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1. Introduction

In recent years, an automobile has been considerably improved
in performance, mileage, safety, comfort, and handling quality.
However, the automobile tends to be aerodynamically unstable to
the crosswind and gust because of the use of light materials and
streamlined shape. The center of pressure to the side force tends to
move forward as the body shape becomes more aerodynamically
streamlined. To determine side forces and moments acting tran-
siently on an automobile, measurements in the wind tunnel and
driving tests using a cross-wind generator have been usually used,
but recently numerical analysis of automobile with cross-wind
effects is becoming more and more practical by the progress of

numerical algorithms and computer hardware performances.

The objective of the present work is to apply the iterative time
marching scheme to the incompressible turbulent flow around a
generic body of the car at the five yaw angles. Since in the wind
noise aspects, the accurate flow simulation of the side-view mirror

is essential, the Chimera grid technique is adopted for this purpose.

2. Mathematical and Numerical Formulation

The three-dimensional unsteady incompressible Navier-
Stokes equations in a general curvilinear coordinate system (t, &,
n, £) may be written in a non-dimensional form as follows:
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First of all, let us consider the momentum equation only. Since
the momentum equation is a parabolic type of partial differential

equation, it can be solved using a time marching scheme as follows:
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The barred quantities denote the column vector matrices con-
sisted of momentum equations in &-, #-, and &-direction. The
operators, g, 0, and O, represent spatial differences. If the
Newton iteration method is applied to efficiently solve the
unsteady flow problem, Eq. (2) is rewritten as follows:
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Following a local linearization ofE,F,G,E,.F,, and G,
about the ‘n+1" time level and at the ‘k’ iteration level,
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where w is a relaxation factor and A, B and C are the Jacobian
matrices of the flux vectors E—E,,F—~F,, andG—G, ,

respectively:
_AE-E, , oF-F) _B(G—GV)
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and B** 1 * is the residual vector defined as:
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Note that LHS of Eq. (4) is the same form of discretized
momentum equations, Eq. (3) at ‘k’ iteration level and when goes to
zero, the momentum equations in their discretized form are exactly

satisfied at each physical time step. Then the solution is independent
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of any approximations made in the construction of A, B and C. To
capture turbulent flows at high Reynolds number flows in detail, a
suitable turbulence model is essential. In the present work, the
Baldwin-Lomax turbulence model was implemented.

Next, let’s consider the continuity equation. In order to solve
incompressible viscous flow problems efficiently, we need a
relationship coupling changes in the velocity field with changes in
the pressure field while satisfying the divergence-free constraint. In
the present study, the Marker-and-Cell (MAC) applroach2 is used to
link the iterative changes between the pressure and velocity:
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where A(p/J) = (p/ )" P =(p/ )"  and B is a
relaxation factor, that may even vary from node to node as in a
local time concept. Again, when p goes to zero, the continuity
equation is exactly satisfied at each time step, even in unsteady
flows. Eq. (7) states that if a cell is accumulating mass, then the
pressure value at the next iteration is increased to repel fluid away
from the cell. If a cell is losing mass, then the pressure value is
lowered to draw fluid. Thus the pressure field is iteratively
updated along with the velocity field until the conservation of mass
is satisfied. The spatial derivatives of convective flux terms are dif-
ferenced with using the third order accurate upwind QUICK
(Quadratic Upstream Interpolation for Convective Kinematics)
scheme® to reduce unphysical oscillations for high Reynolds
number flows, and the spatial derivatives of viscous terms are dif-
ferenced using half-point central differencing. The spatial
derivatives of the continuity equation is differenced with central
differencing and the fourth order artificial damping term is added
to the continuity equation to stabilize the present procedure.
Combining Eq. (4) and Eq. (7), and applying the numerical dis-
cretization in time and space at all nodes in the flow field, a system
of simultaneous equation results for the quantity Aél\equal to

(Aq/J, Auw/J, Av/J, Aw/]). This system may be formally written as:
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Here, since the right hand side is the discretized form of the
unsteady governing equations, as long as {A(’l\ } is driven to zero,
the discretized form of unsteady Navier-Stokes equations are
exactly satisfied at physical time level ‘n+1". The steady state solu-
tions are obtained as asymptotic solutions of the time marching
process. Although the matrix [M] is a sparse and banded block
matrix, direct inversion of this matrix requires a huge number of

arithmetic operations. A common strategy is to approximate the
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matrix [M] by another, easily inverted matrix [N]. In this study,
matrix [N] contains only the diagonal contributions of matrix [M],
and Eq. (8) becomes an explicit form which is more easily tailored
for efficient execution on the current generation of vector or mas-

sively parallel computer architectures than an implicit form.

3. Chimera Grid Technique

The Chimera grid method* is such a conceptually simple
method for domain decomposition that a major grid is generated
around a main body element and minor grids are also generated to
resolve interesting flow features of the specific configurations,
independent to the major grid. Then, the minor grids are just over-
laid on the major grid without requiring the grid boundaries to join
each other in any special ways. The overlap region is required to
match the solutions across boundary interfaces. The tri-linear inter-
polation is used to interpolate the physical quantities:
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where { is the interpolated value of physical quantities from the
data of f;,,,.f,,, ;1 ),1» Which are values at the cell vertices. The g,
n, are & distances from cell vertex as shown in figure 1. In the pre-
sent work, the major grid is generated for the car body and the grid
for side-view mirror is independently generated and overlaid on

the major grid as shown in figure 2 (d).
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Fig. 1 Trilinear interpolation for Chimera grid
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4, Initial and Boundary Condition

It is assumed that the car is impulsively started from rest. Thus,
the freestream condition is used as initial condition and farfield
inflow boundary condition. At outflow boundary, p=p, is
imposed and the velocity is extrapolated from interior nodes to
account for the removal of vorticity from the flow domain by con-
vective processes. On the body and ground surfaces, the no slip
condition is applied for velocity components. The surface pressure
is determined by setting the zero normal pressure gradient of pres-
sure. For the zero yaw angle of flow simulation, the symmetry
condition is applied at symmetry-plane boundary. The grid
around the generic body of the car is generated using the multi-
block grid technique, which is consisted of 6 blocks as shown in
figure 2. The number of grid points of each blocks (Block number
1-6) are 30 X 111 X 67, 78 X 33 X 67, 78 X 47 X 32, 78 X
47 X 14, 78 X 33 X 67, and 45 X 111 X 67, respectively. The
total number of grid points of the body is 1.1 X 10°. The grid for
side-view mirror is O-H grid system and grid size is 48 X 37 X
13. The grid of side-view mirror is overlaid on the major grid of
main body through the Chimera grid technique.

5. Results and Discussion

The present iterative time marching procedure has been
applied to the flow around the generic body of the car at 1.86 X
10° of Reynolds number based on the body length. The crosswind
flow is at yaw angles of 15°, 30°, 45°, and 60°. Figure 3 shows the
streamlines at each yaw angles. At zero yaw angle, the A- and C-
pillar vortex are evidently shown along the side end of front and
rear windshield, respectively. These vortices are primarily
induced by the flow separation of the sharp curves of right and left
side body end and, especially, the strength of A-pillar vortex is pri-
mary wind noise source to the driver. Thus, it is important to
control or reduce the A-pillar vortex strength to diminish the wind
noise. The changes of flow feature as the yaw angle varies are well
shown in figure 3. As the yaw angle increases, the A-and C-pillar
vortex obtain their strength by the strong flow separation in the
windward side-end body and these two vortices eventually coa-
lescence togther at more than 30° yaw angle. In the leeward side,
the massively flow separated region was shown. Figure 4 shows
the flowfield past the side-view mirror at each yaw angles. The
Chimera grid technique as mentioned before was used to simulate
the flowfield around the side-view mirror. In addition to A-pillar
vortex, since the flowfield around the side-view mirror also plays
the significant role in the wind noise source, it is important to accu-
rately simulate the flowfield around the side-view mirror. Figure 5

shows the limiting streamlines on the car body, as well as on the
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mirror surface. In this figure, S;-S, denote the saddle point and N;-
N, denote the focal point. Figure 6 shows the streamwise surface
pressure distribution along the windward, symmetry, and leeward
plane. Here, the windward and leeward plane are located at a quar-
ter width of car body from both side-ends. The numerical Cp

calculation was also compared with experiment’ in figure 6. The

block #4

{a) Side View

11
T

(c) Surface grid

T

(d) Chimera grid for side-view mirror

Fig. 2 Grid system of the generic body and mirror
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Fig. 3 Streamlines around generic body at each yaw angles
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Yaw angle Windward plane side-view mirror
0=0°
6=15°
0 =30°
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Fig. 4 Streamlines around side-view mirror at yaw angles
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Fig.5 Limiting streamlines on the body surface
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Fig. 6 Surface pressure distribution, compared with expcriment5
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numerical result agrees fairly well with experiment up to yaw
angle of 30°. The discrepancies beyond 30° may be attributed to
the limit of Baldwin-Lomax model. The Baldwin-Lomax model
has limitations to accurately capture the massive flow separation
and strong vortex at large yaw angles. The discrepancy in Cp
becomes more severe in the windward plane at yaw angle of 45°
and 60°, where the strong vortex generated by the flow separation
is located near the designated windward plane of Cp-plot as shown
in figure 3. The aerodynamic forces and moments variations as the
yaw angle changes are shown in figure 7. The side force increas-
es and lift force decreases as the yaw angle increases. The drag
force is increasing up to 15° yaw angle, and, then maintains about
the value of 0.6 up to 30° yaw angle. Beyond this yaw angle, the
drag force is decreasing slowly. The yawing moment has same
trend of drag forces. The rolling moment continuously increases
very slowly.

6. Conclusions

The iterative time marching scheme for the solution of three-

dimensional incompressible turbulent flows has been
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Fig. 7 Aerodynamic forces and moments variation
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successfully applied to the flows around the generic body of a car
having the side-view mirror under the cross-wind effect. The flow
simulation has been done at zero yaw angle and four yaw angles of
15°, 30°, 45°, and 60°. From the present numerical result, the
strong A- and C-pillar vortex was evidently shown at zero yaw
angle and as the yaw angle increases the A- and C-pillar vortex
obtain their strength by the strong flow separation in the windward
side-end body and these two vortices eventually coalescence
togther at more than 30° yaw angle. In the leeward side, the mas-
sively flow separated region was shown. The surface pressure
distribution obtained by the present calculation was compared with
experiment and agrees fairly well each other up to 30° yaw angle.
The changes aerodynamic forces and moments variation are also
studied as the yaw angle changes.
(Manuscript received, November 13, 2000)
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