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Large Eddy Simulation

Nowadays LES is the best technique for a wide range of engi-

neering problems due to its application in complex geomeffy's and

phenomenology's e.g. turbulence and combustion, without wasting

too much time compared with DNS (Direct Nunierical Simula-

tion) and needing less experimental parameters than RANS

(Reynolds Average Navier Stokes).

LES is based in the Navier Stokes equations filtered in space

obtaining the so called Grid Scale values such as velocities, pres-

sure and kinetic energy. Filtered N-S equations for an

uncompressible three dimensional and unsteady flow ate

expressed in tensor form.

channels. In complex geomeffy's, these equations are expressed in

a curvilinear systerii.

In order to obtain good results, the discretization in finite

difference is performed in a collocated grid with a modified con-

vective term which improves stability in the simulation calculus

[1] and coupling between velocities and pressure correction.

Second order ofaccuracy is used but a fourth order is suggested as

a good improvement.

Navier Stokes and mass equations are solved by the fractional

step method as a time marching method where a first approxima-

tion (first step) of velocities is calculated explicitly using the

Adams-Bashforth method for the convective term. The diffusive

term is evaluated by Crank-Nicholson scheme and the overall

equation is solved by point Jacobi.

From mass equation in the collocate grid is obtained the pres-

sure correction equation which is solved by bicgstab [4]. After that,

velocities are updated (second step). A preconditioner in the solver

is desired in order to reduce time of computation of this equation.

Incomplete LU decompositions [3] can be a feasible option.

Here are presented sonie results (fgures 1 and2) of a turbulent

channel flow case with Reynolds number 790, grid size 32 X

64 x 32 in stream, normal and span wise directions respectively

with a concentration grid parameter equal 2 and its benchmark

using DNS data supplied by Moser and Kim [2].

Periodic boundary conditions in stream and span wise directions

have been applied while non slip condition in normal direction

(walls). Initial conditions are DNS data with random fluctuations

in all directions.

Parallel Computing

CFD (Computational Fluid Dynamic) codes contain some bot-

tlenecks related mainly with the pressure correction equation

solver. This fact is observed in the rapport of cpu time spent in this
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Furtherrnore in the filtering process appears the term zu which

due to its nature must be modelled.We refer to the Sub Grid Scale

values. A first approximation was proposed by Smagorinpky by

modelling the Reynolds stress tensor R,., and neglecting Leonard

L,,and Cross Cu sffess tensors.

, , r =  u , u i - u , u i =  t , , *  C i j +  R i j = ' t l s c s S ; ;  .  ' .  . .  . ( 3 )

v s c s =  ( c r l ) ' l s l  . . ' . . . ( 4 )

Here Su attO I S I are the strain rate tensor and its norm. And A

denotes the filter width. C, stands for the Smagorinsky constant

with an estimated value of 0.1 for developed turbulent flows in
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Fig.Z Figure shows rms turbulent intensity prole in stream wise
direction near wall.

small part of code and the overall code which can be estimated in

50-80%. Efforts in parallel computing are the most effective

way of reduction of cpu time.

In this sense, a parallel implementation of jacobi and bicgstab

[4] solvers has been done. Here are presented (fgures 3,4 and 5)

effciencies of both solvers for different ways of partitioning.

It has been found a better performance in those cases when we

do a partitionin z direction or in y plus z directions instead of sim-

ply in x or y directions. We believe that a z direction partition

breaks memory arrays in smaller memory arrays avoiding cache

missing.

These tables and figures show efficiency of all possibilities of

partitioning. We remark that the best partition contains y and z

directions.

A second numerical experiment show the scaling properties of

both parallel solvers when a given number of equations N, : 32:

is increased by 2,4,8 and 16 and it is solved with2,4, 8 and 16

processors respectively.

In order to implement such solver into a CFD code, a structure
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Fig. 3 Eciency ofjacobi solver.
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Fig. 4 Eciency of bicgstab solver.

of layers has been designed: communication layer, algebra layer,

interface layer and user layer. The flrst one, contains MPI

(Message Passing Interface) [5] subroutines and keeps hidden to

the final user. The word hidden means that the user cannot aceess

directly to this layer or subroutines. Therefore, the user doesn't
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NcPυ 4 8 16

Efficiency X 1.00 0。96 0.88 0.80 0.72

Efficiencv Z 1.00 0.99 0。96 0。92 0。86

Efficiency YZ 1.00 0.99 0.97 0。93 0.86

NcPび 4 8 16

Efficiencv X 1.00 0。97 0.89 0。79 0。61

Efficiency Z 1.00 0.99 0。95 0.83 0.65

Efficiency YZ 1.00 0。99 0。97 0.87 0.78
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Fig. 1 Figure shows rms stream wise velocity profile near wall.
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馬 αしαれ。ηs 蝸 2Arl 4ハrl 8Arl 16Arl

NcPυ 1 2 4 8 16

tcpu jacobi 699 1045 1145 1471 1673

tspubicgstab 54 82 87 103 138
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Fig.5 Tilnc of CPU in each solver when the number ofcquations

and numbcr of CPU'sisincreasing in thc same rapport.
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Fig. 6 Pyramid draft of a parallel implementation of a solver.

need to have any knowledge about parallel programming and

SIMD (Single Instruction Multiple Data) paradigm. The scope of

this layer consist in performing all communication tasks between

processors. The algebralayer contains the solver and its auxiliary

subroutines. This layer do calls to the previous layer when some

operations must be performed in parallel, e.g. scalar product, norm

vector, product of an array by a vector. This layer is also hidden to

the user.

Finally the interface layer acts as a bridge between the user or

the CFD code and the parallel solver. The user layer contains the

problem and how to model it. Following this way the user can con-

centrate efforts inrthe simulation.

Wavelets and applications

In this section three different applications of a new revolution-

ary mathematical tool are presented. Due to its powerful features

in the analysis of functions and sampled data wavelets are gaining

more adepts in the scientific community.

Turbulence's phenomenology is difficult to describe and great

efforts are being done in order to obtain good models.

Richardson's cascade describe some important features of turbu-

lence scales and the rapport between eddy's hierarchy. Such

features can be well analysed by the use of wavelets [6] and [7].

Wavelets able us to extract the hierarchy of eddies easily from a

DNS or experimental data, and study the influence and behaviour

of each scale in the main flow.

Another interesting application of wavelets is in PIV (Particle

Image Velbcimetry) data. Data measurements with cameras con-

tains some visualization elrors which cannot be reduced:

reflection, dirty surface. These errors must be erased before

applying correlation between frames. At this point, wavelets acts

as an effor filtering process of those error measurements over each

frame. Furthermore, a significant reduction of memory space is

given without loos of accuracy. This reveals a new tool in the pre

processing image step.

Finally, wavelet transforms can also be used in multigrid tech-

niques. Transfer operators such a predictor and corrector are

expressed algebraically in terms of a two dimensional wavelet

transform applied over matrices and vectors [8].
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