ki Kim [32]はニッシェ 効果に着目した研究を行っている。A. Osipov ら [33] は低周波の空気音伝搬について音場 入射透過損失を用いて検討を行っている。

板の端部損失に関する研究としては、実験的手法としては吉村らがガラス自身の内部損 失及び周端損失を含む試料の総合損失を実験的に把握し、任意のガラスサイズ及び端部損 失におけるこれらの影響を把握する方法について検討をしている [6,7,8]。またガラスの支 持条件に試料周端での損失係数から吸収係数 (= エネルギー吸収率) [11] を求め検討を行 っている。数値解析手法としては黒木ら [12,13] が SEA 法に残響室で測定した損失係数を 反映させた解析を行っている。周辺支持部における損失の定量化として周辺吸収率を算出 しているが、この際周辺支持部で用いている釘内支持は再現性が困難であるという問題が ある。また朝倉ら [14,15] が FDTD 法を用いてガラスの端部損失を反映させた音響振動連 成解析を行っているが、端部損失を考慮する際に与える係数は実測されたエネルギー吸収 率から算出しているためパラメトリックスタディが困難な点など課題も多い。 第1章 序論

1.3 研究の目的

以上のような背景、既往研究を踏まえ、本論文の目的を以下のように設定する。

1) 窓ガラスを想定した音響透過損失の予測手法において、板振動場における周辺支持部の 適切なモデル化を行うこと

2)既往の実測値[1]との比較により、周辺支持部のモデル化の妥当性を検証すること
3)ケーススタディを通して、周辺支持部のエネルギー損失の挙動を把握し、これに関する
知見を得ること

1.4 本論文の構成

第1章では研究の背景、既往関連論文を概観し、本研究の位置付け及び目的を述べる。 また、本論文の構成を示す。

第2章では、遮音性能数値解析手法を具体的に構築する。はじめに音場の基礎方程式について述べ、境界要素法 (BEM) による音場の定式化を行う。また板振動場には有限要素法 (FEM) を適用し、これらを連成させ、音響振動連成場の数値解析アルゴリズムを構築する。

第3章では、1/3オクターブ帯域音響透過損失値を離散系波動解析に基づいて計算する 上で問題となる音波入射条件の設定及び解析周波数の設定について検討を行う。

第4章では板ガラスの周辺支持部のエネルギー損失について考察を行う。周辺支持部の モデル化を行い、拡散振動場における端部のエネルギー損失について理論的に考察を行う。

第5章では前章で構築したモデルを用いた音響振動連成数値解析を行い、得られた透過 損失値について理論値・実測値との比較検討を行い、端部損失に関する知見を得る。

第6章は総括であり、本論文の成果、及び今後の課題について述べる。

Fig. 1.1. Flow chart of this thesis.

第2章

音場・板振動場数値解析の基礎理論

2.1 はじめに

本章では、本論文において用いる数値解析手法について述べる。音場解析には境界要素 法、板振動場には有限要素法を適用し、それらを連成させることにより、音響振動連成場 の解析を行う。

2.2 音場の数値解析理論

2.2.1 音場の基礎方程式

空気が均質かつ粘性が無いものと仮定する。空気中を伝播する音波は以下のような連続 の式と運動方程式が成り立つ。

$$k_0 \frac{\partial P}{\partial t} + \nabla \mathbf{V} = 0 \tag{2.1}$$

$$\rho_0 \frac{\partial \mathbf{V}}{\partial t} + \nabla P = 0 \tag{2.2}$$

但し、P: 音圧、V: 粒子速度ベクトル、 ρ_0 : 空気密度、 k_0 : 体積弾性率. これより、音圧Pに関して以下の波動方程式が成り立つ。

$$\nabla^2 P - \frac{1}{c_0^2} \frac{\partial^2 P}{\partial t^2} = 0$$
(2.3)

ここで時間因子を $e^{j\omega}$ として調和振動を仮定する。音圧は $P = p(\mathbf{r})e^{j\omega}$ であり、次の Helmholtz 方程式が得られる。

$$\nabla^2 P + k_0^2 P = 0 \tag{2.4}$$

但し、 $k_0 = \omega/c_0 = 2\pi f/c_0 = 2\pi/\lambda$: 波数、 ω : 角周波数、f: 周波数、 λ : 波長.

2.2.2 境界要素法による音場の定式化

音場の境界条件

図 2.1 に示すような、滑らかな境界面 Γ を持つ 3 次元音場を想定する。境界は、剛壁境 界 Γ_0 、振動境界 Γ_1 、吸音境界 Γ_2 の 3 種類からなるものとする。粒子速度に関しても音圧と 同様に調和振動を仮定すると、 $\mathbf{V} = \mathbf{v}(\mathbf{r})e^{j\omega}$ となり、式 (2.2) より、pと \mathbf{v} の関係は次式で表 される。

$$\nabla P = -j\omega\rho_0 \mathbf{v} \tag{2.5}$$

各々の境界では局所作用が成り立つものと仮定する。式 (2.5) より、各種境界では次の境界 条件が成り立つものとする。

$$\frac{\partial p(\mathbf{r}_{q})}{\partial n_{q}} = 0 \qquad q \in \Gamma_{0}$$
(2.6)

$$\frac{\partial p(\mathbf{r}_{q})}{\partial n_{q}} = j\omega \rho_{0} v(\mathbf{r}_{q}) \qquad q \in \Gamma_{1}$$
(2.7)

$$\frac{\partial p(\mathbf{r}_{q})}{\partial \mathbf{n}_{q}} = -jk \frac{p(\mathbf{r}_{q})}{z(\mathbf{r}_{q})} \qquad q \in \Gamma_{2}$$
(2.8)

但し、 $\partial/\partial n_q$:点 qにおける境界面外向きの法線方向微分、v:内向き法線方向振動速度、z:境界面外向き比音響インピーダンス.

以上の式において、剛壁境界および振動境界は Neumann 型境界条件 (第 2 種境界条件)、 吸音境界は Robin 型境界条件 (第 3 種境界条件) である。

Kirchhoff-Helmholtz 積分方程式に基づくマトリクス方程式の導出

式 (2.4) に重み関数 G をかけて音場領域 Ω で積分し、さらに Green の定理を適用する と、以下の Kirchhoff-Helmholtz 積分方程式が得られる。

$$\alpha p(\mathbf{r}_{p}) + \iint_{\Gamma} \left[p(\mathbf{r}_{q}) \frac{\partial G(\mathbf{r}_{p}, \mathbf{r}_{q})}{\partial n_{q}} - \frac{\partial p(\mathbf{r}_{q})}{\partial n_{q}} G(\mathbf{r}_{p}, \mathbf{r}_{q}) \right] dS = 0$$
(2.9)

但し、 α : 受音点 p から音場領域 Ω を見込む角度の全方位 4π に対する割合、 \mathbf{r}_p : 受音点 p の位置のベクトル、 \mathbf{r}_q : 境界上の点 q の位置のベクトル、 $\partial/\partial \mathbf{n}$: 境界面外向き法線方向微分.

ここで G は基本解と呼ばれるもので、以下の式の解である。

$$\nabla^2 G + k_0^2 G = -\delta \left(\mathbf{r}_{\rm p} - \mathbf{r}_{\rm q} \right) \tag{2.10}$$

Fig.2.1: Illustration of a sound field with three kind of boundary.

Fig.2.2: Illustration of an interpolation function.

基本解及びその法線方向微分は 3 次元空間では以下のように表される。

$$G(\mathbf{r}_{\rm p}, \mathbf{r}_{\rm q}) = \frac{e^{-jk_0r}}{4\pi r}$$
(2.11)

$$\frac{\partial G(\mathbf{r}_{p},\mathbf{r}_{q})}{\partial \mathbf{n}_{q}} = -\frac{(1+jk_{0}r)e^{-jk_{0}r}}{4\pi r^{2}}\cos(\mathbf{n}_{q},\mathbf{r}_{pq})$$
(2.12)

但し、 $r = |\mathbf{r}_{pq}|$ 、 $\mathbf{r}_{pq} = \mathbf{r}_{q} - \mathbf{r}_{p}$ 、 $\cos(\mathbf{n}_{q}, \mathbf{r}_{pq}) = \mathbf{n}_{q} \cdot \mathbf{r}_{pq}/|\mathbf{n}_{q}||\mathbf{r}_{pq}|$.

解析対象とする 3 次元音場が 3 次元 Helmholtz 方程式を満たす場合、音圧に関する Kirchhoff-Helmholtz 積分方程式が境界上の点 $p(\alpha = 1/2)$ についてのように成り立つ。

$$\alpha p(\mathbf{r}_{p}) + \iint_{\Gamma} \left[p(\mathbf{r}_{q}) \frac{\partial G(\mathbf{r}_{p}, \mathbf{r}_{q})}{\partial n_{q}} - \frac{\partial p(\mathbf{r}_{q})}{\partial n_{q}} G(\mathbf{r}_{p}, \mathbf{r}_{q}) \right] dS = p_{D}(\mathbf{r}_{p}, \mathbf{r}_{s})$$
(2.13)

但し、
$$p_{\rm D}$$
: 音源からの寄与.
また $p_{\rm D}$ が点音源の場合には、次式で表される。
 $p_{\rm D}(\mathbf{r}_{\rm p},\mathbf{r}_{\rm s}) = j\omega\rho_0 QG(\mathbf{r}_{\rm p},\mathbf{r}_{\rm s})$ (2.14)

但し、Q: 点音源の体積速度.

式 (2.13) に境界条件として式 (2.6, 2.7, 2.8) を代入すると次式が得られる。

$$\alpha p(\mathbf{r}_{p}) + \iint_{\Gamma} p(\mathbf{r}_{q}) \frac{\partial G(\mathbf{r}_{p}, \mathbf{r}_{q})}{\partial \mathbf{n}_{q}} dS + jk_{0} \iint_{\Gamma_{2}} \frac{p(\mathbf{r}_{q})}{z(\mathbf{r}_{q})} G(\mathbf{r}_{p}, \mathbf{r}_{q}) dS = j \omega \rho_{0} \iint_{\Gamma_{1}} \nu(\mathbf{r}_{q}) G(\mathbf{r}_{p}, \mathbf{r}_{q}) dS + p_{D}(\mathbf{r}_{p}, \mathbf{r}_{s})$$
(2.15)

ここで音場境界を図 2.2 のように有限個の境界要素に分割し、境界要素内には節点を設定 する。また対応する節点においては関数値 1 、それ以外の接点では関数値 0 をとる内挿 関数 N を導入すると、境界上の任意の点における音圧と振動速度は以下の式で近似され る。

$$p(\mathbf{r}_{q}) = \sum_{j=1}^{n} N_{j}(\mathbf{r}_{q}) p_{j}$$
(2.16)

$$vp(\mathbf{r}_{q}) = \sum_{j=1}^{n} N_{j}(\mathbf{r}_{q})v_{j}$$
(2.17)

但し、n:総節点数、 N_i : 節点 jの内挿関数、 p_i :節点音圧、 v_i : 節点振動速度.

比音響インピーダンスは要素内で一定として、式 (2.15) を離散化すると、最終的に以下の マトリクス方程式が得られる。

$$(\mathbf{A} + jk_0\mathbf{B}_2) \cdot \mathbf{p} = j\omega\rho_0\mathbf{B}_1 \cdot \mathbf{v} + \mathbf{d}$$
(2.18)

但し、**p**:節点音圧ベクトル、**v**:節点振動速度ベクトル、**d**:直接音ベクトル. 各行列および直接音ベクトルの成分は以下の式により表される。

$$A_{ij} = \frac{1}{2} \delta_{ij} + \iint_{\Gamma} N_j \left(\mathbf{r}_q \right) \frac{\partial G(\mathbf{r}_i, \mathbf{r}_q)}{\partial n_q} dS$$
(2.19)

$$B_{1_{ij}} = \iint_{\Gamma_1} N_j (\mathbf{r}_q) G(\mathbf{r}_i, \mathbf{r}_q) dS$$
(2.20)

$$B_{2ij} = \iint_{\Gamma^2} \frac{1}{z(\mathbf{r}_q)} N_j(\mathbf{r}_q) G(\mathbf{r}_i, \mathbf{r}_q) dS$$
(2.21)

$$d_{\rm i} = p_{\rm D}(\mathbf{r}_{\rm i}, \mathbf{r}_{\rm s}) \tag{2.22}$$

但し、 $\boldsymbol{\delta}_{ij}$: Kronecker のデルタ、 \mathbf{r}_i : 節点 i の位置ベクトル.

境界上の音圧は式 (2.18) を数値的に解くことによって求められる。

また領域内の任意 (α=1)の点における音圧は、次式で求められる。

$$p(\mathbf{r}_{p}) + \iint_{\Gamma} p(\mathbf{r}_{q}) \frac{\partial G(\mathbf{r}_{p}, \mathbf{r}_{q})}{\partial n_{q}} dS + jk_{0} \iint_{\Gamma_{2}} \frac{p(\mathbf{r}_{q})}{z(\mathbf{r}_{q})} G(\mathbf{r}_{p}, \mathbf{r}_{q}) dS = j\omega \rho_{0} \iint_{\Gamma_{1}} v(\mathbf{r}_{q}) G(\mathbf{r}_{p}, \mathbf{r}_{q}) dS + p_{D}(\mathbf{r}_{p}, \mathbf{r}_{s})$$
(2.23)

これを先ほどと同様に内挿関数を導入して離散化し、式 (2.18) から得られた境界上の音圧 ベクトルを用いて、次式により領域内の任意の点 p の音圧を算出する。

$$p(\mathbf{r}_{p}) = -(\mathbf{a}^{T} + jk_{0}\mathbf{b}_{2}^{T}) \cdot \mathbf{p} + j\omega\rho_{0}\mathbf{b}_{1}^{T} \cdot \mathbf{v} + \mathbf{d}$$
(2.24)

ここでベクトル**a**、**b**₁、**b**₂の各成分は以下の通りである。

$$a_{j} = \iint_{\Gamma} N_{j} \left(\mathbf{r}_{q} \right) \frac{\partial G(\mathbf{r}_{p}, \mathbf{r}_{q})}{\partial \mathbf{n}_{q}} dS$$
(2.25)

$$b_{i_j} = \iint_{\Gamma_1} N_j (\mathbf{r}_q) G(\mathbf{r}_p, \mathbf{r}_q) dS$$
(2.26)

$$b_{2j} = \iint_{\Gamma^2} \frac{1}{z(\mathbf{r}_q)} N_j(\mathbf{r}_q) G(\mathbf{r}_p, \mathbf{r}_q) dS$$
(2.27)

局所座標への変換

前述のマトリクスの各要素の計算は、各要素内の任意の点 $\mathbf{r} = (x, y, z)$ の座標を 局所座標系 ξ , η へ変換することにより行われる。

$$\int_{\Gamma} f(\mathbf{r}) dS = \int_{\xi} \int_{\eta} f(\xi, \eta) \mathbf{J}(\xi, \eta) d\xi d\eta$$
(2.28)

$$\mathbf{J}(\xi,\eta) = \frac{\partial \mathbf{r}}{\partial \xi} \times \frac{\partial \mathbf{r}}{\partial \eta}$$
(2.29)

$$\frac{\partial \mathbf{r}}{\partial \xi} = \left(\frac{\partial x}{\partial \xi}, \frac{\partial y}{\partial \xi}, \frac{\partial z}{\partial \xi}\right)$$
(2.30)

$$\frac{\partial \mathbf{r}}{\partial \eta} = \left(\frac{\partial x}{\partial \eta}, \frac{\partial y}{\partial \eta}, \frac{\partial z}{\partial \eta}\right)$$
(2.31)

ここで要素内の任意の点の座標 r は要素内に設けた節点の座標と形状関数 M の線形結合 として以下のように近似される。

$$\mathbf{r}(\xi,\eta) = \sum_{j=1}^{m} M_{j}(\xi,\eta)\mathbf{r}_{j}$$
(2.32)

但し、*m*:要素内の総節点、*M*_j:節点 j の形状関数、r_j:節点 j の座標.

内挿関数と形状関数が一致するものをアイソパラメトリック要素と呼び、境界要素法では しばしば用いられる。一方、要素上で音圧や振動速度を一定とする一定要素(0次要素)も よく用いられる。この場合は内挿関数と形状関数は一致しない。なお本研究の解析では 4 角形一定要素を用いることとする。

2.3 板振動場の理論

2.3.1 板振動場の基礎方程式の導出 [17]

応力度について

文献 [17] をもとに板振動場の力学について整理する。板 (厚さ: hp、密度: ρp、ヤング率:

Fig.2.3: Illustration of elastic plate.

 E_p 、損失係数: η_p 、ポアソン比: ν)の微小部分のつり合いを考える。図 2.3 に示すように、 板には外力として、板表面に垂直な単位面積当たり Fの力が作用している。これに抵抗す る内力として、単位面積あたりの質量は $\rho_p h_p$ となるので慣性力 $\rho_p h_p (\partial^2 W / \partial t^2) dx dy$ 、また微 小板の周辺には、曲げモーメント M_x, M_y 、ねじりモーメント M_{xy}, M_{yx} 、板に直角に働い て板にせん断変形を生じさせるせん断力 Q_x, Q_y が作用している。

x 軸方向に働く垂直応力度を σ_x 、y 軸方向に働く垂直応力度を σ_y とする。またせん断力 が単位断面積当りに働く応力度をせん断応力度とする。垂直応力度とせん断応力度の符号 は図 2.3 の各軸の正側前方の面に作用する応力度が座標軸の正の方向を向いているときに 正とする。x 軸に垂直な面に働く y 方向のせん断応力度を τ_{xy} 、y 軸に垂直な面に働く x 方 向のせん断応力度を τ_{yx} とする。F, M_x , M_y , M_{yy} , M_{yx} , Q_x , Q_y は 図 2.3 に示す方向 を正とする。ただし $M_{xy} = -M_{yy}$ である。

平板の変形について考える。図 2.4 に平板の変形のモデルを示す。平板の変形について、 「中央面に垂直な直線上の点は、変形後も変形した中央面の法線上にある」という仮定を 用いる。x 軸方向の変位を U、y 軸方向の変位を V とすると、z 方向の変位 W により

$$U = -z \frac{\partial W}{\partial x} \qquad V = -z \frac{\partial W}{\partial y} \tag{2.33}$$

が生じる。また単位断面積当りに作用する応力度により、ひずみが生じる。垂直ひずみ ϵ_x 、 ϵ_y 、 せん断ひずみ χ_y 、 χ_x は変位との関係式により

$$\varepsilon_x = \frac{\partial U}{\partial x}$$
 $\varepsilon_y = \frac{\partial V}{\partial y}$ $\gamma_{xy} = \frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}$ $\gamma_{yx} = -\frac{\partial U}{\partial y} - \frac{\partial V}{\partial x}$ (2.34)

と表される。 σ_x , σ_y , τ_x , τ_y は平面応力のフックの法則より

Fig.2.4: Transformation of elastic plate.

第2章 音場・板振動場数値解析の基礎理論

$$\sigma_{x} = \frac{E_{p}}{1 - v^{2}} \left(\varepsilon_{x} + v \varepsilon_{y} \right) \qquad \sigma_{y} = \frac{E_{p}}{1 - v^{2}} \left(\varepsilon_{y} + v \varepsilon_{x} \right) \qquad \tau_{xy} = \frac{E_{p}}{2(1 + v)} \gamma_{xy} \qquad \tau_{yx} = \frac{E_{p}}{2(1 + v)} \gamma_{yx} \qquad (2.35)$$

と表される。以上より垂直応力度 σ_x , σ_y 、せん断応力度 τ_{xy} 、 τ_{yx} は以下のように表される。

$$\sigma_{x} = -z \frac{E_{p}}{1 - v^{2}} \left(\frac{\partial^{2} W}{\partial x^{2}} + v \frac{\partial^{2} W}{\partial y^{2}} \right) \qquad \sigma_{y} = -z \frac{E_{p}}{1 - v^{2}} \left(\frac{\partial^{2} W}{\partial y^{2}} + v \frac{\partial^{2} W}{\partial x^{2}} \right)$$
$$\tau_{xy} = -z \frac{E_{p}}{1 + v} \left(\frac{\partial^{2} W}{\partial x \partial y} \right) \qquad \tau_{yx} = z \frac{E_{p}}{1 + v} \left(\frac{\partial^{2} W}{\partial x \partial y} \right)$$
(2.36)

<u>モーメント・力のつりあい</u>

曲げモーメント M_x , M_y 、ねじりモーメント M_{xy} , M_{yx} は、応力度が作用する微小断面について、応力度と中立軸からの距離をかけあわせたものを全断面積について積分して得られるので

 $M_{x} = \int_{-h_{p}/2}^{h_{p}/2} \sigma_{x} z dz \qquad M_{y} = \int_{-h_{p}/2}^{h_{p}/2} \sigma_{y} z dz \qquad M_{xy} = \int_{-h_{p}/2}^{h_{p}/2} \tau_{xy} z dz \qquad M_{yx} = \int_{-h_{p}/2}^{h_{p}/2} \tau_{yx} z dz \qquad (2.37)$

となる。式 (2.36) より曲げモーメント M_x と M_y 、ねじりモーメント M_{xy} と M_{yx} は

$$M_{x} = -\frac{E_{p}h_{p}^{3}}{12(1-\nu^{2})} \left(\frac{\partial^{2}W}{\partial x^{2}} + \nu \frac{\partial^{2}W}{\partial y^{2}}\right) \qquad M_{y} = -\frac{E_{p}h_{p}^{3}}{12(1-\nu^{2})} \left(\frac{\partial^{2}W}{\partial y^{2}} + \nu \frac{\partial^{2}W}{\partial x^{2}}\right)$$
$$M_{xy} = -M_{yx} = -\frac{E_{p}h_{p}^{3}}{12(1-\nu^{2})}(1-\nu)\frac{\partial^{2}W}{\partial x\partial y}$$
(2.38)

と表される。ここで

$$D = \frac{E_{\rm p} h_{\rm p}^{3}}{12(1-v^{2})}$$
(2.39)

とおくと M_x , M_y , M_w , M_w , M_w は以下のように表すことができる。

$$M_{x} = -D\left(\frac{\partial^{2}W}{\partial x^{2}} + v\frac{\partial^{2}W}{\partial y^{2}}\right) \qquad M_{y} = -D\left(\frac{\partial^{2}W}{\partial y^{2}} + v\frac{\partial^{2}W}{\partial x^{2}}\right)$$
$$M_{xy} = -M_{yx} = -D(1-v)\frac{\partial^{2}W}{\partial x\partial y}$$
(2.40)

y軸に平行な軸まわりのモーメントの釣合いを考えると、次式が得られる。 $(M_x + dM_x)dy - (M_{yx} + dM_{yx})dx - (Q_x + dQ_x)dxdy - M_xdy + M_{yy}dx = 0$

$$\therefore Q_x = \frac{\partial M_x}{\partial x} + \frac{\partial M_{xy}}{\partial y}$$
(2.41)

同様に x 軸に平行な軸まわりのモーメントの釣合いを考えると、次式が得られる。

$$\therefore Q_y = \frac{\partial M_y}{\partial y} + \frac{\partial M_{xy}}{\partial x}$$
(2.42)

また、z軸方向に働く力のつり合いを考えると次式が得られる。

$$(Q_x + dQ_x - Q_x)dy + (Q_y + dQ_y - Q_y)dx - \rho_p h_p \frac{\partial^2 W}{\partial t^2} dxdy + Fdxdy = 0$$

$$\therefore \frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} - \rho_p h_p \frac{\partial^2 W}{\partial t^2} + F = 0$$
(2.43)

板振動場の振動方程式の導出

式 (2.41,42) より式 (2.43) は次式で表される。

$$D\left(\frac{\partial^4 W}{\partial x^4} + 2\frac{\partial^4 W}{\partial x^2 \partial y^2} + \frac{\partial^4 W}{\partial y^4}\right) + \rho_p h_p \frac{\partial^2 W}{\partial t^2} - F = 0$$
(2.44)

板の内部損失を考慮すると板の曲げ振動方程式は以下の形になる。

$$D\nabla^4 W(\mathbf{r},t) + \rho_p h_p \frac{\partial^2 W(\mathbf{r},t)}{\partial t^2} = F(\mathbf{r},t)$$
(2.45)

但し、
$$\nabla^4 = \nabla^2 \cdot \nabla^2 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) = \left(\frac{\partial^4}{\partial x^4} + 2\frac{\partial^4}{\partial x^2 \partial y^2} + \frac{\partial^4}{\partial y^4}\right), \quad D = \frac{E_p(1+j\eta_p)h_p^3}{12(1-\nu^2)}:$$
板の曲げ剛性、 η_p :板の損失係数.

ここで、振動変位と外力が調和振動をしていると仮定すると、次式が得られる。

$$D\nabla^4 w(\mathbf{r}) - \rho_{\rm p} h_{\rm p} \omega^2 w(\mathbf{r}) = f(\mathbf{r})$$
(2.46)

但し、
$$W(\mathbf{r},t) = w(\mathbf{r})e^{j\omega t}$$
、 $F(\mathbf{r},t) = f(\mathbf{r})e^{j\omega t}$.

板振動場の境界条件 [17] 2.3.2

文献 [17] をもとに板振動場の境界条件について述べる。有限板の境界条件としては、固 定支持、単純支持など様々なものが考えられるが、本研究では、ISO 140 及び JIS A 1416: 2000 で規定されているようなパテ支持、また実際の現場でガラスの支持によく用いられるシリ コン支持により固定されている板状試料を想定し、境界上での面外変位w及び境界を軸と

Fig.2.5: Displacement and shear force. Fig.2.6: rotational angle and moment.

した回転角 θ が生じるモデルを考える。それぞれの反作用として、弾性力及び弾性モーメントが生じる。境界条件のモデルを 図 2.5, 2.6 に示す。力の向き、変位 w の向き、回転角 θ の向きは図に表す方向を正とする。

図 2.5 より力のつりあいは次式で表される。

$$Q = -Z_{\rm Q}w \tag{2.47}$$

但し、Z_o: 並進インピーダンス.

式 (2.41, 42) よりせん断力 Q は次式で表される。 $\partial/\partial n_{\rm B}$ は境界上の内向き法線方向微分、 $\partial/\partial l_{\rm B}$ は境界上の接線方向微分を表す。

$$Q = D \frac{\partial}{\partial n_{\rm B}} \left(\frac{\partial^2 w}{\partial n_{\rm B}^2} + \frac{\partial^2 w}{\partial l_{\rm B}^2} \right)$$
(2.48)

式 (2.47,48) より境界条件は

$$D\frac{\partial}{\partial n_{\rm B}} \left(\frac{\partial^2 w}{\partial n_{\rm B}^2} + \frac{\partial^2 w}{\partial l_{\rm B}^2} \right) = -Z_{\rm Q} w \tag{2.49}$$

と表される。一方、図 2.7 に示すように辺 BC にはねじりモーメント M_{xy} が y 方向に、 辺 AB には M_{yx} が x 方向に分布している。 M_{xy} が y 方向に、 M_{yx} が x 方向に分布してい ることは、 $\partial M_{xy}/\partial y$ のせん断力が y 方向に、 $\partial M_{yx}/\partial x$ のせん断力が x 方向に分布してい ることと等価である。以上より、辺 BC には単位長さ当たり式 (2.50) の有効せん断力が、 辺 AB には式 (2.51) の有効せん断力が分布していることとみなすことができる。

$$\overline{Q_x} = Q_x + \frac{\partial M_{xy}}{\partial y}$$
(2.50)

$$\overline{Q_y} = Q_y + \frac{\partial M_{yx}}{\partial x}$$
(2.51)

またこの時、辺 BC と辺 BA が交差するコーナー部 B ではねじりモーメントの 2 倍 $(2 M_{xy})$ の集中反力が作用する。

Fig.2.7: Distributions of moment on boundary.

第2章 音場・板振動場数値解析の基礎理論

式 (2.40, 48, 50, 51) より、有効せん断力 \overline{Q} は次式で表すことができる。

$$\overline{Q} = D \frac{\partial}{\partial n_{\rm B}} \left(\frac{\partial^2 w}{\partial n_{\rm B}^2} + (2 - v) \frac{\partial^2 w}{\partial l_{\rm B}^2} \right)$$
(2.52)

式 (2.47,52) より境界条件は

$$D\frac{\partial}{\partial n_{\rm B}} \left(\frac{\partial^2 w}{\partial n_{\rm B}^2} + (2-\nu) \frac{\partial^2 w}{\partial l_{\rm B}^2} \right) = -Z_{\rm Q} w$$
(2.53)

と表すことができる。

図 2.6 よりモーメントのつりあいは次式で表される。

$$M = -Z_{\rm M}\theta \tag{2.54}$$

但し、Z_M:回転インピーダンス.

式 (2.40) より曲げモーメント M は次式で表される。

$$M = -D\left(\frac{\partial^2 w}{\partial n_{\rm B}^2} + v \frac{\partial^2 w}{\partial l_{\rm B}^2}\right)$$
(2.55)

式 (2.54,55) より境界条件は

$$D\left(\frac{\partial^2 w}{\partial n_{\rm B}^2} + v \frac{\partial^2 w}{\partial l_{\rm B}^2}\right) = Z_{\rm M} \theta = Z_{\rm M} \frac{\partial w}{\partial n_{\rm B}}$$
(2.56)

と表される。

2.3.3 有限要素法に基づく板振動場の数値解析理論 [18, 26, 27, 28]

要素内変位と内挿関数

板面を有限要素に分割して節点を設け、内挿関数を導入する。ここでは 4 つの頂点節点 がそれぞれ 3 自由度を有する 12 自由度の長方形要素を用いる。節点 n での変位を a_n と する。節点変位は、 *z* 方向の変位 w_n 、 *x*軸まわりの回転角 θ_{xn} 、 *y*軸まわりの回転角 θ_{yn} の 3 つの成分からなる。回転角は 図 2.8 のように定義する。各節点変位は以下のように a_i で表す。

$$\mathbf{a}_{i} = \begin{cases} w_{i} \\ \theta_{xi} \\ \theta_{yi} \end{cases} = \begin{cases} w_{i} \\ -(\partial w/\partial y)_{i} \\ (\partial w/\partial x)_{i} \end{cases}$$
(2.57)

要素内の各節点変位をまとめると以下のように表される。

$$\mathbf{a}^{\mathbf{e}} = \begin{cases} \mathbf{a}_{i} \\ \mathbf{a}_{j} \\ \mathbf{a}_{l} \\ \mathbf{a}_{k} \end{cases}$$
(2.58)

Fig. 2.8: Illustration of rotational angle.

要素内の z 方向変位を近似する多項式としては式 (2.59) を用いる。

$$w \equiv \alpha_1 + \alpha_2 x + \alpha_3 y + \alpha_4 x^2 + \alpha_5 xy + \alpha_6 y^2 + \alpha_7 x^3 + \alpha_8 x^2 y + \alpha_9 xy^2 + \alpha_{10} y^3 + \alpha_{11} x^3 y + \alpha_{12} xy^3 \equiv \{P\}^T \{\alpha\}$$
(2.59)

ここで \mathbf{P}^{T} 、 $\boldsymbol{\alpha}$ は以下のとおりである。

$$\mathbf{P}^{\mathrm{T}} = \{1, x, y, x^{2}, xy, y^{2}, x^{3}, x^{2}y, xy^{2}, y^{3}, x^{3}y, xy^{3}\}$$
(2.60)

$$\boldsymbol{a}^{\mathrm{T}} = \left\{ \boldsymbol{\alpha}_{1} \quad \boldsymbol{\alpha}_{2} \quad \boldsymbol{\alpha}_{3} \quad \boldsymbol{\alpha}_{4} \quad \boldsymbol{\alpha}_{5} \quad \boldsymbol{\alpha}_{6} \quad \boldsymbol{\alpha}_{7} \quad \boldsymbol{\alpha}_{8} \quad \boldsymbol{\alpha}_{9} \quad \boldsymbol{\alpha}_{10} \quad \boldsymbol{\alpha}_{11} \quad \boldsymbol{\alpha}_{12} \right\}$$
(2.61)

回転角は以下のように表される。

$$\theta_x = -\alpha_3 - \alpha_5 x - 2\alpha_6 y - 2\alpha_8 x^2 - 2\alpha_9 xy - 3\alpha_{10} y^2 - \alpha_{11} x^3 - 3\alpha_{12} xy^2$$

$$\theta_y = \alpha_2 + 2\alpha_4 x + \alpha_5 y + 3\alpha_7 x^2 + 2\alpha_8 xy + \alpha_9 y^2 + 3\alpha_{11} x^2 y + \alpha_{12} y^3$$

 α_1 から α_{12} までの定数を求めるため、各節点の座標値と各節点変位を代入し連立方程式を、 節点(i, j, k, 1) についてたてる。これら 12 個すべての方程式は、まとめて以下のようなマ トリクスとベクトルにより表現できる。

$$\mathbf{a}^{\mathbf{e}} = \mathbf{C}\boldsymbol{\alpha} \tag{2.62}$$

Cは節点座標の値により決まる 12×12 のマトリクスである。これを以下のように解く。

$$\boldsymbol{\alpha} = \mathbf{C}^{-1} \mathbf{a}^{\mathbf{e}} \tag{2.63}$$

ここで要素内のz方向変位を以下のように表すことができる。

$$w \equiv \mathbf{P}^{\mathrm{T}} \boldsymbol{\alpha} = \mathbf{P}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{a}^{\mathrm{e}} = \mathbf{N}_{\mathrm{p}} \mathbf{a}^{\mathrm{e}}$$
(2.64)

$$\mathbf{N}_{\mathrm{p}} = \mathbf{P}^{\mathrm{T}} \mathbf{C}^{-1} \tag{2.65}$$

N_pは要素内 z 方向変位 w のための内挿関数である。また C 及び C⁻¹ は図 2.9 に示すような基準化された要素節点座標を規定すると式 (2.66, 67) で表される。

第2章 音場・板振動場数値解析の基礎理論

C =	1 0 1 0 1 0 1 0 1 0 1 0 0 1 0	$ \begin{array}{r} -a \\ 0 \\ 1 \\ -a \\ 0 \\ 1 \\ a \\ 0 \\ 1 \\ a \\ 0 \\ 1 \end{array} $	$ \begin{array}{r} -b \\ -1 \\ 0 \\ b \\ -1 \\ 0 \\ -b \\ -1 \\ 0 \\ b \\ -1 \\ 0 \\ b \\ -0 \\ b \\ -1 \\ 0 \\ 0 \\ b \\ -1 \\ 0 \\ $	$ \begin{array}{c} a^{2} \\ 0 \\ -2a \\ a^{2} \\ 0 \\ -2a \\ a^{2} \\ 0 \\ 2a \\ a^{2} \\ 0 \\ 2a \end{array} $	ab a -b -ab a b -ab -b ab -a b	b^{2} 2b 0 b^{2} -2b 0 b^{2} 2b 0 b^{2} -2b 0 0 0 0 0 0 0 0	$-a^{3}$ 0 $3a^{2}$ $-a^{3}$ 0 $3a^{2}$ a^{3} 0 $3a^{2}$ a 0 $3a^{2}$ a 0 $3a^{2}$ a^{3} a^{3} 0 $3a^{2}$ a^{3} a	$-a^{2}b$ $-a^{2}$ $2ab$ $a^{2}b$ $-a^{2}$ $-2ab$ $-a^{2}b$ $-a^{2}$ $-2ab$ $a^{2}b$ $-a^{2}$ $2ab$	$-ab^{2}$ $-2ab$ b^{2} $-ab^{2}$ $2ab$ b^{2} ab^{2} $2ab$ b^{2} ab^{2} $-2ab$ b^{2}	$ \begin{array}{c} -b^{3} \\ -3b^{2} \\ 0 \\ b^{3} \\ -3b^{2} \\ 0 \\ -b^{3} \\ -3b^{2} \\ 0 \\ b^{3} \\ -3b^{2} \\ 0 \\ 0 \end{array} $	$a^{3}b$ a^{3} $-3a^{2}b$ $-a^{3}b$ a^{3} $3a^{2}b$ $-a^{3}b$ $-a^{3}$ $-3a^{2}b$ $a^{3}b$ $-a^{3}$ $3a^{2}b$	ab^{3} ab^{2} $-b^{3}$ $-ab^{3}$ ab^{2} b^{3} $-ab^{3}$ $-ab^{3}$ $-b^{3}$ ab^{3} $-3ab^{3}$ b^{3}	(2.66)
$C^{-1} = 0$	$\frac{1}{8}$ ×	$\begin{bmatrix} 2 \\ -\frac{3}{a} \\ -\frac{3}{b} \\ 0 \\ \frac{4}{ab} \\ 0 \\ \frac{1}{a^3} \\ 0 \\ 0 \\ 0 \\ \frac{1}{b^3} \\ -\frac{1}{a^3b} \\ -\frac{1}{ab^3} \end{bmatrix}$	$-\frac{b}{a}$ $\frac{b}{a}$ 1 0 $-\frac{1}{a}$ $\frac{1}{b}$ 0 0 $-\frac{1}{ab^{2}}$	$\begin{array}{ccc} p & a \\ -1 \\ -\frac{c}{l} \\ -\frac{1}{c} \\ \frac{1}{b} \\ 0 \\ \frac{1}{a^2} \\ \frac{1}{ab} \\ 0 \\ -\frac{1}{a^2} \\ 0 \\ -\frac{1}{$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	b $-\frac{b}{a}$ 1 0 $-\frac{1}{a}$ $-\frac{1}{b}$ 0 0 $\frac{1}{ab}$ $-\frac{1}{b^2}$ 0 $\frac{1}{ab^2}$	a -1 $\frac{a}{b}$ $-\frac{1}{a}$ $-\frac{1}{b}$ 0 $\frac{1}{a^{2}}$ $-\frac{1}{ab}$ 0 $\frac{1}{a^{2}b}$ 0 $\frac{1}{a^{2}b}$ 0	$ \begin{array}{c} \frac{3}{a} \\ -\frac{3}{b} \\ 0 \\ -\frac{4}{ab} \\ 0 \\ -\frac{1}{a^{3}} \\ 0 \\ 0 \\ \frac{1}{b^{3}} \\ \frac{1}{a^{3}b} \\ \frac{1}{ab^{3}} \end{array} $	$ \begin{array}{c} -b\\ -\frac{b}{a}\\ 1\\ 0\\ \frac{1}{a}\\ \frac{1}{b}\\ 0\\ 0\\ \frac{1}{ab}\\ -\frac{1}{b^2}\\ 0\\ -\frac{1}{ab^2} \end{array} $	$ \begin{array}{c} -a \\ -1 \\ \frac{a}{b} \\ \frac{1}{a} \\ \frac{1}{b} \\ 0 \\ \frac{1}{a^2} \\ -\frac{1}{ab} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} b & -a \\ \frac{b}{a} & -1 \\ 1 & -\frac{a}{b} \\ 0 & \frac{1}{a} \\ \frac{1}{a} & -\frac{1}{b} \\ \frac{1}{a} & -\frac{1}{b} \\ \frac{1}{a} & 0 \\ 0 & \frac{1}{a^2} \\ 0 & \frac{1}{ab} \\ \frac{1}{ab} & 0 \\ \frac{1}{b^2} & 0 \\ 0 & \frac{1}{a^2b} \\ 1 & \frac{1}{ab^2} & 0 \end{array} $	(2.67)

要素内外力と内挿関数

各節点iの外力としてはz方向のみを規定し *f*_i で与える。要素内の各節点外力をまとめると以下のように表される。

$$\mathbf{b}^{\mathbf{e}} = \begin{cases} f_{i} \\ f_{j} \\ f_{l} \\ f_{k} \end{cases}$$
(2.68)

要素に働く外力を近似する多項式としては式 (2.69)を用いる。

$$f \equiv \beta_1 + \beta_2 x + \beta_3 y + \beta_4 x y \equiv \mathbf{Q}^{\mathrm{T}} \boldsymbol{\beta}$$
(2.69)

ここで \mathbf{Q}^{T} 、 $\boldsymbol{\beta}$ は以下のとおりである。

$$\mathbf{Q}^{\mathrm{T}} = \{1, \quad x, \quad y, \quad xy\} \tag{2.70}$$

$$\boldsymbol{\beta} = \begin{cases} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \boldsymbol{\beta}_3 \\ \boldsymbol{\beta}_4 \end{cases}$$
(2.71)

β₁からβ₄までの定数を求めるため、各節点の座標値と外力を代入し連立方程式をたてる。 これら 4 個すべての方程式は、まとめて以下のようなマトリクスとベクトルにより表現で きる。

$$\mathbf{b}^{\mathbf{e}} = \mathbf{E}\boldsymbol{\beta} \tag{2.72}$$

Eは節点座標の値により決まる 4x4 のマトリクスである。これを以下のように解く。

$$\boldsymbol{\beta} = \mathbf{E}^{-1} \mathbf{b}^{\mathbf{e}} \tag{2.73}$$

ここで要素に働く外力を以下のように表すことができる。

$$f \equiv \mathbf{Q}^{\mathrm{T}} \boldsymbol{\beta} = \mathbf{Q}^{\mathrm{T}} \mathbf{E}^{-1} \mathbf{b}^{\mathbf{e}} = \mathbf{N}_{\mathrm{f}} \mathbf{b}^{\mathbf{e}}$$
(2.74)

$$\mathbf{N}_{\mathrm{f}} = \mathbf{Q}^{\mathrm{T}} \mathbf{E}^{-1} \tag{2.75}$$

 N_f は外力fのための内挿関数である。また E 及び E⁻¹は図 2.8 に示す要素節点座標を用 いると以下のように表される。

$$\mathbf{E} = \begin{bmatrix} 1 & -a & -b & ab \\ 1 & -a & b & -ab \\ 1 & a & -b & -ab \\ 1 & a & b & ab \end{bmatrix}$$
(2.76)

$$\mathbf{E}^{-1} = \frac{1}{4ab} \times \begin{bmatrix} ab & ab & ab & ab \\ -b & -b & b & b \\ -a & a & -a & a \\ 1 & -1 & -1 & 1 \end{bmatrix}$$
(2.77)

仮想仕事の原理

上記の板に対して仮想仕事の原理を適用する。仮想仕事の原理は力がつり合いの状態 にある場合、変位をごくわずかだけ変化させる際の外部仕事(外力のする仕事)と内部仕 事(内力のする仕事)の和は0になる、という関係を表すものである。上記の板では、 外部仕事として、外力の仕事を、内部仕事としてはひずみによる仕事、板の運動による 仕事、境界上の弾性力の仕事、境界上の弾性モーメントの仕事を考慮する必要がある。

まずひずみについて整理する。ひずみ成分は、式 (2.33, 34) より次のように求められる。

$$\varepsilon_{x} = \frac{\partial U}{\partial x} = -z \frac{\partial^{2} w}{\partial x^{2}} = zk_{x}, \quad \varepsilon_{y} = \frac{\partial V}{\partial y} = -z \frac{\partial^{2} w}{\partial y^{2}} = zk_{y}, \quad \gamma_{xy} = \frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} = -2z \frac{\partial^{2} w}{\partial x \partial y} = zk_{xy}$$
(2.78)

第2章 音場・板振動場数値解析の基礎理論

ここで、 k_x , k_y , k_{xy} は変形後の平面の曲率あるいはねじれ率であり、次式で定義される。

$$k_x = -\frac{\partial^2 w}{\partial x^2}, \quad k_y = -\frac{\partial^2 w}{\partial y^2}, \quad k_{xy} = -2\frac{\partial^2 w}{\partial x \partial y}$$
 (2.79)

応力-ひずみ関係式を式 (2.35)、モーメント成分を式 (2.37) で定義すると、モーメントと 曲率の関係式は、次のようにマトリクス形で整理できる。

$$\boldsymbol{\sigma} = \mathbf{D}\boldsymbol{\varepsilon} \tag{2.80}$$

$$(\mathbb{E} \cup \mathbf{v} \cdot \mathbf{r} = \begin{cases} k_x \\ k_y \\ k_{xy} \end{cases} = \begin{cases} -\frac{\partial^2 w}{\partial x^2} \\ -\frac{\partial^2 w}{\partial y^2} \\ -2\frac{\partial^2 w}{\partial x \partial y} \end{cases} = \begin{cases} -\frac{\partial^2 \mathbf{P}^{\mathrm{T}}}{\partial x^2} \\ -\frac{\partial^2 \mathbf{P}^{\mathrm{T}}}{\partial y^2} \\ -2\frac{\partial^2 \mathbf{P}^{\mathrm{T}}}{\partial x \partial y} \end{cases} \mathbf{C}^{-1} \mathbf{a}^{\mathbf{e}} = \mathbf{R}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{a}^{\mathbf{e}} \mathbf{v} \quad \mathbf{D} = \frac{E_{\mathrm{p}} (1 + j\eta_{\mathrm{p}}) h^3}{12(1 - v^2)} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & (1 - v)/2 \end{bmatrix}$$

$$\boldsymbol{\sigma} = \begin{cases} \boldsymbol{M}_{x} \\ \boldsymbol{M}_{y} \\ \boldsymbol{M}_{xy} \end{cases}, \quad \boldsymbol{R}^{\mathrm{T}} = \begin{bmatrix} 0 & 0 & 0 & -2 & 0 & 0 & -6x & -2y & 0 & 0 & -6xy & 0 \\ 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & -2x & -6y & 0 & -6xy \\ 0 & 0 & 0 & 0 & -2 & 0 & 0 & -4x & -4y & 0 & -6x^{2} & -6y^{2} \end{bmatrix}.$$

仮想仕事の原理より、板面の境界に接している要素には以下の式が成り立つ。

$$\iint_{\Gamma_{e}} \varepsilon^{T} \sigma dS + \iint_{\Gamma_{e}} w \rho_{p} h_{p} \ddot{w} dS = \iint_{\Gamma_{e}} w f dS - \int_{\Lambda_{e}} w Z_{Q} w dL - \int_{\Lambda_{e}} \theta Z_{M} \theta dL$$
(2.81)

但し、e:要素、L:境界に接している辺、S:要素の面積、A:境界、F:板面、Ae:境 界に接している要素、Fe:板面の要素、 $\iint_{\Gamma_e} \varepsilon^T \sigma dS$: ひずみによる仕事、 $\iint_{\Gamma_e} w \rho_p h_p \ddot{w} dS$:板の運 動による仕事、 $\iint_{\Gamma_e} w f dS$:外力の仕事、 $\int_{Ae} w Z_Q w dL$:境界上の弾性力による仕事、 $\int_{Ae} \theta Z_M \theta dL$:境 界上の弾性モーメント.

また境界に接していない要素には以下の式が成り立つ。

$$\iint_{\Gamma e} \varepsilon^{\mathsf{T}} \boldsymbol{\sigma} dS + \iint_{\Gamma e} w \rho_{\mathsf{p}} h_{\mathsf{p}} \ddot{w} dS = \iint_{\Gamma e} w f dS \tag{2.82}$$

式 (2.81,82) 中の各項は以下のように表すことができる。 [ひずみによる仕事]

$$\iint_{\Gamma e} \mathbf{\epsilon}^{\mathrm{T}} \boldsymbol{\sigma} dS = \iint_{\Gamma e} \mathbf{\epsilon}^{\mathrm{T}} \mathbf{D} \mathbf{\epsilon} dS = \mathbf{a}^{\mathbf{e}^{\mathrm{T}}} \mathbf{C}^{-1^{\mathrm{T}}} \iint_{\Gamma e} \mathbf{R} \mathbf{D} \mathbf{R}^{\mathrm{T}} dS \mathbf{C}^{-1} \cdot \mathbf{a}^{\mathrm{e}} = \mathbf{a}^{\mathbf{e}^{\mathrm{T}}} \mathbf{K}_{\mathrm{e}} \cdot \mathbf{a}^{\mathrm{e}}$$
(2.83)

[板の運動による仕事]

$$\iint_{\Gamma \mathbf{e}} w \rho_{\mathbf{p}} h_{\mathbf{p}} \ddot{w} dS = -\mathbf{a}^{\mathbf{e}^{\mathrm{T}}} \omega^{2} \rho_{\mathbf{p}} h_{\mathbf{p}} \iint_{\Gamma \mathbf{e}} \mathbf{N}_{\mathbf{p}}^{\mathrm{T}} \mathbf{N}_{\mathbf{p}} dS \cdot \mathbf{a}^{\mathbf{e}} = -\mathbf{a}^{\mathbf{e}^{\mathrm{T}}} \omega^{2} \rho_{\mathbf{p}} h_{\mathbf{p}} \mathbf{C}^{-1^{\mathrm{T}}} \iint_{\Gamma \mathbf{e}} \mathbf{P} \mathbf{P}^{\mathrm{T}} dS \mathbf{C}^{-1} \cdot \mathbf{a}^{\mathbf{e}} = -\mathbf{a}^{\mathbf{e}^{\mathrm{T}}} \omega^{2} \mathbf{M}_{\mathbf{e}} \cdot \mathbf{a}^{\mathbf{e}}$$
(2.84)

[外力の仕事]

$$\iint_{\Gamma \mathbf{e}} wfdS = \mathbf{a}^{\mathbf{e}^{\mathrm{T}}} \iint_{\Gamma \mathbf{e}} \mathbf{N}_{\mathrm{p}}^{\mathrm{T}} \mathbf{N}_{\mathrm{p}} dS \cdot \mathbf{b}^{\mathrm{e}} = \mathbf{a}^{\mathbf{e}^{\mathrm{T}}} \mathbf{C}^{-1^{\mathrm{T}}} \iint_{\Gamma \mathbf{e}} \mathbf{P} \mathbf{Q}^{\mathrm{T}} dS \mathbf{E}^{-1} \cdot \mathbf{b}^{\mathrm{e}} = \mathbf{a}^{\mathbf{e}^{\mathrm{T}}} \mathbf{Q}_{\mathrm{e}} \cdot \mathbf{b}^{\mathrm{e}}$$
(2.85)

[境界上の弾性力の仕事]

$$\int_{\Lambda \mathbf{e}} w Z_{\mathbf{Q}} w dL = \mathbf{a}^{\mathbf{e}^{\mathrm{T}}} Z_{\mathbf{Q}} \int_{\Lambda \mathbf{e}} \mathbf{N}_{\mathbf{p}}^{\mathrm{T}} \mathbf{N}_{\mathbf{p}} dL \cdot \mathbf{a}^{\mathbf{e}} = \mathbf{a}^{\mathbf{e}^{\mathrm{T}}} Z_{\mathbf{Q}} \mathbf{C}^{-1^{\mathrm{T}}} \int_{\Lambda \mathbf{e}} \mathbf{P} \mathbf{P}^{\mathrm{T}} dL \mathbf{C}^{-1} \cdot \mathbf{a}^{\mathbf{e}} = \mathbf{a}^{\mathbf{e}^{\mathrm{T}}} \mathbf{K}_{\mathbf{B} \mathbf{Q}_{\mathbf{e}}} \cdot \mathbf{a}^{\mathbf{e}}$$
(2.86)

[境界上の弾性モーメントの仕事]

$$\int_{Ae} \theta Z_{M} \theta dL = \mathbf{a}^{e^{T}} Z_{M} \int_{Ae} \frac{\partial \mathbf{N}_{p}}{\partial n}^{T} \frac{\partial \mathbf{N}_{p}}{\partial n} dL \cdot \mathbf{a}^{e} = \mathbf{a}^{e^{T}} Z_{M} \mathbf{C}^{-1^{T}} \int_{Ae} \frac{\partial \mathbf{P}}{\partial n} \frac{\partial \mathbf{P}^{T}}{\partial n} dL \mathbf{C}^{-1} \cdot \mathbf{a}^{e} = \mathbf{a}^{e^{T}} \mathbf{K}_{BMe} \cdot \mathbf{a}^{e}$$
(2.87)

式 (2.83~87) より、式 (2.81) は以下のように表すことができる。ただしeは境界に接している要素を表す。

$$\mathbf{K}_{\mathbf{e}} \cdot \mathbf{a}^{\mathbf{e}} - \boldsymbol{\omega}^{2} \mathbf{M}_{\mathbf{e}} \cdot \mathbf{a}^{\mathbf{e}} = \mathbf{Q}_{\mathbf{e}} \cdot \mathbf{b}^{\mathbf{e}} - \mathbf{K}_{\mathbf{B}\mathbf{Q}_{\mathbf{e}}} \cdot \mathbf{a}^{\mathbf{e}} - \mathbf{K}_{\mathbf{B}\mathbf{M}_{\mathbf{e}}} \cdot \mathbf{a}^{\mathbf{e}}$$
(2.88)

これを整理すると以下のようになる。

$$\left(\mathbf{K}_{\mathbf{e}} + \mathbf{K}_{\mathbf{B}\mathbf{Q}_{\mathbf{e}}} + \mathbf{K}_{\mathbf{B}\mathbf{M}_{\mathbf{e}}} - \boldsymbol{\omega}^{2}\mathbf{M}_{\mathbf{e}}\right) \cdot \mathbf{a}^{\mathbf{e}} = \mathbf{Q}_{\mathbf{e}} \cdot \mathbf{b}^{\mathbf{e}}$$
(2.89)

また、式 (2.82) は以下のように表すことができる。ただしeは境界に接していない要素 を表す。

$$\left(\mathbf{K}_{\mathbf{e}} - \boldsymbol{\omega}^{2} \mathbf{M}_{\mathbf{e}}\right) \cdot \mathbf{a}^{\mathbf{e}} = \mathbf{Q}_{\mathbf{e}} \cdot \mathbf{b}^{\mathbf{e}}$$
(2.90)

多数の要素からなる系の方程式は要素の方程式を全て加え合わせたものとなる。よって式 (2.89,90)より以下のマトリクス方程式が得られる。

$$\begin{pmatrix} \mathbf{K} + \mathbf{K}_{BQ} + \mathbf{K}_{BM} - \omega^{2} \mathbf{M} \end{pmatrix} \cdot \mathbf{a} = \mathbf{Q} \cdot \mathbf{b}$$
(2.91)
$$\mathbf{a} = \begin{cases} \mathbf{W} \\ \mathbf{\theta}_{x} \\ \mathbf{\theta}_{y} \end{cases}$$

$$\mathbf{K} : \mathbf{K}_{e} = \mathbf{C}^{-1^{T}} \iint_{\mathbf{f}_{e}} \mathbf{R} \mathbf{D} \mathbf{R}^{T} dS \mathbf{C}^{-1}$$

$$\mathbf{K}_{BQ} : \mathbf{K}_{BQ_{e}} = Z_{Q} \mathbf{C}^{-1^{T}} \iint_{A^{e}} \mathbf{P} \mathbf{P}^{T} dL \mathbf{C}^{-1}$$

$$\mathbf{K}_{BM} : \mathbf{K}_{BM_{e}} = Z_{M} \mathbf{C}^{-1^{T}} \iint_{A^{e}} \frac{\partial \mathbf{P}}{\partial n} \frac{\partial \mathbf{P}^{T}}{\partial n} dL \mathbf{C}^{-1}$$

$$\mathbf{M} : \mathbf{M}_{e} = \rho h \mathbf{C}^{-1^{T}} \iint_{\mathbf{f}_{e}} \mathbf{P} \mathbf{P}^{T} dS \mathbf{C}^{-1}$$

$$\mathbf{Q} : \mathbf{Q}_{e} = \mathbf{C}^{-1^{T}} \iint_{\mathbf{f}_{e}} \mathbf{P} \mathbf{Q}^{T} dS \mathbf{E}^{-1}$$

$$\mathbf{t}$$

$$\mathbf{t}$$

$$\mathbf{g}$$

$$\mathbf{k}_{E} \cup \mathbf{C} \cup \mathbf{S} \Box, e \text{ it}$$

但し、 \mathbf{K}_{BQ_e} , \mathbf{K}_{BM_e} ではLは境界に接している辺、eは境界に接している要素を表し、 \mathbf{K}_e , \mathbf{M}_e , \mathbf{Q}_e ではSは要素の面積、eは全ての要素を表す。

2.4 音響振動連成系の定式化

連成系の離散化方程式

板振動場の外力 f は板両面の音圧差により生じる。板両面の境界 Γ_a 、 Γ_b における音圧 $e p_a$ 、 p_b とおくと外力 f は以下のように表される。ただし Γ_a から Γ_b の方向を正とする。

$$f = p_a - p_b = \Delta p \tag{2.92}$$

板面を有限要素に分割する際の節点で式 (2.92) が成り立つ。よって次式のようになる。

$$\mathbf{b} = \mathbf{p}_{\mathbf{a}} - \mathbf{p}_{\mathbf{b}} = \Delta \mathbf{p} \tag{2.93}$$

b:外力ベクトル、 \mathbf{p}_{a} 、 \mathbf{p}_{b} :境界 Γ_{a} 、 Γ_{b} の板面音圧ベクトル よって式 (2.91,93) より板振動場に関して以下の式が成り立つ。

$$\left(\mathbf{K} + \mathbf{K}_{BQ} + \mathbf{K}_{BM} - \omega^2 \mathbf{M}\right) \cdot \begin{cases} \mathbf{w} \\ \mathbf{\theta}_x \\ \mathbf{\theta}_y \end{cases} = \mathbf{Q} \cdot \Delta \mathbf{p}$$
(2.94)

式 (2.23) より板両面の音圧差に関する積分方程式を求め BEM を適用すると、次式が得られる。

$$\Delta \mathbf{p} = 2\mathbf{p}_{d} + 4\omega^{2}\rho_{0}\mathbf{G}\mathbf{w}_{f}$$
(2.95)

ここで、板材の通気性を考慮しないので振動変位wと板材表面の粒子変位w_fを等しいと考えると式 (2.94,95)から以下のマトリクス方程式が得られる。

$$\left(\mathbf{K} + \mathbf{K}_{\rm BQ} + \mathbf{K}_{\rm BM} - \boldsymbol{\omega}^2 \mathbf{M} - 4\boldsymbol{\omega}^2 \rho_0 \mathbf{Q} \begin{bmatrix} \mathbf{G} & 0 & 0 \end{bmatrix} \right) \cdot \begin{cases} \mathbf{w}_f \\ \mathbf{\theta}_x \\ \mathbf{\theta}_y \end{cases} = 2\mathbf{Q} \cdot \mathbf{p}_d$$
(2.96)

式 (2.96) から板の変位、回転角を求める。

第3章

入射条件・解析周波数の設定に関する検討

3.1 はじめに

近年、計算機性能の向上に伴って窓ガラスを対象としてコインシデンス周波数を含む高 周波数域までの計算が可能となりつつある。本論文で用いる音響振動連成解析手法では、 平面波入射時の解析結果より音場入射時またはランダム入射時における透過損失値を算出 する。そのため、平面波の入射角離散化についての設定が必要となる。特にコインシデン ス周波数域においては、コインシデンス効果の入射角依存性が非常に高いことから、入射 角離散化への十分な注意が必要と考えられる。また、本手法は調和振動を仮定した定常音 場解析手法に基づいているため、透過損失の帯域値を得るには単一周波数における解析結 果から重み付き平均操作により算出することとなる。透過損失の帯域値は板の固有振動に 起因する狭帯域ディップの影響を強く受けるため、これを評価するために解析周波数の適 切な設定が必須といえる。本章では窓ガラスの 1/3 オクターブ帯域音響透過損失を計算す る際に問題となる音波入射条件及び解析周波数の設定について検討を行う。特に、板ガラ スの寸法及び損失係数との関係、コインシデンス限界周波数との関係に着目して考察を行 う。

3.2 入射条件に関する検討

3.2.1 解析モデル

最も一般的な 3 次元音響透過モデルとして、図 3.1 に示すような無限大剛バフル中の板 材に単位振幅平面波が入射する問題を想定する。部材形状は矩形(寸法 $a \times b$ [m²])とし、 バフルの厚さはゼロを仮定する。平面波の入射角に関しては、図 3.2 に示すように立体角 $\pi/2$ 内の相当範囲、音場入射条件では($0 \le \theta \le 78, 0 \le \varphi \le 90$ [deg])、 ランダム入射条件で は($0 \le \theta \le 90, 0 \le \varphi \le 90$ [deg])を概ね均等に全方位を離散化する。各方位からの平面波入 射条件における解析結果に対して透過率の統計的平均操作を行うことにより透過損失値を 算定する。 θ 方向分割数 N_{θ} をパラメータとして、次式により離散方位幅 $\Delta \theta_{ij}$, $\Delta \varphi_{ij}$ および離 散方位 θ_{ij} , φ_{ij} を設定する。

Fig. 3.1: Geometry of a three-dimensional sound transmission model.

Fig. 3.2: Schematic of a discrete direction model for random incidence.

[音場入射時]

$$\Delta \theta_{ij} = \frac{78^{\circ}}{N_{\theta}}, \quad \theta_{ij} = \left(i - \frac{1}{2}\right) \Delta \theta_{ij}, \quad (i = 1, 2, \cdots, N_{\theta})$$
(3.1)

$$\Delta \varphi_{ij} = \frac{90^{\circ}}{N_{\varphi}^{i}}, \quad \varphi_{ij} = \left(j - \frac{1}{2}\right) \Delta \varphi_{ij}, \quad \left(i = 1, 2, \cdots, N_{\varphi}^{i}\right)$$
(3.2)

但し、
$$N_{\varphi}^{i} = [1.15N_{\theta} \cdot \sin \theta_{ij}].$$

[ランダム入射時]

$$\Delta \theta_{ij} = \frac{78^{\circ}}{N_{\theta}}, \quad \theta_{ij} = \left(i - \frac{1}{2}\right) \Delta \theta_{ij}, \quad (i = 1, 2, \cdots, N_{\theta})$$
(3.3)

$$\Delta \varphi_{ij} = \frac{90^{\circ}}{N_{\varphi}^{i}}, \quad \varphi_{ij} = \left(j - \frac{1}{2}\right) \Delta \varphi_{ij}, \quad \left(i = 1, 2, \cdots, N_{\varphi}^{i}\right)$$
(3.4)

但し、 $N_{\varphi}^{i} = [N_{\theta} \sin \theta_{ij}].$

3.2.2 透過損失計算

板振動場と音場の連成方程式は式 (2.96) で表される。これを数値的に解くことにより、 板材表面における節点粒子変位を算出することができる。部材透過表面の節点音圧は得ら れた節点変位から次式により算出される。

Table 3.1: Parametric properties of glass plates.

x-width a [m]	thickness <i>h</i> _p [mm]	damping η
0.9, 1.215	5, 10, 20	0.002, 0.01, 0.05

$$\mathbf{P}_{t} = -2\omega^{2}\rho_{0}\mathbf{G}\mathbf{w}_{f}$$
(3.5)

但し、P,: 部材透過表面の音圧ベクトル.

従って、斜め入射透過率は節点透過音圧と節点粒子変位から次式により算出される。

$$\tau(\theta, \varphi) = \frac{\omega \rho_0 c_0}{ab \cos \theta} \operatorname{Im} \left(\mathbf{P}_t^{\,t} \mathbf{S} \mathbf{w}_{\mathrm{f}}^* \right)$$
(3.6)

但し、**S**:面積行列: $S_{ij} = \delta_{ij}S_{e_i}$, S_{e_i} : 要素面積.

最終的に、音場入射透過損失は入射角による重み付けを考慮して次式により算出される。

$$TL = -10\log_{10} \left(A \sum_{i=1}^{N_{\theta}} \sum_{j=1}^{N_{\theta}^{i}} w_{ij} \tau(\theta_{ij}, \varphi_{ij}) \right)$$
(3.7)

但し、 $w_{ij} = \sin \theta_{ij} \cos \theta_{ij} \Delta \theta_{ij} \Delta \varphi_{ij}$ 、 $1/A = \frac{\pi}{2} \int_{0}^{\theta \lim} \sin \theta \cos \theta d\theta$ 、 $\theta \lim$: 音場入射 ($\theta \lim = 78^{\circ}$)・ラ ンダム入射 ($\theta \lim = 90^{\circ}$).

3.2.3 解析対象

解析対象は単層板ガラス、周辺支持条件は固定支持条件とした。また、各物性値は密度 2500 [kg/m³]、ヤング率 7.5×10¹⁰ [N/m²]、ポアソン比 0.22 とした。板の y 方向長さを b = 0.9 [m] と固定し、 x 方向長さ a [m]、 板厚 h_p [mm]、損失係数 $\eta \cdot_p$ を表 3.1 の通り変化さ せた。コインシデンス限界周波数 f_c は板厚 5 [mm]では 2327 [Hz]、10 [mm] では 1164 [Hz]、 20 [mm] では 581 [Hz]である。要素分割は解析周波数毎に波長の 1/6 以下になるように設 定した。また音波の入射条件について表 3.2 に離散方位幅と総方位数の関係を示す。

$\Delta heta_{_{ij}} ~~ [ext{deg}]$	total direction number
3	586
6	151
15	25
30	7

Table 3.2: Properties of the discrete direction model (random incidence).

Fig. 3.3: Difference between field incidence transmission loss and random incidence transmission loss (a = 0.9, $h_p = 10$, $\eta_p = 0.002$ $\Delta \theta_{ij} = 3$).

Fig. 3.4: Effect of the incidence angle step $\Delta \theta_{ij}$ to random incidence transmission loss (*a* = 0.9, *h*_p = 10, η_p = 0.002).

3.2.4 結果と考察

図 3.3 に離散方位幅 $\Delta \theta_{ij} = 3$ [deg] における音場入射透過損失とランダム入射透過損失 を示す (a = 0.9, $h_p = 10$, $\eta_p = 0.002$, 1/12 オクターブ中心周波数での値)。音場入射透過損失 とランダム入射透過損失の比較では、低周波数域において 2 [dB] 程度の系統的な差が生じ ているが、 f_c 以上の高周波数域では差が現れていない。低周波数域ではランダム入射にお ける擦過角付近の入射により質量効果が低下したためと考えられる。

図 3.4 に離散方位幅 4 水準($\Delta \theta_{ij}$ = 3, 6, 15, 30 [deg])におけるランダム入射透過損失を 示す (a = 0.9, h_p = 10, η_p = 0.002)。 f_c 以下では、 $\Delta \theta_{ij}$ = 30 でも十分な離散化であることがわ かる。一方 f_c 以上では、 $\Delta \theta_{ij}$ = 15, 30 の場合に透過損失値が $\Delta \theta_{ij}$ = 3, 6 と比べて大きく異 なっている。顕著に高い値を示している。コインシデンス周波数域ではコインシデンス効 果の入射角選択性が高いことから、 f_c 以下の周波数域と比べて離散方位幅を細かく設定す る必要があるといえる。以上の結果から、コインシデンス周波数領域を含む高周波数域ま での解析においては、離散方位幅が $\Delta \theta_{ij}$ = 6 以下とする必要があると考えられる。以降の 検討では $\Delta \theta_{ij}$ = 6 に固定し、ランダム入射透過損失を算出することとする。

3.3 解析周波数に関する検討

3.3.1 1/3 オクターブ帯域値の算出法

本解析手法では 1/3 オクターブ帯域透過損失値は単一周波数での解析で得られた値から

第3章 入射条件・解析周波数の設定に関する検討

平均操作により算出することとなる。一方、 1/3 オクターブ帯域透過損失値は板の固有振 動に起因する透過損失の狭帯域ディップの影響を受けるため、これを適切に評価する必要 がある。このため、解析を実行する周波数の選択が非常に重要である。[19] ではコインシ デンス限界周波数以下の周波数域において、定差幅を前提として解析周波数の検討を行っ た。しかしながら、コインシデンス限界周波数以上の高周波数域まで解析を拡張するには、 定差幅による検討では計算時間が著しく増大してしまう。そこで解析周波数を定比幅で設 定することを前提として、1/6,1/12,1/24,1/48,1/96 オクターブ帯域中心周波数の解析結果か ら 1/3 オクターブ帯域値を算出し、予測精度の確保に必要な解析周波数の設定について検 討を行った。

3.3.2 結果と考察

損失係数の影響

板の x 方向長さ a = 0.9 の場合の 1/3 オクターブ帯域値を損失係数毎に図 3.5 に示す。 以下では 1/96 オクターブ中心周波数の解析結果から算出した 1/3 オクターブ帯域値(以 下 1/96-oct.)を基準とし、それとの差が全ての帯域値で概ね 2 [dB] 以内となる解析周波数 の設定を収束したものとみなす。

板の内部損失程度を仮定した損失係数 $\eta_p = 0.002$ の場合では、1/48-oct. を採用した時の み 1/96-oct. との差が 2 [dB] 以下となっている。 $\eta_p = 0.01$ の場合では板の固有周波数にお けるディップがより浅いため、1/24-oct. で収束している。パテ支持程度を仮定した $\eta_p = 0.05$ の場合ではさらにディップが浅いため、1/6-oct. で十分収束している。またいずれの損失係 数の場合でも帯域による収束の違いは小さい。

以上のように、損失係数は精度を確保する解析周波数の設定に大きく影響するといえる。 特に板の内部損失の η_p=0.002 では解析周波数の離散化を十分細かくする必要がある。

板厚の影響

 $\eta_p = 0.002$ の時、板厚 $h_p = 0.005$ では、同条件で $h_p = 0.01$ の場合と比較して固有周波数の 密度が高くなるが、 $h_p = 0.01$ の場合と同様、1/48-oct.で収束している。また板厚 $h_p = 0.02$ で は $h_p = 0.01$ の場合と比較して固有周波数の密度が低くなるが、ここでも 1/48-oct.で収束し ている。 $\eta_p = 0.01$ の時、 $h_p = 0.02$ では、同条件で $h_p = 0.01$ の場合と同様、1/24-oct.で収束し ている。以上より、同サイズ、同損失係数の板の場合、板厚は精度を確保する解析周波数 の設定にあまり影響しないと考えられる。

Fig. 3.5: 1/3-oct-band transmission loss calculated from the values at 1/6, 1/12, 1/24, 1/48 and 1/96 oct-band center frequencies (a = 0.9 [m]).

Fig. 3.6: 1/3-oct-band transmission loss calculated from the values at 1/6, 1/12, 1/24, 1/48 and 1/96 oct-band center frequencies (a = 1.215 [m], $h_p = 10$ [mm]).

板サイズの影響

板の x 方向長さ a = 1.215、板厚 $h_p = 10$ の場合の損失係数毎に 1/3 オクターブ帯域値を図 3.6 に示す。a = 0.9 の場合と比較して固有周波数の密度が高くなるが、損失係数 $\eta_p = 0.002$ では 1/48-oct.で収束し、 $\eta_p = 0.01$ では 1/24-oct.で収束しており、a = 0.9 の場合と同様 の結果となった。以上より、板厚と同様、板サイズは精度を確保する解析周波数の設定に あまり影響しないと考えられる。

3.4 まとめ

離散系波動解析に基づく窓ガラスの 1/3 オクターブ帯域音響透過損失値を計算する際に 問題となる、音波入射条件及び解析周波数の設定について検討を行った。音波入射条件の ための入射角離散化に関しては、音場入射条件、ランダム入射条件によらず、またコイン シデンス周波数領域かどうかにかかわらず離散方位幅Δθ_{ij} = 6 [deg] で十分な精度が得られ ることがわかった。また 1/3 オクターブ帯域透過損失値を算出する際の解析周波数の設定に ついては、精度確保に必要な解析周波数の数が板の損失係数の値に大きく依存する一方、 固有周波数分布を変化させる板厚や板サイズにはあまり依存しないことがわかった。また これは端部損失を無視した固定支持条件における結果であり、端部損失を考慮すると固有 周波数のディップが浅くなるため、解析周波数の設定はより荒くなると考えられる。

第4章

周辺支持部のエネルギー損失に関する検討

4.1 はじめに

第2章で構築した音響振動連成系の数値解析アルゴリズムについて、前章では1/3 オク ターブ帯域音響透過損失を計算する際の、音波の入射条件と解析周波数の設定を行った。 その際、周辺支持部は便宜的な取り扱いとして、板振動場の境界条件に単純または固定支 持を仮定し、端部損失を板の内部損失として反映させていた。しかし実際にシール材で支 持された窓ガラスの音響透過損失を数値解析により求めるには、周辺支持部の振動エネル ギー損失の模擬が重要となるため、周辺支持部の精密なモデル化が必要となる。そこで本 章では、周辺支持部のエネルギー損失について考察を行う。

4.2 窓ガラスの周辺支持部のモデル化

窓ガラスの周辺支持部のモデル化を行う。2.3.2 でも示したように、ガラス板周辺のシー ル材が端部の変位・傾斜に対して各々反作用するものと仮定し、弾性体と等価な並進・回 転バネ、またそれぞれのバネに対して等価質量からなる集中バネモデルを想定する。さら にシール材の並進振動に対して、弾性連続体の挙動を考慮して1 次元縦振動を想定したモ デルについても検討する。こちらは集中バネモデルと区別して弾性連続体モデルとする。 検討は最も単純な並進バネのみを考慮したモデルから、最も複雑な弾性連続体モデルまで 以下の4 モデルについて行う。

- 1.T モデル: 並進バネのみを考慮したモデル
- 2. TR モデル: 並進バネ、回転バネを考慮したモデル
- 3. TRM モデル: 並進バネ、回転バネの両方に等価質量を考慮したモデル
- 4. T_cRM モデル: 並進振動に対して弾性連続体の挙動を考慮したモデル (回転については TRM モデルと同じ)

Fig. 4.1 Numerical model of edge support system.

4.2.1 T モデル

初めに、周辺支持部を最も単純な振動系を想定し 1 自由度系の減衰自由振動をしている 場合を考える。窓ガラスの周辺支持部に関して板ガラスの振動により生じる境界上での面 外変位 w に対して並進バネが作用し、端部損失はバネの内部減衰によって生じるモデルを 想定する。これを T モデルとする。図 4.1 に並進バネのつり合いの様子を示す。板に変位 が生じることによって並進バネが行う仕事 W_外とシール材内部が行う仕事 W_内がつり合う。 W_{外、}W_内を次式で表す。

$$W_{\#} = \frac{1}{2} (k_{\rm q}) w^2 \tag{4.1}$$

$$W_{\mathsf{P}} = \int_0^w \overline{E_s} d_s \frac{w}{h_s} dw = \frac{d}{2} \overline{E_s} \frac{w}{h_s} \frac{w}{h_s} h_s = \frac{1}{2} \frac{E_s d_s}{h_s} w^2$$
(4.2)

但し、 k_q : 並進バネ定数、 $\overline{E_s} = E_s(1 + j\eta_s)$ 、 E_s : シール材のヤング率、 η_s : シール材の損失係数、 d_s : シール材の幅、 h_s : シール材の厚さ. 式 (4.1) と式 (4.2) が釣り合うので k_q は

$$k_{\rm q} = \frac{\overline{E_{\rm s}}d_{\rm s}}{h_{\rm s}} \tag{4.3}$$
第4章 周辺支持部のエネルギー損失に関する検討

となる。板の上下のシール材を考慮するとk。は

$$k_{\rm q} = \frac{2\overline{E_{\rm s}}d_{\rm s}}{h_{\rm s}} \tag{4.4}$$

となる。よって板端部の機械インピーダンスZ_qは次式で表すことができる。

$$Z_{q} = \frac{Q}{v} = \frac{Q}{j\omega w} = \frac{2E_{s}d_{s}}{j\omega h_{s}}$$
(4.5)

4.2.2 TR モデル

次に、T モデルに境界を軸とした回転角が生じるものを考える。この回転角 θ に対して 回転バネが作用し、端部損失はバネの内部減衰によって生じるモデルを想定する。これを TR モデルとする。TR モデルの機械インピーダンスは T モデルと同様である。図 4.1 に 回転バネのつり合いの様子を示す。板に回転角が生じることによって回転バネが行う仕事 W_{A} とシール材内部が行う仕事 W_{A} がつり合う。 W_{A} 、 W_{A} を次式で表す。

$$W_{\mathfrak{H}} = \frac{1}{2} (k_{\rm m}) \theta^2 \tag{4.6}$$

$$W_{pq} = \int_{0}^{w} \int_{\frac{d_{s}}{2}}^{\frac{d_{s}}{2}} \overline{E_{s}} \frac{w}{h_{s}} dx dw = \int_{0}^{w} \int_{\frac{d_{s}}{2}}^{\frac{d_{s}}{2}} \overline{E_{s}} \frac{\theta x}{h_{s}} dx dw = \frac{1}{2} \frac{E_{s}}{h_{s}} \theta^{2} \frac{d_{s}^{3}}{12}$$
(4.7)

但し、k_m:回転バネ定数.

式 (4.6) と式 (4.7) が釣り合うので k_m は

$$k_{\rm m} = \frac{\overline{E_{\rm s}}d_{\rm s}^{3}}{12h_{\rm s}} \tag{4.8}$$

となる。板の上下のシール材を考慮すると k_m は

$$k_{\rm m} = \frac{\overline{E_{\rm s}} d_{\rm s}^{3}}{6h_{\rm s}} \tag{4.9}$$

となる。よって板端部のモーメントインピーダンスZ_mは次式で表すことができる。

$$Z_{\rm m} = \frac{M}{\gamma} = \frac{M}{j\omega\theta} = \frac{\overline{E_{\rm s}}d_{\rm s}^{3}}{6j\omega h_{\rm s}}$$
(4.10)

4.2.3 TRM モデル

図 4.2 に TR バネモデルに、シール材の質量を考慮した場合の垂直方向の力の様子を示 す。板に変位が生じることによってシール材の質量が垂直方向に行う仕事 W_{A} とシール材 内部の変位を押し戻す力が行う仕事 W_{A} がつり合う。 W_{A} , W_{A} を次式で表す。

$$W_{\#} = \frac{1}{2} (m_{\rm q}) (\dot{w})^2 \tag{4.11}$$

Fig. 4.2 Numerical model of edge support system.

$$W_{\rm PA} = \int_0^{h_{\rm s}} \frac{1}{2} \rho_{\rm s} d_{\rm s} dz \dot{w}(z)^2 = \frac{1}{2} \rho_{\rm s} d_{\rm s} \int_0^{h_{\rm s}} \left(\frac{\dot{w}}{h_{\rm s}}z\right)^2 dz = \frac{1}{2} \rho_{\rm s} d_{\rm s} \frac{\dot{w}^2}{h_{\rm s}^2} \frac{h_{\rm s}^3}{3}$$
(4.12)

但し、 m_q : 並進振動時の等価質量、 ρ_s : シール材の密度. 式 (4.11) と式 (4.12) が釣り合うので m_q は

$$m_{\rm q} = \frac{\rho_{\rm s} d_{\rm s} h_{\rm s}}{3} \tag{4.13}$$

となる。板の上下のシール材を考慮するとm。は

$$m_{\rm q} = \frac{2\rho_{\rm s}d_{\rm s}h_{\rm s}}{3} \tag{4.14}$$

となり機械インピーダンス Z_q は

$$Z_{q} = \frac{1}{j\omega} \left(\frac{2\overline{E_{s}}d_{s}}{h_{s}} - \omega^{2} \frac{2\rho_{s}d_{s}h_{s}}{3} \right)$$
(4.15)

と表すことができる。

また図 4.2 にシール材の質量を考慮した場合の回転方向の力の様子を示す。板に回転角が生じることによってシール材の質量が回転方向に行う仕事 W_外 とシール材内部の変位を 押し戻す力が行う仕事 W_内 がつり合う。W_{外、}W_内を次式で表す。

$$W_{\text{pk}} = \frac{1}{2} (m_{\text{m}}) (\dot{\theta})^2$$
(4.16)

$$W_{\rm Pl} = \int_0^{h_{\rm s}} \int_{\frac{2}{2}}^{\frac{d_{\rm s}}{2}} \frac{1}{2} \rho_{\rm s} dz dx [\dot{w}(z)]^2 = \int_0^{h_{\rm s}} \int_{\frac{2}{2}}^{\frac{d_{\rm s}}{2}} \frac{1}{2} \rho_{\rm s} dz dx \left[\frac{zx\dot{\theta}}{h_{\rm s}} \right]^2 = \frac{1}{2} \frac{\rho_{\rm s} h_{\rm s} d_{\rm s}^3}{36}$$
(4.17)

但し、*m*_m:回転時の等価質量.

式 (4.16) と式 (4.17) が釣り合うので m_m は

$$m_{\rm m} = \frac{\rho_{\rm s} d_{\rm s}^{-3} h_{\rm s}}{36} \tag{4.18}$$

となる。板の上下のシール材を考慮すると m_m は

第4章 周辺支持部のエネルギー損失に関する検討

$$m_{\rm m} = \frac{\rho_{\rm s} d_{\rm s}^{3} h_{\rm s}}{18} \tag{4.19}$$

となりモーメントインピーダンスZmは

$$Z_{\rm m} = \frac{1}{j\omega} \left(\frac{\overline{E_s} d_s^3}{6h_{\rm s}} - \omega^2 \frac{\rho_{\rm s} d_{\rm s}^3 h_{\rm s}}{18} \right)$$
(4.20)

と表すことができる。

4.2.4 T_CRM モデル

シール材の並進振動のみに対して、弾性連続体の挙動を考慮して 1 次元縦振動を想定する。図 4.3 に示す弾性連続体における力のつり合いを示す。板に変位 w が生じたとき微小な弾性体の両面に働く外力 dF は以下の式で表される。

$$dF = \frac{\partial F}{\partial z} dz = \frac{\partial^2 w(z,t)}{\partial z^2} \overline{E_s} d_s dz$$
(4.21)

またシール材の密度を ρ。とすると、微小な弾性体が受ける慣性力 F_iは

$$F_{i} = \frac{\partial^{2} w(z,t)}{\partial t^{2}} \rho_{s} d_{s} dz$$
(4.22)

で表される。式 (4.21) と式 (4.22) はつり合うので、力のつりあい式は

$$\frac{\partial^2 w(z,t)}{\partial z^2} \overline{E_s} d_s dz = \frac{\partial^2 w(z,t)}{\partial t^2} \rho_s d_s dz$$
(4.23)

となる。式 (2.47) より $w(z,t) = w(z)e^{j\omega t}$ であり、ここで $c_s = \sqrt{\frac{\overline{E_s}}{\rho_s}}$ 、 $\overline{k_s} = \frac{\omega}{c_s}$ とすると式

(4.23) は以下のようになる。

$$\frac{\partial^2 w(z)}{\partial z^2} + \overline{k_s}^2 w(z) = 0$$
(4.24)

となる。w(z)の一般解は a_1 、 a_2 を定数として $w(z) = a_1 e^{j\overline{k_s z}} + a_2 e^{-j\overline{k_s z}}$ (4.25) となる。式 (4.25) はz = 0で $w(z) = a_1 + a_2 = 0$ となるので、

$$w(z) = a_2 \left(e^{j \vec{k}_s z} - e^{-j \vec{k}_s z} \right)$$
(4.26)

 $z=h_s$ での力とせん断力 $Q=-Z_Qw(h_s)$ がつり合うので、式 (4.26) は

$$\frac{\partial w(h_{\rm s})}{\partial z}\overline{E_{\rm s}}d_{\rm s} = j\overline{k_{\rm s}}a_2 \left(e^{j\overline{k_{\rm s}}h_{\rm s}} + e^{-j\overline{k_{\rm s}}h_{\rm s}}\right)\overline{E_{\rm s}}d_{\rm s} = -Q \tag{4.27}$$

となり、弾性連続体モデルの板端部のインピーダンス Zo は

$$Z_{\rm Q} = \frac{-Q}{w(h_{\rm s})} = \frac{j\overline{k_{\rm s}}a_2\left(e^{j\overline{k_{\rm s}}h_{\rm s}} + e^{-j\overline{k_{\rm s}}h_{\rm s}}\right)\overline{E_{\rm s}}d_{\rm s}}{a_2\left(e^{j\overline{k_{\rm s}}h_{\rm s}} - e^{-j\overline{k_{\rm s}}h_{\rm s}}\right)} = jk_{\rm s}\overline{E_{\rm s}}d_{\rm s}\frac{e^{j\overline{k_{\rm s}}h_{\rm s}} + e^{-j\overline{k_{\rm s}}h_{\rm s}}}{e^{j\overline{k_{\rm s}}h_{\rm s}} - e^{-j\overline{k_{\rm s}}h_{\rm s}}}$$
(4.28)

Fig.4.3 Illustration of the continuum model.

で表すことができる。また $\overline{k_s}$ は次式のように変形できる。

$$\overline{k_s} = \frac{\omega}{c_s} = \frac{\omega}{\sqrt{\frac{E_s(1+j\eta_s)}{\rho_s}}} = k_s \frac{1}{\sqrt{1+j\eta_s}} = k_{sr} - jk_{si}$$
(4.29)

$$k_{\rm s} = \frac{\omega}{\sqrt{\frac{E_{\rm s}}{\rho_{\rm s}}}} \tag{4.30}$$

ここで
$$\frac{k_{sr}}{k_s} - j\frac{k_{si}}{k_s} = \frac{1}{\sqrt{1+j\eta_s}}, \ \frac{k_{sr}}{k_s} = k_1, \ \frac{k_{si}}{k_s} = k_2$$
 とおくと k_1 と k_2 は次式で表される。

$$k_{1} = \frac{1}{2} \left(\sqrt{\frac{1+\eta_{s}}{1+\eta_{s}^{2}}} + \sqrt{\frac{1-\eta_{s}}{1+\eta_{s}^{2}}} \right) = \frac{1}{2} \left(\frac{\sqrt{1+\eta_{s}} + \sqrt{1-\eta_{s}}}{\sqrt{1+\eta_{s}^{2}}} \right)$$
(4.31)

$$k_{2} = \frac{1}{2} \left(\sqrt{\frac{1+\eta_{s}}{1+\eta_{s}^{2}}} - \sqrt{\frac{1-\eta_{s}}{1+\eta_{s}^{2}}} \right) = \frac{1}{2} \left(\frac{\sqrt{1+\eta_{s}} - \sqrt{1-\eta_{s}}}{\sqrt{1+\eta_{s}^{2}}} \right)$$
(4.32)

以上より式 (4.28) は

$$Z_{\rm Q} = j\overline{k_{\rm s}}\overline{E_{\rm s}}d_{\rm s}\frac{e^{j\overline{k_{\rm s}}h_{\rm s}} + e^{-j\overline{k_{\rm s}}h_{\rm s}}}{e^{j\overline{k_{\rm s}}h_{\rm s}} - e^{-j\overline{k_{\rm s}}h_{\rm s}}} = j\overline{k_{\rm s}}\overline{E_{\rm s}}d_{\rm s}\frac{\cos k_{\rm sr}h_{\rm s}\left(e^{k_{\rm sl}h_{\rm s}} + e^{-k_{\rm sl}h_{\rm s}}\right) + j\sin k_{\rm sr}h_{\rm s}\left(e^{k_{\rm sl}h_{\rm s}} - e^{-k_{\rm sl}h_{\rm s}}\right)}{\cos k_{\rm sr}h_{\rm s}\left(e^{k_{\rm sl}h_{\rm s}} - e^{-k_{\rm sl}h_{\rm s}}\right) + j\sin k_{\rm sr}h_{\rm s}\left(e^{k_{\rm sl}h_{\rm s}} + e^{-k_{\rm sl}h_{\rm s}}\right)}$$
(4.33)

となる。ここで
$$e^{k_s h_s} + e^{-k_s h_s} = e^A$$
, $e^{k_s h_s} - e^{-k_s h_s} = e^B$ とおくと、上式は以下のように表される。

$$Z_Q = j\overline{k_s}\overline{E_s}d_s \frac{e^A \cos k_{sr}h_s + je^B \sin k_{sr}h_s}{e^B \cos k_{sr}h_s + je^A \sin k_{sr}h_s} = j\overline{k_s}\overline{E_s}d_s \frac{e^A e^B - j(e^{2A} - e^{2B})\cos k_{sr}h_s \sin k_{sr}h_s}{e^{2B} \cos k_{sr}h_s + e^{2A} \sin k_{sr}h_s}$$

$$\therefore Z_Q = j\overline{k_s}\overline{E_s}d_s \frac{e^{2k_s h_s} - e^{-2k_s h_s} - 2j\sin 2k_{sr}h_s}{(e^{2k_s h_s} + e^{-2k_s h_s}) - 2\cos 2k_{sr}h_s}$$

$$(4.34)$$

$$(\boxplus \cup e^{2A} - e^{2B} = 4, e^{2A} = e^{2k_{si}h_s} + 2 + e^{-2k_{si}h_s}, e^{2B} = e^{2k_{si}h_s} - 2 + e^{-2k_{si}h_s}, \cos k_{sr}h_s \sin k_{sr}h_s = \frac{1}{2}\sin 2k_{sr}h_s.$$

	モデル名	並進バネ		回転バネ	等価質量	
			弾性連続体の挙動を考慮		並進バネ	回転バネ
集中バネモデル	Т	\bigcirc				
	TR	\bigcirc		0		
	TRM	\bigcirc		\bigcirc	\bigcirc	\bigcirc
弾性連続体モデル	T _c RM		Ó	Ó	Ó	Ó

 Table 4.1
 An outline of the spring model and continuum model.

板の上下のシール材を考慮すると並進インピーダンス Zo は

$$Z_{\rm Q} = 2j\overline{k_{\rm s}}\overline{E_{\rm s}}d_{\rm s}\frac{e^{2k_{\rm s}ih_{\rm s}} - e^{-2k_{\rm s}ih_{\rm s}} - 2j\sin 2k_{\rm s}h_{\rm s}}{\left(e^{2k_{\rm s}ih_{\rm s}} + e^{-2k_{\rm s}ih_{\rm s}}\right) - 2\cos 2k_{\rm s}h_{\rm s}}$$
(4.35)

となり機械インピーダンスは

$$Z_{q} = \frac{1}{j\omega} \left(2j\overline{k_{s}}\overline{E_{s}}d_{s} \frac{e^{2k_{si}h_{s}} - e^{-2k_{si}h_{s}} - 2j\sin 2k_{sr}h_{s}}{(e^{2k_{si}h_{s}} + e^{-2k_{si}h_{s}}) - 2\cos 2k_{sr}h_{s}} \right) = \frac{2\rho_{s}c_{s}d_{s}}{j\tan\omega h_{s}/c_{s}}$$
(4.36)

と表すことができる。

またモーメントインピーダンスZ_mは、TRM モデルと同じ

$$Z_{\rm m} = \frac{1}{j\omega} \left(\frac{\overline{E_{\rm s}} d^3}{6h} - \omega^2 \frac{\rho_{\rm s} d^3 h}{18} \right)$$

である。

以上の4 つモデルを整理し、表4.1 に示す。

4.3 板のインピーダンス [21]

板端部の機械インピーダンス Z_q 、モーメントインピーダンス Z_m は、式 (4.5, 10) に示 したとおり、次式で表される。

$$Z_{q} = \frac{Q}{v} = \frac{Q}{j\omega w} = \frac{Z_{Q}}{j\omega}$$
(4.37)

$$Z_{\rm m} = \frac{M}{\gamma} = \frac{M}{j\omega\theta} = \frac{Z_{\rm M}}{j\omega}$$
(4.38)

但し、Z_o: 並進インピーダンス、Z_M: 回転インピーダンス.

ー方、板の屈曲波の固有インピーダンスは、波数 k_b に対して $Z_{q0} = Dk_b^3/\omega$ および $Z_{m0} = Dk_b/\omega$ となる。この固有インピーダンスと、機械・モーメントインピーダンスの不整 合が大きくなれば、端部における反射が大きくなる。この固有インピーダンスとの不整合 (インピーダンス比) z_q と z_m 、をパラメータとして次のように表す。 第4章 周辺支持部のエネルギー損失に関する検討

$$z_{q} = Z_{q} / Z_{q0} \tag{4.39}$$

$$z_{\rm m} = Z_{\rm m} / Z_{\rm m0} \tag{4.40}$$

4.4 板端部のエネルギー吸収率 [20,21]

板端部のエネルギー損失は、板ガラス周辺のエネルギー吸収率で評価する。ここではエ ネルギー吸収率の導出について述べる。

直線状の屈曲波が無限長の境界に対して角度 *θ* で入射する場合を想定する。振動が正弦的 であるとすると、屈曲の振動方程式は 4 階になり、以下の式で表される。

$$\nabla^4 w(x, y) - k^4 w(x, y) = 0 \tag{4.41}$$

ここで、 $k_x = k \cos \theta = ka$ 、 $k_y = k \sin \theta = kb$ 、 $w(x, y) = w(x)e^{-ik_y y}$ とおくと、上式は

$$\left(\frac{\partial^2}{\partial x^2} - k_y^2\right) \left(\frac{\partial^2}{\partial x^2} - k_y^2\right) w(x) - k^4 w(x) = 0$$
(4.42)

となり、 $w(x) = Ce^{\alpha x}$ とおくと次式が得られる。

$$\left(\alpha^{2} - k_{y}^{2}\right)^{2} - k^{4} = 0 \tag{4.43}$$

$$\alpha = \pm jk\cos\theta \tag{4.44}$$

このとき、w(x)は

$$w(x) = A_{+}e^{jk\cos\theta x} + A_{-}e^{-jk\cos\theta x} + C_{+}e^{k\sqrt{1+\sin^{2}\theta}x} + C_{-}e^{-k\sqrt{1+\sin^{2}\theta}x}$$
(4.45)

となる。ここで A_+ , A_- , C_+ , C_- は境界条件で決定する複素振幅である。前の 2 項は進行 波 (正負方向に伝搬)を表し、後ろの 2 項は境界付近に存在する境界近接波である。 $\sqrt{1+\sin^2\theta}=c$ とおくと式 (4.45) は

$$w(x) = A_{+}e^{jkax} + A_{-}e^{-jkax} + C_{+}e^{kcx} + C_{-}e^{-kcx}$$
(4.46)

で表すことができる。片近傍場の場合、*C*₊が存在するが、本論文では板が十分長いために 減衰して無視できるとして考える。よって*w*(*x*)は次式で整理できる。

$$w(x) = A_{+}e^{jkax} + A_{-}e^{-jkax} + C_{-}e^{-kcx}$$
(4.47)

板振動場の境界条件は式 (2.54) と (2.57) で表される。有効せん断力による釣り合いの式 (2.54) と式 (4.47) より次式が得られる。

$$\left(-ja^{3}-j(2-\nu)ab^{2}\right)A_{+}+\left(ja^{3}+j(2-\nu)ab^{2}\right)A_{-}+\left(-c^{3}+(2-\nu)cb^{2}\right)C_{-}=\frac{-k_{q}}{Dk^{3}}\left(A_{+}+A_{-}+C_{-}\right) \quad (4.48)$$

ここで式 (4.39)、
$$a^2 + b^2 = 1$$
 $c^2 = 1 + b^2 \downarrow \psi$ 、上式は
 $\{a[a^2 + (2-\nu)b^2] - z_q\}A_+ - \{a[a^2 + (2-\nu)b^2] + z_q\}A_- - \{jc[c^2 - (2-\nu)b^2] + z_q\}C_- = 0$ (4.49)

第4章 周辺支持部のエネルギー損失に関する検討

となる。また式 (4.47) と式 (2.57) より次式が得られる。

$$(-a^{2}-vb^{2})A_{+}+(-a^{2}-vb^{2})A_{-}+(c^{2}-vb^{2})C_{-}=\frac{-k_{m}}{Dk}(jaA_{+}-jaA_{-}-cC_{-})$$
(4.50)

ここで式 (4.40)、
$$c^2 - vb^2 = (2 - v) - (1 - v)a^2 = \beta$$
、 $a^2 + vb^2 = v + (1 - v)a^2 = \gamma$ より、 上式は
 $(\gamma - az_m)A_+ + (\gamma + az_m)A_- - (\beta + jcz_m)C_- = 0$ (4.51)

となる。

式 (4.49) と式 (4.51) より、エネルギー吸収率 $\alpha(\theta)$ は

$$\alpha(\theta) = 1 - \left|\frac{A_{-}}{A_{+}}\right|^{2} = 1 - \left|\frac{a\beta^{2} - 2z_{q} + az_{q}z_{m} + j\left[-\gamma^{2}c + 2acz_{m} - cz_{q}z_{m}\right]}{a\beta^{2} + 2z_{q} + az_{q}z_{m} + j\left[\gamma^{2}c + 2acz_{m} + cz_{q}z_{m}\right]}\right|^{2}$$
(4.52)

となり、ランダム入射時における吸収率 α_{rand} は次式で表される。

$$\alpha_{\text{rand}} = \frac{\int_{0}^{\frac{\pi}{2}} \alpha(\theta) \cos \theta d\theta}{\int_{0}^{\frac{\pi}{2}} \cos \theta d\theta} = \int_{0}^{\frac{\pi}{2}} \alpha(\theta) \cos \theta d\theta$$
(4.53)

また式 (4.52) で、 $z_{\rm m}=0$ のとき、吸収率 $\alpha(\theta)$ は

$$\alpha(\theta) = \frac{8a\beta^2 \Re(z_q)}{\left|a\beta^2 + jc\gamma^2 + 2z_q\right|^2} = \frac{2a\beta^2 \Re(z_q)}{\left|\frac{a\beta^2 + jc\gamma^2}{2} + z_q\right|^2}$$
(4.54)

となる。ここで $z_q = z(\eta_s - j)$ とおくと式 (4.54) は

$$\alpha(\theta) = \frac{2a\beta^2\eta_s z}{\left(\eta_s z + \frac{a\beta^2}{2}\right)^2 + \left(z - \frac{c\gamma^2}{2}\right)^2} = \frac{2a\beta^2\eta_s z}{\left(1 + \eta_s^2\right)z^2 + \left(a\beta^2\eta_s - c\gamma^2\right)z + \frac{a^2\beta^4 + c^2\gamma^4}{4}}$$
(4.55)

となる。このとき $\alpha(\theta)$ はzについての関数であり、 $\partial \alpha(\theta)/\partial z = 0$ のとき $\alpha(\theta)$ が最大値となる。 このときzを $z(\theta)$ とすると、 $z(\theta)$ は

$$z(\theta) = \sqrt{\frac{a^2 \beta^4 + c^2 \gamma^4}{4(1 + \eta_s^2)}}$$
(4.56)

となる。これを式(4.55)に代入すると、 $\alpha(\theta)$ の最大値 $\alpha(\theta)_{\max}$ は次式で表される。

$$\alpha(\theta)_{\max} = \frac{2a\beta\eta_s\sqrt{a^2\beta^4 + c^2\gamma^4}}{\sqrt{1 + \eta_s^2}\left(a^2\beta^4 + c^2\gamma^4\right) + \left(a\beta^2\eta_s - c\gamma^2\right)\sqrt{a^2\beta^4 + c^2\gamma^4}}$$
(4.57)

 $\theta = 0$ では、 $\alpha(\theta)_{\max}$ は

$$\alpha(0)_{\max} = \frac{2\eta_s}{\sqrt{2(1+\eta_s^2)} + (\eta_s - 1)}$$
(4.58)

となり、このとき $z(\theta)$ は

$$z(0) = \sqrt{\frac{1}{2(1+\eta_{s}^{2})}}$$
(4.59)

Fig.4.4: Incidence characteristic of the the impedance when the abosorption coefficient is the maximum.

Fig.4.5: Incidence characteristic of the the maximum value of abosorption coefficient

となる。式 (4.56), (4.57) より求めた T モデルの $\alpha(\theta)_{\max}$, $z(\theta)$ をそれぞれ図 4.4, 4.5 に 示す。図 4.5 より、 $\alpha(\theta)_{\max}$ は入射角が大きくなるにつれて小さくなっていくものの、擦 過角に近づくにつれて再び大きくなることがわかる。

4.5 周辺支持部のエネルギー損失に関する検討

4.5.1 パラメータの設定

解析対象とシール材の物性値を示す。解析対象としては単層板ガラスとし、板厚は $h_p = 5$, 10, 15 [mm]とする。シール材は ISO パテ,シリコンを想定した。シール材の寸法は、パテ 支持は JIS A 1416: 2000 に従った。シール材の物性値は [22, 23] を参考にした。測定値を表 4.2 に示す。

周辺支持部について

本論文では、第2章でも示したように、ガラスの支持条件として ISO 140 及び JIS A 1416 で規定されているようなパテ支持(図 4.6)、また実際の現場でガラスの支持によく用いら

Table 4.2Seal's properties measured by Yamaguchi [22, 23].

	ヤング率 [N/m ²]	損失係数
ISO パテ	$3 \times 10^7 \sim 10^8$	$0.6~\sim~0.8$
シリコン		
A 社	4×10^{7}	$0.04~\sim~0.07$
B 社	$10^8\sim~2 imes 10^8$	$0.03 \sim 0.07$
C 社	$10^8 \sim 2 imes 10^8$	$0.05~\sim~0.07$

 $h_{\underline{s}_{\perp}}^{\top} \xrightarrow{F} Plate$

Silicone

Fig.4.6: Shematic representation of glass mounting using putty.

れるシリコン支持(図 4.7)を想定している。

パテ支持では JIS A 1416:2000 の 『5.2.2.3 ガラスの設置』 及び附属書 2 (規定) 「ガ ラス測定用試験開口及びガラス固定用パテ」の『2. ガラス固定用パテ』に規定される方法 に従い、シール材充填部の深さ *d*_s = 15 [mm]、シール材厚さを *h*_s = 5 [mm] とする[3]。

シリコン支持ではシール材充填部の深さ *d*_{ss} は熱収縮で剥がれ易くなるのを防ぐため、3 ~ 5 [mm] 程度と薄く施工するといわれている。パテ支持でのシール材充填部の深さ *d*_s と 比較すると、シリコン支持でのシール材充填率は 1/5 から 1/3 程度になる。またバックア ップ材には一般的にポリエチレンフォームや発砲ゴムなどの材料が用いられるが、そのヤ ング率はシリコンのヤング率に比べて小さい。

そこでバックアップ材とシリコンを一つのシール材として、そのヤング率を E_s とすると、 E_s はシリコンのヤング率によって決まる。よって表 2 より、 E_s は 8×10^6 から 6×10^7 と なる。またシール材の密度は、パテについてはパテメーカー D 社の金属製建具用ガラスパ テの比重 2.1 を、シリコンについてはシリコンメーカー A 社のシリコンの比重 1.05 を参 考にした。以上より、パテ支持とシリコン支持を考慮するため、シール材のヤング率と損 失係数、密度は表 3 としてパラメータの設定を行った。

ヤング率 $E_{\rm s}$ [N/m²] $10^6, 10^7, 10^8$ 損失係数 $\eta_{\rm s}$ 0.1, 0.5 1.0密度 $\rho_{\rm s}$ [kg/m³]1000, 2000

Table 3 Properties of seal.

Fig.4.8: Incidence angle dependence of the absorption coefficient of the edge (seal: $E_s = 10^7 \text{ [N/m^2]}$, $\eta_s = 0.5$).

4.5.2 結果と考察

各モデルで計算した垂直入射吸収率・ランダム入射吸収率について示す。集中バネモデ ルについて斜め入射の入射角の影響、回転バネの影響とシール材の質量の影響を、また弾 性連続体モデルによる影響を考察する。

入射角による影響

集中バネモデルである TR モデルにおいてガラス板内の屈曲波の入射角を変化させた場合のエネルギー吸収率を図 4.8 に示す。吸収率は一つの明確なピークを持ち、垂直入射から 60 度入射付近にかけてはピーク値が低下するのに対して、 75 度にかけてはピーク周 波数が高音域に変化している。但し、入射角依存性は比較的緩やかである。

回転バネの影響

T モデルとTR モデル2の垂直入射吸収率を図 4.9、ランダム入射吸収率を図 4.10 に示 す。また $\eta_s = 0$ の時のTR モデルの z_q 、 z_m を図 4.15 に示す。

吸収率は明確なピーク値を持ち、その周波数は板厚が薄いほど、またシール材が硬いほ ど高音側に移動している。垂直入射吸収率の場合、ピーク値は $\eta_s = 0.1$ で $\alpha = 0.4$ 、 $\eta_s =$ 0.5 で $\alpha = 0.9$ に達し、 $\eta_s = 1$ では $\alpha = 1$ となっている。ランダム入射吸収率では、 η_s に よらずピーク値は垂直入射吸収率に比べて若干小さくなる。

また板厚が薄く、また硬いシール材の低音域で回転バネの有無による差が生じているが、 シール材が柔らかいときは回転バネの影響が小さいことがわかる。これは図 4.15 において z_m が z_q に比べて非常に小さいこと、また板厚が薄く、かつ硬いシール材では z_m が 1 に 近づくが、板厚が厚く、かつ柔らかいシール材では z_m が 1を大きく下回ることと対応して いる。

シール材の質量の影響

TRM モデルについて、シール材の密度 ρ_s を0,1,2とした時の垂直入射吸収率を図 4.11、 ランダム入射吸収率を図 4.12に示す。 $\eta_s = 0$ の場合、TRM モデルと TR モデルは等しく なる。また $\eta_s = 0$ の時の TRM モデルの z_q 、 z_m を図 4.16,17 に示す。

板厚が薄く、硬いシール材で吸収係数のピーク値付近から高周波数域にかけてシール材 の質量によりピーク値の上昇と低域側への移動が若干生じている。しかし板厚が厚くなる と差は殆ど見られない。

また式 (4.15)、(4.20) より、 $M_a \propto M_m \times 10^6$ となるため M_m の影響は殆ど無い。

集中バネモデルと弾性連続体モデルの比較

集中バネモデルである TRM モデルと弾性連続体モデルである T_cRM モデルの垂直入 射吸収率を図 4.13、ランダム入射吸収率を図 4.14 に示す。また $\eta_s = 0$ の時の T_cRM モデ ルの $z_q \, z_m$ を図 4.18, 19 に示す。

シール材の質量は集中バネモデルでの検討と同様に弾性連続体モデルにおいても吸収率 のピーク値に若干影響を及ぼしている。また $T_c RM$ モデルでは、 $E_s = 10^6 [N/m^2]$ のとき $\rho_s = 1000 [kg/m^3]$ では 2000 [Hz]、 $\rho_s = 2000 [kg/m^3]$ では 3000 [Hz] 付近以降で固有モードが生じ ている。これはシール材自体の共振によるものである。

以上より、シール材の質量は吸収率のピークに対して若干影響を及ぼすとともに、シー ル材が柔らかい場合に高音域ではシール材自体の共振の影響が顕著に表れていることがわ かった。

実測の損失係数から計算した吸収率との比較

吉村らは実測した総合損失係数を測定し、これが端部の損失のみに依存していると仮定 して周端での吸収率を求めている [24]。これを図 4.20 に示す。両方の支持条件とも吸収率 の大きさは理論的に求めた吸収率と同程度の値を示している。

しかし損失係数から計算した吸収率では、理論的に算出した吸収率に見られる周波数特 性は確認できない。さらに吸収率は理論的には板サイズの影響は受けないものの、板サイ ズによる違いが表れていること、また集中バネモデルと比較すると高周波数域での吸収率 が高くなっていることなど、理論的に算出した吸収率とは違う傾向を示している。これは 実際の現場が、シール材を固定している押し縁や板ガラスのセッティングブロックなどに よって構成される複雑な振動場であること、また測定誤差による影響など様々な要因が考 えられる。しかし弾性連続体モデルでは共振の影響を受け高周波数域における吸収率が高 くなることなどから、集中バネモデルより弾性連続体モデルのほうが、より実際の支持条 件の端部損失を反映しているといえる。

T, TR model

Fig. 4.9: Frequency characteristics of the normal-incidence absorption coefficients of the edge support models.

Fig. 4.10: Frequency characteristics of the random-incidence absorption coefficients of the edge support models.

TR, TRM model

Fig. 4.11: Frequency characteristics of the normal-incidence absorption coefficients of the edge support models.

Fig. 4.12: Frequency characteristics of the random-incidence absorption coefficients of the edge support models.

TRM, T_CRM model

Fig. 4.13: Frequency characteristics of the normal-incidence absorption coefficients of the edge support models.

Fig. 4.14: Frequency characteristics of the random-incidence absorption coefficients of the edge support models.

Fig. 4.15: Impedance of the TR model

Fig. 4.16: Impedance of the TRM model (seal: $\rho_s = 1000 \text{ [kg/m}^3\text{]}$).

Fig. 4.17: Impedance of the TRM model (seal: $\rho_s = 2000 \text{ [kg/m^3]}$).

Fig. 4.18: Impedance of the T_cRM model (seal: $\rho_s = 1000 \text{ [kg/m³]}$).

Fig. 4.19: Impedance of the T_cRM model (seal: $\rho_s = 2000 \text{ [kg/m³]}$).

Fig. 4.20: Calculated results of boundary absorption coefficients from total loss factors.

4.6 まとめ

本章では、板ガラスの周辺支持部に集中バネモデルと弾性連続体モデルを想定し、拡散 振動場における端部のエネルギー損失について理論的に考察を行った。集中バネモデルは ガラス板周辺のシール材が端部の変位・傾斜に対して各々反作用するものと仮定し、弾性 体と等価な並進バネおよび回転バネを考慮したものである。弾性連続体モデルはシール材 の並進振動のみに対して弾性連続体の挙動を考慮して1 次元縦振動を想定したものであ る。周辺支持部のエネルギー損失の挙動より回転バネの影響は低域で生じること、集中バ ネモデルではシール材の等価質量による影響は吸収率のピーク値において表れるが微小で あること、弾性連続体モデルではシール材の質量はピーク値に若干影響を及ぼすと共にシ ール材が柔らかい場合に高域でシール材の共振の影響が顕著に表れることを確認した。

以上より周辺支持部のモデル化を行うにはシール材の並進振動モデルとしては、弾性連 続体の挙動を考慮したモデル化が必要と考えられる。

第5章

端部損失を反映した音響透過損失予測値に関す る検討

5.1 はじめに

前章では窓ガラスの周辺支持部に並進・回転バネを考慮した集中バネモデルと弾性連続 体モデルを想定し、屈曲波の斜め入射・ランダム入射時のおける端部のエネルギー損失に ついて理論的考察を行った。本章では前章で検討を行ったモデルについて周辺支持部の物 性値を与えて音響振動連成数値解析を行い、得られた透過損失値について各モデルに関す る考察と、音響透過損失の予測式・実測値と比較検討する。

5.2 集中バネモデル・弾性連続体モデルに関する考察

前章での検討で用いた並進バネと回転バネを並置した集中バネモデル [TR モデル]と弾 性連続体モデル [T_cRM モデル] について音響振動連成数値解析を行う。

5.2.1 解析手法

解析モデルは 3 章での検討と同様に無限大剛バフル中の板材に単位振幅平面波が入射 する問題を想定する。音場入射条件はランダム入射条件とする。式 (4.37,38) より各モデル の Z_Q, Z_Mを算出し、それぞれ式 (2.96) の K_{BQ}, K_{BM} に与え、式 (3.7) より音響透過損失を 算出する。1/24 オクターブ帯域中心周波数においてランダム入射透過損失を算出し、得ら れた値をエネルギー合成することで 1/3 オクターブ帯域値を 2000 Hz まで算出している。

5.2.2 解析対象

解析対象は単層板ガラスとし、寸法 $1.25 \times 1.5 [m^2]$ 、 $0.9 \times 0.9 [m^2]$ の2水準、板厚 h_p は前章での検討と同様に3水準を考えた。板ガラスの物性値は密度 2500 kg/m³、ヤング率 7.5×10¹⁰ N/m²、ポアソン比 0.22、損失係数 0.002 とした。またシール材も前章での検討と

Fig. 5.1: Difference of 1/3-oct-band transmission loss caused by neglecting rotational springs (glass: $0.9 \ge 0.9 \text{ [m^2]}$, $h_s = 10 \text{ [mm]}$).

同様、寸法 $d_s = 15 \text{ [mm]}$ 、厚さ $h_s = 5 \text{ [mm]}$ とし、ヤング率 E_s 、損失係数 η_s はそれぞれ 3 水準で検討を行った。本検討ではシール材の損失係数を与えて考察を行うため、固定支持 条件で検討を行った 3 章での透過損失値に比べて固有周波数におけるディップは浅くなる ので、解析周波数は 1/24 オクターブ帯域中心周波数とした。

5.2.3 結果と考察

回転バネの影響

板サイズ $0.9 \ge 0.9 [m^2]$ 、板厚 $h_s = 10 [mm]$ の場合の集中バネモデルにおける、回転バネの有無による透過損失値の差(「回転バネ有り」 – 「無し」)を図 5.1 に示す。前章の図 4.9, 10 の結果と同様、 $E_s = 10^6 [N/m^2]$ では影響が表れていないが、シール材が硬い $E_s = 10^7$, $10^8 [N/m^2]$ では顕著に影響が表れている。よって周辺支持部のモデル化では回転バネを考慮する方が望ましいといえる。

集中バネモデルと弾性連続体モデルの比較

次に集中バネモデルと弾性連続体モデルの比較を行う。弾性連続体モデル適用時と集中 バネモデル (回転バネ有り) 適用時での透過損失値の差(「弾性連続体」 – 「集中バネ」) を示す。板サイズ $0.9 \times 0.9 \, [\text{m}^2]$ 、 $E_s = 10^6 \, [\text{N/m}^2]$ での透過損失値を図 5.2 に、 $E_s = 10^7 \, [\text{N/m}^2]$ での結果を図 5.3 に示す。また板サイズ $1.25 \times 1.5 \, [\text{m}^2]$ 、 $E_s = 10^6 \, [\text{N/m}^2]$ での透過損失値 を図 5.4 に、 $E_s = 10^7 \, [\text{N/m}^2]$ での結果を図 5.5 に示す。

図 5.2, 5.4 より、シール材のヤング率 $E_s = 10^6 [N/m^2]$ のとき、前章の図 4.11, 4.12 で端部

Fig. 5.2: Difference between 1/3-oct-band transmission loss with the spring model and that with the continuum model (glass: 0.9 x 0.9 [m²], seal: $E_s = 10^6$ [N/m²]).

Fig. 5.3: Difference between 1/3-oct-band transmission loss with the spring model and that with the continuum model (glass: 0.9 x 0.9 [m²], $h_p = 5$ [mm], seal: $E_s = 10^7$ [N/m²]).

吸収係数に差が見られた高域においてシール材の共振の影響が顕著に現れている。またシ ール密度を大きくした場合に共振の周波数が低い側に移動するため差は大きくなっている。 以上より弾性連続体モデルを適用した場合の透過損失値のほうが概して大きい。

また図 4.11, 4.12 より $E_s = 10^7 [N/m^2]$ において最も弾性連続体の影響が表れている板厚 5 [mm] において計算した等価損失値を図 5.2, 5.4 に示す。しかし、等価損失値における差

Fig. 5.4: Difference between 1/3-oct-band transmission loss with the spring model and that with the continuum model (glass: 1.25 x 1.5 [m²], seal: $E_s = 10^6$ [N/m²]).

Fig. 5.5: Difference between 1/3-oct-band transmission loss with the spring model and that with the continuum model (glass: 1.25 x 1.5 [m²], $h_p = 5$ [mm], seal: $E_s = 10^7$ [N/m²]).

は微小であり、以上から吸収率のピーク値における差は非常に小さいことがわかる。なお、 ここに非表示の $E_s = 10^7$, 10^8 [N/m²] の結果については、前章の図 4.11, 12 と図 5.2, 5.4 よ り本報の解析周波数の範囲では、シール材密度の影響による端部吸収係数の差が微小であ ったことから、透過損失値の差も微小であると考えられる。

5.3 音響透過損失の予測式との比較

5.3.1 音響透過損失の予測式

音響透過損失の予測式としては無限大板を仮定したランダム入射質量則や有限の大きさの板の強制振動を板の寸法で整理した Sewell の式 [25] が得られている。ここでは音響振動連成数値解析により得られた透過損失値をランダム入射の質量則、 Sewell の式と比較し考察する。以下にランダム入射時の質量則と Sewell の式について示す。

ランダム入射の質量則

無限大板に角速度 $\omega = 2\pi f$ の平面波がランダムに入射する場合の透過損失 *TL* [dB] は 次式で表される。

$$TL = TL_0 - 10\log_{10}(0.23 \cdot TL_0)$$
(5.1)

但し、 TL_0 : 垂直入射時の透過損失 [dB] ($TL_0 = 20\log_{10}(f \cdot m) - 43$)、m: 面密度 [kg/m²]、f: 周波数 [Hz].

<u>Sewell の式 (fc 以下の周波数領域の透過損失)</u>

Sewell は剛バッフル中内矩形パネルの共振現象を考慮し、コインシデンス限界周波数 *f*_c 以下の音響透過損失を次式のように導出している [25]。

$$TL = TL_0 - 10\log_{10}\left\{\ln\left(k\sqrt{A}\right)\right\} + 20\log_{10}\left\{1 - \left(f/f_c\right)^2\right\}$$
(5.2)

但し、 TL_0 : 垂直入射時の透過損失 [dB]、k: 波数、A: ガラスの面積 [m²]、m: 面密度 [kg/m²]、f: 周波数 [Hz].

5.3.2 結果と考察

板サイズ 2 水準での集中バネモデルと弾性連続体モデルにおける透過損失の計算値 (1/3 オクターブ帯域値)とランダム入射時の質量則、Sewell の式から求めた値を図 5.6, 5.8, 5.10, 5.12 に示す。また 1/3 オクターブ帯域値算出に用いた単一周波数における解析結果を 図 5.7, 5.9, 5.11, 5.13 に示す。

Spring model

Fig. 5.6: Comparison of calculated values of 1/3-oct-bands transmission loss and theoretical ones (Glass: $0.9 \ge 0.9 \text{ [m}^2$).

Fig. 5.7: Frequency characteristics of the random-incidence transmission loss (Glass: 0.9 x 0.9 [m²]).

Continuum model

Fig. 5.8: Comparison of calculated values of 1/3-oct-bands transmission loss and theoretical ones (Glass: 0.9 x 0.9 [m²], Seal: $\rho_s = 1000 \text{ [kg/m^3]}$).

Fig. 5.9: Frequency characteristics of the random-incidence transmission loss (Glass: 0.9 x 0.9 $[m^2]$, Seal: $\rho_s = 1000 [kg/m^3]$).

Spring model

Fig. 5.10: Comparison of calculated values of 1/3-oct-bands transmission loss and theoretical ones (Glass: $1.25 \times 1.5 \text{ [m}^2$)).

Fig. 5.11: Frequency characteristics of the random-incidence transmission loss (Glass: 1.25 x 1.5 $[m^2]$).

Continuum model

Fig. 5.12: Comparison of calculated values of 1/3-oct-bands transmission loss and theoretical ones (Glass: 1.25 x 1.5 [m²], Seal: $\rho_s = 1000$ [kg/m³]).

Fig. 513: Frequency characteristics of the random-incidence transmission loss (Glass: 1.25 x 1.5 $[m^2]$, Seal: $\rho_s = 1000 [kg/m^3]$).

第5章 端部損失を反映した音響透過損失予測値に関する検討

実験室実験に用いられる残響室-残響室法透過損失の測定では、試料の面積が比較的小さい場合には、その測定値はランダム入射質量則より大きな値を示す傾向があるといわれている。図より計算値も概ね同様の傾向を示しているといえる。

また Sewell の式との比較では、両寸法とも $E_s = 10^6$, $10^7 [N/m^2]$ では、端部損失の小さい $\eta_s = 0.1$ を除きコインシデンス限界周波数 f_c 以下で Sewell の式と良く対応している。特に 板サイズが小さい場合、 $E_s = 10^6 [N/m^2]$ では、低域の板の剛性と周辺指示条件によるスティ フネス制御領域での対応も良い。また全体的にコインシデンス限界周波数 f_c 以下では柔ら かいシール材の場合で端部損失による共振のディップの緩和が若干大きく見える。

しかし $E_s = 10^8 [N/m^2]$ では、板厚が厚くなると f_c 以下で Sewell の式より小さい値となっている。これは寸法が小さい場合に顕著に現れる。この原因としてはシール材が硬いほど低域の板の固有周波数におけるディップが深くなり、帯域値がコインシデンスによる落ち込みよりこのディップによる落ち込みの影響を受けるためと考えられる。これは寸法が小さく板厚が厚い場合に固有周波数密度が低くなるため顕著に表れるためである。

5.4 実測値との比較

5.4.1 模型実験の概要 [6]

吉村らは、実験室において音響透過損失を測定している。ここでは音響振動連成数値解 析により得られた透過損失の計算値と吉村らが行った実験室における実測値との比較を行 い、解析手法の有効性を検証する。

吉村らが行った実験室におけるガラスの音響透過損失測定の概要を述べる。音響透過損失の測定には、JIS A 1416 に規定される方法に則り、財団法人 小林理学研究所試験棟のタイプ II 試験室 [室容積: 56.7 [m³], 51.4 [m³]、試験開口 3.65 [m] (w) x 2.74 [m] (h)] で実施した。実験室における試料の設置方法は、JIS A 1416:2000 の 『5.2.2.3 ガラスの設置』 及

Fig. 5.14 Schematic representation of typical glass mounting used for laboratory test method.

Fig. 5.15 Schematic representation of glass mounting using silicone caulking.

Table 5.1 Transmission loss prescribed by JIS A 1410				
	周波数(Hz)	音響透過損失(dB)		
	1600	31.3		
	2000	35.6		
	2500	39.2		
	3150	42.9		

第5章 端部損失を反映した音響透過損失予測値に関する検討

び附属書 2(規定) 「ガラス測定用試験開口及びガラス固定用パテ」の『2. ガラス固定用パ テ』に規定される方法 (図 5.14) によった。また実際の現場ではシリコンシーリングを取り 付け材とした固定方法が用いられるので、図 5.15 に示すように、実験室で用いられるパテ の代わりにバックアップ材を介して、幅 5 [mm] 厚さ 3~5 [mm] のシリコンシーリング材 を充填する方法により、現場の取り付けを模した設置方法により測定を行った。

室内平均音圧レベルの測定及び残響時間の測定には、両室に 5 点の固定受音点を設け、 各室 6 箇所の音源位置における値及び測定方法を替えて測定した 6 箇所における値の、 計 12 個の値を算術平均することによりその試料の音響透過損失の値として求めた。

5.4.2 結果と考察

図 5.6, 5.8, 5.10, 5.12 に示した音響透過損失の計算値と文献実測値を図 5.16, 5.17, 5.18, 5.19 に示す。また弾性連続体モデルにおいてシール材の密度を 2000 [kg.m³] とした場合の計算 値と文献実測値を図 5.20, 5.21, 5.22, 5.23 に示す。

JISA 1416: 2000 に規定されているパテ取り付け時の遮音性能との比較

始めに JIS に規定されているパテ取り付け時の遮音性能との比較を行う。JIS A1416: 2000 では「附属書 2 (規定) ガラス測定用試験開口及びガラス固定用パテ」として、ガ ラスをパテで取り付けた際の遮音性能について明記されている [3]。測定対象は寸法 1.23 x 1.48 [m²]、板厚 10.0±0.3 [mm] のソーダ石灰けい砂ガラス板で、物性値は密度 2500 [kg/m³]、 ヤング率 $E=7 \times 10^4$ [MPA] = 7×10^{10} [N/m²]、測定は中心周波数 1600 ~ 3150 [Hz] の 1/3 オ クターブバンド毎に行い、その測定結果が表 5.1 に示す数値の ±2.0 dB の範囲に入らなけ ればいけないとしている。

この JIS での規定値を寸法 1.25 × 1.5 [m²] の図 5.18, 5.19, 5.22 の板厚 10 [mm] の結果 に重ねて表示する。パテ支持程度の値とみなせる $E_s = 10^7 \sim 10^8$ [N/m²], $\eta_s = 0.5 \sim 1.0$ におい て両モデルとも概ね対応が良い。

Spring model

Fig. 5.16: Comparison of measured and calculated values of 1/3-oct-bands transmission loss (calculated values: Glass size = $0.9 \times 0.9 \text{ [m}^2$], measured values: Glass size = $0.93 \times 0.93 \text{ [m}^2$]).

Fig. 5.17: Comparison of measured and calculated values of 1/3-oct-bands transmission loss (calculated values: glass size = 0.9 x 0.9 [m²], $\rho_s = 1000$ [kg/m³], measured values: glass size = 0.93 x 0.93 [m²]).

Spring model

Fig. 5.18: Comparison of measured and calculated values of 1/3-oct-bands transmission loss (Glass: $1.25 \times 1.5 \text{ [m}^2$).

Fig. 5.19: Comparison of measured and calculated values of 1/3-oct-bands transmission loss (Glass: 1.25 x 1.5 $[m^2]$, Seal: $\rho_s = 1000 [kg/m^3]$).

Fig. 5.20: Comparison of measured and calculated values of 1/3-oct-bands transmission loss (calculated values: glass size = $0.9 \times 0.9 \text{ [m}^2$], $E_s = 10^6 \text{ [N/m}^2$], $\rho_s = 2000 \text{ [kg/m}^3$], measured values: glass size = $0.93 \times 0.93 \text{ [m}^2$]).

Fig. 5.21: Comparison of measured and calculated values of 1/3-oct-bands transmission loss (calculated values: glass size = 0.9 x 0.9 [m²], $h_p = 5$ [mm], $E_s = 10^7$ [N/m²], $\rho_s = 2000$ [kg/m³], measured values: glass size = 0.93 x 0.93 [m²]).

Fig. 5.22: Comparison of measured and calculated values of 1/3-oct-bands transmission loss (Glass: 1.25 x 1.5 [m²], Seal: $E_s = 10^6$ [N/m²], $\rho_s = 2000$ [kg/m³]).

Fig. 5.23: Comparison of measured and calculated values of 1/3-oct-bands transmission loss (Glass: 1.25 x 1.5 [m²], $h_p = 5$ [mm], seal: $E_s = 10^7$ [N/m²], $\rho_s = 2000$ [kg/m³]).

実測値との比較

(コインシデンス限界周波数 fc 以下)

コインシデンス限界周波数 f_c 以下では、シール材のヤング率 $E_s = 10^6$, 10^7 [N/m²] の時寸 法によらずパテ支持・シリコン支持の両実測値とシール材の損失係数 $\eta_s = 0.5$, 1.0 の計算値 がよく一致している。一方、 $\eta_s = 0.1$ の計算値については板厚が厚くシール材が硬いほど他 と比べ値が小さくなっており、同程度の η_s を持つシリコン支持時の実測値とも差が見られ る。シール材のヤング率 $E_s = 10^8$ [N/m²] の時は理論式での対応でも記したように低域の板 の固有周波数におけるディップが深くなり、帯域値がコインシデンスによる落ち込みより このディップによる落ち込みの影響を受けるため $\eta_s = 0.5$, 1.0 の計算値も両実測値より小 さい値になっている。

(コインシデンス限界周波数 fc 以上)

コインシデンス限界周波数 f_c 以上では、シール材のヤング率 $E_s = 10^7 [N/m^2]$ の時は実測 値と計算値が概ね重なっている。これは $E_s = 10^7 [N/m^2]$ では各板厚ともエネルギー吸収率 のピーク値が 1000 ~ 2000 [Hz] 帯域になるためコインシデンス限界周波数域での端部損失 が十分にあり板の固有周波数のディップが抑制されることが原因と考えられる。

ー方シール材のヤング率 $E_s = 10^6$, $10^8 [N/m^2]$ で板厚が厚い場合に実測値と計算値の差が 見られる。これは上記とは逆の理由でエネルギー吸収率のピーク値が 1000 ~ 2000 [Hz] 帯 域から外れコインシデンス限界周波数域での端部損失が十分でないため板の固有周波数の ディップによる影響を強く受けるためと考えられる。しかしシール材が柔らかい場合図 5.2, 5.4 より、集中バネモデルと比べると弾性連続体モデルの方が実測値に近い結果であるとい える。これは弾性連続体モデルではシール材自体の共振の影響により f_c 以上の端部損失が 集中バネモデルより大きくなるためである。

(板サイズの影響)

図 5.24 ~ 5.26 に弾性連続体モデルでパテ支持相当における板サイズによる計算値の違いを示す。シール材のヤング率 $E_s = 10^8 [N/m^2]$ では、コインシデンスでの落ち込みが大きくなる。これはコインシデンス限界周波数帯域でのディップが鋭くなるためと考えられる。また低域でのディップが鋭くなるため、固有周波数密度が小さい 0.9 x 0.9 $[m^2]$ サイズでは平均化後のばらつきが大きくなる。また全体的に 1.25 x 1.5 $[m^2]$ に比べて 0.9 x 0.9 $[m^2]$ の透過損失の落ち込みは小さくなっている。これは単位面積当たりの周辺長が短い小試料ほど試料の周端のエネルギー損失を強く受けるためである。

(コインシデンス周波数での板の挙動)

参考までに弾性連続体モデルにおいてコインシデンス限界周波数での振動変位分布を図 5.27 に示す。端部損失により振動変位が大きくことなることがわかる。

Fig. 5.24: Effect of the size on the random incidence transmission loss (Glass: $h_p = 5$ [mm], seal: $\rho_s = 2000 \text{ [kg/m^3]}$).

Fig. 5.25: Effect of the size on the random incidence transmission loss (Glass: $h_p = 10$ [mm], seal: $\rho_s = 2000 \text{ [kg/m^3]}$).

Fig. 5.26: Effect of the size on the random incidence transmission loss (Glass: $h_p = 15$ [mm], seal: $\rho_s = 1000$ [kg/m³]).

Fig. 5.27: Distributions of vibration displacement magnitude of the plate of 10 mm thickness an the coincidence frequency for the oblique incidence $f(\theta = 45) = 2320$ [Hz] ($\phi = 0$, glass size = 0.9 x 0.9 [m²], $E_s = 10^7$ [N/m²], $\rho_s = 1000$ [kg/m³]).

5.5 まとめ

音響振動連成解析による板ガラスの音響透過損失予測値について周辺支持部に集中バネ モデルを想定した場合回転バネの影響は低域で表れること、弾性連続体モデルと集中バネ モデルの違いは高域で表れることを確認した。

理論値との比較では $E_s = 10^6$, $10^7 [N/m^2]$ では η_s がパテ程度の場合に対応が良いこと、特 に板サイズが小さい場合に $E_s = 10^6 [N/m^2]$ では低域のスティフネス制御領域との対応も良 いことを示した。しかし $E_s = 10^8 [N/m^2]$ では低域の板の固有周波数におけるディップが深 くなり、帯域値がコインシデンスによる落ち込みよりこのディップの影響を受けるため対 応が悪くなることがわかった。

実測値との比較ではコインシデンス限界周波数 f_c 以下でシール材のヤング率 $E_s = 10^6$, 10^7 [N/m²] の時寸法によらずパテ支持・シリコン支持の両実測値との対応が良いこと、コインシデンス限界周波数 f_c 以上では集中バネモデルより弾性連続体モデルの方が実測値との対応が良いことを示した。また板サイズが小さい場合、試料の周端のエネルギー損失を強く受けるため透過損失の落ち込みは小さくなっていることを示した。

第 6 章 総括

本研究は窓ガラスの遮音性能予測を音響振動連成解析により行うことを大きな目標と見 据えた上で、透過損失予測値の高精度な予測を行う上で不可欠な周辺支持部の精密なモデ ル化を行った。想定したモデルについて板の周辺支持部のエネルギー損失に関する理論的 考察と数値解析によって得られた透過損失予測値について理論値・実測値との比較考察を 行いその有効性を検証した。本章では、本研究で行われた成果を総括し、今後の課題につ いて述べる。

第1章では、研究の背景、既往関連論文を概観したあとに、本研究の目的及び構成を示 した。

第2章では、本論文で用いた遮音性能数値解析手法を示した。はじめに音場の基礎方程 式について述べ、境界要素法 (BEM) による音場の定式化を行った。また板振動場に有限要 素法(FEM) を適用し、これらを連成させ音響振動連成場の数値解析アルゴリズムを構築し た。

第3章では、第2章で構築した音響振動連成系の数値解析アルゴリズムを用いた、1/3 オクターブ帯域音響透過損失値の計算手法を示した。また計算する際に問題となる、音波 入射条件及び解析周波数の設定について検討を行った。音波入射条件のための入射角離散 化に関しては、入射条件やコインシデンス周波数領域かどうかにかかわらず離散方位幅 Δθ_{ij} = 6 [deg] で十分な精度が得られることがわかった。1/3 オクターブ帯域透過損失値を算 出する際の解析周波数の設定については、精度確保に必要な解析周波数の数が固有周波数 のディップの深さに大きく依存する一方、固有周波数分布を変化させる板厚や板サイズに はあまり依存しないことがわかった。

第4章では、板ガラスの周辺支持部のモデル化を行い、拡散振動場における端部のエネ ルギー損失について理論的に考察を行った。周辺支持部のモデルとしては大きく分けて集 中バネモデルと弾性連続体モデルの二つを想定した。集中バネモデルはガラス板周辺のシ ール材が端部の変位・傾斜に対して各々反作用するものと仮定し、弾性体と等価な並進バ 第6章 総括

ネおよび回転バネを考慮したものである。弾性連続体モデルはシール材の並進振動のみに 対して弾性連続体の挙動を考慮して1次元縦振動を想定したものである。

周辺支持部のエネルギー損失の挙動より両モデル共通の傾向として回転バネの影響は低 域で生じること、シール材の等価質量による影響は吸収率のピーク値において表れるが微 小であること、回転バネの等価質量の影響は無視出来る事がわかった。また弾性連続体モ デルは、シール材が柔らかい場合に高域でシール材の共振の影響が顕著に表れることを確 認した。この共振の影響により、集中バネモデルに比べて弾性連続体モデルは実際の支持 条件での端部損失により近いといえる。

以上より本章行った検討の考察からは周辺支持部のモデル化を行うには並進・回転両方 のバネを考慮すること、またシール材の並進振動モデルでは高域で共振が生じる弾性連続 体の挙動を考慮したモデル化が必要といえる。これは今後の計算機性能の向上に伴い、よ り高周波数における計算が可能となったときに有効な知見であるといえる。

第5章では、第4章で検討を行った集中バネ・弾性連続体モデルを用いた音響振動連 成数値解析を行った。得られた透過損失値についてモデルの特性に関する検討と理論値・ 実測値との比較検討を行った。

まず板ガラスの音響透過損失予測値について周辺支持部に集中バネモデルを想定した場 合回転バネの影響は低域で表れること、弾性連続体モデルと集中バネモデルの違いは高域 で表れることを確認した。これは第4章で得られた知見と対応している。またシール材が 柔らかい場合にはコインシデンス限界周波数 fc 以下では端部損失による固有周波数のデ ィップの緩和が若干大きく見える。

理論値との比較ではシール材が柔らかい場合は η_s がパテ程度の場合に対応が良いこと、特に板サイズが小さい場合に $E_s = 10^6 [N/m^2]$ では低域のスティフネス制御領域との対応も良いことを示した。しかしシール材が硬くなると低域の板の固有周波数におけるディップの影響を受けるため対応が悪くなることがわかった。この傾向は集中バネモデルと弾性連続体モデルで共通している。

実測値との比較では f_c 以下でシール材が柔らかい場合は寸法によらずパテ支持・シリコ ン支持の両実測値との対応が良いこと、コインシデンス限界周波数 f_c 以上では集中バネモ デルより弾性連続体モデルの方が f_c 以上で実測値との対応が良いことを示した。これは高 周波数域での吸収率の共振の影響が表れたためである。また板サイズが小さい場合、試料 の周端のエネルギー損失を強く受けるため透過損失の落ち込みは小さくなっていることを 示した。これは実測でも同様の傾向が確認されている。

以上より、コインシデンス周波数以上の高周波数域を含む音響振動連成数値解析に基づ く透過損失予測値を算出するには、上記のように高周波数域での共振の影響を考慮した弾 性連続体モデルにおいて検討を行う必要があるといえる。 <u>第6章</u>総括

しかし、実測の現場における周辺支持ではシール材の外側にさらに木製の押し縁があり、 実際の端部損失はさらに複雑な挙動となることから、シール材の特性だけで端部損失を単 純に表現することはできないと考えられる。今後、より精密な透過損失予測を行うには、 こうした周辺支持部に関する課題の克服や、ニッシェなど音響系の複雑な形状を考慮した 検討が課題といえる。

参考文献

[1] 外周壁の遮音設計の現状と留意点,日本建築学会環境工学委員会音環境小委員会資料, (2000).

[2]日本騒音制御工学会, 騒音制御工学ハンドブック, (技報堂出版, 2001).

[3] JISA 1416:2000 「実験室における建築部材の空気音遮断性能の測定方法」.

[4]吉村純一, 建築音響関連 JIS 改定の動向 –その1 実験室における建築部材の空気音遮断 性能の測定方法 (A1416), 日本建築学会大会学術講演梗概集, (1998).

[5]佐久間哲哉,大嶋拓也,音響振動連成シミュレーションによる部材遮音性能予測に関する研究 - 膜財・板材の3次元透過モデル-,日本音響学会講演論文集,(2000.9).

[6]吉村純一,杉江聡,豊田恵美,板ガラスの音響透過損失の測定結果に与えるサイズ及び端部損失の影響,建築音響研究会資料 AA2006 - 30 (2006).

[7]J. Yoshimura, S. Sugie and E. Toyoda, Effects of size and edge damping on measurement results for sound reduction index of glass pane, Proc. Inter-noise 2006 (Honolulu), (2006).

[8]J. Yoshimura, S. Sugie and E. Toyoda, Internal and edge damping effects on sound reduction index measurements of glass pane, Proc. Inter-noise 2007 (Istanbul), (2007).

[9]黒木荘一郎, 非共振透過を修正した SEA 方による単層壁の音響透過損失について, 日本建築学会計画系論文集, No. 409, pp.1-10, (1990).

[10]川井孝雄,一重板の遮音機構の解析:円形板への平面波垂直入射,日本音響学会誌 Vol.29, No. 4, (1973).

[11]M. Heckl, Measurements of absorption coefficients on plate, J. Acoust. Soc. Am., 34 (6), 803-808 (1962).

[12]黒木荘一郎, 安岡正人, 赤坂裕, 圧電振動板加振動による単層壁の損失係数の測定と周辺吸収率の算出, 日本建築学会大会学術講演梗概集, (1991).

[13] 遊喜純子,黒木荘一郎,安岡正人,透過損失に与える損失係数および周辺吸収率の影響, 日本建築学会大会学術講演梗概集,(1993).

[14]朝倉巧, 坂本慎一, 室内への騒音伝搬を対象とした 6 チャンネル数値音場シミュレー ション, 日本音響学会建築音響研究会資料, AA2007-40 (2007).

[15]朝倉巧,坂本慎一,弾性板の曲げ振動解析における吸収境界条件の与え方に関する検討, 日本建築学会大会学術講演梗概集,(2008).

[16]佐久間哲哉,大嶋拓也,離散系波動解析による壁体部材の遮音性能予測(1) - 膜・板振動モデルに基づく音響振動連成シミュレーションの適用 - , 騒音・振動研究会試料 N -

第6章 総括

2001 - 30 (2006).

[17]桑村仁, 建築の力学 - 弾性論とその応用 -, (技法堂出版, 2001).

[18]橋本典久,建築物床版の振動と音響放射に関する研究,東京大学博士論文,(1994).

[19]大嶋拓也, 佐久間哲哉, 壁体部材の遮音性能数値予測手法に関する検討 - 板材における 寸法及び内部減衰の影響に関する検討 - , 日本建築学会大会学術講演梗概集, (2001).

[20]L. Cremer, M. Heckl and B. Petersson, *Structure-Borne-Sound*, *3rd Ed.* (Springer-Verlag, New York, 2005).

[21]岩谷幸雄, 鈴木陽一, 坂田真人, 曽根敏夫, 半無限長はりの終端インピーダンスが屈曲 波の反射と振動インピーダンスに及ぼす影響, 日本音響学会誌 Vol.56, No. 4, (2000).

[22]山口道征, ガラスの透過損失測定用パテ(putty)の複素弾性率, 制振工学研究会通信 2 月 号 (2006).

[23]山口道征, サッシ窓用ガスケット材料の複素弾性率, 制振工学研究会通信 8 月号~11 月 号 (2006).

[24]吉村純一,近江伸,松井徹,関本健尚,板ガラスの音響透過損失 - その 2 ガラスの支持条件の影響 -,日本建築学会大会学術講演梗概集,(2008).

[25]E. C. Sewell, Transmission of reverberant sound through a single leaf partition surrounded be an infinite rigid baffle, J. Sound Vib. 1970, Vol.12, p21-32.

[26]加川幸雄,有限要素法による振動・音響工学/基礎と応用,(培風館, 1981).

[27] 戸川隼人, 有限要素法概論, (培風館, 1981).

[28]S. Timoshenko, S. Woinowsky-Krieger, *板とシェルの理論<上.下>*, (ブレイン図書出版, 1973).

[29]大鶴徹,山本秀樹,計算力学手法による異端の音響透過特性解析,日本音響学会誌 Vol.4, No. 4 (1988).

[30]真田明,章忠,柄川尚慶,田中 信雄,音響透過損失測定における試料サイズの影響に関する研究,日本機械学会論文集,Vol.69, No.684 (2003).

[31]Roman Vinokur, Mechanism and calculation of the niche effect in airborne sound transmission, J. Acoust. Soc. Am. 119, 2211-2219 (2006).

[32]Bong-Ki Kim, Hyun-Ju Kang, Jae-Seung Kim, Hyun-Sil Kim, and Sang-Ryul Kim, Tunneling effect in sound transmission loss determination: Theoretical approach, J. Acoust. Soc. Am. 115, 2100-2109 (2004).

[33]A. Osipov, P. Mees, G. Vermeir, Low-frequency airborne sound transmission through single partitions in buildings, Appl. Acoust. 52, 273-288 (1997).

謝辞

本論文は、筆者が東京大学大学院新領域創成科学研究科 社会文化環境学専攻 修士課程 において同専攻准教授 佐久間哲哉先生のもとに行った研究をまとめたものです。研究テー マの選定から毎週のゼミナール、修士論文の作成に至るまで終始熱心かつ丁寧にご指導下 さいました。3 年間という長い期間に渡りご迷惑をおかけしたことをお詫びすると共に、 筆者の成長をご支援頂いたこと心より感謝致します。

東京大学大学院新領域創成科学研究科 社会文化環境学専攻教授 神田順先生は本研究の 副指導教員をご担当下さいまして、貴重なアドバイスを頂きました。ここに感謝の意を表 します。

小林理学研究所 吉村純一さん、エム・ワイ・アクーステク 山口道征さん、東洋建設 株式会社 総合技術研究所 山本耕三さんには、貴重な実験データを提供していただきまし た。この場を借りて感謝の意を述べさせて頂きます。

佐久間研究室 特任研究員の安田洋介さんは、佐久間研究室の OB でもあり研究に関する 多大なご指導を賜りました。提出の直前までご心配とご迷惑をおかけしたことをお詫びす ると共に、心から御礼申し上げます。

佐久間研究室 OB で同期入学でもある太刀岡勇気さんには、在学中並びに修了後も研究 に関する事柄にとどまらず、様々な形で支えて頂きました。心から感謝します。

最後に、共に論文作成に取り組んだ佐久間研究室の上猶優美さん、三浦啓祐さん、萬木 智子さん、そして筆者の研究活動を見守り、ご支援をしてくださった佐久間研究室並びに 社会文化環境学専攻の大学院生の皆様に感謝の意を表します。

2009年1月26日

红川健一

付録 A

修士論文要旨

窓ガラスの音響透過損失に関する数値解析 ー板振動場における周辺支持部のモデル化について-

Numerical analysis of sound transmission loss of glass pane: Study on modeling of the edge support system in plate vibration fields.

学籍番号	066828
氏 名	江川 健一 (Egawa, Kenichi)
指導教員	佐久間 哲哉 准教授

<u>1. はじめに</u>

1.1. 研究の背景 近年建築物の遮音性能の高性能 化が要求されるようになっている。外部からの空 気伝搬音による建築物の遮音性能は窓の性能によ るところが大きい。窓ガラスの性能判断の拠り所 となる遮音性能測定方法には、JIS A 1416: 2000 で 規定されている実験室実験法があるが、この測定 法に則した音響透過損失の測定結果は必ずしも安 定していない。その原因としては実験室である残 響室の影響や板サイズの影響など様々な要因が考 えられるものの、未解明な点が多い。この課題の 解明にはパラメトリックスタディが容易な数値予 測手法による検討が望ましいと考えられるが、従 来の検討では透過損失値に大きな影響を及ぼすと 言われているガラス周辺支持部の端部損失につい ては大幅な簡易化が行われることが殆どである。 しかしながら実際の窓ガラスの音響透過現象を模 擬するには、ガラスの周辺支持部のより精密なモ デル化が不可欠であるといえる。

1.2. 研究の目的 以上のような背景を踏まえて、 本研究の目的を以下のように設定する。(1) 窓ガラ スを想定した音響透過損失の予測手法において板 振動場における周辺支持部の適切なモデル化を行 うこと。(2) 既往の実測値 [1] との比較により周辺 支持部のモデル化の妥当性を検証すること。(3) ケ ーススタディを通して、周辺支持部におけるエネ ルギー損失の挙動を把握し、これに関する知見を 得ること。

Fig. 1 : Numerical model of edge support system.

2. 周辺支持部のエネルギー損失について

本研究では、板ガラスを固定する周辺支持部の モデルとして集中バネモデル・弾性連続体モデル を想定する。はじめに板を想定した拡散振動場に おける周辺支持部のエネルギー損失について理論 的に考察する。

2.1. 集中バネモデル ガラス板周辺のシール材が 端部の変位・傾斜に対して各々反作用するものと 仮定し、弾性体と等価な並進バネ・回転バネ (バネ 定数 k_q, k_m)からなる集中バネモデルを想定する (図 1)。周辺支持部における損失はバネの内部減衰 に因るものとすると、端部の変位・傾斜に対応し た各バネの機械・モーメントインピーダンス Z_q, Z_m は次式で表される。

$$Z_{q} = \frac{Q}{j\omega w} = \frac{k_{q}}{j\omega} = \frac{2}{j\omega} \frac{E_{s}(1+j\eta_{s})d}{h}$$
(1)

$$Z_{\rm m} = \frac{M}{j\omega\theta} = \frac{k_{\rm m}}{j\omega} = \frac{2}{j\omega} \frac{E_{\rm s} (1+j\eta_{\rm s}) d^3}{12h} \qquad (2)$$

但し、シール材の物性値としてヤング率 E_s 、損失 係数 η_s 、密度 ρ_s 、寸法として幅 d、厚さ h で ある。板の特性インピーダンス [2] は板内の屈曲 波の波数 $k_b = \sqrt{\omega/\sqrt{\rho t/D}}$ に対して、 $Z_{q0} = Dk_b^3/\omega$ 、 $Z_{m0} = Dk_b/\omega$ より、端部のインピーダンス比は各々 次式で表される。

$$z_{q} = \frac{Z_{q}}{Z_{q0}} = \frac{2E_{s}d}{Dh} \frac{\eta_{s} - j}{k_{b}^{3}}$$
(3)

$$z_{\rm m} = \frac{Z_{\rm m}}{Z_{\rm m0}} = \frac{E_{\rm s} d^3}{6Dh} \frac{\eta_{\rm s} - j}{k_{\rm b}}$$

但し、板の曲げ剛性 $D = E(1 + j\eta)t^3/12(1 - v^2)$ 、ヤング率 E、ポアソン比v、損失係数 η 、板厚 t である。

2.2. 弾性連続体モデル 次にシール材を弾性連続 体とみなしてモデル化を行う。シール材の並進振 動のみに対して弾性連続体の挙動を考慮して 1 次元縦振動を想定すると、端部の機械インピーダ ンスは次式で表される。

$$Z_{q} = \frac{2\rho_{s}c_{s}d}{j\tan\omega h/c_{s}}$$
(5)

但し、シール材縦波速度 $c_s = \sqrt{E_s(1+j\eta_s)/\rho_s}$ である。 2.3. 板振動部のエネルギー吸収係数 板振動場に おいて直線状の屈曲波が無限長のインピーダンス 境界に対して入射角 θ で入射する場合、境界の法 線・接線の 2 方向の波数分離を行い、境界上の有 効せん断力・モーメントの釣合より理論解が得ら れる。理論解より境界近接波を除く入射波と反射 波の振幅比、即ち反射係数は次式で表される。

2.4. 結果と考察

入射角の影響 集中バネモデルにおいてガラス板 内の屈曲波を変化させた場合のエネルギー吸収率 を図 2 に示す。吸収率は一つのピークを持ち、垂 直入射から 60 度入射付近にかけてはピーク値が

the absorption coefficient of the edge (seal: $E_s = 10^7 \text{ [N/m^2]}, \eta_s = 0.5$).

Fig. 3: Random-incidence absorption coefficients of the edge based on the spring model with/without rotational springs (glass: t = 5[mm]).

Fig. 4: Random-incidence absorption coefficients of the edge based on continuum model with changing seal's density (glass: t = 5[mm]).

低下するのに対して、75 度にかけてはピーク周波 数が高周波数域へ変化している。但し、入射角依 存性は比較的緩やかである。

回転バネの影響 集中バネモデルにおいて回転バ ネの有無がエネルギー吸収率に及ぼす影響を図 3 に示す。シール材が硬い場合に低周波数域で影響 が表れているが、並進バネが支配的となる高周波 数域では回転バネによる差は小さい。

弾性連続体モデルについて 弾性連続体モデルに おいてシール材の密度を ρ_s = 1000, 2000 [kg/m³]

Fig.5: Geometry of a three-dimensional sound transmission model.

とした場合のエネルギー吸収率を図 4 に示す。シ ール材の質量は図 3 の吸収率のピークに対して 若干影響を及ぼすとともに、シール材が柔らかい 場合に高周波数域ではシール材自体の共振の影響 が顕著に現れている。

2.5. まとめ 以上より、周辺支持部のモデル化で は低域では回転バネを考慮すべきであり、また並 進バネでは高域で共振による影響が表れる弾性連 続体の挙動を考慮する必要があるといえる。

3. 端部損失を反映した音響透過損失予測に関する 検討

前節で検討を行ったモデルについて音響振動連 成解析を行い、得られた透過損失値についてモデ ルの妥当性の検証、及び理論値・実測値との比較 検討を行う。

3.1. 解析手法

解析モデル 図 5 のように解析モデルとして無限大剛バフル中の板材に単位振幅平面波が入射する音響透過問題を想定する。板振動場には有限要素法を、音響系には境界要素法を適用し両者を連成することで以下の連成系マトリクスが得られる。

Table 1 Pr	operties of	glass	plate.
------------	-------------	-------	--------

 $\begin{array}{l} 0.9 \times 0.9, \, 1.25 \times 1.5 \; [\mathrm{m}^2]; \, t = 5, \, 10 \; [\mathrm{mm}]; \\ E = 7.5 \times 10^{10} \; [\mathrm{N/m}^2]; \, \rho = 2500 \; [\mathrm{kg/m}^3]; \\ \upsilon = 0.22; \; \eta \; = 0.002 \end{array}$

Table 2	Properties of seal.
<i>d</i> = 15 [m	m]; $h = 5 \text{ [mm]}$;
$E_{\rm s} = 10^6, 1$	$10^7 [\text{N/m}^2]; \ \eta_{\text{s}} = 0.1, \ 0.5, \ 1.0;$
$\rho_{\rm s} = 1000$, 2000 [kg/m ³]

得られた値をエネルギー合成することで 1/3 オクターブ帯域値を算出している。なお板への 音波入射条件については数値解析による検討か ら、ランダム入射条件を採用している。

解析対象 ガラス板、シール材の物性値を表 1,2 に示す。なお、実測で用いられるシール材の物性 値 [3] については凡そ以下の値程度と見なせる。

• $\rlap{NT}{\sim}$: $E_{\rm s}=10^6\sim 10^7~[{\rm N/m^2}]$, $\eta_{\rm s}=0.1,~\rho_{\rm s}=1000~[{\rm kg/m^3}]$

・シリコン: $E_{\rm s}=10^7\sim 10^8~[{\rm N/m^2}]$, $\eta_{\rm s}=0.5\sim 1.0,$ $\rho_{\rm s}=2000~[{\rm kg/m^3}]$

3.2. 結果と考察

回転バネの影響 集中バネモデルにおける、回転 バネの有無による透過損失値の差(「回転バネ有 り」 - 「無し」)を図 6 に示す。前節の結果と 同様、シール材が硬い場合に低周波数域で影響が 現れており、周辺支持部のモデル化では回転バネ を考慮する方が望ましいといえる。

集中バネモデルと弾性連続体モデルの比較 弾性 連続体モデル適用時と集中バネモデル (回転バネ 有り) 適用時での透過損失値の差(「弾性連続体」 - 「集中バネ」)を図 7 に示す。前節でエネルギ 一吸収率に差が見られた高周波数域において弾性 連続体モデル適用時の方が透過損失値が大きくな っている。

理論値との比較 弾性連続体モデルにおける透過 損失の計算値とランダム入射時の質量則、有限板 の理論式である Sewell の式による値を図 8 に示 す。端部損失の小さい $\eta_s = 0.1$ を除きコインシデ ンス限界周波数 f_c 以下で Sewell の式と良く対応 している。

実測値との比較 上記の計算値と文献実測値 [1]

を図 9 に示す。 f_c 以下では柔らかいシール材の場 合で端部損失による共振のディップの緩和が若干 大きく見える。またパテ支持・シリコン支持の両 実測値と $\eta_s = 0.5, 1.0$ の計算値がよく一致してい る。一方、 $\eta_s = 0.1$ の計算値については板厚が厚く シール材が硬いほど実測値との差が大きくなって おり、同程度の η_s を持つシリコン支持時の実測値 と差が見られる。また実測値と計算値の差が t =10 [mm] の場合において見られるものの、図 7 か ら、集中バネモデルに比べると弾性連続体モデル による計算値は大きくなることがわかる。よって 弾性連続体モデルによる計算値のほうが実測値に 近いといえる。

<u>4. まとめ</u>

窓ガラスの遮音性能の高精度な数値予測に向け て、板の周辺支持部のモデル化を行った。周辺支 持部のモデル化では並進・回転バネの両者を考慮 する必要があること、並進バネでは高周波数域で 共振の影響が表れる弾性連続体の挙動を考慮した モデルとする必要があることを示した。コインシ デンス限界周波数 f_c 以下では端部損失は柔らか いシール材の共振のディップの緩和に寄与するこ とがわかった。また端部損失がパテ程度の場合音 響透過損失の計算値は理論値と対応が良いことを 示した。

参考文献

[1]Yoshimura et al., Inter-Noise 2006, No. 641 (2006).[2]L. Cremer & M. Heckl, structure-Borne Sound (Springer-Verlag, New York, 1973).

[3]山口,制振工学研究会通信,2,9月号 (2006).

Fig. 6: Difference of 1/3-oct-band transmission loss caused by neglecting rotational springs (glass: $0.9 \ge 0.9 = 0.9 = 0.9 = 0.9 = 0.9 = 0.9 = 0.9 = 0.9 = 0.9 = 0.9 = 0.9 = 0.9 = 0.9 =$

Fig. 8: Comparison of calculated values of 1/3-oct-band transmission loss and theoretical ones (glass: 0.9 x 0.9 m², seal: $\rho_s = 1000 \text{ [kg/m^3]}$).

Fig. 9: Comparison of measured and calculated values of 1/3oct-band transmission loss (glass: 0.9 x 0.9 m² size, seal: $\rho_s = 1000 \text{ [kg/m³]}$).

付録 B

学会発表論文

本論文に関連する学会発表論文は以下の通りである。

[1] 江川健一,大嶋拓也,佐久間哲哉,窓ガラスの音響透過損失に関する数値解析,建築音響研究会資料 AA2007-29 (2007.7)

[2] 江川健一,大嶋拓也,佐久間哲哉,窓ガラスの音響透過損失に関する数値解析 -入射条件と 解析周波数の設定について-,日本建築学会大会学術講演梗概集(環境工学1), pp.175-176 (2007.8).

[3] 佐久間哲哉,安田洋介,江川健一,窓ガラスの音響透過損失に関する数値解析 -周辺支持部のモデル化-,日本建築学会大会学術講演梗概集(環境工学1),pp.229-230 (2008.9).

[4] 江川健一,安田洋介,佐久間哲哉,窓ガラスの音響透過損失に関する数値解析 -周辺支持部の物性値の影響について-,日本建築学会大会学術講演梗概集(環境工学1), pp.231-232 (2008.9).

[5] T. Sakuma, K. Egawa and Y. Yasuda, Numerical analysis of sound transmission loss of glass pane - On the treatment of edge damping, Proc. Inter-Noise 2008 (Shanghai), No.0486 (2008.10).

[6] 佐久間哲哉, 安田洋介, 江川健一, 窓ガラスの音響透過損失に関する数値解析-周辺支持部 のエネルギー損失について-, 日本音響学会研究発表会講演論文集 (2009.3)

[7] 江川健一,安田洋介,佐久間哲哉,窓ガラスの音響透過損失に関する数値解析-理論値・ 実測値との比較検討-,日本音響学会研究発表会講演論文集 (2009.3).

窓ガラスの音響透過損失に関する数値解析 Numerical analysis of sound transmission loss of glass pane

江川健一*、大嶋拓也**、佐久間哲哉* Kenichi EGAWA, Takuya OSHIMA and Tetsuya SAKUMA

* 東京大学大学院新領域創成科学研究科
 * Graduate School of Frontier Sciences, The University of Tokyo
 **新潟大学工学部
 **Faculty of Engineering, Niigata University

内容概要 窓ガラスの 1/3 オクターブ帯域音響透過損失値を離散系波動解析に基づいて計算する際に問題となる、音波入射条件及び解析周波数の設定について検討を行った。音波入射条件のための入射角離散化に関しては、コインシデンス限界周波数以下と以上にかかわらず一定の入射角離散方位幅で十分な精度が得られることがわかった。また、1/3 オクターブ透過損失値を算出する際の解析周波数の設定については、精度確保が可能な周波数離散化幅が損失係数に大きく依存する一方、固有周波数分布を変化させる板厚や板サイズにはあまり依存しないことがわかった。

1. はじめに

筆者らは、壁体部材の遮音性能数値予測を目的とし て、離散系波動解析に基づく音場入射透過損失計算 手法を構築し、板や膜の遮音性能解析を行ってきた [1-3]。これら既報においては、メモリーの制限によ り解析周波数の上限が1kHz程度であったが、近年 の計算機性能の向上に伴い、窓ガラスを対象として コインシデンス周波数を含む高周波数域までの計算 が可能となりつつある。

本計算手法では、平面波入射時の解析結果より音 場入射時またはランダム入射時における透過損失値 を算出する。そのため、平面波の入射角離散化につ いての設定が必要となる。特にコインシデンス周波 数域においては、コインシデンス効果の入射角依存 性が非常に高いことから、入射角離散化への十分な 注意が必要と考えられる。また、本手法は調和振動 を仮定した定常音場解析手法に基づいているため、 透過損失の帯域値を得るには単一周波数における解 析結果から重み付き平均操作により算出することと なる。透過損失の帯域値は板の固有振動に起因する 狭帯域ディップの影響を強く受けるため、これを評 価するために解析周波数の適切な設定が必須といえる。

筆者らの既往の検討[1-3]では、周波数ステップを 定差幅1Hz、離散方位幅6degにおいて予測精度が 確保されるとした。しかしながら、この検討では解 析周波数の上限が1kHz程度と限定されていたため、 コインシデンス周波数領域での検討は不十分であっ た。また、コインシデンス限界周波数以上の高周波 数域までの解析を周波数ステップ1Hzで行うこと は計算時間の点からも実用的でない。

本報では、離散系波動解析に基づいて窓ガラスの1/3 オクターブ帯域音響透過損失値を計算する際に問題 となる、音波入射条件及び解析周波数の設定につい て検討を行う。音波入射条件については、従来検討 を行ってきた音場入射条件とランダム入射条件との 対応も検討する。解析周波数の設定については、1/3 オクターブ透過損失値を算出する場合の周波数の離 散化幅について、既報[1-3]と異なり定比幅を前提と した検討を行う。特に板ガラスの寸法、板厚及び損 失係数との関係に着目して考察する。

2. 解析手法

2.1 解析モデル

最も一般的な3次元音響透過モデルとして、Fig.1 に示すような無限大剛バフル中の板材に単位振幅平 面波が入射する問題を想定する。部材形状は矩形 (寸法 $a \times b$ m²) とし、バフルの厚さはゼロを仮定す る。平面波の入射角に関してはFig.2 に示すように 立体角 $\pi/2$ 内の相当範囲、音場入射条件では (0 $\leq \theta$ \leq 78, 0 $\leq \varphi \leq$ 90 [deg])、 ランダム入射条件では (0 $\leq \theta \leq$ 90,0 $\leq \varphi \leq$ 90 [deg])を概ね均等に全方位を離 散化する。各方位からの平面波入射条件における解 析結果に対して透過率の統計的平均操作を行うこと により透過損失値を算定する。離散方位幅 $\Delta \varphi_{ij}$ は次 式により設定する。

$$\Delta \varphi_{ij} = \frac{90^{\circ}}{N_{\varphi}^{i}} \tag{1}$$

但し、
$$N^{i}_{\varphi} = \left[1.15 N_{\theta} \cdot \sin \theta_{ij} \right]$$
:音場入射条件時
 $N^{i}_{\varphi} = \left[N_{\theta} \cdot \sin \theta_{ij} \right]$: ランダム入射条件時
 $\theta_{ij} = \left(i - \frac{1}{2} \right) \Delta \theta_{ij}$:離散方位

N_θ : θ 方向分割数 詳細については文献 [1] を参照。

2.2 音響振動連成解析

板振動系では、薄板理論に基づく弾性板の振動方 程式に有限要素法を適用する。音響系では、無限大 剛バフル中の部材両面の音圧差に関する積分方程式 に境界要素法を適用する。両者を連成させて解くこ とにより、板の振動速度分布を算出し、後処理によ り表面音圧を計算して透過インテンシティを求める。 最終的に、板全面から放出される透過パワーを求め、 各入射角における透過率を算出する。詳細について は文献 [3] を参照。

2.3 解析対象

解析対象は単層板ガラス、周辺支持条件は固定支 持条件とした。また、各物性値は密度 2500 kg/m³、 ヤング率 7.5×10^{10} N/m²、ポアソン比 0.22 とした。

Figure 1: Geometry of a three-dimensional sound transmission model.

Figure 2: Schematic of a discrete direction model for random incidence.

Table 1: Parametric properties of glass plates.

x-width a [m]	thickness t [m]	damping η
0.9, 1.215	0.005, 0.01, 0.02	0.002, 0.01, 0.05

板の y方向長さをb = 0.9 [m] と固定し、 x方向長さ a [m]、 板厚 t [m]、損失係数 η をTable 1 の通り変 化させた。コインシデンス限界周波数f_c は板厚 0.005 mでは 2320 Hz、0.01 mでは 1160 Hz、0.02 mでは 580 Hzである。要素分割は解析周波数毎に波長の 1 / 6 以下になるように設定した。

 $\begin{tabular}{|c|c|c|c|c|} \hline \Delta \theta_{ij} \mbox{ [deg]} & \mbox{total direction number} \\ \hline 3 & 586 \\ 6 & 120 \\ 15 & 25 \\ 30 & 7 \\ \hline \end{tabular}$

Table 2: Properties of the discrete direction model (random incidence).

Figure 3: Difference between field incidence transmission loss and random incidence transmission loss ($a = 0.9, t = 0.01, \eta = 0.002, \Delta \theta_{ii} = 3$).

Figure 4: Effect of the incidence angle step $\Delta \theta_{ij}$ to random incidence transmission loss ($a = 0.9, t = 0.01, \eta = 0.002$).

3. 入射条件に関する検討

音波の入射条件について音場入射透過損失とラン ダム入射透過損失の影響を調べる。Table 2 に離散 方位幅と総方位数の関係を示す。

3.1 結果と考察

Fig. 3 に離散方位幅 $\Delta \theta_{ij}$ = 3 [deg]における音場入 射透過損失とランダム入射透過損失を示す(a=0.9, t=0.01, η =0.002, 1/12 オクターブ中心周波数での 値)。音場入射透過損失とランダム入射透過損失の比 較では、低周波数域において2dB程度の系統的な差 が生じているが、 f_c 以上の高周波数域では差が現れ ていない。低周波数域ではランダム入射における擦 過角付近の入射により質量効果が低下したためと考 えられる。

Fig. 4 に離散方位幅 4 水準($\Delta \theta_{ij}$ = 3, 6, 15, 30 [deg])におけるランダム入射透過損失を示す(a = 0.9, t = 0.01, η = 0.002)。 f_c 以下では、 $\Delta \theta_{ij}$ = 30 でも 十分な離散化であることがわかる。一方 f_c 以上では、 $\Delta \theta_{ij}$ = 15, 30 の場合に透過損失値が $\Delta \theta_{ij}$ = 3, 6 と比 べて大きく異なっている。顕著に高い値を示してい る。コインシデンス周波数域ではコインシデンス効 果の入射角選択性が高いことから、 f_c 以下の周波数 域と比べて離散方位幅を細かく設定する必要がある といえる。以上の結果から、コインシデンス周波数 領域を含む高周波数域までの解析においては、離散 方位幅が $\Delta \theta_{ij}$ = 6 以下とする必要があると考えられ る。以降の検討では $\Delta \theta_{ij}$ = 6 に固定し、ランダム入 射透過損失を算出することとする。

4. 解析周波数に関する検討

4.1 1/3 オクターブ帯域値の算出法

本解析手法では 1/3 オクターブ帯域透過損失値は 単一周波数での解析で得られた値から平均操作によ り算出することとなる。一方、1/3 オクターブ帯域 透過損失値は板の固有振動に起因する透過損失の狭 帯域ディップの影響を受けるため、これを適切に評 価する必要がある。このため、解析を実行する周波 数の選択が非常に重要である。既報[3]ではコインシ デンス限界周波数以下の周波数域において、定差幅 を前提として解析周波数の検討を行った。しかしな がら、コインシデンス限界周波数以上の高周波数域 まで解析を拡張するには、定差幅による検討では計

Figure 5: 1/3-oct-band transmission loss calculated from the values at 1/6, 1/12, 1/24, 1/48 and 1/96 oct-band center frequencies ($a = 0.9, t = 0.01, \eta = 0.002$).

Figure 6 : 1/3-oct-band transmission loss calculated from the values at 1/6, 1/12, 1/24, 1/48 and 1/96 oct-band center frequencies ($a = 0.9, t = 0.01, \eta = 0.01$).

Figure 7 : 1/3-oct-band transmission loss calculated from the values at 1/6, 1/12, 1/24, 1/48 and 1/96 oct-band center frequencies ($a = 0.9, t = 0.01, \eta = 0.05$).

算時間が著しく増大してしまう。本節では解析周波 数を定比幅で設定することを前提として、1/6,1/12, 1/24,1/48,1/96オクターブ帯域中心周波数の解析結 果から1/3オクターブ帯域値を算出し、予測精度の 確保に必要な解析周波数の設定について検討を行っ た。

4.2 結果と考察

4.2.1 損失係数の影響

板のx方向長さa=0.9、板厚t=0.01の場合の1/3 オクターブ帯域値を損失係数毎にFigs.5~7に示す。 以下では1/96 オクターブ中心周波数の解析結果か ら算出した1/3 オクターブ帯域値(以下1/96-oct.)を 基準とし、それとの差が全ての帯域値で概ね2dB以 内となる解析周波数の設定を収束したものとみなす。

板の内部損失程度を仮定した損失係数 η =0.002の 場合(Fig. 5)では、1/48-oct. を採用した時のみ 1/96-oct. との差が2dB以下となっている。 η =0.01 の場合(Fig. 6)では板の固有周波数におけるディッ

Figure 8 : 1/3-oct-band transmission loss calculated from the values at 1/6, 1/12, 1/24, 1/48 and 1/96 oct-band center frequencies (a = 0.9, t = 0.005, $\eta = 0.002$).

プがより浅いため、1/24-oct. で収束している。パテ 支持程度を仮定したη=0.05の場合(Fig. 7)ではさ らにディップが浅いため、1/6-oct. で十分収束してい る。またいずれの損失係数の場合でも帯域による収 束の違いは小さい。

以上のように、損失係数は精度を確保する解析周 波数の設定に大きく影響するといえる。特に板の内 部損失のη = 0.002 では解析周波数の離散化を十分 細かくする必要がある。

4.2.2 板厚の影響

板のx方向長さa=0.9、板厚t=0.005とした場合 の解析結果を Fig. 8 に示す($\eta=0.002$)。この場合、同 条件でt=0.01の場合(Fig. 5)と比較して固有周波 数の密度が高くなるが、t=0.01の場合と同様、 1/48-oct.で収束している。同様の板サイズ、損失係数 で板厚t=0.02としたものを Fig. 9 に示す。t=0.01の場合と比較して固有周波数の密度が低くなるが、 ここでも 1/48-oct.で収束している。次にa=0.9、t=0.02、 $\eta=0.01$ の場合の解析結果を Fig. 10 に示す。

Figure 9: 1/3-oct-band transmission loss calculated from the values at 1/6, 1/12, 1/24, 1/48 and 1/96 oct-band center frequencies ($a = 0.9, t = 0.02, \eta = 0.002$).

Figure 10: 1/3-oct-band transmission loss calculated from the values at 1/6, 1/12, 1/24, 1/48 and 1/96 oct-band center frequencies ($a = 0.9, t = 0.02, \eta = 0.01$).

Figure 11: 1/3-oct-band transmission loss calculated from the values at 1/6, 1/12, 1/24, 1/48 and 1/96 oct-band center frequencies (a = 1.215, t = 0.01, $\eta = 0.002$).

Figure 12: 1/3-oct-band transmission loss calculated from the values at 1/6, 1/12, 1/24, 1/48 and 1/96 oct-band center frequencies (a = 1.215, t = 0.01, $\eta = 0.01$).

同条件における t = 0.01 の場合(Fig. 6)と同様、 1/24-oct.で収束している。以上より、同サイズ、同損 失係数の板の場合、板厚は精度を確保する解析周波 数の設定にあまり影響しないと考えられる。

4.2.3 板サイズの影響

板の x 方向長さ a=1.215、板厚 t=0.01 の場合の損 失係数毎に 1/3 オクターブ帯域値を Figs. 11, 12 に示 す。a=0.9 の場合と比較して固有周波数の密度が高 くなるが、損失係数η=0.002 では 1/48-oct.で収束し

(Fig. 11)、η=0.01 では 1/24-oct.で収束しており(Fig. 12)、a=0.9の場合(それぞれ Figs. 5, 6)と同様の結果となった。以上より、板厚と同様、板サイズは精度を確保する解析周波数の設定にあまり影響しないと考えられる。

5. コインシデンス周波数での板の挙動

板のx方向長さa = 0.9、板厚t = 0.01、損失係数 $\eta = 0.002$ での斜入射コインシデンス周波数 $f_{\theta=45} = 2320$ [Hz] $\xi_{f_{\theta}=60} = 1546$ [Hz]における振動変位分布の計 算結果 ($\varphi=0$, 45, 60 [deg]) をFigs. 13, 14 に示す。入 射角の違いにより励振されるモードおよび変位の振 幅が大きく異なることがわかる。また $f_{\theta=45} \xi_{f_{\theta}=60}$ の いずれの場合でも $\varphi=0$, 45 では音波入射方向に対 して対称な変位分布を示すが、 $\varphi=60$ では明確な特 徴が見られなかった。

6. まとめ

離散系波動解析に基づく窓ガラスの 1/3 オクター ブ帯域音響透過損失値を計算する際に問題となる、 音波入射条件及び解析周波数の設定について検討を 行った。音波入射条件のための入射角離散化に関し ては、音場入射条件、ランダム入射条件によらず、 またコインシデンス周波数領域かどうかにかかわら ず離散方位幅 $\Delta \theta_{ij} = 6$ [deg] で十分な精度が得られ ることがわかった。また 1/3 オクターブ帯域透過損 失値を算出する際の解析周波数の設定については、 精度確保に必要な解析周波数の数が損失係数の値に

Figure 13: Distributions of vibration displacement magnitude of the plate of 10 mm thickness at the coincidence frequency for the oblique incidence $f(\theta = 45) = 2320$ [Hz]. Map (a): $\varphi = 0$, map (b): $\varphi = 45$, and map (c): $\varphi = 60$, where the arrows denote the direction of travel.

大きく依存する一方、固有周波数分布を変化させる 板厚や板サイズにはあまり依存しないことがわかっ た。本検討では、内部損失程度を仮定した損失係数 $\eta = 0.002$ の場合 1/48 オクターブバンド帯域中心周 波数での値から、パテ支持程度を仮定した $\eta = 0.05$ の場合は 1/12 オクターブバンド帯域中心周波数で

Figure 14: Distributions of vibration displacement magnitude of the plate of 10 mm thickness at the coincidence frequency for the oblique incidence $f(\theta = 60) = 1546$ [Hz]. Map (a): $\varphi = 0$, map (b): $\varphi = 45$, and map (c): $\varphi = 60$, where the arrows denote the direction of travel.

の値から、1/3 オクターブ帯域値を求めることで誤 差を2dB以内とすることができた。今回は基礎的な 検討として境界条件に固定支持条件を用いたケース スタデイを行った。今後は周辺支持条件の詳細なモ デリングを行い、実測の音響透過損失の測定結果と の対応を見ていく。

参考文献

- [1] 佐久間哲哉,大嶋拓也,離散系波動解析による壁体部 材の遮音性能予測(1) 一膜・板振動モデルに基づく音 響振動連成シミュレーションの適用一,騒音振動研究 会資料,N-2001-01,(2001.1).
- [2] 大嶋拓也, 佐久間哲哉, 離散系波動解析による壁体 部材の遮音性能予測(2) 一付加質量膜の質量配置パ ターンによる遮音特性の検討一, 騒音振動研究会資料, N-2001-02,(2001.1).
- [3] 大嶋拓也, 佐久間哲哉, 壁体部材の遮音性能数値予測
 に関する研究 —板材における寸法および内部減衰の
 影響に関する検討—, AIJ 梗概集 D-I, pp. 111-112, (2001.
 9).

窓ガラスの音響透過損失に関する数値解析 一入射条件と解析周波数の設定について一

透過損失	数值解析	遮音
板ガラス	連成系	

<u>1. はじめに</u>

筆者らは音響振動連成解析による板の遮音性能解析を 行ってきたが[1-3]、近年計算機性能の向上に伴って窓ガ ラスを対象としてコインシデンス周波数を含む高周波数 域までの計算が可能となりつつある。本報では窓ガラス の1/3 オクターブ帯域音響透過損失値を計算する際に問題 となる音波入射条件及び解析周波数の設定について検討 を行う。特に、板ガラスの寸法及び損失係数との関係、 コインシデンス限界周波数との関係に着目して考察を行 う。

2. 解析手法と解析対象

(1) 解析モデル 図1に示すように、無限大剛バフル中に 固定支持された板材に単位振幅平面波が入射する3次元 音響透過モデルを想定する(バフルの厚みは特に考慮しない)。 平面波の入射角に関しては音場入射条件 ($0 \le \theta \le 78^\circ$)またはランダム入射条件($0 \le \theta \le 90^\circ$)において概ね均等に全方位を離散化し、各入射角における透 過率の重み付き平均により透過損失値を算定する。詳細 については文献[1]を参照。

(2) 解析手法 板振動系には薄板モデルに有限要素法を適用し、音響系には板の両面音圧差に関する積分方程式に 境界要素法を適用する。両者を連成させて解くことによ り板の振動速度分布を算出する。そして後処理により表 面音圧を計算した上で、透過インテンシティを求める。 最終的に、板全面からの放出される透過パワーを求め、 各入射角における透過率を算出する。詳細については文 献[2]を参照。

(3) 解析対象 解析対象は単層板ガラスとした。また、各物性値は密度 2500 kg/m³、ヤング率 7.5×10¹⁰ N/m²、ポア ソン比 0.22 とした。寸法 y方向長さ 0.9 m、板厚 10 mm を固定とし、x方向長さ a、損失係数 η を表 1 の通り 変化させた。なお、コインシデンス限界周波は f_c = 1160 Hz である。

3.結果と考察

(1) 入射条件に関する検討 図 2 に離散方位幅 2 水準 ($\Delta \theta_{ij}$ = 3, 6 [deg]) における音場入射およびランダム入射 時における透過損失を示す (a = 0.9 m、 $\eta = 0.002$)。 第一に、離散方位幅の影響は f_c 以上でもほとんど現れ なかった。第二に、音場入射とランダム入射における透 過損失の比較では、低周波数域において 2 dB 程度の系統 的な差が生じているが、 f_c 以上では差が現れないことが

Numerical analysis of sound transmission loss of glass pane - Conditions of incidence waves and analysis frequencies-

正会員	\bigcirc	江川 健一 *
同		大嶋 拓也 **
同		佐久間 哲哉 ***

Fig. 1 Geometry of the 3D sound transmission model.

 Table 1
 Parametric properties of glass plates

x-width a = 0.9, 1.215 [m]; damping $\eta = 0.002, 0.06$

わかる。なお、以降の解析では $\Delta \theta_{ij} = 6 \deg 2 \log 2 \log 2$ ダム入射透過損失を算出する。

(2) 解析周波数に関する検討 1/3 オクターブ帯域透過損 失値を算出する場合の、解析周波数の離散化幅について 検討する。文献[3]では定差幅の検討を行っていたが、こ こでは定比幅を前提として、1/6, 1/12, 1/24, 1/48 オクター ブ帯域の中心周波数の解析結果から、1/3 オクターブ帯域 値を算出した。図 3~6 に表 1 の各条件の下での解析結 果を示す。図 4,6 に示すとおり、パテ支持程度を仮定し た損失係数 0.06 の場合、板寸法によらず 1/12 オクターブ でほぼ収束することがわかる。これは板共振が抑制され るためと考えられる。一方、図 3,5 に示すとおり、ガラ ス内部損失程度を仮定した損失係数が 0.002 の場合、特に fc 以下では 1/48 オクターブでも収束にいたらない場合が ある。これは板共振に起因する透過損失の狭帯域なディ ップによる寄与が顕著となるためと考えられる。ただし、 周波数が高くなるにつれて比較的早く収束する傾向が見 られる。

<u>4. まとめ</u>

波動音響数値解析に基づく音響透過損失計算の際、平面波の入射角離散化幅については f_c 以上も含めて 6 deg で十分であることが確認された。また、音場入射条件で

EGAWA Kenichi, OSHIMA Takuya and SAKUMA Tetsuya

はランダム入射条件に比べて f_c 以下において約 2 dB 値 が大きくなることがわかった。解析周波数の離散化につ いては、損失係数が周辺支持条件などである程度大きい 場合には、1/12 オクターブ毎の解析により算出可能であ った。しかしながら、周辺支持による損失が非常に小さ い場合には、f. 以下では板共振による寄与が顕著となる ため、1/48 オクターブ毎の解析でも不十分となる可能性 が示唆された。

参考文献

[1] 셛	5久間, 大嶋,	AIJ 梗概集 D- I, pp. 109-110, (2001. 9).
[2] 佬	生久間, 大嶋,	音講論集(秋), pp.687-688, (2000. 9).
[3] ナ	大嶋, 佐久間,	AIJ 梗概集 D- I, pp.111-112, (2001.9).

Fig. 3: 1/3-oct-band transmission loss calculated from the values at 1/6, 1/12, 1/24 and 1/48 oct-band center frequencies (a = 0.9, $\eta =$ 0.002).

Fig. 5: 1/3-oct-band transmission loss calculated from the values at 1/6, 1/12, 1/24 and 1/48 oct-band center frequencies (a = 1.215, $\eta =$ 0.002).

新潟大学工学部 助教・博士 (環境学)

Fig. 2: Effect of the incidence angle step $\Delta \theta_{ij}$ to field /random incidence transmission loss (a = 0.9, $\eta = 0.002$).

Fig. 4: 1/3-oct-band transmission loss calculated from the values at 1/6, 1/12, 1/24 and 1/48 oct-band center frequencies (a = 0.9, $\eta =$ 0.06).

Fig. 6: 1/3-oct-band transmission loss calculated from the values at 1/6, 1/12, 1/24 and 1/48 oct-band center frequencies (a = 1.215, η = 0.06).

- *Dep. Socio-Cultural Env. Stud., Grad. Sch. of Frontier Sci., Univ. of Tokyo
- **Assis. Prof., Fac. of Eng., Niigata Univ., Ph. D. Env. Stud.
- ***Assoc. Prof., Dep. Socio-Cultural Env. Stud., Grad. Sch. of Frontier Sci., Univ. of Tokyo, Dr. Eng

^{***}東京大学大学院新領域創成科学研究科社会文化環境学専攻 准教授· 博士 (工学)

窓ガラスの音響透過損失に関する数値解析 - 周辺支持部のモデル化 -

遮音	透過損失	ガラス
数値解析	音響振動連成	境界条件

1.はじめに

筆者らは薄板の音響振動連成解析により窓ガラスの音 響透過損失予測を試みてきた[1,2]。ただし、周辺支持部 については便宜的な取扱いとして、板振動場の境界条件 に単純支持または固定支持を仮定し、端部損失を板の内 部損失として反映させていた。しかしながら、実際にパ テやシリコン等で支持された窓ガラスの音響透過現象を 模擬するには、周辺支持部のより精緻なモデル化が不可 欠となる。本報では一試みとして、周辺支持部にせん断 バネおよび回転バネを並置した境界条件を想定し、モデ ルに関する理論的考察を行う。

2.窓ガラス周辺支持部のモデル化

(1) 集中バネモデル

窓ガラスの周辺支持部に関して、図1の通りシール材 の弾性体と等価な集中バネモデルを想定する。すなわ ち、板端部における変位・傾斜に対してせん断バネ・回 転バネが各々作用し、端部損失はバネの内部減衰によっ て生じるものとしている。各バネ定数は次式で表され、 以降の検討ではJISA 141 に規定されているパテ寸法 を代入する(幅*d*=15[mm]、厚さ*h*=5[mm])。

せん断バネ定数:
$$k_q = \frac{2E_s(1+j\eta_s)d}{h}$$
回転バネ定数: $k_m = \frac{E_s(1+j\eta_s)d^3}{6h}$

ただし、シール材のヤング率 E_s 、損失係数 η_s である。 (2) 板振動場の境界条件

薄板理論に基づく板振動場に上記モデルを導入すると、 境界条件は以下の二式により与えられる。

せん断力の釣り合い:
$$D\frac{\partial^3 w}{\partial n^3} = -k_q w$$
 (1)

モーメントの釣り合い:
$$D\frac{\partial^2 w}{\partial n^2} = k_m \frac{\partial w}{\partial n}$$
 (2)

ただし、板の変位w、 $\partial/\partial n$ は境界上の内向き法線方向微 分を表し、板材の曲げ剛性 $D = E(1+j\eta)t^3/12(1-v^2)$ (ヤン グ率E、ポアソン比v、損失係数 η 、板厚t)である。

(3) 板振動場の離散化

有限要素法による板振動場の離散化ではACM四角形 要素を用い、上記の境界条件を導入すると、端部の各バ ネに対応する剛性マトリクス($[K_q]$, $[K_m]$)が加わった全 体マトリクス方程式が得られる。

Numerical analysis of sound transmission loss of glass pane

- Modeling of the edge support system

Fig. 1: Numerical model of the edge support system.

$$\left([\boldsymbol{K}] - [\boldsymbol{K}_{q}] - [\boldsymbol{K}_{m}] - \omega^{2} [\boldsymbol{M}] \right) \left\{ \begin{array}{c} \boldsymbol{w} \\ \boldsymbol{\theta}_{x} \\ \boldsymbol{\theta}_{y} \end{array} \right\} = [\boldsymbol{Q}] \{\Delta \boldsymbol{p}\}$$
(3)

ただし、{Δp}は板両面の音圧差ベクトルである。

3.周辺支持モデルに関する理論的考察

(1) 板および端部のインピーダンス

板端部のせん断バネ・回転バネは次の二つのインピー ダンス[3]に相当する。

機械インピーダンス:
$$Z_q = \frac{Q}{v} = \frac{Q}{j\omega w} = \frac{k_q}{j\omega}$$

モーメントインピーダンス: $Z_m = \frac{M}{\gamma} = \frac{M}{j\omega \theta} = \frac{k_m}{j\omega}$

一方、板の屈曲波の固有インピーダンス[4]は波数 k_b に 対して $Z_{q0} = Dk_b^3/\omega$ および $Z_{m0} = Dk_b/\omega$ となる。

(2) 板端部のエネルギー損失

直線状の屈曲波が無限長の境界に対して垂直に入射す る場合を想定すると、1次元問題の理論解より入射波に 対する反射波の振幅比は次式で表される。

$$r = \frac{-j - (1 - j)z_{q} + (1 + j)z_{m} - jz_{q}z_{m}}{1 + (1 - j)z_{q} + (1 + j)z_{m} + z_{q}z_{m}}$$
(4)

ただし、 $z_q = Z_q/Z_{q0} (\propto \omega^{-3/2}), z_m = Z_m/Z_{m0} (\propto \omega^{-1/2})$ であり、 反射波についてはエネルギー伝搬のない境界近接波を除 いている。従って、板端部における垂直入射時のエネル ギー吸収率は $a = 1 - |r|^2$ として与えられる。

(3) ケーススタディ

ガラス板厚とシール材の物性値を次の通り変化させた 場合の端部吸収率の周波数特性を図2に示す。

Fig. 2: Frequency characteristics of the normal-incidence absorption coefficients of the edge support models. The thick lines for the model with shear and rotational springs, the thin lines for the model with only shear spring.

・ガラス板:*t* = 5, 10, 20 [mm]

・シール材: $E_s = 10^6$, 10^7 [N/m²], $\eta_s = 0.1$, 0.5, 1.0 シール材はパテやシリコンを想定し、ガラスの物性値は $E = 7.5 \times 10^{10}$ [N/m²],v = 0.22, $\eta = 0.002$ とした。吸収率は 明確なピークを持ち、その周波数は板が薄いほど、また シール材が硬いほど高音側に移動している。ピーク値は $\eta_s = 0.5$ でa = 0.9 に達し、 $\eta_s = 1$ ではa = 1となっている。 図中、回転バネを無視した場合の結果も示したが、板厚 5mm かつ硬いシール材の低音域のみで差が生じており、 それ以外では回転バネの影響が殆どないことがわかる。 図 3 にシール材の $|z_q|$, $|z_m|$ ($\eta_s = 0$ の時)を示すが、 $|z_m|$ が 1 を大きく下回ることとも対応する。

(4) せん断バネモデル

回転バネを無視したモデルを想定すると、式(4)から端 部吸収率は $a = 2 \operatorname{Re} (z_q) / |z_q + 0.5(1+j)|^2$ と表される。 $\eta_s = 1$ では $z_q = 0.5(1-j)$ の時に無反射となり、図2のピーク周 波数と図3の $|z_q| = 0.5$ の周波数はほぼ一致している。

4.まとめ

窓ガラスの周辺支持モデルとしてせん断バネと回転バ ネを並置したモデルを想定し、屈曲波の垂直入射時にお ける端部損失について検討を行った。結果として、回転 バネの影響はガラス板が薄くシール材が硬い場合に低音 域で若干生じるものの、せん断バネの影響が支配的であ

- * 東京大学大学院新領域創成科学研究科 准教授・博(工)
- ** 同 特任研究員・博(工)
- *** 同 修士課程・学(工)

Fig. 3: Absolute values of normalized impedance of the shear and rotational springs without damping.

ることが確認された。今後、斜入射時およびランダム入 射時の挙動を解明した上で、エネルギー吸収率の実測値 からモデル中のパラメータの同定を試みたい。

参考文献

- [1] T. Sakuma et al., Acoust. Soc. Tech. 22, 367-369 (2001)
- [2] 江川他, 建築学会大会梗概1,91-92 (2007)
- [3] L. Cremer & M. Heckl, Structure-Borne Sound (Springer-Verlag, New York, 1973)
- [4] 岩谷他, 音響学会誌6, 243-248 (2000)

* Prof., Grad. Sch. of Eng., Univ. of Tokyo, Dr. Eng.

- ** Res. Fellow, Grad. Sch. of Eng., Univ. of Tokyo, Dr. Eng.
- *** Grad. Student, Grad. Sch. of Eng., Univ. of Tokyo, B. Eng.
窓ガラスの音響透過損失に関する数値解析 — 周辺支持部の物性値の影響について—

遮音	透過損失	ガラス
数値解析	音響振動連成	

1.はじめに

窓ガラスの遮音性能予測に向けた音響振動連成解析に おいて、板振動系のエネルギー損失、特に周辺支持部に おける損失を精度良く反映する必要がある。前報[1]では 窓ガラスの周辺支持部にせん断バネと回転バネを並置し た境界条件を想定し、屈曲波の垂直入射時における端部 損失について理論的考察を行った。本報では数値解析を 通して周辺支持部のシール材の物性値が音響透過損失に 及ぼす影響を考察する。

2. 解析手法

既報[2]同様、解析モデルとして無限大剛バフル中の板 材に単位振幅平面波が入射する問題を想定する。音場の 入射側と透過側に関しては、板両面の音圧差 △P と振動 変位 w との関係で表される。

$$\{\Delta p\} = 2\{p_{d}\} + 4\omega^{2}\rho_{0}[G]\{w\}$$
(5)
ただし、 入射音圧ベクトル: {P_{d}}, 空気密度: ρ_{0} である。

上式を、前報の式 (3) と連立すると以下の連成系マトリ クス方程式が得られる。

$$\left(\begin{bmatrix} \mathbf{K} \end{bmatrix} - \begin{bmatrix} \mathbf{K}_{\mathrm{m}} \end{bmatrix} - \begin{bmatrix} \mathbf{W}_{\mathrm{m}} \end{bmatrix} - \frac{\omega^{2} \begin{bmatrix} \mathbf{M} \end{bmatrix} - 4\omega^{2} \rho_{0} \begin{bmatrix} \mathbf{Q} \end{bmatrix} \begin{bmatrix} \mathbf{G} & 0 & 0 \end{bmatrix} \right) \left\{ \begin{matrix} \mathbf{w} \\ \theta_{\mathrm{x}} \\ \theta_{\mathrm{y}} \end{matrix} \right\} = 2 \begin{bmatrix} \mathbf{Q} \end{bmatrix} \left\{ \mathbf{p}_{\mathrm{d}} \right\} \quad (6)$$

ただし、[**K**_q], [**K**_m] は周辺支持部のせん断バネ、回転バネ に対応する剛性マトリクスである。

板の振動密度分布を算出し、板全面からの透過パワー を求め、入射角の統計平均によりランダム入射透過損失 を算出する。なお解析は 1/24 オクターブ帯域中心周波数 で計算し、1/3 オクターブ帯域値を算出する[2]。

3. 解析対象

表 1,2 の通りガラス板は板厚 3 水準を設定し、寸法 0.9 [m]×0.9 [m]、物性値は一定とした。シール材は前報同様 JIS A 1416 に従い、寸法は幅 *d* = 15 [mm] 厚さ *h* = 5 [mm]とし、文献[3] を参考にヤング率 2 水準、損失係数 4 水準を考えた。

正会員	○ 江川 健一 *1
同	安田 洋介 ^{*2}
同	佐久間 哲哉 *3

Table 1 Properties of glass pl

0.9 [m] × 0.9 [m] ; <i>t</i> = 5, 10, 20 [mm]
$E = 7.5 \times 10^{10} [\text{N/m}^2]; \rho = 2500 [\text{kg/m}^3]; \upsilon = 0.22; \eta = 0.002$

Table 2	Properties	of seal.
---------	------------	----------

<i>d</i> = 0.015 [m]; <i>h</i> = 0.005 [m]	
$E_{\rm s} = 10^6, 10^7 [{\rm N/m}^2]; \ \eta_{\rm s} = 0, 0.1, 0.5, 1.0$	

4 . 結果と考察

損失係数の影響

単一周波数における解析結果を図 2 に、1/3 オクター ブ帯域値を図 3 に示す。全体的にコインシデンス限界周 波数(f_c)以上では、端部損失の影響が大きく特に固いシー ル材の場合でより顕著となっている。ヤング率に比例し て端部の実インピーダンスが大きくなることと関連して いると考えられる。

一方 f_c以下では軟らかいシール材の場合で端部損失に よる共振のディップの緩和が若干大きく見える。 (2)回転バネの影響

図 4 に回転バネを無視した場合の透過損失の差を示す (板厚 t = 10 [mm])。硬いシール材では低音域で差が生じ ているものの $\eta_s = 0$ を除くと 2 dB 以内に収まっており、 軟らかいシール材では η_s によらず差が見られない。これ はせん断バネの影響が支配的であるという前報での考察 と対応している。

5.まとめ

単層板ガラスの音響透過損失について周辺支持モデル としてせん断バネと回転バネを並置したモデルにシール 材の物性値を与えてパラメトリックスタディを行った。 その結果、シール材のヤング率の増加により板の固有周 波数におけるディップが深くなること、f_c以上で損失によ るディップの減衰が非常に大きくなること、また回転バ ネが透過損失の 1/3 オクターブ帯域値に与える影響が小 さいことが確認できた。

参考文献

[1] 佐久間他, AIJ 梗概集 D-I, (2008)

[2] T. Sakuma et al., Acoust. Soc. Tech. 22, 367-369 (2001)

[3] INCE, J 編, 騒音制御工学ハンドブック, 技報堂出版, (2001)

Numerical analysis of sound transmission loss of glass pane

- Effect of the physical properties of the edge support system-

^{*1} 東京大学大学院新領域創成科学研究科 修士課程

- *2 同 特任研究員・博 (環境)
- *3 同 准教授・博(工)

- *2 Project Researcher, ditto, Dr. Environ.
- *3 Assoc. Prof., ditto, Dr. Eng.

^{*1} Grad. Student., Grad. Sch. of Frontier Sci., Univ. of Tokyo.

Numerical Analysis of Sound Transmission Loss of Glass Pane - On the Treatment of Edge Damping -

Tetsuya Sakuma^a, Kenichi Egawa^b, Yosuke Yasuda^c

^{a, b, c} Graduate School of Frontier Sciences, University of Tokyo 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8563, Japan

ABSTRACT

In order to simulate sound insulation performance of window systems, a numerical model for vibro-acoustic analysis is tested considering the support condition of glazing edges. In the model, a glass pane is mounted in an infinite rigid baffle, and a plane acoustic wave is incident upon one side of the pane. A structural FEM is used for the glass pane based on the classical thin plate theory, while the acoustic BEM is used for the incident and the transmitted sound fields. For simulating a realistic support condition of putty, two kinds of springs, shear spring and rotational spring, are given to the edges with certain damping factors, respectively. A numerical study is done to investigate the influence of the support condition on the random-incidence sound reduction index, where the complex constants of the two springs are systematically changed for glass panes of various sizes and thicknesses. Furthermore, the support condition is theoretically discussed by formulating the characteristics of energy absorption on the edge in the bending wave field.

1 INTRODUCTION

In the previous study [1, 2], a numerical method of vibro-acoustic coupling analysis, using structural FEM - acoustic BEM, had been applied to prediciton of sound insulation performance of glass panes. At the time, due to the limitation of computational cost, random-incidence transmission loss could be calculated for a glass pane of about 1 m² up to about 1 kHz, while nowadays calculation in the full frequency range is almost practicable.

However, there remains an important problem how to deal with support condition of glazing edges which strongly affects sound transmission loss. Some measurement results on edge damping has been reported in [3, 4], where the boundary absorption coefficients for a peripheral length were estimated from the total loss factors of a variety of glass panes with putty and silicone mounting. One way is to simulate the measured boundary absorption coefficient by giving some boundary condition empirically, and another is to simulate the realistic behavior of elastic mounting with some numerical model.

In this paper, a simplified boundary condition for glazing edges is introduced in the above numerical method, where two kinds of equivalent springs for shear and for rotation are given in relation to the complex Young's modulus of a sealing material. A numerical study is done to

^a Email address: sakuma@k.u-tokyo.ac.jp

investigate the influence of the support condition on the random-incidence sound reduction index, where the complex constants of the two springs are systematically changed for glass panes of various sizes and thicknesses. Furthermore, the support condition is theoretically discussed by formulating the characteristics of energy absorption on the edge in the bending wave field.

2 MODELING OF GLAZING EDGE SUPPORT

A lumped spring model is considered to simulate the support condition of glass panes. This simple model gives the boundary condition of bending wave field, which is finally reflected as the bounday stiffness matrices in the structural FEM analysis.

2.1 Lumped Spring Model

As shown in Figure 1, a lumped spring model that is equivalent to the elastic behavior of a sealing meterial is introduced for glazing edge support. In the model, it is assumed that a shear spring and a rotational spring respectively react against the displacement and the slope of the glass pane on the edge, and edge damping results from the internal damping of the springs. The constants of the two kinds of springs are given by

shear stiffness:
$$k_q = \frac{2E_s(1+j\eta_s)d}{h}$$
, (1)

rotational stiffness:
$$k_{\rm m} = \frac{E_{\rm s}(1+j\eta_{\rm s})d^3}{6h}$$
, (2)

where E_s is the Young's modulus, η_s is the loss factor, d and h are the depth and the thickness of the sealing material, respectively. In the following, the size of sealing is fixed at d = 15 [mm] and h = 5 [mm] according to ISO 140-3 [5].

Based on the classical thin plate theory, the boundary condition of bending wave field is expressed by the following two equations:

shear force balance:
$$D \frac{\partial}{\partial n} \left(\frac{\partial^2 w}{\partial n^2} + \frac{\partial^2 w}{\partial l^2} \right) = -k_q w,$$
 (3)

moment balance:
$$D\left(\frac{\partial^2 w}{\partial n^2} + v \frac{\partial^2 w}{\partial l^2}\right) = k_m \frac{\partial w}{\partial n},$$
 (4)

where *w* is the displacement of a plate, $\partial/\partial n$ and $\partial/\partial l$ are normal and tangential derivative on the boundary, respectively, the bending stiffness $D = E(1+j\eta)t^3/12(1-v^2)$ (*E*: Young's modulus, *v*: Poisson's ratio, η : loss factor, *t*: thickness of the plate).

Figure 1: Numerical model of the edge support system.

2.2 Discretization of a Plate Vibration Field

A structural FEM is applied to the vibration field of a thin plate, using ACM quadrangle elements. Considering the boundary condition in Equations (3) and (4), the following discrete linear system can be obtained.

$$[\boldsymbol{K}] + [\boldsymbol{K}_{q}] + [\boldsymbol{K}_{m}] - \omega^{2}[\boldsymbol{M}] \left\langle \begin{array}{c} \boldsymbol{w} \\ \boldsymbol{\theta}_{x} \\ \boldsymbol{\theta}_{y} \end{array} \right\rangle = [\boldsymbol{Q}] \{\Delta \boldsymbol{p}\}, \qquad (5)$$

where $\{\boldsymbol{w}\}$, $\{\boldsymbol{\theta}_x\}$ and $\{\boldsymbol{\theta}_y\}$ are the vectors of displacement and of x, y-directional slopes, respectively, $\{\Delta \boldsymbol{p}\}$ is the vector of sound pressure difference between the two sides. $[\boldsymbol{K}]$, $[\boldsymbol{M}]$ and $[\boldsymbol{Q}]$ are the elastance, the inertance and the conformation matrices for the plate [1]. In addition, $[\boldsymbol{K}_q]$ and $[\boldsymbol{K}_m]$ are the boundary stiffness matrices for shear and for rotational springs, respectively.

3 THEORETICAL CONSIDERATION ON THE EDGE SUPPORT MODEL

In order to clarify the damping effect in the lumped spring model, the relation of the springs to energy absorption is theoretically discussed by formulating the characteristics of energy absorption on the edge in the bending wave field.

3.1 Impedance of a Plate and of Edges

Regarding the shear spring and the rotation spring in the above model, the following two kinds of impedance [6] are defined on the edge of a plate.

mechanical impedance:
$$Z_q = \frac{Q}{v} = \frac{Q}{j\omega w} = \frac{k_q}{j\omega},$$
 (6)

moment impedance:
$$Z_{\rm m} = \frac{M}{\gamma} = \frac{M}{j\omega\theta} = \frac{k_{\rm m}}{j\omega},$$
 (7)

On the other hand, the characteristic impedances of a bending wave propagating in one direction are expressed as $Z_{q0} = Dk_b^3/\omega$ and $Z_{m0} = Dk_b/\omega$, respectively $(k_b = \sqrt[4]{\rho t/D}\sqrt{\omega}$: wave length, ρ : density of the plate) [7]. Finally, the impedance ratios of the springs to the bending wave have the relations that $z_q = Z_q/Z_{q0} \propto \omega^{-3/2}$ and $z_m = Z_m/Z_{m0} \propto \omega^{-1/2}$.

3.2 Energy Loss on Edges

Considering that a plane bending wave is normally incident on the infinitely long edge, the solution is accordance with the theoretical one for a bending wave in a semi-infinite beam. The one-dimensinal solution for the above boundary condition gives the amplitude ratio of incidence wave to reflection wave as

$$r_{0} = \frac{-j - (1 - j)z_{q} + (1 + j)z_{m} - jz_{q}z_{m}}{1 + (1 - j)z_{q} + (1 + j)z_{m} + z_{q}z_{m}},$$
(8)

provided that a near-field wave is excluded [7]. Here, the normal-incidence energy absorption coefficient on the edge is given by $a_0 = 1 - |r_0|^2$.

If the influence of the rotational spring is negligible, the normal-incidence absorption coefficient is simply expressed by

$$a_{0} = \frac{2 \operatorname{Re}(z_{q})}{\left|z_{q} + \frac{1+j}{2}\right|^{2}},$$
(9)

where assuming $z_m = 0$. Regarding the shear stiffness in Equation (1), the impedance ratio is written by $z_q = \overline{z_q}(\eta_s - j)$. If the loss factor of the sealing material η_s is regarded as a constant,

the absorption coefficient takes a maximum value that

$$a_{\max} = \frac{2\eta_s}{\sqrt{2(1+\eta_s^2)} + \eta_s - 1},$$
(10)

at a frequency satisfying $\overline{z_q} = 1/\sqrt{2(1+\eta_s^2)}$.

3.3 Case Study

Using the above theoretical formulations, the frequency characteristics of the normal-incidence absorption coefficients are calculated with changing the following properties:

- glass: t = 5, 10, 20 [mm] ($\rho = 2500 \text{ [kg/m^3]}$, $E = 7.5 \times 10^{10} \text{ [N/m^2]}$, $\nu = 0.22$, $\eta = 0.002$) - sealing: $E_s = 10^6, 10^7 \text{ [N/m^2]}$, $\eta_s = 0.1, 0.5, 1.0$

Figure 2: Frequency characteristics of the normal-incidence absorption coefficients of the edge. The thick lines for the model with shear and rotational springs, the thin lines for the model with only shear springs.

Figure 3: Imaginary parts of impedance ratio of the shear and rotational springs.

Figure 2 shows the results for the model with shear and rotational sorings, and also for another model with only shear springs. In all cases, one distinctive peak can be seen, and the peak frequency becomes higher as the glass pane is thinner, and as the sealing material is harder. The peak value for $\eta_s = 0.5$ reaches a = 0.9, while perfect absorption occurs for $\eta_s = 1.0$ as confirmed by Equation (9). Comparing the results for the two models, the influence of the rotational spring can be seen only in the case with the glass 5 mm thick at low frquencies. Figure 3 shows the imaginary values of impedance ratios of the shear and the rotational springs. Generally, the values of the rotational spring are very small, which explains the above results. Regarding the shear spring, it is seen that the frequencies at which $\overline{z_q} = 0.5$ correspond with the peak frequencies for $\eta_s = 1.0$.

4 NUMERICAL ANALYSIS OF SOUND TRANSMISSION LOSS

A numerical study is done to investigate the influence of the properties in the lumed spring model on the random-incidence sound reduction index, using a method of vibro-acoustic coupling analysis.

4.1 Numerical Model

As shown in Figure 4, consider a sound transmission model where a plane wave in incident upon a glass pane mounted in an infinite rigid baffle. Regarding the acoustic loading on the glass pane, the following discrete system is obtained by using the acoustic BEM [1].

$$\{\Delta \boldsymbol{p}\} = 2\{\boldsymbol{p}_{d}\} + 4\omega^{2}\rho_{0}[\boldsymbol{G}]\{\boldsymbol{w}\}, \qquad (11)$$

where $\{p_d\}$ is the vector of incidence sound pressure, ρ_0 is the air density, and [G] is the influence matrix determined by the boundary integral of Green's functions. Coupling the above acoustic system with the vibration system represented by Equation (5), the global system is composed as follows:

$$\left(\begin{bmatrix} \boldsymbol{K} \end{bmatrix} - \begin{bmatrix} \boldsymbol{K}_{\mathrm{q}} \end{bmatrix} - \begin{bmatrix} \boldsymbol{K}_{\mathrm{m}} \end{bmatrix} - \boldsymbol{\omega}^{2} \begin{bmatrix} \boldsymbol{M} \end{bmatrix} - 4\boldsymbol{\omega}^{2} \boldsymbol{\rho}_{0} \begin{bmatrix} \boldsymbol{G} & \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} \right) \begin{pmatrix} \boldsymbol{w} \\ \boldsymbol{\theta}_{x} \\ \boldsymbol{\theta}_{y} \end{pmatrix} = 2 \begin{bmatrix} \boldsymbol{Q} \end{bmatrix} \{ \boldsymbol{p}_{\mathrm{d}} \}.$$
(12)

The distribution of displacement is obtained by solving the global system, and finally, the transmitted energy can be calculated for the plane wave of a specific incidence angle. In the following analysis, at every 1/24 octave band center frequency, the random-incidence sound reduction index is calculated by statistical averaging over all incidence angles.

Figure 4: Sound transmission model.

4.2 Results and Discussion

Random-incidence sound reduction indices are calculated for the glass panes of two different sizes, a small area 0.9 m x 0.9 m, and a medium area 1.2 m x 1.5 m. The thickness of the glass panes, the Young's modulus and the loss factor of the sealing material are changed as given in Section 2.2. For the thicknesses of 5, 10 and 20 mm, the critical coincidence frequencies are theoretically determined to be 2327, 1164 and 581 Hz, respectively.

Figures 5 and 6 show the single frequency reduction indices for the glass pane of the small size, and the corresponding 1/3 octave band values, respectively. It is seen that, on the whole, the influence of edge damping becomes greater above the critical coincidence frequencies, especially for the harder sealing. This tendency seems to be consistent with the frequency characteristics of absorption coefficients in Figure 2.

Figure 7 shows the results for the glass pale of the medium size with the thickness 10 mm. In addition, comparable results for the small and the medium glass panes are illustrated in Figure 8. The general tendency for the the medium size is similar to the above for the small size. However, at low frequencies, smaller fluctiation is seen for the medium size due to higher density of natural frequencies of vibration field. It is also seen that, above the critical frequecy, the reduction indices for the medium size are lower, which considered due to decreasing the total loss factor of the glass pane, with the ratio of the edge length to the surface.

In an additional study, it was seen that, due to neglecting the rotational springs, changes in sound reduction index appear at low frequencies for the harder sealing, but within 2 dB. This result is also accordance with the theoretical consideration mentioned above, and suggesting that a simple edge support model with only shear springs could be applied to this kind of numerical simulation.

5 CONCLUDING REMARKS

For numerical analysis of sound transmission of glass panes, a simple support model for glazing edges was introduced, where two kinds of equivalent springs for shear and for rotation are given in relation to the complex Young's modulus of a sealing material.

Through a theoretical consideration on the edge support model, the frequency characteristics of energy absoprtion coefficient on the edge were clarified for the realistic glass panes and sealing materials. It is also demonstrated that the influence of the rotational spinrg appears at low frequences for thin glass panes and hard sealing material.

Finally, numerical analysis was performed to calculate the random-incidence sound reduction indicies for the glass panes of differenct sizes and thicknesses. Regarding the influence of the edge damping, the tendncy generally corresponds with the above theoretical one on the boundary absorption coefficient, and the dependence of the glass size was also observed. Furthermore, the influence of the rotational springs on sound reduction index was considerably small, which suggesting that a simple edge model with shear springs would be applicable.

6 ACKNOWLEDGEMENT

This project was supported by the Grand-in-Aid for Scientific Research (A) (No. 19206062) from JSPS.

Figure 5: Frequency characteristics of the random-incidence sound reduction index calculated for the glass panes of the size $0.9 \text{ m} \times 0.9 \text{ m}$, and the thickness 5, 10 and 20 mm.

Figure 6: 1/3 octave band values of the random-incidence sound reduction index calculated for the glass panes of the size 0.9 m x 0.9 m, and the thickness 5, 10 and 20 mm, converted from Figure 5.

Figure 7: Single frequency values and 1/3 octave band values of the random-incidence sound reduction index calculated for the glass panes of the size 1.25 m x 1.5 m, with the thickness 10 mm.

Figure 8: Comparison of 1/3 octave band values of the random-incidence sound reduction index bewteen the two glass panes of the small and the medium sizes, with the thickness 10 mm.

7 REFERENCES

- [1] T. Sakuma and T. Oshima, Numerical vibro-acoustic analysis of sound insulation performance of wall members based on a 3-D transmission model with a membrane/plate, Acoust. Soc. Tech. Vol.22, pp.367-369 (2001).
- [2] T. Sakuma and T. Oshima, Application of a vibro-acoustic method to prediction of sound insulation performance of building elements, Proc. Inter-noise 2001 (Hague), No.580, (2001).
- [3] J. Yoshimura, S. Sugie and E. Toyoda, Effects of size and edge damping on measurement results for sound reduction index of glass pane, Proc. Inter-noise 2006 (Hawaii), (2006).
- [4] J. Yoshimura, S. Sugie and E. Toyoda, Internal and edge damping effects on sound reduction index measurements of a glass pane, Proc. Inter-noise 2007 (Istanbul), (2007).
- [5] ISO 140-3:1995: Acoustics Measurement of sound insulation in buildings and of building elements Part 3: Laboratory measurements of airborne sound insulation of building elements.
- [6] L. Cremer, M. Heckl and B. Petersson, *Structure-Borne Sound*, *3rd Ed*. (Springer-Verlag, New York, 2005).
- [7] Y. Iwatani, Y. Suzuki, M. Sakata and T. Sone, Influence of the terminating impedance of a semi-infinite beam on the reflection of bending wave and vibration intensity, J. Acoust. Soc. Jpn. Vol. 56, pp.243-248 (2000).

窓ガラスの音響透過損失に関する数値解析 -周辺支持部のエネルギー損失について-*

○ 佐久間 哲哉 江川 健一 安田 洋介 (東大・新領域)

1はじめに

シール材で支持された窓ガラスの音響透過損失を 数値解析により求めるには、周辺支持部の振動エネ ルギー損失の模擬が重要となる。筆者らは周辺支持 部に集中バネモデルを想定し、ガラス板と入射側・ 透過側音場の連成解析を行ってきた[1,2]。本報では 集中バネモデルに加えて弾性連続体モデルも想定 し、拡散振動場における端部のエネルギー損失につ いて理論的に考察する。

2 ガラス板周辺支持部のモデル化

2.1 集中バネモデル

ガラス板周辺のシール材が端部の変位・傾斜に対して各々反作用するものと仮定し、弾性体と等価な並進・回転バネ(バネ定数*K*_q,*K*_m)からなる集中バネモデルを想定する(図1)。端部損失はバネの内部減衰に因るものとすると、各バネの機械・モーメントインピーダンスZ_q,Z_mは次式で表される。

$$Z_{q} = \frac{Q}{j\omega w} = \frac{K_{q}}{j\omega} = \frac{2}{j\omega} \frac{E_{s}(1+j\eta_{s})d}{h}$$
(1)

$$Z_{\rm m} = \frac{M}{j\omega\theta} = \frac{K_{\rm m}}{j\omega} = \frac{2}{j\omega} \frac{E_{\rm s}(1+j\eta_{\rm s})d^3}{12h}$$
(2)

但し、シール材の物性値としてヤング率 E_s 、損失係数 η_s 、寸法として幅d、厚さhである。板の特性インピーダンス[3]は屈曲波の波数 $k_b = \sqrt{\omega\sqrt{\rho t/D}}$ に対して $Z_{q0} = Dk_s^3/\omega$, $Z_{m0} = Dk_b/\omega$ より、端部のインピーダンス比は各々次式で表される。

$$z_{q} = \frac{Z_{q}}{Z_{q0}} = \frac{2E_{s}d}{Dh} \frac{\eta_{s} - j}{k_{b}^{3}} \propto \omega^{-3/2}$$
(3)

$$z_{\rm m} = \frac{Z_{\rm m}}{Z_{\rm m0}} = \frac{E_{\rm s} d^3}{6Dh} \frac{\eta_{\rm s} - j}{k_{\rm b}} \propto \omega^{-1/2} \tag{4}$$

但し、板の曲げ剛性*D* = *E*(1+*j*η)*t*³/12(1-*v*²)(ヤング 率*E*、ポアソン比*v*、損失係数*η*、板厚*t*)である。 2.2 弾性連続体モデル

シール材の並進振動のみに対して弾性連続体の挙動を考慮して1次元縦波動を想定すると、端部の機械インピーダンスは次式で表される。

$$Z_{q} = \frac{2\rho_{s}c_{s}d}{j\tan\omega h/c_{s}}$$
(5)

但し、シール材の縦波速度 $c_s = \sqrt{E_s(1+j\eta_s)/\rho_s}$ (密度 ρ_s)である。なお、 $\omega h/c_s \ll \pi/2$ の場合、式(5)は式(1) に近似する。

3 周辺支持部のエネルギー損失

3.1 板端部のエネルギー吸収率

板振動場において直線状の屈曲波が無限長のイン ピーダンス境界に対して入射角θで入射する場合、 境界の法線・接線2方向の波数分離を行い、境界上 の有効剪断力・モーメントの釣合より理論解が得ら れる。理論解より境界近接波を除く入射波と反射波 の振幅比、即ち反射係数は次式で表される。

$$r_{\theta} = \frac{(a_{b_{+}} - ja_{+}b_{-}) - 2z_{q} + 2ja_{+}a_{-}z_{m} + (a_{-} - ja_{+})z_{q}z_{m}}{(a_{-}b_{+} + ja_{+}b_{-}) + 2z_{q} + 2ja_{+}a_{-}z_{m} + (a_{-} + ja_{+})z_{q}z_{m}}$$
(6)

但し、 $a_{\pm} = \sqrt{1 \pm \sin^2 \theta}$, $b_{\pm} = (1 \pm (1 - \nu) \sin^2 \theta)^2$ であり、垂 直入射時に $a_{\pm} = b_{\pm} = 1$ となる。上式より板端部のエ ネルギー吸収率は $a_{\theta} = 1 - |r_{\theta}|^2$ として与えられる。

3.2 並進バネのエネルギー吸収率

回転バネの影響を無視した場合(z_m=0)、式(6) よりエネルギー吸収率は次式で表される。

$$a_{\theta} = \frac{8a_{b} \operatorname{Re}(z_{q})}{\left| (a_{b} + ja_{+}b_{-}) + 2z_{q} \right|^{2}}$$
(7)

ガラス板の損失係数は無視できるものとし、式(3) より並進バネのレジスタンス・リアクタンスを Re $(z_a) = \eta_s \hat{z_a}$, Im $(z_a) = -\hat{z_a}$ と表すと、

$$a_{\theta} = \frac{2a_{b} + \eta_{s} \hat{z}_{q}}{(\eta_{s} \hat{z}_{q} + a_{b} / 2)^{2} + (\hat{z}_{q} - a_{+} b / 2)^{2}}$$
(8)

上式は $\hat{z_q} = \sqrt{(a_-^2 b_+^2 + a_+^2 b_-^2)/4(1+\eta_s^2)}$ にて最大値

$$a_{\theta,\max} = \frac{2a_{-}b_{+}\eta_{s}}{\sqrt{(a_{-}^{2}b_{+}^{2} + a_{+}^{2}b_{-}^{2})(1 + \eta_{s}^{2})} + a_{-}b_{+}\eta_{s} - a_{+}b_{-}}$$
(9)

をとり、垂直入射時は
$$\hat{z_q} = 1/\sqrt{2(1+\eta_s^2)}$$
にて最大値
$$a_{0,\max} = \frac{2\eta_s}{\sqrt{2(1+\eta_s^2)} + \eta_s - 1}$$
(10)

となる。

* Numerical analysis of sound transmission loss of glass pane - Energy loss by edge supports, by SAKUMA Tetsuya, EGAWA Kenichi and YASUDA Yosuke (Univ. of Tokyo).

Fig. 2: Incidence angle dependence of the absorption coefficient of the edge. Glass: t = 10 [mm]; Seal: $E_s = 10^7$ [N/m²], $\eta_s = 0.5$.

4 ケーススタディ

前述のモデルに基づき、ガラス板厚とシール 材物性値を変化させて周辺支持部のエネルギー 損失の挙動ついて考察する。なお、以下の条件 は一定とする。

・ガラス板の物性値: ρ=2500 [kg/m³],

$$E = 7.5 \times 10^{10} [\text{N/m}^2], v = 0.22, \eta = 0.002$$

・シール材の寸法[4]: d = 15 [mm], h = 5 [mm]

4.1 入射角の影響

集中バネモデルにおいてガラス板内の屈曲波 の入射角を変化させた場合のエネルギー吸収率 を図2に示す。吸収率は一つのピークを持ち、 垂直入射から60度入射付近にかけてはピーク 値が低下するのに対して、75度にかけてはピー ク周波数が高音域に変化している。但し、入射 角依存性は比較的緩やかである。

4.2 回転バネの影響

集中バネモデルにおいて回転バネの有無がエ ネルギー吸収率に及ぼす影響を図3に示す。ガ ラス板厚が薄く、シール材が硬い場合に低音域 で若干影響が現れているが、並進バネが支配的 となる高音域では回転バネは無視できる。

4.3 弾性連続体モデルの影響

弾性連続体モデルにおいてシール材の密度を ρ_s = 1000, 2000 [kg/m³]とした場合のエネルギー 吸収率を図4に示す。シール材の質量は図3の ピークに対して若干影響を及ぼすとともに、 シール材が柔らかい場合に高音域ではシール材 自体の共振の影響が顕著に現れている。

5 おわりに

ガラス板周辺支持部のモデル化とエネルギー損失 の関係について、回転バネの影響は低音域で生じる のに対して、高音域ではシール材質量の影響が現れ ることを例示した。シール材の並進振動モデルとし ては、少なくとも集中質量を導入した集中バネマス モデルが必要と考えられる。

Fig. 3: Randon-incidence absorption coefficients of the edge based on the spring model with/without rotational spring.

Fig. 4: Randon-incidence absorption coefficients of the edge based on the continuum model with changing seal's density.

参考文献

- [1] 佐久間他, 建築学会大会梗概 D1, 229-230 (2008)
- [2] 江川他, 建築学会大会梗概 D1, 231-232 (2008)
- [3] L. Cremer & M. Heckl, Structure-Borne Sound (Springer-Verlag, New York, 1973)
- [4] JIS A 1416: 2000

窓ガラスの音響透過損失に関する数値解析 -理論値・実測値との比較検討-*

◎江川健一,安田洋介,佐久間哲哉(東大・新領域)

1 はじめに

窓ガラスの遮音性能予測を音響振動連成解析に より高精度に行うためには、周辺支持部における エネルギー損失を精度良く反映する必要がある。 前報 [1] では窓ガラスの周辺支持部に並進・回転 バネを考慮した集中バネモデルと弾性連続体モ デルを想定し、屈曲波の斜入射・ランダム入射時 における端部のエネルギー損失について理論的 考察を行った。本報では前報のモデルを用いた音 響振動連成数値解析を行い、得られた透過損失値 について理論値・実測値と比較検討する。

2 解析手法

既報 [2] 同様、解析モデルとして無限大剛バフ ル中の板材に単位振幅平面波が入射する音響透 過問題を想定する。1/24 オクターブ帯域中心周波 数においてランダム入射透過損失を算出し、得ら れた値をエネルギー合成することで 1/3 オクタ ーブ帯域値を 2 kHz まで算出している。

3 解析対象

ガラス板、シール材の物性値を表 1,2 に示す。 なお、実測で用いられるシール材の物性値につい てはおおよそ以下の値程度と見なせる [3]。

• \because \Downarrow \dashv ≃ \succ : $E_{\rm s} = 10^6 \sim 10^7 \, [\text{N/m}^2], \, \eta_{\rm s} = 0.1, \, \rho_{\rm s} = 1000 \, [\text{kg/m}^3]$

・パデ: $E_{\rm s} = 10^7 \sim 10^8$ [N/m²], $\eta_{\rm s} = 0.5 \sim 1.0$, $\rho_{\rm s} = 2000$ [kg/m³]

4 結果と考察

4.1 回転バネの影響

集中バネモデルにおける、回転バネの有無によ る透過損失値の差(「回転バネ有り」 – 「無し」) を図 1 に示す。前報 [1] の結果と同様、シール 材が硬い場合に低域で影響が表れており、周辺支 持部のモデル化では回転バネを考慮する方が望 ましいといえる。

4.2 集中バネモデルと弾性連続体モデルの比較

弾性連続体モデル適用時と集中バネモデル (回 転バネ有り) 適用時での透過損失値の差 (「弾性 連続体」–「集中バネ」)を図 2 に示す。前報 [1] でエネルギー吸収率に差が見られた高域におい て弾性連続体モデル適用時の方が透過損失値が 大きい。なお、ここに非表示の $E_s = 10^7 [N/m^2]$ の

Table 1Properties of glass plate.

size: 0.9×0.9 , 1.25×1.5 [m ²];
thickness: $t = 5$, 10 [mm]; $\rho = 2500$ [kg/m ³]; $\upsilon = 0.22$;
$E = 7.5 \times 10^{10} [\text{N/m}^2]; \eta = 0.002$

Table 2	Properties of seal.
$d = 15 [{ m m}]$	m]; $h = 5 \text{ [mm]};$
$o_{\rm s} = 1000$, 2000 [kg/m ³];
$E_{\rm c} = 10^6$.	$10^7 [\text{N/m}^2]$: $n_{\rm c} = 0.1, 0.5, 1.0$

場合については、エネルギー吸収率としての差が 微小であったことから [1] 、透過損失値の差も微 小であると考えられる。

4.3 理論値との比較

板サイズ 2 水準での弾性連続体モデルにおけ る透過損失の計算値とランダム入射時の質量則、 有限板の理論式である Sewell の式 [4] による値 を図 3 に示す。両寸法とも端部損失の小さい $\eta_s =$ 0.1 を除きコインシデンス限界周波数 f_c 以下で Sewell の式と良く対応している。

4.4 実測値との比較

上記の計算値と文献実測値 [5] を図 4 に示す。 f_c 以下では寸法によらずパテ支持・シリコン支持 の両実測値と $\eta_s = 0.5, 1.0$ の計算値がよく一致し ている。一方、 $\eta_s = 0.1$ の計算値については板厚 が厚くシール材が硬いほど他と比べ値が小さく なっており、同程度の η_s を持つシリコン支持時 の実測値とも差が見られる。 f_c 以上では、実測値 と計算値の差が t = 10 [mm] の場合において見ら れるものの、図 2 からもわかるように、集中バ ネモデルに比べると実測値に近い結果であった。

5 まとめ

音響振動連成解析による板ガラスの音響透過 損失予測値について、周辺支持部に集中バネモデ ルを想定した場合回転バネの影響は低域で表れ ること、弾性連続体モデルと集中バネモデルの違 いは高域で表れることを確認した。また、 η_s がパ テ程度の場合にコインシデンス限界周波数 f_c 以 下で理論値・実測値との対応が良いこと、集中バ ネモデルより弾性連続体モデルの方が f_c 以上で 実測値との対応が良いことを示した。

参考文献

- [1] 佐久間他, 音講論(春) (2009.3).
- [2] 江川他, 建築学会大会梗概 D1, 231-232 (2008).
- [3] 山口,制振工学研究会通信, 2,9月号 (2006).
- [4] E. C. Sewell, J. Sound Vib., 12, 21-32 (1970).
- [5] Yoshimura et al., Inter-Noise 2006, No. 641 (2006).

^{*} Numerical analysis of sound transmission loss of glass pane - Comparison of calculated, theoretical and measured values, by EGAWA Kenichi, YASUDA Yosuke and SAKUMA Tetsuya (Univ. of Tokyo).

Fig. 1: Difference of 1/3-oct-band transmission loss caused by neglecting rotational springs (glass: $0.9 \times 0.9 \text{ m}^2$ size, t = 10 [mm]).

Fig. 4: Comparison of measured and calculated values of 1/3-oct-band transmission loss (seal: $\rho_s = 1000 \text{ [kg/m^3]}$).