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I .  INTRODUCTION

A new method for nonlinear analysis of reinforced concrete

structures is proposed. The concrete is modeled as an assembly

of distinct elements made by dividing the concrete virtually.

These elements are connected by distributed springs in both

normal and tangential directions. The reinforcement bars are

modeled as continuos springs connecting elements together.

Local failure of concrete is modeled by failure of springs con-

necting elements when reaching critical principal stress. We

,developed the element formulation and the computer coder). In

this paper, we introduce one numerical result comparing with

experiment. The result shows good agreement in determining

the failure load, the load-deflection relations, prediction of crack

initiation, crack location and crack propagation.

2 .  ELEMENT FORMULATION

The two elements shown in Fig. 1 are assumed to be connect-

ed by pairs of normal and shear springs located at contact points

which are distributed around the element edges. Each pair of

springs totally represent sffesses and deformations of a certain

area of the studied elements. The total stiffness matrix is deter-

mined by summing the stiffness matrices of individual springs

around each element. In the 2-dimensional model, three degrees

of freedom are considered for each element and deformations

are assumed to be small. The stiffness matrix is developed for

an arbitrary contact point with one pair of normal and shear

springs. Two types of springs were defined. The first is con-

crete-spring while the other is reinforcement-spring.
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Fig. 1 Spring distributions and area of influence of each pair of
spnngs

In this formulation, the element stiffness matrix depends on

the contact point location and the stiffness of normal and shear

springs which are determined according to the spring type and

the stress and strain at the contact point location. Principal

stresses are calculated at each contact point as shown in Fig. 2.

Normal and shear stresses (o, and t) are calculated from

attached normal and shear springs while stress o, is calculated

from normal stresses at points o'8" and "C". Failure of springs is

modeled by assuming zero stiffness for the spring being consid-

ered. Consequently, the developed stiffness matrix is an average

stiffness matrix for the element accordins to the stress situation

around the element.

3.EFFECTS OF ELEMENT S:ZE

AND THE NUMBER OF SPR!NGS

To illustrate the effects of elёment size, a series of analyses
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stresses at the contact point

were made for the laterally loaded cantilever shown in Fig. 3.

Elastic analyses were performed using our proposed method for

the different cases shown in Figs. 3, 4 and 5. The results were

compared with those obtained from elastic theory of structures.

The percentage of error in maximum displacement and the CPU

time (CPU: DEC ALPHA 300 MHz) are shown in Fig. 3. To

sfudy the effects of the number of connecting springs, two dif-

ferent analyses were performed using 20 and 10 springs

connecting each pair of adjacent element faces (Fig. 3). From

the flgure, it is evident that increasing the number of base ele-

ments leads to decreasing the error but increasing the CPU time.

The error reduces to less than l%o when the number of elements

at the base increases to 5 or more. Although the CPU time in

case of 10 springs is almost half of that in case of 20 springs, its

results congruent with those of 20 springs. Figs. 4 and 5 show

the distribution of normal and shear stresses at the base of the

studied columns for different number of base elements. From

those figures, the followings should be noticed:
'Calculated normal ptresses are very close to the theoretical

values even in case of one element at the base

: Shear stress values are constant for the same element
'Shear stress values are far from the theoretical values in case

of small number of elements at the base and close to the the-

oretical results in case of larse number of elements.

This means that behavior in the case, where the effects of

shear stress are minor, like case of slender frames, can be simu-

lated by elements of relatively large size. On the other hand, in

Number of base elements

Fig. 3 Relation between the number of base elements, percentage

of error and CPU time

Distance (m)

Fig. 4 Normal stress distribution at the column base

, Fig. 5 Shear stress distribution at the column base

case of walls and deep beams, elements of small size should be

used to follow the fracture behavior in the shear dominant zone.

4.  CASE STUDY AND NUMERICAL SIMULATION

To verify the accuracy of the model, we compared various

simulation results with experimentsr). As one example, we show

the simulation results of a continuous deep beam subjected to

monotonic loading. The studied deep beam shape and reinforce-

ment are shown in Fig. 6. For more details, see the Reference

(2). Analysis of such type of deep beams is difficult because of
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the following reasons:
'Not alike simple beams, maximum bending moments and

shear forces are at the same sections. This has sreat influ-

ence on the cracking behavior2).
' No shear reinforcement is used.
' Existence of many types of cracks; bending cracks, diagonal

tension cracks and compression shear cracks.

Half of the deep beam is modeled using 2,525 square ele-

ments. The number of distributed springs set between each two

adjacent faces is 10. The load is applied in 500 increment.

The relation between load and displacement is shown in

Fig. 6. From this figure, it is obvious that the results of displace-

ment at the mid-span, beginning of cracking load and failure

load are very similar to that obtained from the experiment.

Figure 7 shows the deformed shape and crack pattern during

the analysis. The crack location is very close to that obtained

from the experiment.

From these figures, the followings can be noticed:
'Initial cracks, which are bending cracks, started in the mid-

dle of the beam and at the middle support.
' Propagation of bending cracks stops due to the existence of

horizontal reinforcement at the middle of the beam.
'The width of bending cracks is maximum at locations far

away from reinforcement.
'In plain concrete zones, the number of bending cracks is

small but width is wide. In contrast, the number of bending

cracks in reinforcement locations is large but width is small.
' Diagonal tension cracks begin to propagate from the tension

zone and stop before compression zone
' Large displacement starts to appear after formation of diago-

nal cracks (see point (3) in Fig. 6)
'After propagation of diagonal tension cracks, the bending

cracks tend to close.
'Formation of compression strut between the loading point

and the support is very obvious.
' After reaching point (6), compression shear cracks appear at

the intermediate support. Moreover, concrete failure wedge

is formed between the intermediate supports and the loading

points. This indicates that the shear resistance is damaged

due to compression shear failure at the support and the load-

ing points locations.
' Continuing analysis after compression shear failure and sep-

aration of concrete wedge is difficult due to the rigid body

motion behavior of the failed zones. This emphasizes the
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importance of connecting this method with the EDEM3) to

follow the post peak behavior of the structures till total col-

lapse, in reasonable time and reliable accuracy.

It should be also noted that in the previous analysis using

rigid elements, like RBSM4)'s)' 6), the results obtained depend

mainly on the element discretizationt). This may be due to:
'The use of Mohr-Coloumb's failure criterion based on two

components of stresses (not based on principal stresses),
' Poisson's ratio effect is not taken into acpount,
'The spring stiffness is not determined in a proper way to

simulate the element deformation6),
' The use of relatively large sized elements, and
' The use of relatively small number of springs between edges

which leads to an inaccurate failure mechanism.

5. COMPARISON BETWEEN OUR PROPOSED MODEL

AND THE FINITE ELEMENT METHOD (FEM)

Many numerical techniques were developed for structural

analysis. The FEM proved to be the best technique for structural

analysis. However, the FE analysis includes many complica-

tions which don't exist in our model. The main advantages of

our model are summarized as follows:

l. Material models used for concrete and steel do not change

according to the reinforcement ratio like in case of the

FEM.

2.In our model, reinforcement springs can be set exactly it

the same location of reinforcement bar. Stress and strain,

which are not average value of mesh, of reinforcement and

concrete at any point can be obtained directly.

3. Analysis can be conducted before and after cracking with-

out any change in material models used.

4. Modeling is much simpler than the FEM. No need to have

node data and element connectivity data.

5. Many details can be easily taken into account without com-

plications like stirrup location, stimrps diameter, concrete

cover and loading plate width. With the FEM, considera-

tion of these effects requires changing the mesh size at the

concerned locations which makes the modeling difficult.

6. The number of degrees of freedom (DOF) for each element

is three in our model while 16 DOF are used in case of 8-

nodes element in FEM. In case of 3-dimensional analysis,

6 DOF are used in our model and 60 DOF are used in the

2O-nodes block element in FEM.

7. Representation of large cracks in the FEM requires dhe use

of joint elementsT) or fictitious cracks techniques. The main

disadvantage of these techniques is that the crack location

should be decided before analysis. Moreover, fictitious

crack techniques are used for limited number of cracks. In

our model, there is no need to define the crack location

before analysis: In addition, moving mesh techniques are

very difficult to apply to reinforced concrete because of

large number of cracks existing in the RC zones.

8. Crack propagation can not be followed easily using

smeared cracks methods.

Although our model can give good results, the following dif-

ficulties still exist. Analysis can not be continued after total

collapse or separation of part of the structure.

Research is conducted to the problem mentioned above.

Results of the conducted research will be published in future

papers.

( Manuscript received, August 27, 1997 )
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